From 0519cabf80969429fc25e0a57bd5be51e4427087 Mon Sep 17 00:00:00 2001 From: Con Kolivas Date: Fri, 4 Oct 2013 22:06:13 -0400 Subject: [PATCH 2/7] preempt-desktop-tune Enable preempt by default and make people steer away from voluntary. -ck --- Documentation/scheduler/sched-BFS.txt | 347 -- Documentation/sysctl/kernel.txt | 26 - arch/powerpc/platforms/cell/spufs/sched.c | 5 + drivers/cpufreq/cpufreq.c | 7 - drivers/cpufreq/cpufreq_conservative.c | 4 +- drivers/cpufreq/cpufreq_ondemand.c | 4 +- fs/proc/base.c | 2 +- include/linux/init_task.h | 64 +- include/linux/ioprio.h | 2 - include/linux/jiffies.h | 2 +- include/linux/sched.h | 88 +- include/linux/sched/rt.h | 13 - include/uapi/linux/sched.h | 9 +- init/Kconfig | 54 +- init/main.c | 3 +- kernel/Kconfig.preempt | 7 +- kernel/delayacct.c | 2 +- kernel/exit.c | 2 +- kernel/posix-cpu-timers.c | 14 +- kernel/sched/Makefile | 8 +- kernel/sched/bfs.c | 7441 ----------------------------- kernel/sched/bfs_sched.h | 116 - kernel/sched/stats.c | 4 - kernel/stop_machine.c | 3 +- kernel/sysctl.c | 31 +- kernel/time/Kconfig | 2 +- lib/Kconfig.debug | 2 +- 27 files changed, 75 insertions(+), 8187 deletions(-) delete mode 100644 Documentation/scheduler/sched-BFS.txt delete mode 100644 kernel/sched/bfs.c delete mode 100644 kernel/sched/bfs_sched.h diff --git a/Documentation/scheduler/sched-BFS.txt b/Documentation/scheduler/sched-BFS.txt deleted file mode 100644 index c10d956..0000000 --- a/Documentation/scheduler/sched-BFS.txt +++ /dev/null @@ -1,347 +0,0 @@ -BFS - The Brain Fuck Scheduler by Con Kolivas. - -Goals. - -The goal of the Brain Fuck Scheduler, referred to as BFS from here on, is to -completely do away with the complex designs of the past for the cpu process -scheduler and instead implement one that is very simple in basic design. -The main focus of BFS is to achieve excellent desktop interactivity and -responsiveness without heuristics and tuning knobs that are difficult to -understand, impossible to model and predict the effect of, and when tuned to -one workload cause massive detriment to another. - - -Design summary. - -BFS is best described as a single runqueue, O(n) lookup, earliest effective -virtual deadline first design, loosely based on EEVDF (earliest eligible virtual -deadline first) and my previous Staircase Deadline scheduler. Each component -shall be described in order to understand the significance of, and reasoning for -it. The codebase when the first stable version was released was approximately -9000 lines less code than the existing mainline linux kernel scheduler (in -2.6.31). This does not even take into account the removal of documentation and -the cgroups code that is not used. - -Design reasoning. - -The single runqueue refers to the queued but not running processes for the -entire system, regardless of the number of CPUs. The reason for going back to -a single runqueue design is that once multiple runqueues are introduced, -per-CPU or otherwise, there will be complex interactions as each runqueue will -be responsible for the scheduling latency and fairness of the tasks only on its -own runqueue, and to achieve fairness and low latency across multiple CPUs, any -advantage in throughput of having CPU local tasks causes other disadvantages. -This is due to requiring a very complex balancing system to at best achieve some -semblance of fairness across CPUs and can only maintain relatively low latency -for tasks bound to the same CPUs, not across them. To increase said fairness -and latency across CPUs, the advantage of local runqueue locking, which makes -for better scalability, is lost due to having to grab multiple locks. - -A significant feature of BFS is that all accounting is done purely based on CPU -used and nowhere is sleep time used in any way to determine entitlement or -interactivity. Interactivity "estimators" that use some kind of sleep/run -algorithm are doomed to fail to detect all interactive tasks, and to falsely tag -tasks that aren't interactive as being so. The reason for this is that it is -close to impossible to determine that when a task is sleeping, whether it is -doing it voluntarily, as in a userspace application waiting for input in the -form of a mouse click or otherwise, or involuntarily, because it is waiting for -another thread, process, I/O, kernel activity or whatever. Thus, such an -estimator will introduce corner cases, and more heuristics will be required to -cope with those corner cases, introducing more corner cases and failed -interactivity detection and so on. Interactivity in BFS is built into the design -by virtue of the fact that tasks that are waking up have not used up their quota -of CPU time, and have earlier effective deadlines, thereby making it very likely -they will preempt any CPU bound task of equivalent nice level. See below for -more information on the virtual deadline mechanism. Even if they do not preempt -a running task, because the rr interval is guaranteed to have a bound upper -limit on how long a task will wait for, it will be scheduled within a timeframe -that will not cause visible interface jitter. - - -Design details. - -Task insertion. - -BFS inserts tasks into each relevant queue as an O(1) insertion into a double -linked list. On insertion, *every* running queue is checked to see if the newly -queued task can run on any idle queue, or preempt the lowest running task on the -system. This is how the cross-CPU scheduling of BFS achieves significantly lower -latency per extra CPU the system has. In this case the lookup is, in the worst -case scenario, O(n) where n is the number of CPUs on the system. - -Data protection. - -BFS has one single lock protecting the process local data of every task in the -global queue. Thus every insertion, removal and modification of task data in the -global runqueue needs to grab the global lock. However, once a task is taken by -a CPU, the CPU has its own local data copy of the running process' accounting -information which only that CPU accesses and modifies (such as during a -timer tick) thus allowing the accounting data to be updated lockless. Once a -CPU has taken a task to run, it removes it from the global queue. Thus the -global queue only ever has, at most, - - (number of tasks requesting cpu time) - (number of logical CPUs) + 1 - -tasks in the global queue. This value is relevant for the time taken to look up -tasks during scheduling. This will increase if many tasks with CPU affinity set -in their policy to limit which CPUs they're allowed to run on if they outnumber -the number of CPUs. The +1 is because when rescheduling a task, the CPU's -currently running task is put back on the queue. Lookup will be described after -the virtual deadline mechanism is explained. - -Virtual deadline. - -The key to achieving low latency, scheduling fairness, and "nice level" -distribution in BFS is entirely in the virtual deadline mechanism. The one -tunable in BFS is the rr_interval, or "round robin interval". This is the -maximum time two SCHED_OTHER (or SCHED_NORMAL, the common scheduling policy) -tasks of the same nice level will be running for, or looking at it the other -way around, the longest duration two tasks of the same nice level will be -delayed for. When a task requests cpu time, it is given a quota (time_slice) -equal to the rr_interval and a virtual deadline. The virtual deadline is -offset from the current time in jiffies by this equation: - - jiffies + (prio_ratio * rr_interval) - -The prio_ratio is determined as a ratio compared to the baseline of nice -20 -and increases by 10% per nice level. The deadline is a virtual one only in that -no guarantee is placed that a task will actually be scheduled by this time, but -it is used to compare which task should go next. There are three components to -how a task is next