/* * acpi-cpufreq.c - ACPI Processor P-States Driver ($Revision: 1.3 $) * * Copyright (C) 2001, 2002 Andy Grover * Copyright (C) 2001, 2002 Paul Diefenbaugh * Copyright (C) 2002 - 2004 Dominik Brodowski * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ #include #include #include #include #include #include #include #include #include /* current */ #include #include #include #include #include #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "acpi-cpufreq", msg) MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski"); MODULE_DESCRIPTION("ACPI Processor P-States Driver"); MODULE_LICENSE("GPL"); struct cpufreq_acpi_io { struct acpi_processor_performance acpi_data; struct cpufreq_frequency_table *freq_table; unsigned int resume; }; static struct cpufreq_acpi_io *acpi_io_data[NR_CPUS]; static struct cpufreq_driver acpi_cpufreq_driver; static unsigned int acpi_pstate_strict; static int acpi_processor_write_port( u16 port, u8 bit_width, u32 value) { if (bit_width <= 8) { outb(value, port); } else if (bit_width <= 16) { outw(value, port); } else if (bit_width <= 32) { outl(value, port); } else { return -ENODEV; } return 0; } static int acpi_processor_read_port( u16 port, u8 bit_width, u32 *ret) { *ret = 0; if (bit_width <= 8) { *ret = inb(port); } else if (bit_width <= 16) { *ret = inw(port); } else if (bit_width <= 32) { *ret = inl(port); } else { return -ENODEV; } return 0; } static int acpi_processor_set_performance ( struct cpufreq_acpi_io *data, unsigned int cpu, int state) { u16 port = 0; u8 bit_width = 0; int ret = 0; u32 value = 0; int i = 0; struct cpufreq_freqs cpufreq_freqs; cpumask_t saved_mask; int retval; dprintk("acpi_processor_set_performance\n"); /* * TBD: Use something other than set_cpus_allowed. * As set_cpus_allowed is a bit racy, * with any other set_cpus_allowed for this process. */ saved_mask = current->cpus_allowed; set_cpus_allowed(current, cpumask_of_cpu(cpu)); if (smp_processor_id() != cpu) { return (-EAGAIN); } if (state == data->acpi_data.state) { if (unlikely(data->resume)) { dprintk("Called after resume, resetting to P%d\n", state); data->resume = 0; } else { dprintk("Already at target state (P%d)\n", state); retval = 0; goto migrate_end; } } dprintk("Transitioning from P%d to P%d\n", data->acpi_data.state, state); /* cpufreq frequency struct */ cpufreq_freqs.cpu = cpu; cpufreq_freqs.old = data->freq_table[data->acpi_data.state].frequency; cpufreq_freqs.new = data->freq_table[state].frequency; /* notify cpufreq */ cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_PRECHANGE); /* * First we write the target state's 'control' value to the * control_register. */ port = data->acpi_data.control_register.address; bit_width = data->acpi_data.control_register.bit_width; value = (u32) data->acpi_data.states[state].control; dprintk("Writing 0x%08x to port 0x%04x\n", value, port); ret = acpi_processor_write_port(port, bit_width, value); if (ret) { dprintk("Invalid port width 0x%04x\n", bit_width); retval = ret; goto migrate_end; } /* * Assume the write went through when acpi_pstate_strict is not used. * As read status_register is an expensive operation and there * are no specific error cases where an IO port write will fail. */ if (acpi_pstate_strict) { /* Then we read the 'status_register' and compare the value * with the target state's 'status' to make sure the * transition was successful. * Note that we'll poll for up to 1ms (100 cycles of 10us) * before giving up. */ port = data->acpi_data.status_register.address; bit_width = data->acpi_data.status_register.bit_width; dprintk("Looking for 0x%08x from port 0x%04x\n", (u32) data->acpi_data.states[state].status, port); for (i=0; i<100; i++) { ret = acpi_processor_read_port(port, bit_width, &value); if (ret) { dprintk("Invalid port width 0x%04x\n", bit_width); retval = ret; goto migrate_end; } if (value == (u32) data->acpi_data.states[state].status) break; udelay(10); } } else { i = 0; value = (u32) data->acpi_data.states[state].status; } /* notify cpufreq */ cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_POSTCHANGE); if (unlikely(value != (u32) data->acpi_data.states[state].status)) { unsigned int tmp = cpufreq_freqs.new; cpufreq_freqs.new = cpufreq_freqs.old; cpufreq_freqs.old = tmp; cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_PRECHANGE); cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_POSTCHANGE); printk(KERN_WARNING "acpi-cpufreq: Transition failed\n"); retval = -ENODEV; goto migrate_end; } dprintk("Transition successful after %d microseconds\n", i * 10); data->acpi_data.state = state; retval = 0; migrate_end: set_cpus_allowed(current, saved_mask); return (retval); } static int acpi_cpufreq_target ( struct cpufreq_policy *policy, unsigned int target_freq, unsigned int relation) { struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu]; unsigned int next_state = 0; unsigned int result = 0; dprintk("acpi_cpufreq_setpolicy\n"); result = cpufreq_frequency_table_target(policy, data->freq_table, target_freq, relation, &next_state); if (result) return (result); result = acpi_processor_set_performance (data, policy->cpu, next_state); return (result); } static int acpi_cpufreq_verify ( struct cpufreq_policy *policy) { unsigned int result = 0; struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu]; dprintk("acpi_cpufreq_verify\n"); result = cpufreq_frequency_table_verify(policy, data->freq_table); return (result); } static unsigned long acpi_cpufreq_guess_freq ( struct cpufreq_acpi_io *data, unsigned int cpu) { if (cpu_khz) { /* search the closest match to cpu_khz */ unsigned int i; unsigned long freq; unsigned long freqn = data->acpi_data.states[0].core_frequency * 1000; for (i=0; i < (data->acpi_data.state_count - 1); i++) { freq = freqn; freqn = data->acpi_data.states[i+1].core_frequency * 1000; if ((2 * cpu_khz) > (freqn + freq)) { data->acpi_data.state = i; return (freq); } } data->acpi_data.state = data->acpi_data.state_count - 1; return (freqn); } else /* assume CPU is at P0... */ data->acpi_data.state = 0; return data->acpi_data.states[0].core_frequency * 1000; } /* * acpi_processor_cpu_init_pdc_est - let BIOS know about the SMP capabilities * of this driver * @perf: processor-specific acpi_io_data struct * @cpu: CPU being initialized * * To avoid issues with legacy OSes, some BIOSes require to be informed of * the SMP capabilities of OS P-state driver. Here we set the bits in _PDC * accordingly, for Enhanced Speedstep. Actual call to _PDC is done in * driver/acpi/processor.c */ static void acpi_processor_cpu_init_pdc_est( struct acpi_processor_performance *perf, unsigned int cpu, struct acpi_object_list *obj_list ) { union acpi_object *obj; u32 *buf; struct cpuinfo_x86 *c = cpu_data + cpu; dprintk("acpi_processor_cpu_init_pdc_est\n"); if (!cpu_has(c, X86_FEATURE_EST)) return; /* Initialize pdc. It will be used later. */ if (!obj_list) return; if (!(obj_list->count && obj_list->pointer)) return; obj = obj_list->pointer; if ((obj->buffer.length == 12) && obj->buffer.pointer) { buf = (u32 *)obj->buffer.pointer; buf[0] = ACPI_PDC_REVISION_ID; buf[1] = 1; buf[2] = ACPI_PDC_EST_CAPABILITY_SMP; perf->pdc = obj_list; } return; } /* CPU specific PDC initialization */ static void acpi_processor_cpu_init_pdc( struct acpi_processor_performance *perf, unsigned int cpu, struct acpi_object_list *obj_list ) { struct cpuinfo_x86 *c = cpu_data + cpu; dprintk("acpi_processor_cpu_init_pdc\n"); perf->pdc = NULL; if (cpu_has(c, X86_FEATURE_EST)) acpi_processor_cpu_init_pdc_est(perf, cpu, obj_list); return; } static int acpi_cpufreq_cpu_init ( struct cpufreq_policy *policy) { unsigned int i; unsigned int cpu = policy->cpu; struct cpufreq_acpi_io *data; unsigned int result = 0; struct cpuinfo_x86 *c = &cpu_data[policy->cpu]; union acpi_object arg0 = {ACPI_TYPE_BUFFER}; u32 arg0_buf[3]; struct acpi_object_list arg_list = {1, &arg0}; dprintk("acpi_cpufreq_cpu_init\n"); /* setup arg_list for _PDC settings */ arg0.buffer.length = 12; arg0.buffer.pointer = (u8 *) arg0_buf; data = kzalloc(sizeof(struct cpufreq_acpi_io), GFP_KERNEL); if (!data) return (-ENOMEM); acpi_io_data[cpu] = data; acpi_processor_cpu_init_pdc(&data->acpi_data, cpu, &arg_list); result = acpi_processor_register_performance(&data->acpi_data, cpu); data->acpi_data.pdc = NULL; if (result) goto err_free; if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) { acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS; } /* capability check */ if (data->acpi_data.state_count <= 1) { dprintk("No P-States\n"); result = -ENODEV; goto err_unreg; } if ((data->acpi_data.control_register.space_id != ACPI_ADR_SPACE_SYSTEM_IO) || (data->acpi_data.status_register.space_id != ACPI_ADR_SPACE_SYSTEM_IO)) { dprintk("Unsupported address space [%d, %d]\n", (u32) (data->acpi_data.control_register.space_id), (u32) (data->acpi_data.status_register.space_id)); result = -ENODEV; goto err_unreg; } /* alloc freq_table */ data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) * (data->acpi_data.state_count + 1), GFP_KERNEL); if (!data->freq_table) { result = -ENOMEM; goto err_unreg; } /* detect transition latency */ policy->cpuinfo.transition_latency = 0; for (i=0; iacpi_data.state_count; i++) { if ((data->acpi_data.states[i].transition_latency * 1000) > policy->cpuinfo.transition_latency) policy->cpuinfo.transition_latency = data->acpi_data.states[i].transition_latency * 1000; } policy->governor = CPUFREQ_DEFAULT_GOVERNOR; /* The current speed is unknown and not detectable by ACPI... */ policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu); /* table init */ for (i=0; i<=data->acpi_data.state_count; i++) { data->freq_table[i].index = i; if (iacpi_data.state_count) data->freq_table[i].frequency = data->acpi_data.states[i].core_frequency * 1000; else data->freq_table[i].frequency = CPUFREQ_TABLE_END; } result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table); if (result) { goto err_freqfree; } /* notify BIOS that we exist */ acpi_processor_notify_smm(THIS_MODULE); printk(KERN_INFO "acpi-cpufreq: CPU%u - ACPI performance management activated.\n", cpu); for (i = 0; i < data->acpi_data.state_count; i++) dprintk(" %cP%d: %d MHz, %d mW, %d uS\n", (i == data->acpi_data.state?'*':' '), i, (u32) data->acpi_data.states[i].core_frequency, (u32) data->acpi_data.states[i].power, (u32) data->acpi_data.states[i].transition_latency); cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu); /* * the first call to ->target() should result in us actually * writing something to the appropriate registers. */ data->resume = 1; return (result); err_freqfree: kfree(data->freq_table); err_unreg: acpi_processor_unregister_performance(&data->acpi_data, cpu); err_free: kfree(data); acpi_io_data[cpu] = NULL; return (result); } static int acpi_cpufreq_cpu_exit ( struct cpufreq_policy *policy) { struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu]; dprintk("acpi_cpufreq_cpu_exit\n"); if (data) { cpufreq_frequency_table_put_attr(policy->cpu); acpi_io_data[policy->cpu] = NULL; acpi_processor_unregister_performance(&data->acpi_data, policy->cpu); kfree(data); } return (0); } static int acpi_cpufreq_resume ( struct cpufreq_policy *policy) { struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu]; dprintk("acpi_cpufreq_resume\n"); data->resume = 1; return (0); } static struct freq_attr* acpi_cpufreq_attr[] = { &cpufreq_freq_attr_scaling_available_freqs, NULL, }; static struct cpufreq_driver acpi_cpufreq_driver = { .verify = acpi_cpufreq_verify, .target = acpi_cpufreq_target, .init = acpi_cpufreq_cpu_init, .exit = acpi_cpufreq_cpu_exit, .resume = acpi_cpufreq_resume, .name = "acpi-cpufreq", .owner = THIS_MODULE, .attr = acpi_cpufreq_attr, }; static int __init acpi_cpufreq_init (void) { int result = 0; dprintk("acpi_cpufreq_init\n"); result = cpufreq_register_driver(&acpi_cpufreq_driver); return (result); } static void __exit acpi_cpufreq_exit (void) { dprintk("acpi_cpufreq_exit\n"); cpufreq_unregister_driver(&acpi_cpufreq_driver); return; } module_param(acpi_pstate_strict, uint, 0644); MODULE_PARM_DESC(acpi_pstate_strict, "value 0 or non-zero. non-zero -> strict ACPI checks are performed during frequency changes."); late_initcall(acpi_cpufreq_init); module_exit(acpi_cpufreq_exit); MODULE_ALIAS("acpi");