/******************************************************************************* * * Module Name: hwregs - Read/write access functions for the various ACPI * control and status registers. * ******************************************************************************/ /* * Copyright (C) 2000 - 2005, R. Byron Moore * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include #include #include #include #define _COMPONENT ACPI_HARDWARE ACPI_MODULE_NAME("hwregs") /******************************************************************************* * * FUNCTION: acpi_hw_clear_acpi_status * * PARAMETERS: Flags - Lock the hardware or not * * RETURN: none * * DESCRIPTION: Clears all fixed and general purpose status bits * THIS FUNCTION MUST BE CALLED WITH INTERRUPTS DISABLED * ******************************************************************************/ acpi_status acpi_hw_clear_acpi_status(u32 flags) { acpi_status status; ACPI_FUNCTION_TRACE("hw_clear_acpi_status"); ACPI_DEBUG_PRINT((ACPI_DB_IO, "About to write %04X to %04X\n", ACPI_BITMASK_ALL_FIXED_STATUS, (u16) acpi_gbl_FADT->xpm1a_evt_blk.address)); if (flags & ACPI_MTX_LOCK) { status = acpi_ut_acquire_mutex(ACPI_MTX_HARDWARE); if (ACPI_FAILURE(status)) { return_ACPI_STATUS(status); } } status = acpi_hw_register_write(ACPI_MTX_DO_NOT_LOCK, ACPI_REGISTER_PM1_STATUS, ACPI_BITMASK_ALL_FIXED_STATUS); if (ACPI_FAILURE(status)) { goto unlock_and_exit; } /* Clear the fixed events */ if (acpi_gbl_FADT->xpm1b_evt_blk.address) { status = acpi_hw_low_level_write(16, ACPI_BITMASK_ALL_FIXED_STATUS, &acpi_gbl_FADT->xpm1b_evt_blk); if (ACPI_FAILURE(status)) { goto unlock_and_exit; } } /* Clear the GPE Bits in all GPE registers in all GPE blocks */ status = acpi_ev_walk_gpe_list(acpi_hw_clear_gpe_block); unlock_and_exit: if (flags & ACPI_MTX_LOCK) { (void)acpi_ut_release_mutex(ACPI_MTX_HARDWARE); } return_ACPI_STATUS(status); } /******************************************************************************* * * FUNCTION: acpi_get_sleep_type_data * * PARAMETERS: sleep_state - Numeric sleep state * *sleep_type_a - Where SLP_TYPa is returned * *sleep_type_b - Where SLP_TYPb is returned * * RETURN: Status - ACPI status * * DESCRIPTION: Obtain the SLP_TYPa and SLP_TYPb values for the requested sleep * state. * ******************************************************************************/ acpi_status acpi_get_sleep_type_data(u8 sleep_state, u8 * sleep_type_a, u8 * sleep_type_b) { acpi_status status = AE_OK; struct acpi_parameter_info info; char *sleep_state_name; ACPI_FUNCTION_TRACE("acpi_get_sleep_type_data"); /* Validate parameters */ if ((sleep_state > ACPI_S_STATES_MAX) || !sleep_type_a || !sleep_type_b) { return_ACPI_STATUS(AE_BAD_PARAMETER); } /* Evaluate the namespace object containing the values for this state */ info.parameters = NULL; info.return_object = NULL; sleep_state_name = (char *)acpi_gbl_sleep_state_names[sleep_state]; status = acpi_ns_evaluate_by_name(sleep_state_name, &info); if (ACPI_FAILURE(status)) { ACPI_DEBUG_PRINT((ACPI_DB_EXEC, "%s while evaluating sleep_state [%s]\n", acpi_format_exception(status), sleep_state_name)); return_ACPI_STATUS(status); } /* Must have a return object */ if (!info.return_object) { ACPI_REPORT_ERROR(("No Sleep State object returned from [%s]\n", sleep_state_name)); status = AE_NOT_EXIST; } /* It must be of type Package */ else if (ACPI_GET_OBJECT_TYPE(info.return_object) != ACPI_TYPE_PACKAGE) { ACPI_REPORT_ERROR(("Sleep State return object is not a Package\n")); status = AE_AML_OPERAND_TYPE; } /* * The package must have at least two elements. NOTE (March 2005): This * goes against the current ACPI spec which defines this object as a * package with one encoded DWORD element. However, existing practice * by BIOS vendors seems to be to have 2 or more elements, at least * one per sleep type (A/B). */ else if (info.return_object->package.count < 2) { ACPI_REPORT_ERROR(("Sleep