chosen. First is time_slice expiration. If a task runs out -of its time_slice, it is descheduled, the time_slice is refilled, and the -deadline reset to that formula above. Second is sleep, where a task no longer -is requesting CPU for whatever reason. The time_slice and deadline are _not_ -adjusted in this case and are just carried over for when the task is next -scheduled. Third is preemption, and that is when a newly waking task is deemed -higher priority than a currently running task on any cpu by virtue of the fact -that it has an earlier virtual deadline than the currently running task. The -earlier deadline is the key to which task is next chosen for the first and -second cases. Once a task is descheduled, it is put back on the queue, and an -O(n) lookup of all queued-but-not-running tasks is done to determine which has -the earliest deadline and that task is chosen to receive CPU next. - -The CPU proportion of different nice tasks works out to be approximately the - - (prio_ratio difference)^2 - -The reason it is squared is that a task's deadline does not change while it is -running unless it runs out of time_slice. Thus, even if the time actually -passes the deadline of another task that is queued, it will not get CPU time -unless the current running task deschedules, and the time "base" (jiffies) is -constantly moving. - -Task lookup. - -BFS has 103 priority queues. 100 of these are dedicated to the static priority -of realtime tasks, and the remaining 3 are, in order of best to worst priority, -SCHED_ISO (isochronous), SCHED_NORMAL, and SCHED_IDLEPRIO (idle priority -scheduling). When a task of these priorities is queued, a bitmap of running -priorities is set showing which of these priorities has tasks waiting for CPU -time. When a CPU is made to reschedule, the lookup for the next task to get -CPU time is performed in the following way: - -First the bitmap is checked to see what static priority tasks are queued. If -any realtime priorities are found, the corresponding queue is checked and the -first task listed there is taken (provided CPU affinity is suitable) and lookup -is complete. If the priority corresponds to a SCHED_ISO task, they are also -taken in FIFO order (as they behave like SCHED_RR). If the priority corresponds -to either SCHED_NORMAL or SCHED_IDLEPRIO, then the lookup becomes O(n). At this -stage, every task in the runlist that corresponds to that priority is checked -to see which has the earliest set deadline, and (provided it has suitable CPU -affinity) it is taken off the runqueue and given the CPU. If a task has an -expired deadline, it is taken and the rest of the lookup aborted (as they are -chosen in FIFO order). - -Thus, the lookup is O(n) in the worst case only, where n is as described -earlier, as tasks may be chosen before the whole task list is looked over. - - -Scalability. - -The major limitations of BFS will be that of scalability, as the separate -runqueue designs will have less lock contention as the number of CPUs rises. -However they do not scale linearly even with separate runqueues as multiple -runqueues will need to be locked concurrently on such designs to be able to -achieve fair CPU balancing, to try and achieve some sort of nice-level fairness -across CPUs, and to achieve low enough latency for tasks on a busy CPU when -other CPUs would be more suited. BFS has the advantage that it requires no -balancing algorithm whatsoever, as balancing occurs by proxy simply because -all CPUs draw off the global runqueue, in priority and deadline order. Despite -the fact that scalability is _not_ the prime concern of BFS, it both shows very -good scalability to smaller numbers of CPUs and is likely a more scalable design -at these numbers of CPUs. - -It also has some very low overhead scalability features built into the design -when it has been deemed their overhead is so marginal that they're worth adding. -The first is the local copy of the running process' data to the CPU it's running -on to allow that data to be updated lockless where possible. Then there is -deference paid to the last CPU a task was running on, by trying that CPU first -when looking for an idle CPU to use the next time it's scheduled. Finally there -is the notion of "sticky" tasks that are flagged when they are involuntarily -descheduled, meaning they still want further CPU time. This sticky flag is -used to bias heavily against those tasks being scheduled on a different CPU -unless that CPU would be otherwise idle. When a cpu frequency governor is used -that scales with CPU load, such as ondemand, sticky tasks are not scheduled -on a different CPU at all, preferring instead to go idle. This means the CPU -they were bound to is more likely to increase its speed while the other CPU -will go idle, thus speeding up total task execution time and likely decreasing -power usage. This is the only scenario where BFS will allow a CPU to go idle -in preference to scheduling a task on the earliest available spare CPU. - -The real cost of migrating a task from one CPU to another is entirely dependant -on the cache footprint of the task, how cache intensive the task is, how long -it's been running on that CPU to take up the bulk of its cache, how big the CPU -cache is, how fast and how layered the CPU cache is, how fast a context switch -is... and so on. In other words, it's close to random in the real world where we -do more than just one sole workload. The only thing we can be sure of is that -it's not free. So BFS uses the principle that an idle CPU is a wasted CPU and -utilising idle CPUs is more important than cache locality, and cache locality -only plays a part after that. - -When choosing an idle CPU for a waking task, the cache locality is determined -according to where the task last ran and then idle CPUs are ranked from best -to worst to choose the most suitable idle CPU based on cache locality, NUMA -node locality and hyperthread sibling business. They are chosen in the -following preference (if idle): - -* Same core, idle or busy cache, idle threads -* Other core, same cache, idle or busy cache, idle threads. -* Same node, other CPU, idle cache, idle threads. -* Same node, other CPU, busy cache, idle threads. -* Same core, busy threads. -* Other core, same cache, busy threads. -* Same node, other CPU, busy threads. -* Other node, other CPU, idle cache, idle threads. -* Other node, other CPU, busy cache, idle threads. -* Other node, other CPU, busy threads. - -This shows the SMT or "hyperthread" awareness in the design as well which will -choose a real idle core first before a logical SMT sibling which already has -tasks on the physical CPU. - -Early benchmarking of BFS suggested scalability dropped off at the 16 CPU mark. -However this benchmarking was performed on an earlier design that was far less -scalable than the current one so it's hard to know how scalable it is in terms -of both CPUs (due to the global runqueue) and heavily loaded machines (due to -O(n) lookup) at this stage. Note that in terms of scalability, the number of -_logical_ CPUs matters, not the number of _physical_ CPUs. Thus, a dual (2x) -quad core (4X) hyperthreaded (2X) machine is effectively a 16X. Newer benchmark -results are very promising indeed, without needing to tweak any knobs, features -or options. Benchmark contributions are most welcome. - - -Features - -As the initial prime target audience for BFS was the average desktop user, it -was designed to not need tweaking, tuning or have features set to obtain benefit -from it. Thus the number of knobs and features has been kept to an absolute -minimum and should not require extra user input for the vast majority of cases. -There are precisely 2 tunables, and 2 extra scheduling policies. The rr_interval -and iso_cpu tunables, and the SCHED_ISO and SCHED_IDLEPRIO