/* * Marvell 88e6xxx Ethernet switch single-chip support * * Copyright (c) 2008 Marvell Semiconductor * * Copyright (c) 2015 CMC Electronics, Inc. * Added support for VLAN Table Unit operations * * Copyright (c) 2016 Andrew Lunn * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mv88e6xxx.h" static void assert_reg_lock(struct mv88e6xxx_chip *chip) { if (unlikely(!mutex_is_locked(&chip->reg_lock))) { dev_err(chip->dev, "Switch registers lock not held!\n"); dump_stack(); } } /* The switch ADDR[4:1] configuration pins define the chip SMI device address * (ADDR[0] is always zero, thus only even SMI addresses can be strapped). * * When ADDR is all zero, the chip uses Single-chip Addressing Mode, assuming it * is the only device connected to the SMI master. In this mode it responds to * all 32 possible SMI addresses, and thus maps directly the internal devices. * * When ADDR is non-zero, the chip uses Multi-chip Addressing Mode, allowing * multiple devices to share the SMI interface. In this mode it responds to only * 2 registers, used to indirectly access the internal SMI devices. */ static int mv88e6xxx_smi_read(struct mv88e6xxx_chip *chip, int addr, int reg, u16 *val) { if (!chip->smi_ops) return -EOPNOTSUPP; return chip->smi_ops->read(chip, addr, reg, val); } static int mv88e6xxx_smi_write(struct mv88e6xxx_chip *chip, int addr, int reg, u16 val) { if (!chip->smi_ops) return -EOPNOTSUPP; return chip->smi_ops->write(chip, addr, reg, val); } static int mv88e6xxx_smi_single_chip_read(struct mv88e6xxx_chip *chip, int addr, int reg, u16 *val) { int ret; ret = mdiobus_read_nested(chip->bus, addr, reg); if (ret < 0) return ret; *val = ret & 0xffff; return 0; } static int mv88e6xxx_smi_single_chip_write(struct mv88e6xxx_chip *chip, int addr, int reg, u16 val) { int ret; ret = mdiobus_write_nested(chip->bus, addr, reg, val); if (ret < 0) return ret; return 0; } static const struct mv88e6xxx_ops mv88e6xxx_smi_single_chip_ops = { .read = mv88e6xxx_smi_single_chip_read, .write = mv88e6xxx_smi_single_chip_write, }; static int mv88e6xxx_smi_multi_chip_wait(struct mv88e6xxx_chip *chip) { int ret; int i; for (i = 0; i < 16; i++) { ret = mdiobus_read_nested(chip->bus, chip->sw_addr, SMI_CMD); if (ret < 0) return ret; if ((ret & SMI_CMD_BUSY) == 0) return 0; } return -ETIMEDOUT; } static int mv88e6xxx_smi_multi_chip_read(struct mv88e6xxx_chip *chip, int addr, int reg, u16 *val) { int ret; /* Wait for the bus to become free. */ ret = mv88e6xxx_smi_multi_chip_wait(chip); if (ret < 0) return ret; /* Transmit the read command. */ ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_CMD, SMI_CMD_OP_22_READ | (addr << 5) | reg); if (ret < 0) return ret; /* Wait for the read command to complete. */ ret = mv88e6xxx_smi_multi_chip_wait(chip); if (ret < 0) return ret; /* Read the data. */ ret = mdiobus_read_nested(chip->bus, chip->sw_addr, SMI_DATA); if (ret < 0) return ret; *val = ret & 0xffff; return 0; } static int mv88e6xxx_smi_multi_chip_write(struct mv88e6xxx_chip *chip, int addr, int reg, u16 val) { int ret; /* Wait for the bus to become free. */ ret = mv88e6xxx_smi_multi_chip_wait(chip); if (ret < 0) return ret; /* Transmit the data to write. */ ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_DATA, val); if (ret < 0) return ret; /* Transmit the write command. */ ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_CMD, SMI_CMD_OP_22_WRITE | (addr << 5) | reg); if (ret < 0) return ret; /* Wait for the write command to complete. */ ret = mv88e6xxx_smi_multi_chip_wait(chip); if (ret < 0) return ret; return 0; } static const struct mv88e6xxx_ops mv88e6xxx_smi_multi_chip_ops = { .read = mv88e6xxx_smi_multi_chip_read, .write = mv88e6xxx_smi_multi_chip_write, }; static int mv88e6xxx_read(struct mv88e6xxx_chip *chip, int addr, int reg, u16 *val) { int err; assert_reg_lock(chip); err = mv88e6xxx_smi_read(chip, addr, reg, val); if (err) return err; dev_dbg(chip->dev, "<- addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n", addr, reg, *val); return 0; } static int mv88e6xxx_write(struct mv88e6xxx_chip *chip, int addr, int reg, u16 val) { int err; assert_reg_lock(chip); err = mv88e6xxx_smi_write(chip, addr, reg, val); if (err) return err; dev_dbg(chip->dev, "-> addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n", addr, reg, val); return 0; } /* Indirect write to single pointer-data register with an Update bit */ static int mv88e6xxx_update(struct mv88e6xxx_chip *chip, int addr, int reg, u16 update) { u16 val; int i, err; /* Wait until the previous operation is completed */ for (i = 0; i < 16; ++i) { err = mv88e6xxx_read(chip, addr, reg, &val); if (err) return err; if (!(val & BIT(15))) break; } if (i == 16) return -ETIMEDOUT; /* Set the Update bit to trigger a write operation */ val = BIT(15) | update; return mv88e6xxx_write(chip, addr, reg, val); } static int _mv88e6xxx_reg_read(struct mv88e6xxx_chip *chip, int addr, int reg) { u16 val; int err; err = mv88e6xxx_read(chip, addr, reg, &val); if (err) return err; return val; } static int _mv88e6xxx_reg_write(struct mv88e6xxx_chip *chip, int addr, int reg, u16 val) { return mv88e6xxx_write(chip, addr, reg, val); } static int mv88e6xxx_mdio_read_direct(struct mv88e6xxx_chip *chip, int addr, int regnum) { if (addr >= 0) return _mv88e6xxx_reg_read(chip, addr, regnum); return 0xffff; } static int mv88e6xxx_mdio_write_direct(struct mv88e6xxx_chip *chip, int addr, int regnum, u16 val) { if (addr >= 0) return _mv88e6xxx_reg_write(chip, addr, regnum, val); return 0; } static int mv88e6xxx_ppu_disable(struct mv88e6xxx_chip *chip) { int ret; unsigned long timeout; ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_CONTROL); if (ret < 0) return ret; ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL, ret & ~GLOBAL_CONTROL_PPU_ENABLE); if (ret) return ret; timeout = jiffies + 1 * HZ; while (time_before(jiffies, timeout)) { ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATUS); if (ret < 0) return ret; usleep_range(1000, 2000); if ((ret & GLOBAL_STATUS_PPU_MASK) != GLOBAL_STATUS_PPU_POLLING) return 0; } return -ETIMEDOUT; } static int mv88e6xxx_ppu_enable(struct mv88e6xxx_chip *chip) { int ret, err; unsigned long timeout; ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_CONTROL); if (ret < 0) return ret; err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL, ret | GLOBAL_CONTROL_PPU_ENABLE); if (err) return err; timeout = jiffies + 1 * HZ; while (time_before(jiffies, timeout)) { ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATUS); if (ret < 0) return ret; usleep_range(1000, 2000); if ((ret & GLOBAL_STATUS_PPU_MASK) == GLOBAL_STATUS_PPU_POLLING) return 0; } return -ETIMEDOUT; } static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly) { struct mv88e6xxx_chip *chip; chip = container_of(ugly, struct mv88e6xxx_chip, ppu_work); mutex_lock(&chip->reg_lock); if (mutex_trylock(&chip->ppu_mutex)) { if (mv88e6xxx_ppu_enable(chip) == 0) chip->ppu_disabled = 0; mutex_unlock(&chip->ppu_mutex); } mutex_unlock(&chip->reg_lock); } static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps) { struct mv88e6xxx_chip *chip = (void *)_ps; schedule_work(&chip->ppu_work); } static int mv88e6xxx_ppu_access_get(struct mv88e6xxx_chip *chip) { int ret; mutex_lock(&chip->ppu_mutex); /* If the PHY polling unit is enabled, disable it so that * we can access the PHY registers. If it was already * disabled, cancel the timer that is going to re-enable * it. */ if (!chip->ppu_disabled) { ret = mv88e6xxx_ppu_disable(chip); if (ret < 0) { mutex_unlock(&chip->ppu_mutex); return ret; } chip->ppu_disabled = 1; } else { del_timer(&chip->ppu_timer); ret = 0; } return ret; } static void mv88e6xxx_ppu_access_put(struct mv88e6xxx_chip *chip) { /* Schedule a timer to re-enable the PHY polling unit. */ mod_timer(&chip->ppu_timer, jiffies + msecs_to_jiffies(10)); mutex_unlock(&chip->ppu_mutex); } static void mv88e6xxx_ppu_state_init(struct mv88e6xxx_chip *chip) { mutex_init(&chip->ppu_mutex); INIT_WORK(&chip->ppu_work, mv88e6xxx_ppu_reenable_work); init_timer(&chip->ppu_timer); chip->ppu_timer.data = (unsigned long)chip; chip->ppu_timer.function = mv88e6xxx_ppu_reenable_timer; } static int mv88e6xxx_mdio_read_ppu(struct mv88e6xxx_chip *chip, int addr, int regnum) { int ret; ret = mv88e6xxx_ppu_access_get(chip); if (ret >= 0) { ret = _mv88e6xxx_reg_read(chip, addr, regnum); mv88e6xxx_ppu_access_put(chip); } return ret; } static int mv88e6xxx_mdio_write_ppu(struct mv88e6xxx_chip *chip, int addr, int regnum, u16 val) { int ret; ret = mv88e6xxx_ppu_access_get(chip); if (ret >= 0) { ret = _mv88e6xxx_reg_write(chip, addr, regnum, val); mv88e6xxx_ppu_access_put(chip); } return ret; } static bool mv88e6xxx_6065_family(struct mv88e6xxx_chip *chip) { return chip->info->family == MV88E6XXX_FAMILY_6065; } static bool mv88e6xxx_6095_family(struct mv88e6xxx_chip *chip) { return chip->info->family == MV88E6XXX_FAMILY_6095; } static bool mv88e6xxx_6097_family(struct mv88e6xxx_chip *chip) { return chip->info->family == MV88E6XXX_FAMILY_6097; } static bool mv88e6xxx_6165_family(struct mv88e6xxx_chip *chip) { return chip->info->family == MV88E6XXX_FAMILY_6165; } static bool mv88e6xxx_6185_family(struct mv88e6xxx_chip *chip) { return chip->info->family == MV88E6XXX_FAMILY_6185; } static bool mv88e6xxx_6320_family(struct mv88e6xxx_chip *chip) { return chip->info->family == MV88E6XXX_FAMILY_6320; } static bool mv88e6xxx_6351_family(struct mv88e6xxx_chip *chip) { return chip->info->family == MV88E6XXX_FAMILY_6351; } static bool mv88e6xxx_6352_family(struct mv88e6xxx_chip *chip) { return chip->info->family == MV88E6XXX_FAMILY_6352; } static unsigned int mv88e6xxx_num_databases(struct mv88e6xxx_chip *chip) { return chip->info->num_databases; } static bool mv88e6xxx_has_fid_reg(struct mv88e6xxx_chip *chip) { /* Does the device have dedicated FID registers for ATU and VTU ops? */ if (mv88e6xxx_6097_family(chip) || mv88e6xxx_6165_family(chip) || mv88e6xxx_6351_family(chip) || mv88e6xxx_6352_family(chip)) return true; return false; } /* We expect the switch to perform auto negotiation if there is a real * phy. However, in the case of a fixed link phy, we force the port * settings from the fixed link settings. */ static void mv88e6xxx_adjust_link(struct dsa_switch *ds, int port, struct phy_device *phydev) { struct mv88e6xxx_chip *chip = ds_to_priv(ds); u32 reg; int ret; if (!phy_is_pseudo_fixed_link(phydev)) return; mutex_lock(&chip->reg_lock); ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_PCS_CTRL); if (ret < 0) goto out; reg = ret & ~(PORT_PCS_CTRL_LINK_UP | PORT_PCS_CTRL_FORCE_LINK | PORT_PCS_CTRL_DUPLEX_FULL | PORT_PCS_CTRL_FORCE_DUPLEX | PORT_PCS_CTRL_UNFORCED); reg |= PORT_PCS_CTRL_FORCE_LINK; if (phydev->link) reg |= PORT_PCS_CTRL_LINK_UP; if (mv88e6xxx_6065_family(chip) && phydev->speed > SPEED_100) goto out; switch (phydev->speed) { case SPEED_1000: reg |= PORT_PCS_CTRL_1000; break; case SPEED_100: reg |= PORT_PCS_CTRL_100; break; case SPEED_10: reg |= PORT_PCS_CTRL_10; break; default: pr_info("Unknown speed"); goto out; } reg |= PORT_PCS_CTRL_FORCE_DUPLEX; if (phydev->duplex == DUPLEX_FULL) reg |= PORT_PCS_CTRL_DUPLEX_FULL; if ((mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip)) && (port >= chip->info->num_ports - 2)) { if (phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID) reg |= PORT_PCS_CTRL_RGMII_DELAY_RXCLK; if (phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID) reg |= PORT_PCS_CTRL_RGMII_DELAY_TXCLK; if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID) reg |= (PORT_PCS_CTRL_RGMII_DELAY_RXCLK | PORT_PCS_CTRL_RGMII_DELAY_TXCLK); } _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_PCS_CTRL, reg); out: mutex_unlock(&chip->reg_lock); } static int _mv88e6xxx_stats_wait(struct mv88e6xxx_chip *chip) { int ret; int i; for (i = 0; i < 10; i++) { ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATS_OP); if ((ret & GLOBAL_STATS_OP_BUSY) == 0) return 0; } return -ETIMEDOUT; } static int _mv88e6xxx_stats_snapshot(struct mv88e6xxx_chip *chip, int port) { int ret; if (mv88e6xxx_6320_family(chip) || mv88e6xxx_6352_family(chip)) port = (port + 1) << 5; /* Snapshot the hardware statistics counters for this port. */ ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_STATS_OP, GLOBAL_STATS_OP_CAPTURE_PORT | GLOBAL_STATS_OP_HIST_RX_TX | port); if (ret < 0) return ret; /* Wait for the snapshotting to complete. */ ret = _mv88e6xxx_stats_wait(chip); if (ret < 0) return ret; return 0; } static void _mv88e6xxx_stats_read(struct mv88e6xxx_chip *chip, int stat, u32 *val) { u32 _val; int ret; *val = 0; ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_STATS_OP, GLOBAL_STATS_OP_READ_CAPTURED | GLOBAL_STATS_OP_HIST_RX_TX | stat); if (ret < 0) return; ret = _mv88e6xxx_stats_wait(chip); if (ret < 0) return; ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATS_COUNTER_32); if (ret < 0) return; _val = ret << 16; ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATS_COUNTER_01); if (ret < 0) return; *val = _val | ret; } static struct mv88e6xxx_hw_stat mv88e6xxx_hw_stats[] = { { "in_good_octets", 8, 0x00, BANK0, }, { "in_bad_octets", 4, 0x02, BANK0, }, { "in_unicast", 4, 0x04, BANK0, }, { "in_broadcasts", 4, 0x06, BANK0, }, { "in_multicasts", 4, 0x07, BANK0, }, { "in_pause", 4, 0x16, BANK0, }, { "in_undersize", 4, 0x18, BANK0, }, { "in_fragments", 4, 0x19, BANK0, }, { "in_oversize", 4, 0x1a, BANK0, }, { "in_jabber", 4, 0x1b, BANK0, }, { "in_rx_error", 4, 0x1c, BANK0, }, { "in_fcs_error", 4, 0x1d, BANK0, }, { "out_octets", 8, 0x0e, BANK0, }, { "out_unicast", 4, 0x10, BANK0, }, { "out_broadcasts", 4, 0x13, BANK0, }, { "out_multicasts", 4, 0x12, BANK0, }, { "out_pause", 4, 0x15, BANK0, }, { "excessive", 4, 0x11, BANK0, }, { "collisions", 4, 0x1e, BANK0, }, { "deferred", 4, 0x05, BANK0, }, { "single", 4, 0x14, BANK0, }, { "multiple", 4, 0x17, BANK0, }, { "out_fcs_error", 4, 0x03, BANK0, }, { "late", 4, 0x1f, BANK0, }, { "hist_64bytes", 4, 0x08, BANK0, }, { "hist_65_127bytes", 4, 0x09, BANK0, }, { "hist_128_255bytes", 4, 0x0a, BANK0, }, { "hist_256_511bytes", 4, 0x0b, BANK0, }, { "hist_512_1023bytes", 4, 0x0c, BANK0, }, { "hist_1024_max_bytes", 4, 0x0d, BANK0, }, { "sw_in_discards", 4, 0x10, PORT, }, { "sw_in_filtered", 2, 0x12, PORT, }, { "sw_out_filtered", 2, 0x13, PORT, }, { "in_discards", 4, 0x00 | GLOBAL_STATS_OP_BANK_1, BANK1, }, { "in_filtered", 4, 0x01 | GLOBAL_STATS_OP_BANK_1, BANK1, }, { "in_accepted", 4, 0x02 | GLOBAL_STATS_OP_BANK_1, BANK1, }, { "in_bad_accepted", 4, 0x03 | GLOBAL_STATS_OP_BANK_1, BANK1, }, { "in_good_avb_class_a", 4, 0x04 | GLOBAL_STATS_OP_BANK_1, BANK1, }, { "in_good_avb_class_b", 4, 0x05 | GLOBAL_STATS_OP_BANK_1, BANK1, }, { "in_bad_avb_class_a", 4, 0x06 | GLOBAL_STATS_OP_BANK_1, BANK1, }, { "in_bad_avb_class_b", 4, 0x07 | GLOBAL_STATS_OP_BANK_1, BANK1, }, { "tcam_counter_0", 4, 0x08 | GLOBAL_STATS_OP_BANK_1, BANK1, }, { "tcam_counter_1", 4, 0x09 | GLOBAL_STATS_OP_BANK_1, BANK1, }, { "tcam_counter_2", 4, 0x0a | GLOBAL_STATS_OP_BANK_1, BANK1, }, { "tcam_counter_3", 4, 0x0b | GLOBAL_STATS_OP_BANK_1, BANK1, }, { "in_da_unknown", 4, 0x0e | GLOBAL_STATS_OP_BANK_1, BANK1, }, { "in_management", 4, 0x0f | GLOBAL_STATS_OP_BANK_1, BANK1, }, { "out_queue_0", 4, 0x10 | GLOBAL_STATS_OP_BANK_1, BANK1, }, { "out_queue_1", 4, 0x11 | GLOBAL_STATS_OP_BANK_1, BANK1, }, { "out_queue_2", 4, 0x12 | GLOBAL_STATS_OP_BANK_1, BANK1, }, { "out_queue_3", 4, 0x13 | GLOBAL_STATS_OP_BANK_1, BANK1, }, { "out_queue_4", 4, 0x14 | GLOBAL_STATS_OP_BANK_1, BANK1, }, { "out_queue_5", 4, 0x15 | GLOBAL_STATS_OP_BANK_1, BANK1, }, { "out_queue_6", 4, 0x16 | GLOBAL_STATS_OP_BANK_1, BANK1, }, { "out_queue_7", 4, 0x17 | GLOBAL_STATS_OP_BANK_1, BANK1, }, { "out_cut_through", 4, 0x18 | GLOBAL_STATS_OP_BANK_1, BANK1, }, { "out_octets_a", 4, 0x1a | GLOBAL_STATS_OP_BANK_1, BANK1, }, { "out_octets_b", 4, 0x1b | GLOBAL_STATS_OP_BANK_1, BANK1, }, { "out_management", 4, 0x1f | GLOBAL_STATS_OP_BANK_1, BANK1, }, }; static bool mv88e6xxx_has_stat(struct mv88e6xxx_chip *chip, struct mv88e6xxx_hw_stat *stat) { switch (stat->type) { case BANK0: return true; case BANK1: return mv88e6xxx_6320_family(chip); case PORT: return mv88e6xxx_6095_family(chip) || mv88e6xxx_6185_family(chip) || mv88e6xxx_6097_family(chip) || mv88e6xxx_6165_family(chip) || mv88e6xxx_6351_family(chip) || mv88e6xxx_6352_family(chip); } return false; } static uint64_t _mv88e6xxx_get_ethtool_stat(struct mv88e6xxx_chip *chip, struct mv88e6xxx_hw_stat *s, int port) { u32 low; u32 high = 0; int ret; u64 value; switch (s->type) { case PORT: ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), s->reg); if (ret < 0) return UINT64_MAX; low = ret; if (s->sizeof_stat == 4) { ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), s->reg + 1); if (ret < 0) return UINT64_MAX; high = ret; } break; case BANK0: case BANK1: _mv88e6xxx_stats_read(chip, s->reg, &low); if (s->sizeof_stat == 8) _mv88e6xxx_stats_read(chip, s->reg + 1, &high); } value = (((u64)high) << 16) | low; return value; } static void mv88e6xxx_get_strings(struct dsa_switch *ds, int port, uint8_t *data) { struct mv88e6xxx_chip *chip = ds_to_priv(ds); struct mv88e6xxx_hw_stat *stat; int i, j; for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) { stat = &mv88e6xxx_hw_stats[i]; if (mv88e6xxx_has_stat(chip, stat)) { memcpy(data + j * ETH_GSTRING_LEN, stat->string, ETH_GSTRING_LEN); j++; } } } static int mv88e6xxx_get_sset_count(struct dsa_switch *ds) { struct mv88e6xxx_chip *chip = ds_to_priv(ds); struct mv88e6xxx_hw_stat *stat; int i, j; for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) { stat = &mv88e6xxx_hw_stats[i]; if (mv88e6xxx_has_stat(chip, stat)) j++; } return j; } static void mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds, int port, uint64_t *data) { struct mv88e6xxx_chip *chip = ds_to_priv(ds); struct mv88e6xxx_hw_stat *stat; int ret; int i, j; mutex_lock(&chip->reg_lock); ret = _mv88e6xxx_stats_snapshot(chip, port); if (ret < 0) { mutex_unlock(&chip->reg_lock); return; } for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) { stat = &mv88e6xxx_hw_stats[i]; if (mv88e6xxx_has_stat(chip, stat)) { data[j] = _mv88e6xxx_get_ethtool_stat(chip, stat, port); j++; } } mutex_unlock(&chip->reg_lock); } static int mv88e6xxx_get_regs_len(struct dsa_switch *ds, int port) { return 32 * sizeof(u16); } static void mv88e6xxx_get_regs(struct dsa_switch *ds, int port, struct ethtool_regs *regs, void *_p) { struct mv88e6xxx_chip *chip = ds_to_priv(ds); u16 *p = _p; int i; regs->version = 0; memset(p, 0xff, 32 * sizeof(u16)); mutex_lock(&chip->reg_lock); for (i = 0; i < 32; i++) { int ret; ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), i); if (ret >= 0) p[i] = ret; } mutex_unlock(&chip->reg_lock); } static int _mv88e6xxx_wait(struct mv88e6xxx_chip *chip, int reg, int offset, u16 mask) { unsigned long timeout = jiffies + HZ / 10; while (time_before(jiffies, timeout)) { int ret; ret = _mv88e6xxx_reg_read(chip, reg, offset); if (ret < 0) return ret; if (!(ret & mask)) return 0; usleep_range(1000, 2000); } return -ETIMEDOUT; } static int mv88e6xxx_mdio_wait(struct mv88e6xxx_chip *chip) { return _mv88e6xxx_wait(chip, REG_GLOBAL2, GLOBAL2_SMI_OP, GLOBAL2_SMI_OP_BUSY); } static int _mv88e6xxx_atu_wait(struct mv88e6xxx_chip *chip) { return _mv88e6xxx_wait(chip, REG_GLOBAL, GLOBAL_ATU_OP, GLOBAL_ATU_OP_BUSY); } static int mv88e6xxx_mdio_read_indirect(struct mv88e6xxx_chip *chip, int addr, int regnum) { int ret; ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL2, GLOBAL2_SMI_OP, GLOBAL2_SMI_OP_22_READ | (addr << 5) | regnum); if (ret < 0) return ret; ret = mv88e6xxx_mdio_wait(chip); if (ret < 0) return ret; ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL2, GLOBAL2_SMI_DATA); return ret; } static int mv88e6xxx_mdio_write_indirect(struct mv88e6xxx_chip *chip, int addr, int regnum, u16 val) { int ret; ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL2, GLOBAL2_SMI_DATA, val); if (ret < 0) return ret; ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL2, GLOBAL2_SMI_OP, GLOBAL2_SMI_OP_22_WRITE | (addr << 5) | regnum); return mv88e6xxx_mdio_wait(chip); } static int mv88e6xxx_get_eee(struct dsa_switch *ds, int port, struct ethtool_eee *e) { struct mv88e6xxx_chip *chip = ds_to_priv(ds); int reg; if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_EEE)) return -EOPNOTSUPP; mutex_lock(&chip->reg_lock); reg = mv88e6xxx_mdio_read_indirect(chip, port, 16); if (reg < 0) goto out; e->eee_enabled = !!(reg & 0x0200); e->tx_lpi_enabled = !!(reg & 0x0100); reg = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_STATUS); if (reg < 0) goto out; e->eee_active = !!(reg & PORT_STATUS_EEE); reg = 0; out: mutex_unlock(&chip->reg_lock); return reg; } static int mv88e6xxx_set_eee(struct dsa_switch *ds, int port, struct phy_device *phydev, struct ethtool_eee *e) { struct mv88e6xxx_chip *chip = ds_to_priv(ds); int reg; int ret; if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_EEE)) return -EOPNOTSUPP; mutex_lock(&chip->reg_lock); ret = mv88e6xxx_mdio_read_indirect(chip, port, 16); if (ret < 0) goto out; reg = ret & ~0x0300; if (e->eee_enabled) reg |= 0x0200; if (e->tx_lpi_enabled) reg |= 0x0100; ret = mv88e6xxx_mdio_write_indirect(chip, port, 16, reg); out: mutex_unlock(&chip->reg_lock); return ret; } static int _mv88e6xxx_atu_cmd(struct mv88e6xxx_chip *chip, u16 fid, u16 cmd) { int ret; if (mv88e6xxx_has_fid_reg(chip)) { ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_FID, fid); if (ret < 0) return ret; } else if (mv88e6xxx_num_databases(chip) == 256) { /* ATU DBNum[7:4] are located in ATU Control 15:12 */ ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL); if (ret < 0) return ret; ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL, (ret & 0xfff) | ((fid << 8) & 0xf000)); if (ret < 0) return ret; /* ATU DBNum[3:0] are located in ATU Operation 3:0 */ cmd |= fid & 0xf; } ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_OP, cmd); if (ret < 0) return ret; return _mv88e6xxx_atu_wait(chip); } static int _mv88e6xxx_atu_data_write(struct mv88e6xxx_chip *chip, struct mv88e6xxx_atu_entry *entry) { u16 data = entry->state & GLOBAL_ATU_DATA_STATE_MASK; if (entry->state != GLOBAL_ATU_DATA_STATE_UNUSED) { unsigned int mask, shift; if (entry->trunk) { data |= GLOBAL_ATU_DATA_TRUNK; mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK; shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT; } else { mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK; shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT; } data |= (entry->portv_trunkid << shift) & mask; } return _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_DATA, data); } static int _mv88e6xxx_atu_flush_move(struct mv88e6xxx_chip *chip, struct mv88e6xxx_atu_entry *entry, bool static_too) { int op; int err; err = _mv88e6xxx_atu_wait(chip); if (err) return err; err = _mv88e6xxx_atu_data_write(chip, entry); if (err) return err; if (entry->fid) { op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL_DB : GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC_DB; } else { op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL : GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC; } return _mv88e6xxx_atu_cmd(chip, entry->fid, op); } static int _mv88e6xxx_atu_flush(struct mv88e6xxx_chip *chip, u16 fid, bool static_too) { struct mv88e6xxx_atu_entry entry = { .fid = fid, .state = 0, /* EntryState bits must be 0 */ }; return _mv88e6xxx_atu_flush_move(chip, &entry, static_too); } static int _mv88e6xxx_atu_move(struct mv88e6xxx_chip *chip, u16 fid, int from_port, int to_port, bool static_too) { struct mv88e6xxx_atu_entry entry = { .trunk = false, .fid = fid, }; /* EntryState bits must be 0xF */ entry.state = GLOBAL_ATU_DATA_STATE_MASK; /* ToPort and FromPort are respectively in PortVec bits 7:4 and 3:0 */ entry.portv_trunkid = (to_port & 0x0f) << 4; entry.portv_trunkid |= from_port & 0x0f; return _mv88e6xxx_atu_flush_move(chip, &entry, static_too); } static int _mv88e6xxx_atu_remove(struct mv88e6xxx_chip *chip, u16 fid, int port, bool static_too) { /* Destination port 0xF means remove the entries */ return _mv88e6xxx_atu_move(chip, fid, port, 0x0f, static_too); } static const char * const mv88e6xxx_port_state_names[] = { [PORT_CONTROL_STATE_DISABLED] = "Disabled", [PORT_CONTROL_STATE_BLOCKING] = "Blocking/Listening", [PORT_CONTROL_STATE_LEARNING] = "Learning", [PORT_CONTROL_STATE_FORWARDING] = "Forwarding", }; static int _mv88e6xxx_port_state(struct mv88e6xxx_chip *chip, int port, u8 state) { struct dsa_switch *ds = chip->ds; int reg, ret = 0; u8 oldstate; reg = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_CONTROL); if (reg < 0) return reg; oldstate = reg & PORT_CONTROL_STATE_MASK; if (oldstate != state) { /* Flush forwarding database if we're moving a port * from Learning or Forwarding state to Disabled or * Blocking or Listening state. */ if ((oldstate == PORT_CONTROL_STATE_LEARNING || oldstate == PORT_CONTROL_STATE_FORWARDING) && (state == PORT_CONTROL_STATE_DISABLED || state == PORT_CONTROL_STATE_BLOCKING)) { ret = _mv88e6xxx_atu_remove(chip, 0, port, false); if (ret) return ret; } reg = (reg & ~PORT_CONTROL_STATE_MASK) | state; ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL, reg); if (ret) return ret; netdev_dbg(ds->ports[port].netdev, "PortState %s (was %s)\n", mv88e6xxx_port_state_names[state], mv88e6xxx_port_state_names[oldstate]); } return ret; } static int _mv88e6xxx_port_based_vlan_map(struct mv88e6xxx_chip *chip, int port) { struct net_device *bridge = chip->ports[port].bridge_dev; const u16 mask = (1 << chip->info->num_ports) - 1; struct dsa_switch *ds = chip->ds; u16 output_ports = 0; int reg; int i; /* allow CPU port or DSA link(s) to send frames to every port */ if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) { output_ports = mask; } else { for (i = 0; i < chip->info->num_ports; ++i) { /* allow sending frames to every group member */ if (bridge && chip->ports[i].bridge_dev == bridge) output_ports |= BIT(i); /* allow sending frames to CPU port and DSA link(s) */ if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i)) output_ports |= BIT(i); } } /* prevent frames from going back out of the port they came in on */ output_ports &= ~BIT(port); reg = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_BASE_VLAN); if (reg < 0) return reg; reg &= ~mask; reg |= output_ports & mask; return _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_BASE_VLAN, reg); } static void mv88e6xxx_port_stp_state_set(struct dsa_switch *ds, int port, u8 state) { struct mv88e6xxx_chip *chip = ds_to_priv(ds); int stp_state; int err; switch (state) { case BR_STATE_DISABLED: stp_state = PORT_CONTROL_STATE_DISABLED; break; case BR_STATE_BLOCKING: case BR_STATE_LISTENING: stp_state = PORT_CONTROL_STATE_BLOCKING; break; case BR_STATE_LEARNING: stp_state = PORT_CONTROL_STATE_LEARNING; break; case BR_STATE_FORWARDING: default: stp_state = PORT_CONTROL_STATE_FORWARDING; break; } mutex_lock(&chip->reg_lock); err = _mv88e6xxx_port_state(chip, port, stp_state); mutex_unlock(&chip->reg_lock); if (err) netdev_err(ds->ports[port].netdev, "failed to update state to %s\n", mv88e6xxx_port_state_names[stp_state]); } static int _mv88e6xxx_port_pvid(struct mv88e6xxx_chip *chip, int port, u16 *new, u16 *old) { struct dsa_switch *ds = chip->ds; u16 pvid; int ret; ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_DEFAULT_VLAN); if (ret < 0) return ret; pvid = ret & PORT_DEFAULT_VLAN_MASK; if (new) { ret &= ~PORT_DEFAULT_VLAN_MASK; ret |= *new & PORT_DEFAULT_VLAN_MASK; ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_DEFAULT_VLAN, ret); if (ret < 0) return ret; netdev_dbg(ds->ports[port].netdev, "DefaultVID %d (was %d)\n", *new, pvid); } if (old) *old = pvid; return 0; } static int _mv88e6xxx_port_pvid_get(struct mv88e6xxx_chip *chip, int port, u16 *pvid) { return _mv88e6xxx_port_pvid(chip, port, NULL, pvid); } static int _mv88e6xxx_port_pvid_set(struct mv88e6xxx_chip *chip, int port, u16 pvid) { return _mv88e6xxx_port_pvid(chip, port, &pvid, NULL); } static int _mv88e6xxx_vtu_wait(struct mv88e6xxx_chip *chip) { return _mv88e6xxx_wait(chip, REG_GLOBAL, GLOBAL_VTU_OP, GLOBAL_VTU_OP_BUSY); } static int _mv88e6xxx_vtu_cmd(struct mv88e6xxx_chip *chip, u16 op) { int ret; ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_OP, op); if (ret < 0) return ret; return _mv88e6xxx_vtu_wait(chip); } static int _mv88e6xxx_vtu_stu_flush(struct mv88e6xxx_chip *chip) { int ret; ret = _mv88e6xxx_vtu_wait(chip); if (ret < 0) return ret; return _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_FLUSH_ALL); } static int _mv88e6xxx_vtu_stu_data_read(struct mv88e6xxx_chip *chip, struct mv88e6xxx_vtu_stu_entry *entry, unsigned int nibble_offset) { u16 regs[3]; int i; int ret; for (i = 0; i < 3; ++i) { ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_VTU_DATA_0_3 + i); if (ret < 0) return ret; regs[i] = ret; } for (i = 0; i < chip->info->num_ports; ++i) { unsigned int shift = (i % 4) * 4 + nibble_offset; u16 reg = regs[i / 4]; entry->data[i] = (reg >> shift) & GLOBAL_VTU_STU_DATA_MASK; } return 0; } static int mv88e6xxx_vtu_data_read(struct mv88e6xxx_chip *chip, struct mv88e6xxx_vtu_stu_entry *entry) { return _mv88e6xxx_vtu_stu_data_read(chip, entry, 0); } static int mv88e6xxx_stu_data_read(struct mv88e6xxx_chip *chip, struct mv88e6xxx_vtu_stu_entry *entry) { return _mv88e6xxx_vtu_stu_data_read(chip, entry, 2); } static int _mv88e6xxx_vtu_stu_data_write(struct mv88e6xxx_chip *chip, struct mv88e6xxx_vtu_stu_entry *entry, unsigned int nibble_offset) { u16 regs[3] = { 0 }; int i; int ret; for (i = 0; i < chip->info->num_ports; ++i) { unsigned int shift = (i % 4) * 4 + nibble_offset; u8 data = entry->data[i]; regs[i / 4] |= (data & GLOBAL_VTU_STU_DATA_MASK) << shift; } for (i = 0; i < 3; ++i) { ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_DATA_0_3 + i, regs[i]); if (ret < 0) return ret; } return 0; } static int mv88e6xxx_vtu_data_write(struct mv88e6xxx_chip *chip, struct mv88e6xxx_vtu_stu_entry *entry) { return _mv88e6xxx_vtu_stu_data_write(chip, entry, 0); } static int mv88e6xxx_stu_data_write(struct mv88e6xxx_chip *chip, struct mv88e6xxx_vtu_stu_entry *entry) { return _mv88e6xxx_vtu_stu_data_write(chip, entry, 2); } static int _mv88e6xxx_vtu_vid_write(struct mv88e6xxx_chip *chip, u16 vid) { return _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_VID, vid & GLOBAL_VTU_VID_MASK); } static int _mv88e6xxx_vtu_getnext(struct mv88e6xxx_chip *chip, struct mv88e6xxx_vtu_stu_entry *entry) { struct mv88e6xxx_vtu_stu_entry next = { 0 }; int ret; ret = _mv88e6xxx_vtu_wait(chip); if (ret < 0) return ret; ret = _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_VTU_GET_NEXT); if (ret < 0) return ret; ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_VTU_VID); if (ret < 0) return ret; next.vid = ret & GLOBAL_VTU_VID_MASK; next.valid = !!(ret & GLOBAL_VTU_VID_VALID); if (next.valid) { ret = mv88e6xxx_vtu_data_read(chip, &next); if (ret < 0) return ret; if (mv88e6xxx_has_fid_reg(chip)) { ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_VTU_FID); if (ret < 0) return ret; next.fid = ret & GLOBAL_VTU_FID_MASK; } else if (mv88e6xxx_num_databases(chip) == 256) { /* VTU DBNum[7:4] are located in VTU Operation 11:8, and * VTU DBNum[3:0] are located in VTU Operation 3:0 */ ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_VTU_OP); if (ret < 0) return ret; next.fid = (ret & 0xf00) >> 4; next.fid |= ret & 0xf; } if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_STU)) { ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_VTU_SID); if (ret < 0) return ret; next.sid = ret & GLOBAL_VTU_SID_MASK; } } *entry = next; return 0; } static int mv88e6xxx_port_vlan_dump(struct dsa_switch *ds, int port, struct switchdev_obj_port_vlan *vlan, int (*cb)(struct switchdev_obj *obj)) { struct mv88e6xxx_chip *chip = ds_to_priv(ds); struct mv88e6xxx_vtu_stu_entry next; u16 pvid; int err; if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU)) return -EOPNOTSUPP; mutex_lock(&chip->reg_lock); err = _mv88e6xxx_port_pvid_get(chip, port, &pvid); if (err) goto unlock; err = _mv88e6xxx_vtu_vid_write(chip, GLOBAL_VTU_VID_MASK); if (err) goto unlock; do { err = _mv88e6xxx_vtu_getnext(chip, &next); if (err) break; if (!next.valid) break; if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER) continue; /* reinit and dump this VLAN obj */ vlan->vid_begin = next.vid; vlan->vid_end = next.vid; vlan->flags = 0; if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED) vlan->flags |= BRIDGE_VLAN_INFO_UNTAGGED; if (next.vid == pvid) vlan->flags |= BRIDGE_VLAN_INFO_PVID; err = cb(&vlan->obj); if (err) break; } while (next.vid < GLOBAL_VTU_VID_MASK); unlock: mutex_unlock(&chip->reg_lock); return err; } static int _mv88e6xxx_vtu_loadpurge(struct mv88e6xxx_chip *chip, struct mv88e6xxx_vtu_stu_entry *entry) { u16 op = GLOBAL_VTU_OP_VTU_LOAD_PURGE; u16 reg = 0; int ret; ret = _mv88e6xxx_vtu_wait(chip); if (ret < 0) return ret; if (!entry->valid) goto loadpurge; /* Write port member tags */ ret = mv88e6xxx_vtu_data_write(chip, entry); if (ret < 0) return ret; if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_STU)) { reg = entry->sid & GLOBAL_VTU_SID_MASK; ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_SID, reg); if (ret < 0) return ret; } if (mv88e6xxx_has_fid_reg(chip)) { reg = entry->fid & GLOBAL_VTU_FID_MASK; ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_FID, reg); if (ret < 0) return ret; } else if (mv88e6xxx_num_databases(chip) == 256) { /* VTU DBNum[7:4] are located in VTU Operation 11:8, and * VTU DBNum[3:0] are located in VTU Operation 3:0 */ op |= (entry->fid & 0xf0) << 8; op |= entry->fid & 0xf; } reg = GLOBAL_VTU_VID_VALID; loadpurge: reg |= entry->vid & GLOBAL_VTU_VID_MASK; ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_VID, reg); if (ret < 0) return ret; return _mv88e6xxx_vtu_cmd(chip, op); } static int _mv88e6xxx_stu_getnext(struct mv88e6xxx_chip *chip, u8 sid, struct mv88e6xxx_vtu_stu_entry *entry) { struct mv88e6xxx_vtu_stu_entry next = { 0 }; int ret; ret = _mv88e6xxx_vtu_wait(chip); if (ret < 0) return ret; ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_SID, sid & GLOBAL_VTU_SID_MASK); if (ret < 0) return ret; ret = _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_STU_GET_NEXT); if (ret < 0) return ret; ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_VTU_SID); if (ret < 0) return ret; next.sid = ret & GLOBAL_VTU_SID_MASK; ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_VTU_VID); if (ret < 0) return ret; next.valid = !!