State return package does not have at least two elements\n")); status = AE_AML_NO_OPERAND; } /* The first two elements must both be of type Integer */ else if ((ACPI_GET_OBJECT_TYPE(info.return_object->package.elements[0]) != ACPI_TYPE_INTEGER) || (ACPI_GET_OBJECT_TYPE(info.return_object->package.elements[1]) != ACPI_TYPE_INTEGER)) { ACPI_REPORT_ERROR(("Sleep State return package elements are not both Integers (%s, %s)\n", acpi_ut_get_object_type_name(info.return_object->package.elements[0]), acpi_ut_get_object_type_name(info.return_object->package.elements[1]))); status = AE_AML_OPERAND_TYPE; } else { /* Valid _Sx_ package size, type, and value */ *sleep_type_a = (u8) (info.return_object->package.elements[0])->integer.value; *sleep_type_b = (u8) (info.return_object->package.elements[1])->integer.value; } if (ACPI_FAILURE(status)) { ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "%s While evaluating sleep_state [%s], bad Sleep object %p type %s\n", acpi_format_exception(status), sleep_state_name, info.return_object, acpi_ut_get_object_type_name(info. return_object))); } acpi_ut_remove_reference(info.return_object); return_ACPI_STATUS(status); } EXPORT_SYMBOL(acpi_get_sleep_type_data); /******************************************************************************* * * FUNCTION: acpi_hw_get_register_bit_mask * * PARAMETERS: register_id - Index of ACPI Register to access * * RETURN: The bitmask to be used when accessing the register * * DESCRIPTION: Map register_id into a register bitmask. * ******************************************************************************/ struct acpi_bit_register_info *acpi_hw_get_bit_register_info(u32 register_id) { ACPI_FUNCTION_NAME("hw_get_bit_register_info"); if (register_id > ACPI_BITREG_MAX) { ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Invalid bit_register ID: %X\n", register_id)); return (NULL); } return (&acpi_gbl_bit_register_info[register_id]); } /******************************************************************************* * * FUNCTION: acpi_get_register * * PARAMETERS: register_id - ID of ACPI bit_register to access * return_value - Value that was read from the register * Flags - Lock the hardware or not * * RETURN: Status and the value read from specified Register. Value * returned is normalized to bit0 (is shifted all the way right) * * DESCRIPTION: ACPI bit_register read function. * ******************************************************************************/ acpi_status acpi_get_register(u32 register_id, u32 * return_value, u32 flags) { u32 register_value = 0; struct acpi_bit_register_info *bit_reg_info; acpi_status status; ACPI_FUNCTION_TRACE("acpi_get_register"); /* Get the info structure corresponding to the requested ACPI Register */ bit_reg_info = acpi_hw_get_bit_register_info(register_id); if (!bit_reg_info) { return_ACPI_STATUS(AE_BAD_PARAMETER); } if (flags & ACPI_MTX_LOCK) { status = acpi_ut_acquire_mutex(ACPI_MTX_HARDWARE); if (ACPI_FAILURE(status)) { return_ACPI_STATUS(status); } } /* Read from the register */ status = acpi_hw_register_read(ACPI_MTX_DO_NOT_LOCK, bit_reg_info->parent_register, ®ister_value); if (flags & ACPI_MTX_LOCK) { (void)acpi_ut_release_mutex(ACPI_MTX_HARDWARE); } if (ACPI_SUCCESS(status)) { /* Normalize the value that was read */ register_value = ((register_value & bit_reg_info->access_bit_mask) >> bit_reg_info->bit_position); *return_value = register_value; ACPI_DEBUG_PRINT((ACPI_DB_IO, "Read value %8.8X register %X\n", register_value, bit_reg_info->parent_register)); } return_ACPI_STATUS(status); } EXPORT_SYMBOL(acpi_get_register); /******************************************************************************* * * FUNCTION: acpi_set_register * * PARAMETERS: register_id - ID of ACPI bit_register to access * Value - (only used on write) value to write to the * Register, NOT pre-normalized to the bit pos * Flags - Lock the hardware