policies. In addition -to this, BFS also uses sub-tick accounting. What BFS does _not_ now feature is -support for CGROUPS. The average user should neither need to know what these -are, nor should they need to be using them to have good desktop behaviour. - -rr_interval - -There is only one "scheduler" tunable, the round robin interval. This can be -accessed in - - /proc/sys/kernel/rr_interval - -The value is in milliseconds, and the default value is set to 6ms. Valid values -are from 1 to 1000. Decreasing the value will decrease latencies at the cost of -decreasing throughput, while increasing it will improve throughput, but at the -cost of worsening latencies. The accuracy of the rr interval is limited by HZ -resolution of the kernel configuration. Thus, the worst case latencies are -usually slightly higher than this actual value. BFS uses "dithering" to try and -minimise the effect the Hz limitation has. The default value of 6 is not an -arbitrary one. It is based on the fact that humans can detect jitter at -approximately 7ms, so aiming for much lower latencies is pointless under most -circumstances. It is worth noting this fact when comparing the latency -performance of BFS to other schedulers. Worst case latencies being higher than -7ms are far worse than average latencies not being in the microsecond range. -Experimentation has shown that rr intervals being increased up to 300 can -improve throughput but beyond that, scheduling noise from elsewhere prevents -further demonstrable throughput. - -Isochronous scheduling. - -Isochronous scheduling is a unique scheduling policy designed to provide -near-real-time performance to unprivileged (ie non-root) users without the -ability to starve the machine indefinitely. Isochronous tasks (which means -"same time") are set using, for example, the schedtool application like so: - - schedtool -I -e amarok - -This will start the audio application "amarok" as SCHED_ISO. How SCHED_ISO works -is that it has a priority level between true realtime tasks and SCHED_NORMAL -which would allow them to preempt all normal tasks, in a SCHED_RR fashion (ie, -if multiple SCHED_ISO tasks are running, they purely round robin at rr_interval -rate). However if ISO tasks run for more than a tunable finite amount of time, -they are then demoted back to SCHED_NORMAL scheduling. This finite amount of -time is the percentage of _total CPU_ available across the machine, configurable -as a percentage in the following "resource handling" tunable (as opposed to a -scheduler tunable): - - /proc/sys/kernel/iso_cpu - -and is set to 70% by default. It is calculated over a rolling 5 second average -Because it is the total CPU available, it means that on a multi CPU machine, it -is possible to have an ISO task running as realtime scheduling indefinitely on -just one CPU, as the other CPUs will be available. Setting this to 100 is the -equivalent of giving all users SCHED_RR access and setting it to 0 removes the -ability to run any pseudo-realtime tasks. - -A feature of BFS is that it detects when an application tries to obtain a -realtime policy (SCHED_RR or SCHED_FIFO) and the caller does not have the -appropriate privileges to use those policies. When it detects this, it will -give the task SCHED_ISO policy instead. Thus it is transparent to the user. -Because some applications constantly set their policy as well as their nice -level, there is potential for them to undo the override specified by the user -on the command line of setting the policy to SCHED_ISO. To counter this, once -a task has been set to SCHED_ISO policy, it needs superuser privileges to set -it back to SCHED_NORMAL. This will ensure the task remains ISO and all child -processes and threads will also inherit the ISO policy. - -Idleprio scheduling. - -Idleprio scheduling is a scheduling policy designed to give out CPU to a task -_only_ when the CPU would be otherwise idle. The idea behind this is to allow -ultra low priority tasks to be run in the background that have virtually no -effect on the foreground tasks. This is ideally suited to distributed computing -clients (like setiathome, folding, mprime etc) but can also be used to start -a video encode or so on without any slowdown of other tasks. To avoid this -policy from grabbing shared resources and holding them indefinitely, if it -detects a state where the task is waiting on I/O, the machine is about to -suspend to ram and so on, it will transiently schedule them as SCHED_NORMAL. As -per the Isochronous task management, once a task has been scheduled as IDLEPRIO, -it cannot be put back to SCHED_NORMAL without superuser privileges. Tasks can -be set to start as SCHED_IDLEPRIO with the schedtool command like so: - - schedtool -D -e ./mprime - -Subtick accounting. - -It is surprisingly difficult to get accurate CPU accounting, and in many cases, -the accounting is done by simply determining what is happening at the precise -moment a timer tick fires off. This becomes increasingly inaccurate as the -timer tick frequency (HZ) is lowered. It is possible to create an application -which uses almost 100% CPU, yet by being descheduled at the right time, records -zero CPU usage. While the main problem with this is that there are possible -security implications, it is also difficult to determine how much CPU a task -really does use. BFS tries to use the sub-tick accounting from the TSC clock, -where possible, to determine real CPU usage. This is not entirely reliable, but -is far more likely to produce accurate CPU usage data than the existing designs -and will not show tasks as consuming no CPU usage when they actually are. Thus, -the amount of CPU reported as being used by BFS will more accurately represent -how much CPU the task itself is using (as is shown for example by the 'time' -application), so the reported values may be quite different to other schedulers. -Values reported as the 'load' are more prone to problems with this design, but -per process values are closer to real usage. When comparing throughput of BFS -to other designs, it is important to compare the actual completed work in terms -of total wall clock time taken and total work done, rather than the reported -"cpu usage". - - -Con Kolivas Tue, 5 Apr 2011 diff --git a/Documentation/sysctl/kernel.txt b/Documentation/sysctl/kernel.txt index 2580413..9d4c1d1 100644 --- a/Documentation/sysctl/kernel.txt +++ b/Documentation/sysctl/kernel.txt @@ -33,7 +33,6 @@ show up in /proc/sys/kernel: - domainname - hostname - hotplug -- iso_cpu - kptr_restrict - kstack_depth_to_print [ X86 only ] - l2cr [ PPC only ] @@ -61,7 +60,6 @@ show up in /proc/sys/kernel: - randomize_va_space - real-root-dev ==> Documentation/initrd.txt - reboot-cmd [ SPARC only ] -- rr_interval - rtsig-max - rtsig-nr - sem @@ -309,16 +307,6 @@ kernel stack. ============================================================== -iso_cpu: (BFS CPU scheduler only). - -This sets the percentage cpu that the unprivileged SCHED_ISO tasks can -run effectively at realtime priority, averaged over a rolling five -seconds over the -whole- system, meaning all cpus. - -Set to 70 (percent) by default. - -============================================================== - l2cr: (PPC only) This flag controls the L2 cache of G3 processor boards. If @@ -577,20 +565,6 @@ rebooting. ??? ============================================================== -rr_interval: (BFS CPU scheduler only) - -This is the smallest duration that any cpu process scheduling unit -will run for. Increasing this value can increase throughput of cpu -bound tasks substantially but at the expense of increased latencies -overall. Conversely decreasing it will decrease average and maximum -latencies but at the expense of throughput. This value is in -milliseconds and the default value chosen depends on the