(ret & GLOBAL_VTU_VID_VALID); if (next.valid) { ret = mv88e6xxx_stu_data_read(chip, &next); if (ret < 0) return ret; } *entry = next; return 0; } static int _mv88e6xxx_stu_loadpurge(struct mv88e6xxx_chip *chip, struct mv88e6xxx_vtu_stu_entry *entry) { u16 reg = 0; int ret; ret = _mv88e6xxx_vtu_wait(chip); if (ret < 0) return ret; if (!entry->valid) goto loadpurge; /* Write port states */ ret = mv88e6xxx_stu_data_write(chip, entry); if (ret < 0) return ret; reg = GLOBAL_VTU_VID_VALID; loadpurge: ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_VID, reg); if (ret < 0) return ret; reg = entry->sid & GLOBAL_VTU_SID_MASK; ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_SID, reg); if (ret < 0) return ret; return _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_STU_LOAD_PURGE); } static int _mv88e6xxx_port_fid(struct mv88e6xxx_chip *chip, int port, u16 *new, u16 *old) { struct dsa_switch *ds = chip->ds; u16 upper_mask; u16 fid; int ret; if (mv88e6xxx_num_databases(chip) == 4096) upper_mask = 0xff; else if (mv88e6xxx_num_databases(chip) == 256) upper_mask = 0xf; else return -EOPNOTSUPP; /* Port's default FID bits 3:0 are located in reg 0x06, offset 12 */ ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_BASE_VLAN); if (ret < 0) return ret; fid = (ret & PORT_BASE_VLAN_FID_3_0_MASK) >> 12; if (new) { ret &= ~PORT_BASE_VLAN_FID_3_0_MASK; ret |= (*new << 12) & PORT_BASE_VLAN_FID_3_0_MASK; ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_BASE_VLAN, ret); if (ret < 0) return ret; } /* Port's default FID bits 11:4 are located in reg 0x05, offset 0 */ ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_CONTROL_1); if (ret < 0) return ret; fid |= (ret & upper_mask) << 4; if (new) { ret &= ~upper_mask; ret |= (*new >> 4) & upper_mask; ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL_1, ret); if (ret < 0) return ret; netdev_dbg(ds->ports[port].netdev, "FID %d (was %d)\n", *new, fid); } if (old) *old = fid; return 0; } static int _mv88e6xxx_port_fid_get(struct mv88e6xxx_chip *chip, int port, u16 *fid) { return _mv88e6xxx_port_fid(chip, port, NULL, fid); } static int _mv88e6xxx_port_fid_set(struct mv88e6xxx_chip *chip, int port, u16 fid) { return _mv88e6xxx_port_fid(chip, port, &fid, NULL); } static int _mv88e6xxx_fid_new(struct mv88e6xxx_chip *chip, u16 *fid) { DECLARE_BITMAP(fid_bitmap, MV88E6XXX_N_FID); struct mv88e6xxx_vtu_stu_entry vlan; int i, err; bitmap_zero(fid_bitmap, MV88E6XXX_N_FID); /* Set every FID bit used by the (un)bridged ports */ for (i = 0; i < chip->info->num_ports; ++i) { err = _mv88e6xxx_port_fid_get(chip, i, fid); if (err) return err; set_bit(*fid, fid_bitmap); } /* Set every FID bit used by the VLAN entries */ err = _mv88e6xxx_vtu_vid_write(chip, GLOBAL_VTU_VID_MASK); if (err) return err; do { err = _mv88e6xxx_vtu_getnext(chip, &vlan); if (err) return err; if (!vlan.valid) break; set_bit(vlan.fid, fid_bitmap); } while (vlan.vid < GLOBAL_VTU_VID_MASK); /* The reset value 0x000 is used to indicate that multiple address * databases are not needed. Return the next positive available. */ *fid = find_next_zero_bit(fid_bitmap, MV88E6XXX_N_FID, 1); if (unlikely(*fid >= mv88e6xxx_num_databases(chip))) return -ENOSPC; /* Clear the database */ return _mv88e6xxx_atu_flush(chip, *fid, true); } static int _mv88e6xxx_vtu_new(struct mv88e6xxx_chip *chip, u16 vid, struct mv88e6xxx_vtu_stu_entry *entry) { struct dsa_switch *ds = chip->ds; struct mv88e6xxx_vtu_stu_entry vlan = { .valid = true, .vid = vid, }; int i, err; err = _mv88e6xxx_fid_new(chip, &vlan.fid); if (err) return err; /* exclude all ports except the CPU and DSA ports */ for (i = 0; i < chip->info->num_ports; ++i) vlan.data[i] = dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i) ? GLOBAL_VTU_DATA_MEMBER_TAG_UNMODIFIED : GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER; if (mv88e6xxx_6097_family(chip) || mv88e6xxx_6165_family(chip) || mv88e6xxx_6351_family(chip) || mv88e6xxx_6352_family(chip)) { struct mv88e6xxx_vtu_stu_entry vstp; /* Adding a VTU entry requires a valid STU entry. As VSTP is not * implemented, only one STU entry is needed to cover all VTU * entries. Thus, validate the SID 0. */ vlan.sid = 0; err = _mv88e6xxx_stu_getnext(chip, GLOBAL_VTU_SID_MASK, &vstp); if (err) return err; if (vstp.sid != vlan.sid || !vstp.valid) { memset(&vstp, 0, sizeof(vstp)); vstp.valid = true; vstp.sid = vlan.sid; err = _mv88e6xxx_stu_loadpurge(chip, &vstp); if (err) return err; } } *entry = vlan; return 0; } static int _mv88e6xxx_vtu_get(struct mv88e6xxx_chip *chip, u16 vid, struct mv88e6xxx_vtu_stu_entry *entry, bool creat) { int err; if (!vid) return -EINVAL; err = _mv88e6xxx_vtu_vid_write(chip, vid - 1); if (err) return err; err = _mv88e6xxx_vtu_getnext(chip, entry); if (err) return err; if (entry->vid != vid || !entry->valid) { if (!creat) return -EOPNOTSUPP; /* -ENOENT would've been more appropriate, but switchdev expects * -EOPNOTSUPP to inform bridge about an eventual software VLAN. */ err = _mv88e6xxx_vtu_new(chip, vid, entry); } return err; } static int mv88e6xxx_port_check_hw_vlan(struct dsa_switch *ds, int port, u16 vid_begin, u16 vid_end) { struct mv88e6xxx_chip *chip = ds_to_priv(ds); struct mv88e6xxx_vtu_stu_entry vlan; int i, err; if (!vid_begin) return -EOPNOTSUPP; mutex_lock(&chip->reg_lock); err = _mv88e6xxx_vtu_vid_write(chip, vid_begin - 1); if (err) goto unlock; do { err = _mv88e6xxx_vtu_getnext(chip, &vlan); if (err) goto unlock; if (!vlan.valid) break; if (vlan.vid > vid_end) break; for (i = 0; i < chip->info->num_ports; ++i) { if (dsa_is_dsa_port(ds, i) || dsa_is_cpu_port(ds, i)) continue; if (vlan.data[i] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER) continue; if (chip->ports[i].bridge_dev == chip->ports[port].bridge_dev) break; /* same bridge, check next VLAN */ netdev_warn(ds->ports[port].netdev, "hardware VLAN %d already used by %s\n", vlan.vid, netdev_name(chip->ports[i].bridge_dev)); err = -EOPNOTSUPP; goto unlock; } } while (vlan.vid < vid_end); unlock: mutex_unlock(&chip->reg_lock); return err; } static const char * const mv88e6xxx_port_8021q_mode_names[] = { [PORT_CONTROL_2_8021Q_DISABLED] = "Disabled", [PORT_CONTROL_2_8021Q_FALLBACK] = "Fallback", [PORT_CONTROL_2_8021Q_CHECK] = "Check", [PORT_CONTROL_2_8021Q_SECURE] = "Secure", }; static int mv88e6xxx_port_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering) { struct mv88e6xxx_chip *chip = ds_to_priv(ds); u16 old, new = vlan_filtering ? PORT_CONTROL_2_8021Q_SECURE : PORT_CONTROL_2_8021Q_DISABLED; int ret; if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU)) return -EOPNOTSUPP; mutex_lock(&chip->reg_lock); ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_CONTROL_2); if (ret < 0) goto unlock; old = ret & PORT_CONTROL_2_8021Q_MASK; if (new != old) { ret &= ~PORT_CONTROL_2_8021Q_MASK; ret |= new & PORT_CONTROL_2_8021Q_MASK; ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL_2, ret); if (ret < 0) goto unlock; netdev_dbg(ds->ports[port].netdev, "802.1Q Mode %s (was %s)\n", mv88e6xxx_port_8021q_mode_names[new], mv88e6xxx_port_8021q_mode_names[old]); } ret = 0; unlock: mutex_unlock(&chip->reg_lock); return ret; } static int mv88e6xxx_port_vlan_prepare(struct dsa_switch *ds, int port, const struct switchdev_obj_port_vlan *vlan, struct switchdev_trans *trans) { struct mv88e6xxx_chip *chip = ds_to_priv(ds); int err; if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU)) return -EOPNOTSUPP; /* If the requested port doesn't belong to the same bridge as the VLAN * members, do not support it (yet) and fallback to software VLAN. */ err = mv88e6xxx_port_check_hw_vlan(ds, port, vlan->vid_begin, vlan->vid_end); if (err) return err; /* We don't need any dynamic resource from the kernel (yet), * so skip the prepare phase. */ return 0; } static int _mv88e6xxx_port_vlan_add(struct mv88e6xxx_chip *chip, int port, u16 vid, bool untagged) { struct mv88e6xxx_vtu_stu_entry vlan; int err; err = _mv88e6xxx_vtu_get(chip, vid, &vlan, true); if (err) return err; vlan.data[port] = untagged ? GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED : GLOBAL_VTU_DATA_MEMBER_TAG_TAGGED; return _mv88e6xxx_vtu_loadpurge(chip, &vlan); } static void mv88e6xxx_port_vlan_add(struct dsa_switch *ds, int port, const struct switchdev_obj_port_vlan *vlan, struct switchdev_trans *trans) { struct mv88e6xxx_chip *chip = ds_to_priv(ds); bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED; bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID; u16 vid; if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU)) return; mutex_lock(&chip->reg_lock); for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) if (_mv88e6xxx_port_vlan_add(chip, port, vid, untagged)) netdev_err(ds->ports[port].netdev, "failed to add VLAN %d%c\n", vid, untagged ? 'u' : 't'); if (pvid && _mv88e6xxx_port_pvid_set(chip, port, vlan->vid_end)) netdev_err(ds->ports[port].netdev, "failed to set PVID %d\n", vlan->vid_end); mutex_unlock(&chip->reg_lock); } static int _mv88e6xxx_port_vlan_del(struct mv88e6xxx_chip *chip, int port, u16 vid) { struct dsa_switch *ds = chip->ds; struct mv88e6xxx_vtu_stu_entry vlan; int i, err; err = _mv88e6xxx_vtu_get(chip, vid, &vlan, false); if (err) return err; /* Tell switchdev if this VLAN is handled in software */ if (vlan.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER) return -EOPNOTSUPP; vlan.data[port] = GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER; /* keep the VLAN unless all ports are excluded */ vlan.valid = false; for (i = 0; i < chip->info->num_ports; ++i) { if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i)) continue; if (vlan.data[i] != GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER) { vlan.valid = true; break; } } err = _mv88e6xxx_vtu_loadpurge(chip, &vlan); if (err) return err; return _mv88e6xxx_atu_remove(chip, vlan.fid, port, false); } static int mv88e6xxx_port_vlan_del(struct dsa_switch *ds, int port, const struct switchdev_obj_port_vlan *vlan) { struct mv88e6xxx_chip *chip = ds_to_priv(ds); u16 pvid, vid; int err = 0; if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU)) return -EOPNOTSUPP; mutex_lock(&chip->reg_lock); err = _mv88e6xxx_port_pvid_get(chip, port, &pvid); if (err) goto unlock; for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) { err = _mv88e6xxx_port_vlan_del(chip, port, vid); if (err) goto unlock; if (vid == pvid) { err = _mv88e6xxx_port_pvid_set(chip, port, 0); if (err) goto unlock; } } unlock: mutex_unlock(&chip->reg_lock); return err; } static int _mv88e6xxx_atu_mac_write(struct mv88e6xxx_chip *chip, const unsigned char *addr) { int i, ret; for (i = 0; i < 3; i++) { ret = _mv88e6xxx_reg_write( chip, REG_GLOBAL, GLOBAL_ATU_MAC_01 + i, (addr[i * 2] << 8) | addr[i * 2 + 1]); if (ret < 0) return ret; } return 0; } static int _mv88e6xxx_atu_mac_read(struct mv88e6xxx_chip *chip, unsigned char *addr) { int i, ret; for (i = 0; i < 3; i++) { ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_ATU_MAC_01 + i); if (ret < 0) return ret; addr[i * 2] = ret >> 8; addr[i * 2 + 1] = ret & 0xff; } return 0; } static int _mv88e6xxx_atu_load(struct mv88e6xxx_chip *chip, struct mv88e6xxx_atu_entry *entry) { int ret; ret = _mv88e6xxx_atu_wait(chip); if (ret < 0) return ret; ret = _mv88e6xxx_atu_mac_write(chip, entry->mac); if (ret < 0) return ret; ret = _mv88e6xxx_atu_data_write(chip, entry); if (ret < 0) return ret; return _mv88e6xxx_atu_cmd(chip, entry->fid, GLOBAL_ATU_OP_LOAD_DB); } static int _mv88e6xxx_port_fdb_load(struct mv88e6xxx_chip *chip, int port, const unsigned char *addr, u16 vid, u8 state) { struct mv88e6xxx_atu_entry entry = { 0 }; struct mv88e6xxx_vtu_stu_entry vlan; int err; /* Null VLAN ID corresponds to the port private database */ if (vid == 0) err = _mv88e6xxx_port_fid_get(chip, port, &vlan.fid); else err = _mv88e6xxx_vtu_get(chip, vid, &vlan, false); if (err) return err; entry.fid = vlan.fid; entry.state = state; ether_addr_copy(entry.mac, addr); if (state != GLOBAL_ATU_DATA_STATE_UNUSED) { entry.trunk = false; entry.portv_trunkid = BIT(port); } return _mv88e6xxx_atu_load(chip, &entry); } static int mv88e6xxx_port_fdb_prepare(struct dsa_switch *ds, int port, const struct switchdev_obj_port_fdb *fdb, struct switchdev_trans *trans) { /* We don't need any dynamic resource from the kernel (yet), * so skip the prepare phase. */ return 0; } static void mv88e6xxx_port_fdb_add(struct dsa_switch *ds, int port, const struct switchdev_obj_port_fdb *fdb, struct switchdev_trans *trans) { int state = is_multicast_ether_addr(fdb->addr) ? GLOBAL_ATU_DATA_STATE_MC_STATIC : GLOBAL_ATU_DATA_STATE_UC_STATIC; struct mv88e6xxx_chip *chip = ds_to_priv(ds); mutex_lock(&chip->reg_lock); if (_mv88e6xxx_port_fdb_load(chip, port, fdb->addr, fdb->vid, state)) netdev_err(ds->ports[port].netdev, "failed to load MAC address\n"); mutex_unlock(&chip->reg_lock); } static int mv88e6xxx_port_fdb_del(struct dsa_switch *ds, int port, const struct switchdev_obj_port_fdb *fdb) { struct mv88e6xxx_chip *chip = ds_to_priv(ds); int ret; mutex_lock(&chip->reg_lock); ret = _mv88e6xxx_port_fdb_load(chip, port, fdb->addr, fdb->vid, GLOBAL_ATU_DATA_STATE_UNUSED); mutex_unlock(&chip->reg_lock); return ret; } static int _mv88e6xxx_atu_getnext(struct mv88e6xxx_chip *chip, u16 fid, struct mv88e6xxx_atu_entry *entry) { struct mv88e6xxx_atu_entry next = { 0 }; int ret; next.fid = fid; ret = _mv88e6xxx_atu_wait(chip); if (ret < 0) return ret; ret = _mv88e6xxx_atu_cmd(chip, fid, GLOBAL_ATU_OP_GET_NEXT_DB); if (ret < 0) return ret; ret = _mv88e6xxx_atu_mac_read(chip, next.mac); if (ret < 0) return ret; ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_ATU_DATA); if (ret < 0) return ret; next.state = ret & GLOBAL_ATU_DATA_STATE_MASK; if (next.state != GLOBAL_ATU_DATA_STATE_UNUSED) { unsigned int mask, shift; if (ret & GLOBAL_ATU_DATA_TRUNK) { next.trunk = true; mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK; shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT; } else { next.trunk = false; mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK; shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT; } next.portv_trunkid = (ret & mask) >> shift; } *entry = next; return 0; } static int _mv88e6xxx_port_fdb_dump_one(struct mv88e6xxx_chip *chip, u16 fid, u16 vid, int port, struct switchdev_obj_port_fdb *fdb, int (*cb)(struct switchdev_obj *obj)) { struct mv88e6xxx_atu_entry addr = { .mac = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }, }; int err; err = _mv88e6xxx_atu_mac_write(chip, addr.mac); if (err) return err; do { err = _mv88e6xxx_atu_getnext(chip, fid, &addr); if (err) break; if (addr.state == GLOBAL_ATU_DATA_STATE_UNUSED) break; if (!addr.trunk && addr.portv_trunkid & BIT(port)) { bool is_static = addr.state == (is_multicast_ether_addr(addr.mac) ? GLOBAL_ATU_DATA_STATE_MC_STATIC : GLOBAL_ATU_DATA_STATE_UC_STATIC); fdb->vid = vid; ether_addr_copy(fdb->addr, addr.mac); fdb->ndm_state = is_static ? NUD_NOARP : NUD_REACHABLE; err = cb(&fdb->obj); if (err) break; } } while (!is_broadcast_ether_addr(addr.mac)); return err; } static int mv88e6xxx_port_fdb_dump(struct dsa_switch *ds, int port, struct switchdev_obj_port_fdb *fdb, int (*cb)(struct switchdev_obj *obj)) { struct mv88e6xxx_chip *chip = ds_to_priv(ds); struct mv88e6xxx_vtu_stu_entry vlan = { .vid = GLOBAL_VTU_VID_MASK, /* all ones */ }; u16 fid; int err; mutex_lock(&chip->reg_lock); /* Dump port's default Filtering Information Database (VLAN ID 0) */ err = _mv88e6xxx_port_fid_get(chip, port, &fid); if (err) goto unlock; err = _mv88e6xxx_port_fdb_dump_one(chip, fid, 0, port, fdb, cb); if (err) goto unlock; /* Dump VLANs' Filtering Information Databases */ err = _mv88e6xxx_vtu_vid_write(chip, vlan.vid); if (err) goto unlock; do { err = _mv88e6xxx_vtu_getnext(chip, &vlan); if (err) break; if (!vlan.valid) break; err = _mv88e6xxx_port_fdb_dump_one(chip, vlan.fid, vlan.vid, port, fdb, cb); if (err) break; } while (vlan.vid < GLOBAL_VTU_VID_MASK); unlock: mutex_unlock(&chip->reg_lock); return err; } static int mv88e6xxx_port_bridge_join(struct dsa_switch *ds, int port, struct net_device *bridge) { struct mv88e6xxx_chip *chip = ds_to_priv(ds); int i, err = 0; mutex_lock(&chip->reg_lock); /* Assign the bridge and remap each port's VLANTable */ chip->ports[port].bridge_dev = bridge; for (i = 0; i < chip->info->num_ports; ++i) { if (chip->ports[i].bridge_dev == bridge) { err = _mv88e6xxx_port_based_vlan_map(chip, i); if (err) break; } } mutex_unlock(&chip->reg_lock); return err; } static void mv88e6xxx_port_bridge_leave(struct dsa_switch *ds, int port) { struct mv88e6xxx_chip *chip = ds_to_priv(ds); struct net_device *bridge = chip->ports[port].bridge_dev; int i; mutex_lock(&chip->reg_lock); /* Unassign the bridge and remap each port's VLANTable */ chip->ports[port].bridge_dev = NULL; for (i = 0; i < chip->info->num_ports; ++i) if (i == port || chip->ports[i].bridge_dev == bridge) if (_mv88e6xxx_port_based_vlan_map(chip, i)) netdev_warn(ds->ports[i].netdev, "failed to remap\n"); mutex_unlock(&chip->reg_lock); } static int _mv88e6xxx_mdio_page_write(struct mv88e6xxx_chip *chip, int port, int page, int reg, int val) { int ret; ret = mv88e6xxx_mdio_write_indirect(chip, port, 0x16, page); if (ret < 0) goto restore_page_0; ret = mv88e6xxx_mdio_write_indirect(chip, port, reg, val); restore_page_0: mv88e6xxx_mdio_write_indirect(chip, port, 0x16, 0x0); return ret; } static int _mv88e6xxx_mdio_page_read(struct mv88e6xxx_chip *chip, int port, int page, int reg) { int ret; ret = mv88e6xxx_mdio_write_indirect(chip, port, 0x16, page); if (ret < 0) goto restore_page_0; ret = mv88e6xxx_mdio_read_indirect(chip, port, reg); restore_page_0: mv88e6xxx_mdio_write_indirect(chip, port, 0x16, 0x0); return ret; } static int mv88e6xxx_switch_reset(struct mv88e6xxx_chip *chip) { bool ppu_active = mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU_ACTIVE); u16 is_reset = (ppu_active ? 0x8800 : 0xc800); struct gpio_desc *gpiod = chip->reset; unsigned long timeout; int ret; int i; /* Set all ports to the disabled state. */ for (i = 0; i < chip->info->num_ports; i++) { ret = _mv88e6xxx_reg_read(chip, REG_PORT(i), PORT_CONTROL); if (ret < 0) return ret; ret = _mv88e6xxx_reg_write(chip, REG_PORT(i), PORT_CONTROL, ret & 0xfffc); if (ret) return ret; } /* Wait for transmit queues to drain. */ usleep_range(2000, 4000); /* If there is a gpio connected to the reset pin, toggle it */ if (gpiod) { gpiod_set_value_cansleep(gpiod, 1); usleep_range(10000, 20000); gpiod_set_value_cansleep(gpiod, 0); usleep_range(10000, 20000); } /* Reset the switch. Keep the PPU active if requested. The PPU * needs to be active to support indirect phy register access * through global registers 0x18 and 0x19. */ if (ppu_active) ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, 0x04, 0xc000); else ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, 0x04, 0xc400); if (ret) return ret; /* Wait up to one second for reset to complete. */ timeout = jiffies + 1 * HZ; while (time_before(jiffies, timeout)) { ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, 0x00); if (ret < 0) return ret; if ((ret & is_reset) == is_reset) break; usleep_range(1000, 2000); } if (time_after(jiffies, timeout)) ret = -ETIMEDOUT; else ret = 0; return ret; } static int mv88e6xxx_power_on_serdes(struct mv88e6xxx_chip *chip) { int ret; ret = _mv88e6xxx_mdio_page_read(chip, REG_FIBER_SERDES, PAGE_FIBER_SERDES, MII_BMCR); if (ret < 0) return ret; if (ret & BMCR_PDOWN) { ret &= ~BMCR_PDOWN; ret = _mv88e6xxx_mdio_page_write(chip, REG_FIBER_SERDES, PAGE_FIBER_SERDES, MII_BMCR, ret); } return ret; } static int mv88e6xxx_port_read(struct mv88e6xxx_chip *chip, int port, int reg, u16 *val) { int addr = chip->info->port_base_addr + port; if (port >= chip->info->num_ports) return -EINVAL; return mv88e6xxx_read(chip, addr, reg, val); } static int mv88e6xxx_setup_port(struct mv88e6xxx_chip *chip, int port) { struct dsa_switch *ds = chip->ds; int ret; u16 reg; if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) || mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) || mv88e6xxx_6185_family(chip) || mv88e6xxx_6095_family(chip) || mv88e6xxx_6065_family(chip) || mv88e6xxx_6320_family(chip)) { /* MAC Forcing register: don't force link, speed, * duplex or flow control state to any particular * values on physical ports, but force the CPU port * and all DSA ports to their maximum bandwidth and * full duplex. */ reg = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_PCS_CTRL); if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) { reg &= ~PORT_PCS_CTRL_UNFORCED; reg |= PORT_PCS_CTRL_FORCE_LINK | PORT_PCS_CTRL_LINK_UP | PORT_PCS_CTRL_DUPLEX_FULL | PORT_PCS_CTRL_FORCE_DUPLEX; if (mv88e6xxx_6065_family(chip)) reg |= PORT_PCS_CTRL_100; else reg |= PORT_PCS_CTRL_1000; } else { reg |= PORT_PCS_CTRL_UNFORCED; } ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_PCS_CTRL, reg); if (ret) return ret; } /* Port Control: disable Drop-on-Unlock, disable Drop-on-Lock, * disable Header mode, enable IGMP/MLD snooping, disable VLAN * tunneling, determine priority by looking at 802.1p and IP * priority fields (IP prio has precedence), and set STP state * to Forwarding. * * If this is the CPU link, use DSA or EDSA tagging depending * on which tagging mode was configured. * * If this is a link to another switch, use DSA tagging mode. * * If this is the upstream port for this switch, enable * forwarding of unknown unicasts and multicasts. */ reg = 0; if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) || mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) || mv88e6xxx_6095_family(chip) || mv88e6xxx_6065_family(chip) || mv88e6xxx_6185_family(chip) || mv88e6xxx_6320_family(chip)) reg = PORT_CONTROL_IGMP_MLD_SNOOP | PORT_CONTROL_USE_TAG | PORT_CONTROL_USE_IP | PORT_CONTROL_STATE_FORWARDING; if (dsa_is_cpu_port(ds, port)) { if (mv88e6xxx_6095_family(chip) || mv88e6xxx_6185_family(chip)) reg |= PORT_CONTROL_DSA_TAG; if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) || mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) || mv88e6xxx_6320_family(chip)) { reg |= PORT_CONTROL_FRAME_ETHER_TYPE_DSA | PORT_CONTROL_FORWARD_UNKNOWN | PORT_CONTROL_FORWARD_UNKNOWN_MC; } if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) || mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) || mv88e6xxx_6095_family(chip) || mv88e6xxx_6065_family(chip) || mv88e6xxx_6185_family(chip) || mv88e6xxx_6320_family(chip)) { reg |= PORT_CONTROL_EGRESS_ADD_TAG; } } if (dsa_is_dsa_port(ds, port)) { if (mv88e6xxx_6095_family(chip) || mv88e6xxx_6185_family(chip)) reg |= PORT_CONTROL_DSA_TAG; if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) || mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) || mv88e6xxx_6320_family(chip)) { reg |= PORT_CONTROL_FRAME_MODE_DSA; } if (port == dsa_upstream_port(ds)) reg |= PORT_CONTROL_FORWARD_UNKNOWN | PORT_CONTROL_FORWARD_UNKNOWN_MC; } if (reg) { ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL, reg); if (ret) return ret; } /* If this port is connected to a SerDes, make sure the SerDes is not * powered down. */ if (mv88e6xxx_6352_family(chip)) { ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_STATUS); if (ret < 0) return ret; ret &= PORT_STATUS_CMODE_MASK; if ((ret == PORT_STATUS_CMODE_100BASE_X) || (ret == PORT_STATUS_CMODE_1000BASE_X) || (ret == PORT_STATUS_CMODE_SGMII)) { ret = mv88e6xxx_power_on_serdes(chip); if (ret < 0) return ret; } } /* Port Control 2: don't force a good FCS, set the maximum frame size to * 10240 bytes, disable 802.1q tags checking, don't discard tagged or * untagged frames on this port, do a destination address lookup on all * received packets as usual, disable ARP mirroring and don't send a * copy of all transmitted/received frames on this port to the CPU. */ reg = 0; if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) || mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) || mv88e6xxx_6095_family(chip) || mv88e6xxx_6320_family(chip) || mv88e6xxx_6185_family(chip)) reg = PORT_CONTROL_2_MAP_DA; if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) || mv88e6xxx_6165_family(chip) || mv88e6xxx_6320_family(chip)) reg |= PORT_CONTROL_2_JUMBO_10240; if (mv88e6xxx_6095_family(chip) || mv88e6xxx_6185_family(chip)) { /* Set the upstream port this port should use */ reg |= dsa_upstream_port(ds); /* enable forwarding of unknown multicast addresses to * the upstream port */ if (port == dsa_upstream_port(ds)) reg |= PORT_CONTROL_2_FORWARD_UNKNOWN; } reg |= PORT_CONTROL_2_8021Q_DISABLED; if (reg) { ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL_2, reg); if (ret) return ret; } /* Port Association Vector: when learning source addresses * of packets, add the address to the address database using * a port bitmap that has only the bit for this port set and * the other bits clear. */ reg = 1 << port; /* Disable learning for CPU port */ if (dsa_is_cpu_port(ds, port)) reg = 0; ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_ASSOC_VECTOR, reg); if (ret) return ret; /* Egress rate control 2: disable egress rate control. */ ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_RATE_CONTROL_2, 0x0000); if (ret) return ret; if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) || mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) || mv88e6xxx_6320_family(chip)) { /* Do not limit the period of time that this port can * be paused for by the remote end or the period of * time that this port can pause the remote end. */ ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_PAUSE_CTRL, 0x0000); if (ret) return ret; /* Port ATU control: disable limiting the number of * address database entries that this port is allowed * to use. */ ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_ATU_CONTROL, 0x0000); /* Priority Override: disable DA, SA and VTU priority * override. */ ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_PRI_OVERRIDE, 0x0000); if (ret) return ret; /* Port Ethertype: use the Ethertype DSA Ethertype * value. */ ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_ETH_TYPE, ETH_P_EDSA); if (ret) return ret; /* Tag Remap: use an identity 802.1p prio -> switch * prio mapping. */ ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_TAG_REGMAP_0123, 0x3210); if (ret) return ret; /* Tag Remap 2: use an identity 802.1p prio -> switch * prio mapping. */ ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_TAG_REGMAP_4567, 0x7654); if (ret) return ret; } if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) || mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) || mv88e6xxx_6185_family(chip) || mv88e6xxx_6095_family(chip) || mv88e6xxx_6320_family(chip)) { /* Rate Control: disable ingress rate limiting. */ ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_RATE_CONTROL, 0x0001); if (ret) return ret; } /* Port Control 1: disable trunking, disable sending * learning messages to this port. */ ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL_1, 0x0000); if (ret) return ret; /* Port based VLAN map: give each port the same default address * database, and allow bidirectional communication between the * CPU and DSA port(s), and the other ports. */ ret = _mv88e6xxx_port_fid_set(chip, port, 0); if (ret) return ret; ret = _mv88e6xxx_port_based_vlan_map(chip, port); if (ret) return ret; /* Default VLAN ID and priority: don't set a default VLAN * ID, and set the default packet priority to zero. */ ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_DEFAULT_VLAN, 0x0000); if (ret) return ret; return 0; } static int mv88e6xxx_g1_set_switch_mac(struct mv88e6xxx_chip *chip, u8 *addr) { int err; err = mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_MAC_01, (addr[0] << 8) | addr[1]); if (err) return err; err = mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_MAC_23, (addr[2] << 8) | addr[3]); if (err) return err; return mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_MAC_45, (addr[4] << 8) | addr[5]); } static int mv88e6xxx_g1_set_age_time(struct mv88e6xxx_chip *chip, unsigned int msecs) { const unsigned int coeff = chip->info->age_time_coeff; const unsigned int min = 0x01 * coeff; const unsigned int max = 0xff * coeff; u8 age_time; u16 val; int err; if (msecs < min || msecs > max) return -ERANGE; /* Round to nearest multiple of coeff */ age_time = (msecs + coeff / 2) / coeff; err = mv88e6xxx_read(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL, &val); if (err) return err; /* AgeTime is 11:4 bits */ val &= ~0xff0; val |= age_time << 4; return mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL, val); } static int mv88e6xxx_set_ageing_time(struct dsa_switch *ds, unsigned int ageing_time) { struct mv88e6xxx_chip *chip = ds_to_priv(ds); int err; mutex_lock(&chip->reg_lock); err = mv88e6xxx_g1_set_age_time(chip, ageing_time); mutex_unlock(&chip->reg_lock); return err; } static int mv88e6xxx_g1_setup(struct mv88e6xxx_chip *chip) { struct dsa_switch *ds = chip->ds; u32 upstream_port = dsa_upstream_port(ds); u16 reg; int err; /* Enable the PHY Polling Unit if present, don't discard any packets, * and mask all interrupt sources. */ reg = 0; if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU) || mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU_ACTIVE)) reg |= GLOBAL_CONTROL_PPU_ENABLE; err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL, reg); if (err) return err; /* Configure the upstream port, and configure it as the port to which * ingress and egress and ARP monitor frames are to be sent. */ reg = upstream_port << GLOBAL_MONITOR_CONTROL_INGRESS_SHIFT | upstream_port << GLOBAL_MONITOR_CONTROL_EGRESS_SHIFT | upstream_port << GLOBAL_MONITOR_CONTROL_ARP_SHIFT; err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_MONITOR_CONTROL, reg); if (err) return err; /* Disable remote management, and set the switch's DSA device number. */ err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL_2, GLOBAL_CONTROL_2_MULTIPLE_CASCADE | (ds->index & 0x1f)); if (err) return err; /* Clear all the VTU and STU entries */ err = _mv88e6xxx_vtu_stu_flush(chip); if (err < 0) return err; /* Set the default address aging time to 5 minutes, and * enable address learn messages to be sent to all message * ports. */ err = mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL, GLOBAL_ATU_CONTROL_LEARN2ALL); if (err) return err; err = mv88e6xxx_g1_set_age_time(chip, 300000); if (err) return err; /* Clear all ATU entries */ err = _mv88e6xxx_atu_flush(chip, 0, true); if (err) return err; /* Configure the IP ToS mapping registers. */ err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_0, 0x0000); if (err) return err; err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_1, 0x0000); if (err) return err; err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_2, 0x5555); if (err) return err; err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_3, 0x5555); if (err) return err; err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_4, 0xaaaa); if (err) return err; err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_5, 0xaaaa); if (err) return err; err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_6, 0xffff); if (err) return err; err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_7, 0xffff); if (err) return err; /* Configure the IEEE 802.1p priority mapping register. */ err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IEEE_PRI, 0xfa41); if (err) return err; /* Clear the statistics counters for all ports */ err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_STATS_OP, GLOBAL_STATS_OP_FLUSH_ALL); if (err) return err; /* Wait for the flush to complete. */ err = _mv88e6xxx_stats_wait(chip); if (err) return err; return 0; } static int mv88e6xxx_g2_device_mapping_write(struct mv88e6xxx_chip *chip, int target, int port) { u16 val = (target << 8) | (port & 0xf); return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_DEVICE_MAPPING, val); } static int mv88e6xxx_g2_set_device_mapping(struct mv88e6xxx_chip *chip) { int target, port; int err; /* Initialize the routing port to the 32 possible target devices */ for (target = 0; target < 32; ++target) { port = 0xf; if (target < DSA_MAX_SWITCHES) { port = chip->ds->rtable[target]; if (port == DSA_RTABLE_NONE) port = 0xf; } err = mv88e6xxx_g2_device_mapping_write(chip, target, port); if (err) break; } return err; } static int mv88e6xxx_g2_trunk_mask_write(struct mv88e6xxx_chip *chip, int num, bool hask, u16 mask) { const u16 port_mask = BIT(chip->info->num_ports) - 1; u16 val = (num << 12) | (mask & port_mask); if (hask) val |= GLOBAL2_TRUNK_MASK_HASK; return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_TRUNK_MASK, val); } static int mv88e6xxx_g2_trunk_mapping_write(struct mv88e6xxx_chip *chip, int id, u16 map) { const u16 port_mask = BIT(chip->info->num_ports) - 1; u16 val = (id << 11) | (map & port_mask); return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_TRUNK_MAPPING, val); } static int mv88e6xxx_g2_clear_trunk(struct mv88e6xxx_chip *chip) { const u16 port_mask = BIT(chip->info->num_ports) - 1; int i, err; /* Clear all eight possible Trunk Mask vectors */ for (i = 0; i < 8; ++i) { err = mv88e6xxx_g2_trunk_mask_write(chip, i, false, port_mask); if (err) return err; } /* Clear all sixteen possible Trunk ID routing vectors */ for (i = 0; i < 16; ++i) { err = mv88e6xxx_g2_trunk_mapping_write(chip, i, 0); if (err) return err; } return 0; } static int mv88e6xxx_g2_clear_irl(struct mv88e6xxx_chip *chip) { int port, err; /* Init all Ingress Rate Limit resources of all ports */ for (port = 0; port < chip->info->num_ports; ++port) { /* XXX newer chips (like 88E6390) have different 2-bit ops */ err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_IRL_CMD, GLOBAL2_IRL_CMD_OP_INIT_ALL | (port << 8)); if (err) break; /* Wait for the operation to complete */ err = _mv88e6xxx_wait(chip, REG_GLOBAL2, GLOBAL2_IRL_CMD, GLOBAL2_IRL_CMD_BUSY); if (err) break; } return err; } /* Indirect write to the Switch MAC/WoL/WoF register */ static int mv88e6xxx_g2_switch_mac_write(struct mv88e6xxx_chip *chip, unsigned int pointer, u8 data) { u16 val = (pointer << 8) | data; return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_SWITCH_MAC, val); } static int mv88e6xxx_g2_set_switch_mac(struct mv88e6xxx_chip *chip, u8 *addr) { int i, err; for (i = 0; i < 6; i++) { err = mv88e6xxx_g2_switch_mac_write(chip, i, addr[i]); if (err) break; } return err; } static int mv88e6xxx_g2_pot_write(struct mv88e6xxx_chip *chip, int pointer, u8 data) { u16 val = (pointer << 8) | (data & 0x7); return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_PRIO_OVERRIDE, val); } static int mv88e6xxx_g2_clear_pot(struct mv88e6xxx_chip *chip) { int i, err; /* Clear all sixteen possible Priority Override entries */ for (i = 0; i < 16; i++) { err = mv88e6xxx_g2_pot_write(chip, i, 0); if (err) break; } return err; } static int mv88e6xxx_g2_eeprom_wait(struct mv88e6xxx_chip *chip) { return _mv88e6xxx_wait(chip, REG_GLOBAL2, GLOBAL2_EEPROM_CMD, GLOBAL2_EEPROM_CMD_BUSY | GLOBAL2_EEPROM_CMD_RUNNING); } static int mv88e6xxx_g2_eeprom_cmd(struct mv88e6xxx_chip *chip, u16 cmd) { int err; err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_EEPROM_CMD, cmd); if (err) return err; return mv88e6xxx_g2_eeprom_wait(chip); } static int mv88e6xxx_g2_eeprom_read16(struct mv88e6xxx_chip *chip, u8 addr, u16 *data) { u16 cmd = GLOBAL2_EEPROM_CMD_OP_READ | addr; int err; err = mv88e6xxx_g2_eeprom_wait(chip); if (err) return err; err = mv88e6xxx_g2_eeprom_cmd(chip, cmd); if (err) return err; return mv88e6xxx_read(chip, REG_GLOBAL2, GLOBAL2_EEPROM_DATA, data); } static int mv88e6xxx_g2_eeprom_write16(struct mv88e6xxx_chip *chip, u8 addr, u16 data) { u16 cmd = GLOBAL2_EEPROM_CMD_OP_WRITE | addr; int err; err = mv88e6xxx_g2_eeprom_wait(chip); if (err) return err; err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_EEPROM_DATA, data); if (err) return err; return mv88e6xxx_g2_eeprom_cmd(chip, cmd); } static int mv88e6xxx_g2_setup(struct mv88e6xxx_chip *chip) { u16 reg; int err; if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_2X)) { /* Consider the frames with reserved multicast destination * addresses matching 01:80:c2:00:00:2x as MGMT. */ err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_MGMT_EN_2X, 0xffff); if (err) return err; } if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_0X)) { /* Consider the frames with reserved multicast destination * addresses matching 01:80:c2:00:00:0x as MGMT. */ err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_MGMT_EN_0X, 0xffff); if (err) return err; } /* Ignore removed tag data on doubly tagged packets, disable * flow control messages, force flow control priority to the * highest, and send all special multicast frames to the CPU * port at the highest priority. */ reg = GLOBAL2_SWITCH_MGMT_FORCE_FLOW_CTRL_PRI | (0x7 << 4); if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_0X) || mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_2X)) reg |= GLOBAL2_SWITCH_MGMT_RSVD2CPU | 0x7; err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_SWITCH_MGMT, reg); if (err) return err; /* Program the DSA routing table. */ err = mv88e6xxx_g2_set_device_mapping(chip); if (err) return err; /* Clear all trunk masks and mapping. */ err = mv88e6xxx_g2_clear_trunk(chip); if (err) return err; if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_IRL)) { /* Disable ingress rate limiting by resetting all per port * ingress rate limit resources to their initial state. */ err = mv88e6xxx_g2_clear_irl(chip); if (err) return err; } if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_PVT)) { /* Initialize Cross-chip Port VLAN Table to reset defaults */ err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_PVT_ADDR, GLOBAL2_PVT_ADDR_OP_INIT_ONES); if (err) return err; } if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_POT)) { /* Clear the priority override table. */ err = mv88e6xxx_g2_clear_pot(chip); if (err) return err; } return 0; } static int mv88e6xxx_setup(struct dsa_switch *ds) { struct mv88e6xxx_chip *chip = ds_to_priv(ds); int err; int i; chip->ds = ds; ds->slave_mii_bus = chip->mdio_bus; mutex_lock(&chip->reg_lock); err = mv88e6xxx_switch_reset(chip); if (err) goto unlock; /* Setup Switch Port Registers */ for (i = 0; i < chip->info->num_ports; i++) { err = mv88e6xxx_setup_port(chip, i); if (err) goto unlock; } /* Setup Switch Global 1 Registers */ err = mv88e6xxx_g1_setup(chip); if (err) goto unlock; /* Setup Switch Global 2 Registers */ if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_GLOBAL2)) { err = mv88e6xxx_g2_setup(chip); if (err) goto unlock; } unlock: mutex_unlock(&chip->reg_lock); return err; } static int mv88e6xxx_set_addr(struct dsa_switch *ds, u8 *addr) { struct mv88e6xxx_chip *chip = ds_to_priv(ds); int err; mutex_lock(&chip->reg_lock); /* Has an indirect Switch MAC/WoL/WoF register in Global 2? */ if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_SWITCH_MAC)) err = mv88e6xxx_g2_set_switch_mac(chip, addr); else err = mv88e6xxx_g1_set_switch_mac(chip, addr); mutex_unlock(&chip->reg_lock); return err; } #ifdef CONFIG_NET_DSA_HWMON static int mv88e6xxx_mdio_page_read(struct dsa_switch *ds, int port, int page, int reg) { struct mv88e6xxx_chip *chip = ds_to_priv(ds); int ret; mutex_lock(&chip->reg_lock); ret = _mv88e6xxx_mdio_page_read(chip, port, page, reg); mutex_unlock(&chip->reg_lock); return ret; } static int mv88e6xxx_mdio_page_write(struct dsa_switch *ds, int port, int page, int reg, int val) { struct mv88e6xxx_chip *chip = ds_to_priv(ds); int ret; mutex_lock(&chip->reg_lock); ret = _mv88e6xxx_mdio_page_write(chip, port, page, reg, val); mutex_unlock(&chip->reg_lock); return ret; } #endif static int mv88e6xxx_port_to_mdio_addr(struct mv88e6xxx_chip *chip, int port) { if (port >= 0 && port < chip->info->num_ports) return port; return -EINVAL; } static int mv88e6xxx_mdio_read(struct mii_bus *bus, int port, int regnum) { struct mv88e6xxx_chip *chip = bus->priv; int addr = mv88e6xxx_port_to_mdio_addr(chip, port); int ret; if (addr < 0) return 0xffff; mutex_lock(&chip->reg_lock); if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU)) ret = mv88e6xxx_mdio_read_ppu(chip, addr, regnum); else if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_SMI_PHY)) ret = mv88e6xxx_mdio_read_indirect(chip, addr, regnum); else ret = mv88e6xxx_mdio_read_direct(chip, addr, regnum); mutex_unlock(&chip->reg_lock); return ret; } static int mv88e6xxx_mdio_write(struct mii_bus *bus, int port, int regnum, u16 val) { struct mv88e6xxx_chip *chip = bus->priv; int addr = mv88e6xxx_port_to_mdio_addr(chip, port); int ret; if (addr < 0) return 0xffff; mutex_lock(&chip->reg_lock); if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU)) ret = mv88e6xxx_mdio_write_ppu(chip, addr, regnum, val); else if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_SMI_PHY)) ret = mv88e6xxx_mdio_write_indirect(chip, addr, regnum, val); else ret = mv88e6xxx_mdio_write_direct(chip, addr, regnum, val); mutex_unlock(&chip->reg_lock); return ret; } static int mv88e6xxx_mdio_register(struct mv88e6xxx_chip *chip, struct device_node *np) { static int index; struct mii_bus *bus; int err; if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU)) mv88e6xxx_ppu_state_init(chip); if (np) chip->mdio_np = of_get_child_by_name(np, "mdio"); bus = devm_mdiobus_alloc(chip->dev); if (!bus) return -ENOMEM; bus->priv = (void *)chip; if (np) { bus->name = np->full_name; snprintf(bus->id, MII_BUS_ID_SIZE, "%s", np->full_name); } else { bus->name = "mv88e6xxx SMI"; snprintf(bus->id, MII_BUS_ID_SIZE, "mv88e6xxx-%d", index++); } bus->read = mv88e6xxx_mdio_read; bus->write = mv88e6xxx_mdio_write; bus->parent = chip->dev; if (chip->mdio_np) err = of_mdiobus_register(bus, chip->mdio_np); else err = mdiobus_register(bus); if (err) { dev_err(chip->dev, "Cannot register MDIO bus (%d)\n", err); goto out; } chip->mdio_bus = bus; return 0; out: if (chip->mdio_np) of_node_put(chip->mdio_np); return err; } static void mv88e6xxx_mdio_unregister(struct mv88e6xxx_chip *chip) { struct mii_bus *bus = chip->mdio_bus; mdiobus_unregister(bus); if (chip->mdio_np) of_node_put(chip->mdio_np); } #ifdef CONFIG_NET_DSA_HWMON static int mv88e61xx_get_temp(struct dsa_switch *ds, int *temp) { struct mv88e6xxx_chip *chip = ds_to_priv(ds); int ret; int val; *temp = 0; mutex_lock(&chip->reg_lock); ret = mv88e6xxx_mdio_write_direct(chip, 0x0, 0x16, 0x6); if (ret < 0) goto error; /* Enable temperature sensor */ ret = mv88e6xxx_mdio_read_direct(chip, 0x0, 0x1a); if (ret < 0) goto error; ret = mv88e6xxx_mdio_write_direct(chip, 0x0, 0x1a, ret | (1 << 5)); if (ret < 0) goto error; /* Wait for temperature to stabilize */ usleep_range(10000, 12000); val = mv88e6xxx_mdio_read_direct(chip, 0x0, 0x1a); if (val < 0) { ret = val; goto error; } /* Disable temperature sensor */ ret = mv88e6xxx_mdio_write_direct(chip, 0x0, 0x1a, ret & ~(1 << 5)); if (ret < 0) goto error; *temp = ((val & 0x1f) - 5) * 5; error: mv88e6xxx_mdio_write_direct(chip, 0x0, 0x16, 0x0); mutex_unlock(&chip->reg_lock); return ret; } static int mv88e63xx_get_temp(struct dsa_switch *ds, int *temp) { struct mv88e6xxx_chip *chip = ds_to_priv(ds); int phy = mv88e6xxx_6320_family(chip) ? 3 : 0; int ret; *temp = 0; ret = mv88e6xxx_mdio_page_read(ds, phy, 6, 27); if (ret < 0) return ret; *temp = (ret & 0xff) - 25; return 0; } static int mv88e6xxx_get_temp(struct dsa_switch *ds, int *temp) { struct mv88e6xxx_chip *chip = ds_to_priv(ds); if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP)) return -EOPNOTSUPP; if (mv88e6xxx_6320_family(chip) || mv88e6xxx_6352_family(chip)) return mv88e63xx_get_temp(ds, temp); return mv88e61xx_get_temp(ds, temp); } static int mv88e6xxx_get_temp_limit(struct dsa_switch *ds, int *temp) { struct mv88e6xxx_chip *chip = ds_to_priv(ds); int phy = mv88e6xxx_6320_family(chip) ? 3 : 0; int ret; if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT)) return -EOPNOTSUPP; *temp = 0; ret = mv88e6xxx_mdio_page_read(ds, phy, 6, 26); if (ret < 0) return ret; *temp = (((ret >> 8) & 0x1f) * 5) - 25; return 0; } static int mv88e6xxx_set_temp_limit(struct dsa_switch *ds, int temp) { struct mv88e6xxx_chip *chip = ds_to_priv(ds); int phy = mv88e6xxx_6320_family(chip) ? 3 : 0; int ret; if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT)) return -EOPNOTSUPP; ret = mv88e6xxx_mdio_page_read(ds, phy, 6, 26); if (ret < 0) return ret; temp = clamp_val(DIV_ROUND_CLOSEST(temp, 5) + 5, 0, 0x1f); return mv88e6xxx_mdio_page_write(ds, phy, 6, 26, (ret & 0xe0ff) | (temp << 8)); } static int mv88e6xxx_get_temp_alarm(struct dsa_switch *ds, bool *alarm) { struct mv88e6xxx_chip *chip = ds_to_priv(ds); int phy = mv88e6xxx_6320_family(chip) ? 3 : 0; int ret; if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT)) return -EOPNOTSUPP; *alarm = false; ret = mv88e6xxx_mdio_page_read(ds, phy, 6, 26); if (ret < 0) return ret; *alarm = !!(ret & 0x40); return 0; } #endif /* CONFIG_NET_DSA_HWMON */ static int mv88e6xxx_get_eeprom_len(struct dsa_switch *ds) { struct mv88e6xxx_chip *chip = ds_to_priv(ds); return chip->eeprom_len; } static int mv88e6xxx_get_eeprom16(struct mv88e6xxx_chip *chip, struct ethtool_eeprom *eeprom, u8 *data) { unsigned int offset = eeprom->offset; unsigned int len = eeprom->len; u16 val; int err; eeprom->len = 0; if (offset & 1) { err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val); if (err) return err; *data++ = (val >> 8) & 0xff; offset++; len--; eeprom->len++; } while (len >= 2) { err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val); if (err) return err; *data++ = val & 0xff; *data++ = (val >> 8) & 0xff; offset += 2; len -= 2; eeprom->len += 2; } if (len) { err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val); if (err) return err; *data++ = val & 0xff; offset++; len--; eeprom->len++; } return 0; } static int mv88e6xxx_get_eeprom(struct dsa_switch *ds, struct ethtool_eeprom *eeprom, u8 *data) { struct mv88e6xxx_chip *chip = ds_to_priv(ds); int err; mutex_lock(&chip->reg_lock); if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_EEPROM16)) err = mv88e6xxx_get_eeprom16(chip, eeprom, data); else err = -EOPNOTSUPP; mutex_unlock(&chip->reg_lock); if (err) return err; eeprom->magic = 0xc3ec4951; return 0; } static int mv88e6xxx_set_eeprom16(struct mv88e6xxx_chip *chip, struct ethtool_eeprom *eeprom, u8 *data) { unsigned int offset = eeprom->offset; unsigned int len = eeprom->len; u16 val; int err; /* Ensure the RO WriteEn bit is set */ err = mv88e6xxx_read(chip, REG_GLOBAL2, GLOBAL2_EEPROM_CMD, &val); if (err) return err; if (!