or not * * RETURN: Status * * DESCRIPTION: ACPI Bit Register write function. * ******************************************************************************/ acpi_status acpi_set_register(u32 register_id, u32 value, u32 flags) { u32 register_value = 0; struct acpi_bit_register_info *bit_reg_info; acpi_status status; ACPI_FUNCTION_TRACE_U32("acpi_set_register", register_id); /* Get the info structure corresponding to the requested ACPI Register */ bit_reg_info = acpi_hw_get_bit_register_info(register_id); if (!bit_reg_info) { ACPI_REPORT_ERROR(("Bad ACPI HW register_id: %X\n", register_id)); return_ACPI_STATUS(AE_BAD_PARAMETER); } if (flags & ACPI_MTX_LOCK) { status = acpi_ut_acquire_mutex(ACPI_MTX_HARDWARE); if (ACPI_FAILURE(status)) { return_ACPI_STATUS(status); } } /* Always do a register read first so we can insert the new bits */ status = acpi_hw_register_read(ACPI_MTX_DO_NOT_LOCK, bit_reg_info->parent_register, ®ister_value); if (ACPI_FAILURE(status)) { goto unlock_and_exit; } /* * Decode the Register ID * Register ID = [Register block ID] | [bit ID] * * Check bit ID to fine locate Register offset. * Check Mask to determine Register offset, and then read-write. */ switch (bit_reg_info->parent_register) { case ACPI_REGISTER_PM1_STATUS: /* * Status Registers are different from the rest. Clear by * writing 1, and writing 0 has no effect. So, the only relevant * information is the single bit we're interested in, all others should * be written as 0 so they will be left unchanged. */ value = ACPI_REGISTER_PREPARE_BITS(value, bit_reg_info->bit_position, bit_reg_info-> access_bit_mask); if (value) { status = acpi_hw_register_write(ACPI_MTX_DO_NOT_LOCK, ACPI_REGISTER_PM1_STATUS, (u16) value); register_value = 0; } break; case ACPI_REGISTER_PM1_ENABLE: ACPI_REGISTER_INSERT_VALUE(register_value, bit_reg_info->bit_position, bit_reg_info->access_bit_mask, value); status = acpi_hw_register_write(ACPI_MTX_DO_NOT_LOCK, ACPI_REGISTER_PM1_ENABLE, (u16) register_value); break; case ACPI_REGISTER_PM1_CONTROL: /* * Write the PM1 Control register. * Note that at this level, the fact that there are actually TWO * registers (A and B - and B may not exist) is abstracted. */ ACPI_DEBUG_PRINT((ACPI_DB_IO, "PM1 control: Read %X\n", register_value)); ACPI_REGISTER_INSERT_VALUE(register_value, bit_reg_info->bit_position, bit_reg_info->access_bit_mask, value); status = acpi_hw_register_write(ACPI_MTX_DO_NOT_LOCK, ACPI_REGISTER_PM1_CONTROL, (u16) register_value); break; case ACPI_REGISTER_PM2_CONTROL: status = acpi_hw_register_read(ACPI_MTX_DO_NOT_LOCK, ACPI_REGISTER_PM2_CONTROL, ®ister_value); if (ACPI_FAILURE(status)) { goto unlock_and_exit; } ACPI_DEBUG_PRINT((ACPI_DB_IO, "PM2 control: Read %X from %8.8X%8.8X\n", register_value, ACPI_FORMAT_UINT64(acpi_gbl_FADT-> xpm2_cnt_blk.address))); ACPI_REGISTER_INSERT_VALUE(register_value, bit_reg_info->bit_position, bit_reg_info->access_bit_mask, value); ACPI_DEBUG_PRINT((ACPI_DB_IO, "About to write %4.4X to %8.8X%8.8X\n", register_value, ACPI_FORMAT_UINT64(acpi_gbl_FADT-> xpm2_cnt_blk.address))); status = acpi_hw_register_write(ACPI_MTX_DO_NOT_LOCK, ACPI_REGISTER_PM2_CONTROL, (u8) (register_value)); break; default: break; } unlock_and_exit: if (flags & ACPI_MTX_LOCK) { (void)acpi_ut_release_mutex(ACPI_MTX_HARDWARE); } /* Normalize the value that was read */ ACPI_DEBUG_EXEC(register_value = ((register_value & bit_reg_info->access_bit_mask) >> bit_reg_info->bit_position)); ACPI_DEBUG_PRINT((ACPI_DB_IO, "Set bits: %8.8X actual %8.8X register %X\n", value, register_value, bit_reg_info->parent_register)); return_ACPI_STATUS(status); } EXPORT_SYMBOL(acpi_set_register); /****************************************************************************** * * FUNCTION: acpi_hw_register_read * * PARAMETERS: use_lock - Mutex hw access * register_id - register_iD + Offset * return_value - Where the register value is returned * * RETURN: Status and the value read. * * DESCRIPTION: Acpi register read function. Registers are read at the * given offset. * ******************************************************************************/ acpi_status acpi_hw_register_read(u8 use_lock, u32 register_id, u32 * return_value) { u32 value1 = 0; u32 value2 = 0; acpi_status status; ACPI_FUNCTION_TRACE("hw_register_read"); if (ACPI_MTX_LOCK == use_lock) { status = acpi_ut_acquire_mutex(ACPI_MTX_HARDWARE); if (ACPI_FAILURE(status)) { return_ACPI_STATUS(status); } } switch (register_id) { case ACPI_REGISTER_PM1_STATUS: /* 16-bit access */ status = acpi_hw_low_level_read(16, &value1, &acpi_gbl_FADT->xpm1a_evt_blk); if (ACPI_FAILURE(status)) { goto unlock_and_exit; } /* PM1B is optional */ status = acpi_hw_low_level_read(16, &value2, &acpi_gbl_FADT->xpm1b_evt_blk); value1 |= value2; break; case ACPI_REGISTER_PM1_ENABLE: /* 16-bit access */ status = acpi_hw_low_level_read(16, &value1, &acpi_gbl_xpm1a_enable); if (ACPI_FAILURE(status)) { goto unlock_and_exit; } /* PM1B is optional */ status = acpi_hw_low_level_read(16, &value2, &acpi_gbl_xpm1b_enable); value1 |= value2; break; case ACPI_REGISTER_PM1_CONTROL: /* 16-bit access */ status = acpi_hw_low_level_read(16, &value1, &acpi_gbl_FADT->xpm1a_cnt_blk); if (ACPI_FAILURE(status)) { goto unlock_and_exit; } status = acpi_hw_low_level_read(16, &value2, &acpi_gbl_FADT->xpm1b_cnt_blk); value1 |= value2; break; case ACPI_REGISTER_PM2_CONTROL: /* 8-bit access */ status = acpi_hw_low_level_read(8, &value1, &acpi_gbl_FADT->xpm2_cnt_blk); break; case ACPI_REGISTER_PM_TIMER: /* 32-bit access */ status = acpi_hw_low_level_read(32, &value1, &acpi_gbl_FADT->xpm_tmr_blk); break; case ACPI_REGISTER_SMI_COMMAND_BLOCK: /* 8-bit access */ status = acpi_os_read_port(acpi_gbl_FADT->smi_cmd, &value1, 8); break; default: ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Unknown Register ID: %X\n", register_id)); status = AE_BAD_PARAMETER; break; } unlock_and_exit: if (ACPI_MTX_LOCK == use_lock) { (void)acpi_ut_release_mutex(ACPI_MTX_HARDWARE); } if (ACPI_SUCCESS(status)) { *return_value = value1; } return_ACPI_STATUS(status); } /****************************************************************************** * * FUNCTION: acpi_hw_register_write * * PARAMETERS: use_lock - Mutex hw access * register_id - register_iD + Offset * Value - The value to write * * RETURN: Status * * DESCRIPTION: Acpi register Write function. Registers are written at the * given offset. * ******************************************************************************/ acpi_status acpi_hw_register_write(u8 use_lock, u32 register_id, u32 value) { acpi_status status; ACPI_FUNCTION_TRACE("hw_register_write"); if (ACPI_MTX_LOCK == use_lock) { status = acpi_ut_acquire_mutex(ACPI_MTX_HARDWARE); if (ACPI_FAILURE(status)) { return_ACPI_STATUS(status); } } switch (register_id) { case ACPI_REGISTER_PM1_STATUS: /* 16-bit access */ status = acpi_hw_low_level_write(16, value, &acpi_gbl_FADT->xpm1a_evt_blk); if (ACPI_FAILURE(status)) { goto unlock_and_exit; } /* PM1B is optional */ status = acpi_hw_low_level_write(16, value, &acpi_gbl_FADT->xpm1b_evt_blk); break; case ACPI_REGISTER_PM1_ENABLE: /* 16-bit access */ status = acpi_hw_low_level_write(16, value, &acpi_gbl_xpm1a_enable); if (ACPI_FAILURE(status)) { goto unlock_and_exit; } /* PM1B is optional */ status = acpi_hw_low_level_write(16, value, &acpi_gbl_xpm1b_enable); break; case ACPI_REGISTER_PM1_CONTROL: /* 16-bit access */ status = acpi_hw_low_level_write(16, value, &acpi_gbl_FADT->xpm1a_cnt_blk); if (ACPI_FAILURE(status)) { goto unlock_and_exit; } status = acpi_hw_low_level_write(16, value, &acpi_gbl_FADT->xpm1b_cnt_blk); break; case ACPI_REGISTER_PM1A_CONTROL: /* 16-bit access */ status = acpi_hw_low_level_write(16, value, &acpi_gbl_FADT->xpm1a_cnt_blk); break; case ACPI_REGISTER_PM1B_CONTROL: /* 16-bit access */ status = acpi_hw_low_level_write(16, value, &acpi_gbl_FADT->xpm1b_cnt_blk); break; case ACPI_REGISTER_PM2_CONTROL: /* 8-bit access */ status = acpi_hw_low_level_write(8, value, &acpi_gbl_FADT->xpm2_cnt_blk); break; case ACPI_REGISTER_PM_TIMER: /* 32-bit access */ status = acpi_hw_low_level_write(32, value, &acpi_gbl_FADT->xpm_tmr_blk); break; case ACPI_REGISTER_SMI_COMMAND_BLOCK: /* 8-bit access */ /* SMI_CMD is currently always in IO space */ status = acpi_os_write_port(acpi_gbl_FADT->smi_cmd, value, 8); break; default: status = AE_BAD_PARAMETER; break; } unlock_and_exit: if (ACPI_MTX_LOCK == use_lock) { (void)acpi_ut_release_mutex(ACPI_MTX_HARDWARE); } return_ACPI_STATUS(status); } /****************************************************************************** * * FUNCTION: acpi_hw_low_level_read * * PARAMETERS: Width - 8, 16, or 32 * Value - Where the value is returned * Reg - GAS register structure * * RETURN: Status * * DESCRIPTION: Read from either memory or IO space. * ******************************************************************************/ acpi_status acpi_hw_low_level_read(u32 width, u32 * value, struct acpi_generic_address *reg) { u64 address; acpi_status status; ACPI_FUNCTION_NAME("hw_low_level_read"); /* * Must have a valid pointer to a GAS structure, and * a non-zero address within. However, don't return an error * because the PM1A/B code must not fail if B isn't present. */ if (!reg) { return (AE_OK); } /* Get a local copy of the address. Handles possible alignment issues */ ACPI_MOVE_64_TO_64(&address, ®->address); if (!address) { return (AE_OK); } *value = 0; /* * Two address spaces supported: Memory or IO. * PCI_Config is not supported here because the GAS struct is insufficient */ switch (reg->address_space_id) { case ACPI_ADR_SPACE_SYSTEM_MEMORY: status = acpi_os_read_memory((acpi_physical_address) address, value, width); break; case ACPI_ADR_SPACE_SYSTEM_IO: status = acpi_os_read_port((acpi_io_address) address, value, width); break; default: ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Unsupported address space: %X\n", reg->address_space_id)); return (AE_BAD_PARAMETER); } ACPI_DEBUG_PRINT((ACPI_DB_IO, "Read: %8.8X width %2d from %8.8X%8.8X (%s)\n", *value, width, ACPI_FORMAT_UINT64(address), acpi_ut_get_region_name(reg->address_space_id))); return (status); } /****************************************************************************** * * FUNCTION: acpi_hw_low_level_write * * PARAMETERS: Width - 8, 16, or 32 * Value - To be written * Reg - GAS register structure * * RETURN: Status * * DESCRIPTION: Write to either memory or IO space. * ******************************************************************************/ acpi_status acpi_hw_low_level_write(u32 width, u32 value, struct acpi_generic_address * reg) { u64 address; acpi_status status; ACPI_FUNCTION_NAME("hw_low_level_write"); /* * Must have a valid pointer to a GAS structure, and * a non-zero address within. However, don't return an error * because the PM1A/B code must not fail if B isn't present. */ if (!reg) { return (AE_OK); } /* Get a local copy of the address. Handles possible alignment issues */ ACPI_MOVE_64_TO_64(&address, ®->address); if (!address) { return (AE_OK); } /* * Two address spaces supported: Memory or IO. * PCI_Config is not supported here because the GAS struct is insufficient */ switch (reg->address_space_id) { case ACPI_ADR_SPACE_SYSTEM_MEMORY: status = acpi_os_write_memory((acpi_physical_address) address, value, width); break; case ACPI_ADR_SPACE_SYSTEM_IO: status = acpi_os_write_port((acpi_io_address) address, value, width); break; default: ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Unsupported address space: %X\n", reg->address_space_id)); return (AE_BAD_PARAMETER); } ACPI_DEBUG_PRINT((ACPI_DB_IO, "Wrote: %8.8X width %2d to %8.8X%8.8X (%s)\n", value, width, ACPI_FORMAT_UINT64(address), acpi_ut_get_region_name(reg->address_space_id))); return (status); }