number of -cpus available at scheduler initialisation with a minimum of 6. - -Valid values are from 1-1000. - -============================================================== - rtsig-max & rtsig-nr: The file rtsig-max can be used to tune the maximum number diff --git a/arch/powerpc/platforms/cell/spufs/sched.c b/arch/powerpc/platforms/cell/spufs/sched.c index 6146512..4931838 100644 --- a/arch/powerpc/platforms/cell/spufs/sched.c +++ b/arch/powerpc/platforms/cell/spufs/sched.c @@ -64,6 +64,11 @@ static struct timer_list spusched_timer; static struct timer_list spuloadavg_timer; /* + * Priority of a normal, non-rt, non-niced'd process (aka nice level 0). + */ +#define NORMAL_PRIO 120 + +/* * Frequency of the spu scheduler tick. By default we do one SPU scheduler * tick for every 10 CPU scheduler ticks. */ diff --git a/drivers/cpufreq/cpufreq.c b/drivers/cpufreq/cpufreq.c index 10bf235..04548f7 100644 --- a/drivers/cpufreq/cpufreq.c +++ b/drivers/cpufreq/cpufreq.c @@ -26,7 +26,6 @@ #include #include #include -#include #include #include #include @@ -1687,12 +1686,6 @@ int __cpufreq_driver_target(struct cpufreq_policy *policy, if (cpufreq_driver->target) retval = cpufreq_driver->target(policy, target_freq, relation); - if (likely(retval != -EINVAL)) { - if (target_freq == policy->max) - cpu_nonscaling(policy->cpu); - else - cpu_scaling(policy->cpu); - } return retval; } diff --git a/drivers/cpufreq/cpufreq_conservative.c b/drivers/cpufreq/cpufreq_conservative.c index 179ee2a..f62d822 100644 --- a/drivers/cpufreq/cpufreq_conservative.c +++ b/drivers/cpufreq/cpufreq_conservative.c @@ -15,8 +15,8 @@ #include "cpufreq_governor.h" /* Conservative governor macros */ -#define DEF_FREQUENCY_UP_THRESHOLD (63) -#define DEF_FREQUENCY_DOWN_THRESHOLD (26) +#define DEF_FREQUENCY_UP_THRESHOLD (80) +#define DEF_FREQUENCY_DOWN_THRESHOLD (20) #define DEF_FREQUENCY_STEP (5) #define DEF_SAMPLING_DOWN_FACTOR (1) #define MAX_SAMPLING_DOWN_FACTOR (10) diff --git a/drivers/cpufreq/cpufreq_ondemand.c b/drivers/cpufreq/cpufreq_ondemand.c index b601afa..32f26f6 100644 --- a/drivers/cpufreq/cpufreq_ondemand.c +++ b/drivers/cpufreq/cpufreq_ondemand.c @@ -19,7 +19,7 @@ #include "cpufreq_governor.h" /* On-demand governor macros */ -#define DEF_FREQUENCY_UP_THRESHOLD (63) +#define DEF_FREQUENCY_UP_THRESHOLD (80) #define DEF_SAMPLING_DOWN_FACTOR (1) #define MAX_SAMPLING_DOWN_FACTOR (100000) #define MICRO_FREQUENCY_UP_THRESHOLD (95) @@ -148,7 +148,7 @@ static void dbs_freq_increase(struct cpufreq_policy *policy, unsigned int freq) } /* - * Every sampling_rate, we check, if current idle time is less than 37% + * Every sampling_rate, we check, if current idle time is less than 20% * (default), then we try to increase frequency. Else, we adjust the frequency * proportional to load. */ diff --git a/fs/proc/base.c b/fs/proc/base.c index 8dbb6a8..1485e38 100644 --- a/fs/proc/base.c +++ b/fs/proc/base.c @@ -339,7 +339,7 @@ static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns, static int proc_pid_schedstat(struct task_struct *task, char *buffer) { return sprintf(buffer, "%llu %llu %lu\n", - (unsigned long long)tsk_seruntime(task), + (unsigned long long)task->se.sum_exec_runtime, (unsigned long long)task->sched_info.run_delay, task->sched_info.pcount); } diff --git a/include/linux/init_task.h b/include/linux/init_task.h index a504de2..5cd0f09 100644 --- a/include/linux/init_task.h +++ b/include/linux/init_task.h @@ -152,70 +152,12 @@ extern struct task_group root_task_group; # define INIT_VTIME(tsk) #endif +#define INIT_TASK_COMM "swapper" + /* * INIT_TASK is used to set up the first task table, touch at * your own risk!. Base=0, limit=0x1fffff (=2MB) */ -#ifdef CONFIG_SCHED_BFS -#define INIT_TASK_COMM "BFS" -#define INIT_TASK(tsk) \ -{ \ - .state = 0, \ - .stack = &init_thread_info, \ - .usage = ATOMIC_INIT(2), \ - .flags = PF_KTHREAD, \ - .prio = NORMAL_PRIO, \ - .static_prio = MAX_PRIO-20, \ - .normal_prio = NORMAL_PRIO, \ - .deadline = 0, \ - .policy = SCHED_NORMAL, \ - .cpus_allowed = CPU_MASK_ALL, \ - .mm = NULL, \ - .active_mm = &init_mm, \ - .run_list = LIST_HEAD_INIT(tsk.run_list), \ - .time_slice = HZ, \ - .tasks = LIST_HEAD_INIT(tsk.tasks), \ - INIT_PUSHABLE_TASKS(tsk) \ - .ptraced = LIST_HEAD_INIT(tsk.ptraced), \ - .ptrace_entry = LIST_HEAD_INIT(tsk.ptrace_entry), \ - .real_parent = &tsk, \ - .parent = &tsk, \ - .children = LIST_HEAD_INIT(tsk.children), \ - .sibling = LIST_HEAD_INIT(tsk.sibling), \ - .group_leader = &tsk, \ - RCU_POINTER_INITIALIZER(real_cred, &init_cred), \ - RCU_POINTER_INITIALIZER(cred, &init_cred), \ - .comm = INIT_TASK_COMM, \ - .thread = INIT_THREAD, \ - .fs = &init_fs, \ - .files = &init_files, \ - .signal = &init_signals, \ - .sighand = &init_sighand, \ - .nsproxy = &init_nsproxy, \ - .pending = { \ - .list = LIST_HEAD_INIT(tsk.pending.list), \ - .signal = {{0}}}, \ - .blocked = {{0}}, \ - .alloc_lock = __SPIN_LOCK_UNLOCKED(tsk.alloc_lock), \ - .journal_info = NULL, \ - .cpu_timers = INIT_CPU_TIMERS(tsk.cpu_timers), \ - .pi_lock = __RAW_SPIN_LOCK_UNLOCKED(tsk.pi_lock), \ - .timer_slack_ns = 50000, /* 50 usec default slack */ \ - .pids = { \ - [PIDTYPE_PID] = INIT_PID_LINK(PIDTYPE_PID), \ - [PIDTYPE_PGID] = INIT_PID_LINK(PIDTYPE_PGID), \ - [PIDTYPE_SID] = INIT_PID_LINK(PIDTYPE_SID), \ - }, \ - INIT_IDS \ - INIT_PERF_EVENTS(tsk) \ - INIT_TRACE_IRQFLAGS \ - INIT_LOCKDEP \ - INIT_FTRACE_GRAPH \ - INIT_TRACE_RECURSION \ - INIT_TASK_RCU_PREEMPT(tsk) \ -} -#else /* CONFIG_SCHED_BFS */ -#define INIT_TASK_COMM "swapper" #define INIT_TASK(tsk) \ { \ .state = 0, \ @@ -281,7 +223,7 @@ extern struct task_group root_task_group; INIT_CPUSET_SEQ \ INIT_VTIME(tsk) \ } -#endif /* CONFIG_SCHED_BFS */ + #define INIT_CPU_TIMERS(cpu_timers) \ { \ diff --git a/include/linux/ioprio.h b/include/linux/ioprio.h index ce2fc3c..beb9ce1 100644 --- a/include/linux/ioprio.h +++ b/include/linux/ioprio.h @@ -52,8 +52,6 @@ enum { */ static inline int task_nice_ioprio(struct task_struct *task) { - if (iso_task(task)) - return 0; return (task_nice(task) + 20) / 5; } diff --git a/include/linux/jiffies.h b/include/linux/jiffies.h index a72cbae..d235e88 100644 --- a/include/linux/jiffies.h +++ b/include/linux/jiffies.h @@ -163,7 +163,7 @@ static inline u64 get_jiffies_64(void) * Have the 32 bit jiffies value wrap 5 minutes after boot * so jiffies wrap bugs show up earlier. */ -#define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-10*HZ)) +#define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ)) /* * Change timeval to jiffies, trying to avoid the diff --git a/include/linux/sched.h b/include/linux/sched.h index e8be4c4..6682da3 100644 --- a/include/linux/sched.h +++ b/include/linux/sched.h @@ -221,6 +221,8 @@ extern asmlinkage void schedule_tail(struct task_struct *prev); extern void init_idle(struct task_struct *idle, int cpu); extern void init_idle_bootup_task(struct task_struct *idle); +extern int runqueue_is_locked(int cpu); + #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) extern void nohz_balance_enter_idle(int cpu); extern void set_cpu_sd_state_idle(void); @@ -1023,38 +1025,21 @@ struct task_struct { #ifdef CONFIG_SMP struct llist_node wake_entry; -#endif -#if defined(CONFIG_SMP) || defined(CONFIG_SCHED_BFS) - bool on_cpu; + int on_cpu; struct task_struct *last_wakee; unsigned long wakee_flips; unsigned long wakee_flip_decay_ts; #endif -#ifndef CONFIG_SCHED_BFS - bool on_rq; -#endif + int on_rq; int prio, static_prio, normal_prio; unsigned int rt_priority; -#ifdef CONFIG_SCHED_BFS - int time_slice; - u64 deadline; - struct list_head run_list; - u64 last_ran; - u64 sched_time; /* sched_clock time spent running */ -#ifdef CONFIG_SMP - bool sticky; /* Soft affined flag */ -#endif - unsigned long rt_timeout; -#else /* CONFIG_SCHED_BFS */ const struct sched_class *sched_class; struct sched_entity se; struct