(val & GLOBAL2_EEPROM_CMD_WRITE_EN)) return -EROFS; eeprom->len = 0; if (offset & 1) { err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val); if (err) return err; val = (*data++ << 8) | (val & 0xff); err = mv88e6xxx_g2_eeprom_write16(chip, offset >> 1, val); if (err) return err; offset++; len--; eeprom->len++; } while (len >= 2) { val = *data++; val |= *data++ << 8; err = mv88e6xxx_g2_eeprom_write16(chip, offset >> 1, val); if (err) return err; offset += 2; len -= 2; eeprom->len += 2; } if (len) { err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val); if (err) return err; val = (val & 0xff00) | *data++; err = mv88e6xxx_g2_eeprom_write16(chip, offset >> 1, val); if (err) return err; offset++; len--; eeprom->len++; } return 0; } static int mv88e6xxx_set_eeprom(struct dsa_switch *ds, struct ethtool_eeprom *eeprom, u8 *data) { struct mv88e6xxx_chip *chip = ds_to_priv(ds); int err; if (eeprom->magic != 0xc3ec4951) return -EINVAL; mutex_lock(&chip->reg_lock); if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_EEPROM16)) err = mv88e6xxx_set_eeprom16(chip, eeprom, data); else err = -EOPNOTSUPP; mutex_unlock(&chip->reg_lock); return err; } static const struct mv88e6xxx_info mv88e6xxx_table[] = { [MV88E6085] = { .prod_num = PORT_SWITCH_ID_PROD_NUM_6085, .family = MV88E6XXX_FAMILY_6097, .name = "Marvell 88E6085", .num_databases = 4096, .num_ports = 10, .port_base_addr = 0x10, .age_time_coeff = 15000, .flags = MV88E6XXX_FLAGS_FAMILY_6097, }, [MV88E6095] = { .prod_num = PORT_SWITCH_ID_PROD_NUM_6095, .family = MV88E6XXX_FAMILY_6095, .name = "Marvell 88E6095/88E6095F", .num_databases = 256, .num_ports = 11, .port_base_addr = 0x10, .age_time_coeff = 15000, .flags = MV88E6XXX_FLAGS_FAMILY_6095, }, [MV88E6123] = { .prod_num = PORT_SWITCH_ID_PROD_NUM_6123, .family = MV88E6XXX_FAMILY_6165, .name = "Marvell 88E6123", .num_databases = 4096, .num_ports = 3, .port_base_addr = 0x10, .age_time_coeff = 15000, .flags = MV88E6XXX_FLAGS_FAMILY_6165, }, [MV88E6131] = { .prod_num = PORT_SWITCH_ID_PROD_NUM_6131, .family = MV88E6XXX_FAMILY_6185, .name = "Marvell 88E6131", .num_databases = 256, .num_ports = 8, .port_base_addr = 0x10, .age_time_coeff = 15000, .flags = MV88E6XXX_FLAGS_FAMILY_6185, }, [MV88E6161] = { .prod_num = PORT_SWITCH_ID_PROD_NUM_6161, .family = MV88E6XXX_FAMILY_6165, .name = "Marvell 88E6161", .num_databases = 4096, .num_ports = 6, .port_base_addr = 0x10, .age_time_coeff = 15000, .flags = MV88E6XXX_FLAGS_FAMILY_6165, }, [MV88E6165] = { .prod_num = PORT_SWITCH_ID_PROD_NUM_6165, .family = MV88E6XXX_FAMILY_6165, .name = "Marvell 88E6165", .num_databases = 4096, .num_ports = 6, .port_base_addr = 0x10, .age_time_coeff = 15000, .flags = MV88E6XXX_FLAGS_FAMILY_6165, }, [MV88E6171] = { .prod_num = PORT_SWITCH_ID_PROD_NUM_6171, .family = MV88E6XXX_FAMILY_6351, .name = "Marvell 88E6171", .num_databases = 4096, .num_ports = 7, .port_base_addr = 0x10, .age_time_coeff = 15000, .flags = MV88E6XXX_FLAGS_FAMILY_6351, }, [MV88E6172] = { .prod_num = PORT_SWITCH_ID_PROD_NUM_6172, .family = MV88E6XXX_FAMILY_6352, .name = "Marvell 88E6172", .num_databases = 4096, .num_ports = 7, .port_base_addr = 0x10, .age_time_coeff = 15000, .flags = MV88E6XXX_FLAGS_FAMILY_6352, }, [MV88E6175] = { .prod_num = PORT_SWITCH_ID_PROD_NUM_6175, .family = MV88E6XXX_FAMILY_6351, .name = "Marvell 88E6175", .num_databases = 4096, .num_ports = 7, .port_base_addr = 0x10, .age_time_coeff = 15000, .flags = MV88E6XXX_FLAGS_FAMILY_6351, }, [MV88E6176] = { .prod_num = PORT_SWITCH_ID_PROD_NUM_6176, .family = MV88E6XXX_FAMILY_6352, .name = "Marvell 88E6176", .num_databases = 4096, .num_ports = 7, .port_base_addr = 0x10, .age_time_coeff = 15000, .flags = MV88E6XXX_FLAGS_FAMILY_6352, }, [MV88E6185] = { .prod_num = PORT_SWITCH_ID_PROD_NUM_6185, .family = MV88E6XXX_FAMILY_6185, .name = "Marvell 88E6185", .num_databases = 256, .num_ports = 10, .port_base_addr = 0x10, .age_time_coeff = 15000, .flags = MV88E6XXX_FLAGS_FAMILY_6185, }, [MV88E6240] = { .prod_num = PORT_SWITCH_ID_PROD_NUM_6240, .family = MV88E6XXX_FAMILY_6352, .name = "Marvell 88E6240", .num_databases = 4096, .num_ports = 7, .port_base_addr = 0x10, .age_time_coeff = 15000, .flags = MV88E6XXX_FLAGS_FAMILY_6352, }, [MV88E6320] = { .prod_num = PORT_SWITCH_ID_PROD_NUM_6320, .family = MV88E6XXX_FAMILY_6320, .name = "Marvell 88E6320", .num_databases = 4096, .num_ports = 7, .port_base_addr = 0x10, .age_time_coeff = 15000, .flags = MV88E6XXX_FLAGS_FAMILY_6320, }, [MV88E6321] = { .prod_num = PORT_SWITCH_ID_PROD_NUM_6321, .family = MV88E6XXX_FAMILY_6320, .name = "Marvell 88E6321", .num_databases = 4096, .num_ports = 7, .port_base_addr = 0x10, .age_time_coeff = 15000, .flags = MV88E6XXX_FLAGS_FAMILY_6320, }, [MV88E6350] = { .prod_num = PORT_SWITCH_ID_PROD_NUM_6350, .family = MV88E6XXX_FAMILY_6351, .name = "Marvell 88E6350", .num_databases = 4096, .num_ports = 7, .port_base_addr = 0x10, .age_time_coeff = 15000, .flags = MV88E6XXX_FLAGS_FAMILY_6351, }, [MV88E6351] = { .prod_num = PORT_SWITCH_ID_PROD_NUM_6351, .family = MV88E6XXX_FAMILY_6351, .name = "Marvell 88E6351", .num_databases = 4096, .num_ports = 7, .port_base_addr = 0x10, .age_time_coeff = 15000, .flags = MV88E6XXX_FLAGS_FAMILY_6351, }, [MV88E6352] = { .prod_num = PORT_SWITCH_ID_PROD_NUM_6352, .family = MV88E6XXX_FAMILY_6352, .name = "Marvell 88E6352", .num_databases = 4096, .num_ports = 7, .port_base_addr = 0x10, .age_time_coeff = 15000, .flags = MV88E6XXX_FLAGS_FAMILY_6352, }, }; static const struct mv88e6xxx_info *mv88e6xxx_lookup_info(unsigned int prod_num) { int i; for (i = 0; i < ARRAY_SIZE(mv88e6xxx_table); ++i) if (mv88e6xxx_table[i].prod_num == prod_num) return &mv88e6xxx_table[i]; return NULL; } static int mv88e6xxx_detect(struct mv88e6xxx_chip *chip) { const struct mv88e6xxx_info *info; unsigned int prod_num, rev; u16 id; int err; mutex_lock(&chip->reg_lock); err = mv88e6xxx_port_read(chip, 0, PORT_SWITCH_ID, &id); mutex_unlock(&chip->reg_lock); if (err) return err; prod_num = (id & 0xfff0) >> 4; rev = id & 0x000f; info = mv88e6xxx_lookup_info(prod_num); if (!info) return -ENODEV; /* Update the compatible info with the probed one */ chip->info = info; dev_info(chip->dev, "switch 0x%x detected: %s, revision %u\n", chip->info->prod_num, chip->info->name, rev); return 0; } static struct mv88e6xxx_chip *mv88e6xxx_alloc_chip(struct device *dev) { struct mv88e6xxx_chip *chip; chip = devm_kzalloc(dev, sizeof(*chip), GFP_KERNEL); if (!chip) return NULL; chip->dev = dev; mutex_init(&chip->reg_lock); return chip; } static int mv88e6xxx_smi_init(struct mv88e6xxx_chip *chip, struct mii_bus *bus, int sw_addr) { /* ADDR[0] pin is unavailable externally and considered zero */ if (sw_addr & 0x1) return -EINVAL; if (sw_addr == 0) chip->smi_ops = &mv88e6xxx_smi_single_chip_ops; else if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_MULTI_CHIP)) chip->smi_ops = &mv88e6xxx_smi_multi_chip_ops; else return -EINVAL; chip->bus = bus; chip->sw_addr = sw_addr; return 0; } static const char *mv88e6xxx_drv_probe(struct device *dsa_dev, struct device *host_dev, int sw_addr, void **priv) { struct mv88e6xxx_chip *chip; struct mii_bus *bus; int err; bus = dsa_host_dev_to_mii_bus(host_dev); if (!bus) return NULL; chip = mv88e6xxx_alloc_chip(dsa_dev); if (!chip) return NULL; /* Legacy SMI probing will only support chips similar to 88E6085 */ chip->info = &mv88e6xxx_table[MV88E6085]; err = mv88e6xxx_smi_init(chip, bus, sw_addr); if (err) goto free; err = mv88e6xxx_detect(chip); if (err) goto free; err = mv88e6xxx_mdio_register(chip, NULL); if (err) goto free; *priv = chip; return chip->info->name; free: devm_kfree(dsa_dev, chip); return NULL; } static struct dsa_switch_driver mv88e6xxx_switch_driver = { .tag_protocol = DSA_TAG_PROTO_EDSA, .probe = mv88e6xxx_drv_probe, .setup = mv88e6xxx_setup, .set_addr = mv88e6xxx_set_addr, .adjust_link = mv88e6xxx_adjust_link, .get_strings = mv88e6xxx_get_strings, .get_ethtool_stats = mv88e6xxx_get_ethtool_stats, .get_sset_count = mv88e6xxx_get_sset_count, .set_eee = mv88e6xxx_set_eee, .get_eee = mv88e6xxx_get_eee, #ifdef CONFIG_NET_DSA_HWMON .get_temp = mv88e6xxx_get_temp, .get_temp_limit = mv88e6xxx_get_temp_limit, .set_temp_limit = mv88e6xxx_set_temp_limit, .get_temp_alarm = mv88e6xxx_get_temp_alarm, #endif .get_eeprom_len = mv88e6xxx_get_eeprom_len, .get_eeprom = mv88e6xxx_get_eeprom, .set_eeprom = mv88e6xxx_set_eeprom, .get_regs_len = mv88e6xxx_get_regs_len, .get_regs = mv88e6xxx_get_regs, .set_ageing_time = mv88e6xxx_set_ageing_time, .port_bridge_join = mv88e6xxx_port_bridge_join, .port_bridge_leave = mv88e6xxx_port_bridge_leave, .port_stp_state_set = mv88e6xxx_port_stp_state_set, .port_vlan_filtering = mv88e6xxx_port_vlan_filtering, .port_vlan_prepare = mv88e6xxx_port_vlan_prepare, .port_vlan_add = mv88e6xxx_port_vlan_add, .port_vlan_del = mv88e6xxx_port_vlan_del, .port_vlan_dump = mv88e6xxx_port_vlan_dump, .port_fdb_prepare = mv88e6xxx_port_fdb_prepare, .port_fdb_add = mv88e6xxx_port_fdb_add, .port_fdb_del = mv88e6xxx_port_fdb_del, .port_fdb_dump = mv88e6xxx_port_fdb_dump, }; static int mv88e6xxx_register_switch(struct mv88e6xxx_chip *chip, struct device_node *np) { struct device *dev = chip->dev; struct dsa_switch *ds; ds = devm_kzalloc(dev, sizeof(*ds), GFP_KERNEL); if (!ds) return -ENOMEM; ds->dev = dev; ds->priv = chip; ds->drv = &mv88e6xxx_switch_driver; dev_set_drvdata(dev, ds); return dsa_register_switch(ds, np); } static void mv88e6xxx_unregister_switch(struct mv88e6xxx_chip *chip) { dsa_unregister_switch(chip->ds); } static int mv88e6xxx_probe(struct mdio_device *mdiodev) { struct device *dev = &mdiodev->dev; struct device_node *np = dev->of_node; const struct mv88e6xxx_info *compat_info; struct mv88e6xxx_chip *chip; u32 eeprom_len; int err; compat_info = of_device_get_match_data(dev); if (!compat_info) return -EINVAL; chip = mv88e6xxx_alloc_chip(dev); if (!chip) return -ENOMEM; chip->info = compat_info; err = mv88e6xxx_smi_init(chip, mdiodev->bus, mdiodev->addr); if (err) return err; err = mv88e6xxx_detect(chip); if (err) return err; chip->reset = devm_gpiod_get_optional(dev, "reset", GPIOD_ASIS); if (IS_ERR(chip->reset)) return PTR_ERR(chip->reset); if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_EEPROM16) && !of_property_read_u32(np, "eeprom-length", &eeprom_len)) chip->eeprom_len = eeprom_len; err = mv88e6xxx_mdio_register(chip, np); if (err) return err; err = mv88e6xxx_register_switch(chip, np); if (err) { mv88e6xxx_mdio_unregister(chip); return err; } return 0; } static void mv88e6xxx_remove(struct mdio_device *mdiodev) { struct dsa_switch *ds = dev_get_drvdata(&mdiodev->dev); struct mv88e6xxx_chip *chip = ds_to_priv(ds); mv88e6xxx_unregister_switch(chip); mv88e6xxx_mdio_unregister(chip); } static const struct of_device_id mv88e6xxx_of_match[] = { { .compatible = "marvell,mv88e6085", .data = &mv88e6xxx_table[MV88E6085], }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, mv88e6xxx_of_match); static struct mdio_driver mv88e6xxx_driver = { .probe = mv88e6xxx_probe, .remove = mv88e6xxx_remove, .mdiodrv.driver = { .name = "mv88e6085", .of_match_table = mv88e6xxx_of_match, }, }; static int __init mv88e6xxx_init(void) { register_switch_driver(&mv88e6xxx_switch_driver); return mdio_driver_register(&mv88e6xxx_driver); } module_init(mv88e6xxx_init); static void __exit mv88e6xxx_cleanup(void) { mdio_driver_unregister(&mv88e6xxx_driver); unregister_switch_driver(&mv88e6xxx_switch_driver); } module_exit(mv88e6xxx_cleanup); MODULE_AUTHOR("Lennert Buytenhek "); MODULE_DESCRIPTION("Driver for Marvell 88E6XXX ethernet switch chips"); MODULE_LICENSE("GPL");