sched_rt_entity rt; - #ifdef CONFIG_CGROUP_SCHED struct task_group *sched_task_group; #endif -#endif #ifdef CONFIG_PREEMPT_NOTIFIERS /* list of struct preempt_notifier: */ @@ -1165,9 +1150,6 @@ struct task_struct { int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ cputime_t utime, stime, utimescaled, stimescaled; -#ifdef CONFIG_SCHED_BFS - unsigned long utime_pc, stime_pc; -#endif cputime_t gtime; #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE struct cputime prev_cputime; @@ -1428,64 +1410,6 @@ struct task_struct { #endif }; -#ifdef CONFIG_SCHED_BFS -bool grunqueue_is_locked(void); -void grq_unlock_wait(void); -void cpu_scaling(int cpu); -void cpu_nonscaling(int cpu); -bool above_background_load(void); -#define tsk_seruntime(t) ((t)->sched_time) -#define tsk_rttimeout(t) ((t)->rt_timeout) - -static inline void tsk_cpus_current(struct task_struct *p) -{ -} - -static inline int runqueue_is_locked(int cpu) -{ - return grunqueue_is_locked(); -} - -void print_scheduler_version(void); - -static inline bool iso_task(struct task_struct *p) -{ - return (p->policy == SCHED_ISO); -} -#else /* CFS */ -extern int runqueue_is_locked(int cpu); -static inline void cpu_scaling(int cpu) -{ -} - -static inline void cpu_nonscaling(int cpu) -{ -} -#define tsk_seruntime(t) ((t)->se.sum_exec_runtime) -#define tsk_rttimeout(t) ((t)->rt.timeout) - -static inline void tsk_cpus_current(struct task_struct *p) -{ - p->nr_cpus_allowed = current->nr_cpus_allowed; -} - -static inline void print_scheduler_version(void) -{ - printk(KERN_INFO"CFS CPU scheduler.\n"); -} - -static inline bool iso_task(struct task_struct *p) -{ - return false; -} - -/* Anyone feel like implementing this? */ -static inline bool above_background_load(void) -{ - return false; -} -#endif /* CONFIG_SCHED_BFS */ - /* Future-safe accessor for struct task_struct's cpus_allowed. */ #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) @@ -1917,7 +1841,7 @@ extern unsigned long long task_sched_runtime(struct task_struct *task); /* sched_exec is called by processes performing an exec */ -#if defined(CONFIG_SMP) && !defined(CONFIG_SCHED_BFS) +#ifdef CONFIG_SMP extern void sched_exec(void); #else #define sched_exec() {} @@ -2631,7 +2555,7 @@ static inline unsigned int task_cpu(const struct task_struct *p) return 0; } -static inline void set_task_cpu(struct task_struct *p, int cpu) +static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) { } diff --git a/include/linux/sched/rt.h b/include/linux/sched/rt.h index c607428..440434d 100644 --- a/include/linux/sched/rt.h +++ b/include/linux/sched/rt.h @@ -14,24 +14,11 @@ * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO. */ -#ifdef CONFIG_SCHED_BFS -#define MAX_USER_RT_PRIO 100 -#define MAX_RT_PRIO (MAX_USER_RT_PRIO + 1) -#define DEFAULT_PRIO (MAX_RT_PRIO + 20) - -#define PRIO_RANGE (40) -#define MAX_PRIO (MAX_RT_PRIO + PRIO_RANGE) -#define ISO_PRIO (MAX_RT_PRIO) -#define NORMAL_PRIO (MAX_RT_PRIO + 1) -#define IDLE_PRIO (MAX_RT_PRIO + 2) -#define PRIO_LIMIT ((IDLE_PRIO) + 1) -#else /* CONFIG_SCHED_BFS */ #define MAX_USER_RT_PRIO 100 #define MAX_RT_PRIO MAX_USER_RT_PRIO #define MAX_PRIO (MAX_RT_PRIO + 40) #define DEFAULT_PRIO (MAX_RT_PRIO + 20) -#endif /* CONFIG_SCHED_BFS */ static inline int rt_prio(int prio) { diff --git a/include/uapi/linux/sched.h b/include/uapi/linux/sched.h index 00a524e..5a0f945 100644 --- a/include/uapi/linux/sched.h +++ b/include/uapi/linux/sched.h @@ -37,15 +37,8 @@ #define SCHED_FIFO 1 #define SCHED_RR 2 #define SCHED_BATCH 3 -/* SCHED_ISO: Implemented on BFS only */ +/* SCHED_ISO: reserved but not implemented yet */ #define SCHED_IDLE 5 -#ifdef CONFIG_SCHED_BFS -#define SCHED_ISO 4 -#define SCHED_IDLEPRIO SCHED_IDLE -#define SCHED_MAX (SCHED_IDLEPRIO) -#define SCHED_RANGE(policy) ((policy) <= SCHED_MAX) -#endif - /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */ #define SCHED_RESET_ON_FORK 0x40000000 diff --git a/init/Kconfig b/init/Kconfig index 31e1760..595e749 100644 --- a/init/Kconfig +++ b/init/Kconfig @@ -28,20 +28,6 @@ config BUILDTIME_EXTABLE_SORT menu "General setup" -config SCHED_BFS - bool "BFS cpu scheduler" - ---help--- - The Brain Fuck CPU Scheduler for excellent interactivity and - responsiveness on the desktop and solid scalability on normal - hardware and commodity servers. Not recommended for 4096 CPUs. - - Currently incompatible with the Group CPU scheduler, and RCU TORTURE - TEST so these options are disabled. - - Say Y here. - default y - - config BROKEN bool @@ -345,7 +331,7 @@ choice # Kind of a stub config for the pure tick based cputime accounting config TICK_CPU_ACCOUNTING bool "Simple tick based cputime accounting" - depends on !S390 && !NO_HZ_FULL && !SCHED_BFS + depends on !S390 && !NO_HZ_FULL help This is the basic tick based cputime accounting that maintains statistics about user, system and idle time spent on per jiffies @@ -368,7 +354,7 @@ config VIRT_CPU_ACCOUNTING_NATIVE config VIRT_CPU_ACCOUNTING_GEN bool "Full dynticks CPU time accounting" - depends on HAVE_CONTEXT_TRACKING && 64BIT && !SCHED_BFS + depends on HAVE_CONTEXT_TRACKING && 64BIT select VIRT_CPU_ACCOUNTING select CONTEXT_TRACKING help @@ -866,7 +852,6 @@ config NUMA_BALANCING depends on ARCH_SUPPORTS_NUMA_BALANCING depends on !ARCH_WANT_NUMA_VARIABLE_LOCALITY depends on SMP && NUMA && MIGRATION - depends on !SCHED_BFS help This option adds support for automatic NUMA aware memory/task placement. The mechanism is quite primitive and is based on migrating memory when @@ -929,7 +914,6 @@ config PROC_PID_CPUSET config CGROUP_CPUACCT bool "Simple CPU accounting cgroup subsystem" - depends on !SCHED_BFS help Provides a simple Resource Controller for monitoring the total CPU consumed by the tasks in a cgroup. @@ -1032,7 +1016,6 @@ config CGROUP_PERF menuconfig CGROUP_SCHED bool "Group CPU scheduler" - depends on !SCHED_BFS default n help This feature lets CPU scheduler recognize task groups and control CPU @@ -1184,7 +1167,6 @@ config UIDGID_STRICT_TYPE_CHECKS config SCHED_AUTOGROUP bool "Automatic process group scheduling" - depends on !SCHED_BFS select EVENTFD select CGROUPS select CGROUP_SCHED @@ -1610,8 +1592,38 @@ config COMPAT_BRK On non-ancient distros (post-2000 ones) N is usually a safe choice. +choice + prompt "Choose SLAB allocator" + default SLUB + help + This option allows to select a slab allocator. + +config SLAB + bool "SLAB" + help + The regular slab allocator that is established and known to work + well in all environments. It organizes cache hot objects in + per cpu and per node queues. + config SLUB - def_bool y + bool "SLUB (Unqueued Allocator)" + help + SLUB is a slab allocator that minimizes cache line usage + instead of managing queues of cached objects (SLAB approach). + Per cpu caching is realized using slabs of objects instead + of queues of objects. SLUB can use memory efficiently + and has enhanced diagnostics. SLUB is the default choice for + a slab allocator. + +config SLOB + depends on EXPERT + bool "SLOB (Simple Allocator)" + help + SLOB replaces the stock allocator with a drastically simpler + allocator. SLOB is generally more space efficient but + does not perform as well on large systems. + +endchoice config SLUB_CPU_PARTIAL default y diff --git a/init/main.c b/init/main.c index e0792ce..0f30369 100644 --- a/init/main.c +++ b/init/main.c @@ -703,6 +703,7 @@ int __init_or_module do_one_initcall(initcall_t fn) return ret; } + extern initcall_t __initcall_start[]; extern initcall_t __initcall0_start[]; extern initcall_t __initcall1_start[]; @@ -822,8 +823,6 @@ static int __ref kernel_init(void *unused) flush_delayed_fput(); - print_scheduler_version(); - if (ramdisk_execute_command) { if (!run_init_process(ramdisk_execute_command)) return 0; diff --git a/kernel/Kconfig.preempt b/kernel/Kconfig.preempt index 3f9c974..1dc79ec 100644 --- a/kernel/Kconfig.preempt +++ b/kernel/Kconfig.preempt @@ -1,7 +1,7 @@ choice prompt "Preemption Model" - default PREEMPT_NONE + default PREEMPT config PREEMPT_NONE bool "No Forced Preemption (Server)" @@ -17,7 +17,7 @@ config PREEMPT_NONE latencies. config PREEMPT_VOLUNTARY - bool "Voluntary Kernel Preemption (Desktop)" + bool "Voluntary Kernel Preemption (Nothing)" help This option reduces the latency of the kernel by adding more "explicit preemption points" to the kernel code. These new @@ -31,7 +31,8 @@ config PREEMPT_VOLUNTARY applications to run more 'smoothly' even when the system is under load. - Select this if you are building a kernel for a desktop system. + Select this for no system in particular (choose Preemptible + instead on a desktop if you know what's good for you). config PREEMPT bool "Preemptible Kernel (Low-Latency Desktop)" diff --git a/kernel/delayacct.c b/kernel/delayacct.c index 3821791..d473988 100644 --- a/kernel/delayacct.c +++ b/kernel/delayacct.c @@ -133,7 +133,7 @@ int __delayacct_add_tsk(struct taskstats *d, struct task_struct *tsk) */ t1 = tsk->sched_info.pcount; t2 = tsk->sched_info.run_delay; - t3 = tsk_seruntime(tsk); + t3 = tsk->se.sum_exec_runtime; d->cpu_count += t1; diff --git a/kernel/exit.c b/kernel/exit.c index 272a1bf..a949819 100644 --- a/kernel/exit.c +++ b/kernel/exit.c @@ -135,7 +135,7 @@ static void __exit_signal(struct task_struct *tsk) sig->inblock += task_io_get_inblock(tsk); sig->oublock += task_io_get_oublock(tsk); task_io_accounting_add(&sig->ioac, &tsk->ioac); - sig->sum_sched_runtime += tsk_seruntime(tsk); + sig->sum_sched_runtime += tsk->se.sum_exec_runtime; } sig->nr_threads--; diff --git a/kernel/posix-cpu-timers.c b/kernel/posix-cpu-timers.c index 051d3b4..c7f31aa 100644 --- a/kernel/posix-cpu-timers.c +++ b/kernel/posix-cpu-timers.c @@ -435,11 +435,11 @@ void posix_cpu_timers_exit(struct task_struct *tsk) { cputime_t utime, stime; - add_device_randomness((const void*) &tsk_seruntime(tsk), + add_device_randomness((const void*) &tsk->se.sum_exec_runtime, sizeof(unsigned long long)); task_cputime(tsk, &utime, &stime); cleanup_timers(tsk->cpu_timers, - utime, stime, tsk_seruntime(tsk)); + utime, stime, tsk->se.sum_exec_runtime); } void posix_cpu_timers_exit_group(struct task_struct *tsk) @@ -450,7 +450,7 @@ void posix_cpu_timers_exit_group(struct task_struct *tsk) task_cputime(tsk, &utime, &stime); cleanup_timers(tsk->signal->cpu_timers, utime + sig->utime, stime + sig->stime, - tsk_seruntime(tsk) + sig->sum_sched_runtime); + tsk->se.sum_exec_runtime + sig->sum_sched_runtime); } static void clear_dead_task(struct k_itimer *itimer, unsigned long long now) @@ -905,7 +905,7 @@ static void check_thread_timers(struct task_struct *tsk, tsk_expires->virt_exp = expires_to_cputime(expires); tsk_expires->sched_exp = check_timers_list(++timers, firing, - tsk_seruntime(tsk)); + tsk->se.sum_exec_runtime); /* * Check for the special case thread timers. @@ -916,7 +916,7 @@ static void check_thread_timers(struct task_struct *tsk, ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max); if (hard != RLIM_INFINITY && - tsk_rttimeout(tsk) > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) { + tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) { /* * At the hard limit, we just die. * No need to calculate anything else now. @@ -924,7 +924,7 @@ static void check_thread_timers(struct task_struct *tsk, __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk); return; } - if (tsk_rttimeout(tsk) > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) { + if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) { /* * At the soft limit, send a SIGXCPU every second. */ @@ -1167,7 +1167,7 @@ static inline int fastpath_timer_check(struct task_struct *tsk) struct task_cputime task_sample = { .utime = utime, .stime = stime, - .sum_exec_runtime = tsk_seruntime(tsk) + .sum_exec_runtime = tsk->se.sum_exec_runtime }; if (task_cputime_expired(&task_sample, &tsk->cputime_expires)) diff --git a/kernel/sched/Makefile b/kernel/sched/Makefile index 7db71be..54adcf3 100644 --- a/kernel/sched/Makefile +++ b/kernel/sched/Makefile @@ -11,13 +11,9 @@ ifneq ($(CONFIG_SCHED_OMIT_FRAME_POINTER),y) CFLAGS_core.o := $(PROFILING) -fno-omit-frame-pointer endif -ifdef CONFIG_SCHED_BFS -obj-y += bfs.o clock.o -else obj-y += core.o proc.o clock.o cputime.o idle_task.o fair.o rt.o stop_task.o +obj-$(CONFIG_SMP) += cpupri.o obj-$(CONFIG_SCHED_AUTOGROUP) += auto_group.o +obj-$(CONFIG_SCHEDSTATS) += stats.o obj-$(CONFIG_SCHED_DEBUG) += debug.o obj-$(CONFIG_CGROUP_CPUACCT) += cpuacct.o -endif -obj-$(CONFIG_SMP) += cpupri.o -obj-$(CONFIG_SCHEDSTATS) += stats.o diff --git a/kernel/sched/bfs.c b/kernel/sched/bfs.c deleted file mode 100644 index 763d417..0000000 --- a/kernel/sched/bfs.c +++ /dev/null @@ -1,7441 +0,0 @@ -/* - * kernel/sched/bfs.c, was kernel/sched.c - * - * Kernel scheduler and related syscalls - * - * Copyright (C) 1991-2002 Linus Torvalds - * - * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and - * make semaphores SMP safe - * 1998-11-19 Implemented schedule_timeout() and related stuff - * by Andrea Arcangeli - * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: - * hybrid priority-list and round-robin design with - * an array-switch method of distributing timeslices - * and per-CPU runqueues. Cleanups and useful suggestions - * by Davide Libenzi, preemptible kernel bits by Robert Love. - * 2003-09-03 Interactivity tuning by Con Kolivas. - * 2004-04-02 Scheduler domains code by Nick Piggin - * 2007-04-15 Work begun on replacing all interactivity tuning with a - * fair scheduling design by Con Kolivas. - * 2007-05-05 Load balancing (smp-nice) and other improvements - * by Peter Williams - * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith - * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri - * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, - * Thomas Gleixner, Mike Kravetz - * now Brainfuck deadline scheduling policy by Con Kolivas deletes - * a whole lot of those previous things. - */ - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include -#include -#include -#include -#ifdef CONFIG_PARAVIRT -#include -#endif - -#include "cpupri.h" -#include "../workqueue_internal.h" -#include "../smpboot.h" - -#define CREATE_TRACE_POINTS -#include - -#include "bfs_sched.h" - -#define rt_prio(prio) unlikely((prio) < MAX_RT_PRIO) -#define rt_task(p) rt_prio((p)->prio) -#define rt_queue(rq) rt_prio((rq)->rq_prio) -#define batch_task(p) (unlikely((p)->policy == SCHED_BATCH)) -#define is_rt_policy(policy) ((policy) == SCHED_FIFO || \ - (policy) == SCHED_RR) -#define has_rt_policy(p) unlikely(is_rt_policy((p)->policy)) -#define idleprio_task(p) unlikely((p)->policy == SCHED_IDLEPRIO) -#define iso_task(p) unlikely((p)->policy == SCHED_ISO) -#define iso_queue(rq) unlikely((rq)->rq_policy == SCHED_ISO) -#define rq_running_iso(rq) ((rq)->rq_prio == ISO_PRIO) - -#define ISO_PERIOD ((5 * HZ * grq.noc) + 1) - -/* - * Convert user-nice values [ -20 ... 0 ... 19 ] - * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ], - * and back. - */ -#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20) -#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20) -#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio) - -/* - * 'User priority' is the nice value converted to something we - * can work with better when scaling various scheduler parameters, - * it's a [ 0 ... 39 ] range. - */ -#define USER_PRIO(p) ((p) - MAX_RT_PRIO) -#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio) -#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO)) -#define SCHED_PRIO(p) ((p) + MAX_RT_PRIO) -#define STOP_PRIO (MAX_RT_PRIO - 1) - -/* - * Some helpers for converting to/from various scales. Use shifts to get - * approximate multiples of ten for less overhead. - */ -#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ)) -#define JIFFY_NS (1000000000 / HZ) -#define HALF_JIFFY_NS (1000000000 / HZ / 2) -#define HALF_JIFFY_US (1000000 / HZ / 2) -#define MS_TO_NS(TIME) ((TIME) << 20) -#define MS_TO_US(TIME) ((TIME) << 10) -#define NS_TO_MS(TIME) ((TIME) >> 20) -#define NS_TO_US(TIME) ((TIME) >> 10) - -#define RESCHED_US (100) /* Reschedule if less than this many μs left */ - -void print_scheduler_version(void) -{ - printk(KERN_INFO "BFS CPU scheduler v0.441 by Con Kolivas.\n"); -} - -/* - * This is the time all tasks within the same priority round robin. - * Value is in ms and set to a minimum of 6ms. Scales with number of cpus. - * Tunable via /proc interface. - */ -int rr_interval __read_mostly = 6; - -/* - * sched_iso_cpu - sysctl which determines the cpu percentage SCHED_ISO tasks - * are allowed to run five seconds as real time tasks. This is the total over - * all online cpus. - */ -int sched_iso_cpu __read_mostly = 70; - -/* - * The relative length of deadline for each priority(nice) level. - */ -static int prio_ratios[PRIO_RANGE] __read_mostly; - -/* - * The quota handed out to tasks of all priority levels when refilling their - * time_slice. - */ -static inline int timeslice(void) -{ - return MS_TO_US(rr_interval); -} - -/* - * The global runqueue data that all CPUs work off. Data is protected either - * by the global grq lock, or the discrete lock that precedes the data in this - * struct. - */ -struct global_rq { - raw_spinlock_t lock; - unsigned long nr_running; - unsigned long nr_uninterruptible; - unsigned long long nr_switches; - struct list_head queue[PRIO_LIMIT]; - DECLARE_BITMAP(prio_bitmap, PRIO_LIMIT + 1); -#ifdef CONFIG_SMP - unsigned long qnr; /* queued not running */ - cpumask_t cpu_idle_map; - bool idle_cpus; -#endif - int noc; /* num_online_cpus stored and updated when it changes */ - u64 niffies; /* Nanosecond jiffies */ - unsigned long last_jiffy; /* Last jiffy we updated niffies */ - - raw_spinlock_t iso_lock; - int iso_ticks; - bool iso_refractory; -}; - -#ifdef CONFIG_SMP - -/* - * We add the notion of a root-domain which will be used to define per-domain - * variables. Each exclusive cpuset essentially defines an island domain by - * fully partitioning the member cpus from any other cpuset. Whenever a new - * exclusive cpuset is created, we also create and attach a new root-domain - * object. - * - */ -struct root_domain { - atomic_t refcount; - atomic_t rto_count; - struct rcu_head rcu; - cpumask_var_t span; - cpumask_var_t online; - - /* - * The "RT overload" flag: it gets set if a CPU has more than - * one runnable RT task. - */ - cpumask_var_t rto_mask; - struct cpupri cpupri; -}; - -/* - * By default the system creates a single root-domain with all cpus as - * members (mimicking the global state we have today). - */ -static struct root_domain def_root_domain; - -#endif /* CONFIG_SMP */ - -/* There can be only one */ -static struct global_rq grq; - -DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); -static DEFINE_MUTEX(sched_hotcpu_mutex); - -#ifdef CONFIG_SMP -struct rq *cpu_rq(int cpu) -{ - return &per_cpu(runqueues, (cpu)); -} -#define this_rq() (&__get_cpu_var(runqueues)) -#define task_rq(p) cpu_rq(task_cpu(p)) -#define cpu_curr(cpu) (cpu_rq(cpu)->curr) -/* - * sched_domains_mutex serialises calls to init_sched_domains, - * detach_destroy_domains and partition_sched_domains. - */ -static DEFINE_MUTEX(sched_domains_mutex); - -/* - * By default the system creates a single root-domain with all cpus as - * members (mimicking the global state we have today). - */ -static struct root_domain def_root_domain; - -int __weak arch_sd_sibling_asym_packing(void) -{ - return 0*SD_ASYM_PACKING; -} -#endif /* CONFIG_SMP */ - -static inline void update_rq_clock(struct rq *rq); - -/* - * Sanity check should sched_clock return bogus values. We make sure it does - * not appear to go backwards, and use jiffies to determine the maximum and - * minimum it could possibly have increased, and round down to the nearest - * jiffy when it falls outside this. - */ -static inline void niffy_diff(s64 *niff_diff, int jiff_diff) -{ - unsigned long min_diff, max_diff; - - if (jiff_diff > 1) - min_diff = JIFFIES_TO_NS(jiff_diff - 1); - else - min_diff = 1; - /* Round up to the nearest tick for maximum */ - max_diff = JIFFIES_TO_NS(jiff_diff + 1); - - if (unlikely(*niff_diff < min_diff || *niff_diff > max_diff)) - *niff_diff = min_diff; -} - -#ifdef CONFIG_SMP -static inline int cpu_of(struct rq *rq) -{ - return rq->cpu; -} - -/* - * Niffies are a globally increasing nanosecond counter. Whenever a runqueue - * clock is updated with the grq.lock held, it is an opportunity to update the - * niffies value. Any CPU can update it by adding how much its clock has - * increased since it last updated niffies, minus any added niffies by other - * CPUs. - */ -static inline void update_clocks(struct rq *rq) -{ - s64 ndiff; - long jdiff; - - update_rq_clock(rq); - ndiff = rq->clock - rq->old_clock; - /* old_clock is only updated when we are updating niffies */ - rq->old_clock = rq->clock; - ndiff -= grq.niffies - rq->last_niffy; - jdiff = jiffies - grq.last_jiffy; - niffy_diff(&ndiff, jdiff); - grq.last_jiffy += jdiff; - grq.niffies += ndiff; - rq->last_niffy = grq.niffies; -} -#else /* CONFIG_SMP */ -static struct rq *uprq; -#define cpu_rq(cpu) (uprq) -#define this_rq() (uprq) -#define task_rq(p) (uprq) -#define cpu_curr(cpu) ((uprq)->curr) -static inline int cpu_of(struct rq *rq) -{ - return 0; -} - -static inline void update_clocks(struct rq *rq) -{ - s64 ndiff; - long jdiff; - - update_rq_clock(rq); - ndiff = rq->clock - rq->old_clock; - rq->old_clock = rq->clock; - jdiff = jiffies - grq.last_jiffy; - niffy_diff(&ndiff, jdiff); - grq.last_jiffy += jdiff; - grq.niffies += ndiff; -} -#endif -#define raw_rq() (&__raw_get_cpu_var(runqueues)) - -#include "stats.h" - -#ifndef prepare_arch_switch -# define prepare_arch_switch(next) do { } while (0) -#endif -#ifndef finish_arch_switch -# define finish_arch_switch(prev) do { } while (0) -#endif -#ifndef finish_arch_post_lock_switch -# define finish_arch_post_lock_switch() do { } while (0) -#endif - -/* - * All common locking functions performed on grq.lock. rq->clock is local to - * the CPU accessing it so it can be modified just with interrupts disabled - * when we're not updating niffies. - * Looking up task_rq must be done under grq.lock to be safe. - */ -static void update_rq_clock_task(struct rq *rq, s64 delta); - -static inline void update_rq_clock(struct rq *rq) -{ - s64 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; - - rq->clock += delta; - update_rq_clock_task(rq, delta); -} - -static inline bool task_running(struct task_struct *p) -{ - return p->on_cpu; -} - -static inline void grq_lock(void) - __acquires(grq.lock) -{ - raw_spin_lock(&grq.lock); -} - -static inline void grq_unlock(void) - __releases(grq.lock) -{ - raw_spin_unlock(&grq.lock); -} - -static inline void grq_lock_irq(void) - __acquires(grq.lock) -{ - raw_spin_lock_irq(&grq.lock); -} - -static inline void time_lock_grq(struct rq *rq) - __acquires(grq.lock) -{ - grq_lock(); - update_clocks(rq); -} - -static inline void grq_unlock_irq(void) - __releases(grq.lock) -{ - raw_spin_unlock_irq(&grq.lock); -} - -static inline void grq_lock_irqsave(unsigned long *flags) - __acquires(grq.lock) -{ - raw_spin_lock_irqsave(&grq.lock, *flags); -} - -static inline void grq_unlock_irqrestore(unsigned long *flags) - __releases(grq.lock) -{ - raw_spin_unlock_irqrestore(&grq.lock, *flags); -} - -static inline struct rq -*task_grq_lock(struct task_struct *p, unsigned long *flags) - __acquires(grq.lock) -{ - grq_lock_irqsave(flags); - return task_rq(p); -} - -static inline struct rq -*time_task_grq_lock(struct task_struct *p, unsigned long *flags) - __acquires(grq.lock) -{ - struct rq *rq = task_grq_lock(p, flags); - update_clocks(rq); - return rq; -} - -static inline struct rq *task_grq_lock_irq(struct task_struct *p) - __acquires(grq.lock) -{ - grq_lock_irq(); - return task_rq(p); -} - -static inline void time_task_grq_lock_irq(struct task_struct *p) - __acquires(grq.lock) -{ - struct rq *rq = task_grq_lock_irq(p); - update_clocks(rq); -} - -static inline void task_grq_unlock_irq(void) - __releases(grq.lock) -{ - grq_unlock_irq(); -} - -static inline void task_grq_unlock(unsigned long *flags) - __releases(grq.lock) -{ - grq_unlock_irqrestore(flags); -} - -/** - * grunqueue_is_locked - * - * Returns true if the global runqueue is locked. - * This interface allows printk to be called with the runqueue lock - * held and know whether or not it is OK to wake up the klogd. - */ -bool grunqueue_is_locked(void) -{ - return raw_spin_is_locked(&grq.lock); -} - -void grq_unlock_wait(void) - __releases(grq.lock) -{ - smp_mb(); /* spin-unlock-wait is not a full memory barrier */ - raw_spin_unlock_wait(&grq.lock); -} - -static inline void time_grq_lock(struct rq *rq, unsigned long *flags) - __acquires(grq.lock) -{ - local_irq_save(*flags); - time_lock_grq(rq); -} - -static inline struct rq *__task_grq_lock(struct task_struct *p) - __acquires(grq.lock) -{ - grq_lock(); - return task_rq(p); -} - -static inline void __task_grq_unlock(void) - __releases(grq.lock) -{ - grq_unlock(); -} - -/* - * Look for any tasks *anywhere* that are running nice 0 or better. We do - * this lockless for overhead reasons since the occasional wrong result - * is harmless. - */ -bool above_background_load(void) -{ - int cpu; - - for_each_online_cpu(cpu) { - struct task_struct *cpu_curr = cpu_rq(cpu)->curr; - - if (unlikely(!cpu_curr)) - continue; - if (PRIO_TO_NICE(cpu_curr->static_prio) < 1) { - return true; - } - } - return false; -} - -#ifndef __ARCH_WANT_UNLOCKED_CTXSW -static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) -{ -} - -static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) -{ -#ifdef CONFIG_DEBUG_SPINLOCK - /* this is a valid case when another task releases the spinlock */ - grq.lock.owner = current; -#endif - /* - * If we are tracking spinlock dependencies then we have to - * fix up the runqueue lock - which gets 'carried over' from - * prev into current: - */ - spin_acquire(&grq.lock.dep_map, 0, 0, _THIS_IP_); - - grq_unlock_irq(); -} - -#else /* __ARCH_WANT_UNLOCKED_CTXSW */ - -static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) -{ -#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW - grq_unlock_irq(); -#else - grq_unlock(); -#endif -} - -static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) -{ - smp_wmb(); -#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW - local_irq_enable(); -#endif -} -#endif /* __ARCH_WANT_UNLOCKED_CTXSW */ - -static inline bool deadline_before(u64 deadline, u64 time) -{ - return (deadline < time); -} - -static inline bool deadline_after(u64 deadline, u64 time) -{ - return (deadline > time); -} - -/* - * A task that is queued but not running will be on the grq run list. - * A task that is not running or queued will not be on the grq run list. - * A task that is currently running will have ->on_cpu set but not on the - * grq run list. - */ -static inline bool task_queued(struct task_struct *p) -{ - return (!list_empty(&p->run_list)); -} - -/* - * Removing from the global runqueue. Enter with grq locked. - */ -static void dequeue_task(struct task_struct *p) -{ - list_del_init(&p->run_list); - if (list_empty(grq.queue + p->prio)) - __clear_bit(p->prio, grq.prio_bitmap); -} - -/* - * To determine if it's safe for a task of SCHED_IDLEPRIO to actually run as - * an idle task, we ensure none of the following conditions are met. - */ -static bool idleprio_suitable(struct task_struct *p) -{ - return (!freezing(p) && !signal_pending(p) && - !(task_contributes_to_load(p)) && !(p->flags & (PF_EXITING))); -} - -/* - * To determine if a task of SCHED_ISO can run in pseudo-realtime, we check - * that the iso_refractory flag is not set. - */ -static bool isoprio_suitable(void) -{ - return !grq.iso_refractory; -} - -/* - * Adding to the global runqueue. Enter with grq locked. - */ -static void enqueue_task(struct task_struct *p) -{ - if (!rt_task(p)) { - /* Check it hasn't gotten rt from PI */ - if ((idleprio_task(p) && idleprio_suitable(p)) || - (iso_task(p) && isoprio_suitable())) - p->prio = p->normal_prio; - else - p->prio = NORMAL_PRIO; - } - __set_bit(p->prio, grq.prio_bitmap); - list_add_tail(&p->run_list, grq.queue + p->prio); - sched_info_queued(p); -} - -/* Only idle task does this as a real time task*/ -static inline void enqueue_task_head(struct task_struct *p) -{ - __set_bit(p->prio, grq.prio_bitmap); - list_add(&p->run_list, grq.queue + p->prio); - sched_info_queued(p); -} - -static inline void requeue_task(struct task_struct *p) -{ - sched_info_queued(p); -} - -/* - * Returns the relative length of deadline all compared to the shortest - * deadline which is that of nice -20. - */ -static inline int task_prio_ratio(struct task_struct *p) -{ - return prio_ratios[TASK_USER_PRIO(p)]; -} - -/* - * task_timeslice - all tasks of all priorities get the exact same timeslice - * length. CPU distribution is handled by giving different deadlines to - * tasks of different priorities. Use 128 as the base value for fast shifts. - */ -static inline int task_timeslice(struct task_struct *p) -{ - return (rr_interval * task_prio_ratio(p) / 128); -} - -#ifdef CONFIG_SMP -/* - * qnr is the "queued but not running" count which is the total number of - * tasks on the global runqueue list waiting for cpu time but not actually - * currently running on a cpu. - */ -static inline void inc_qnr(void) -{ - grq.qnr++; -} - -static inline void dec_qnr(void) -{ - grq.qnr--; -} - -static inline int queued_notrunning(void) -{ - return grq.qnr; -} - -/* - * The cpu_idle_map stores a bitmap of all the CPUs currently idle to - * allow easy lookup of whether any suitable idle CPUs are available. - * It's cheaper to maintain a binary yes/no if there are any idle CPUs on the - * idle_cpus variable than to do a full bitmask check when we are busy. - */ -static inline void set_cpuidle_map(int cpu) -{ - if (likely(cpu_online(cpu))) { - cpu_set(cpu, grq.cpu_idle_map); - grq.idle_cpus = true; - } -} - -static inline void clear_cpuidle_map(int cpu) -{ - cpu_clear(cpu, grq.cpu_idle_map); - if (cpus_empty(grq.cpu_idle_map)) - grq.idle_cpus = false; -} - -static bool suitable_idle_cpus(struct task_struct *p) -{ - if (!grq.idle_cpus) - return false; - return (cpus_intersects(p->cpus_allowed, grq.cpu_idle_map)); -} - -#define CPUIDLE_DIFF_THREAD (1) -#define CPUIDLE_DIFF_CORE (2) -#define CPUIDLE_CACHE_BUSY (4) -#define CPUIDLE_DIFF_CPU (8) -#define CPUIDLE_THREAD_BUSY (16) -#define CPUIDLE_THROTTLED (32) -#define CPUIDLE_DIFF_NODE (64) - -static void resched_task(struct task_struct *p); -static inline bool scaling_rq(struct rq *rq); - -/* - * The best idle CPU is chosen according to the CPUIDLE ranking above where the - * lowest value would give the most suitable CPU to schedule p onto next. The - * order works out to be the following: - * - * Same core, idle or busy cache, idle or busy threads - * Other core, same cache, idle or busy cache, idle threads. - * Same node, other CPU, idle cache, idle threads. - * Same node, other CPU, busy cache, idle threads. - * Other core, same cache, busy threads. - * Same node, other CPU, busy threads. - * Other node, other CPU, idle cache, idle threads. - * Other node, other CPU, busy cache, idle threads. - * Other node, other CPU, busy threads. - */ -static void -resched_best_mask(int best_cpu, struct rq *rq, cpumask_t *tmpmask) -{ - int best_ranking = CPUIDLE_DIFF_NODE | CPUIDLE_THROTTLED | - CPUIDLE_THREAD_BUSY | CPUIDLE_DIFF_CPU | CPUIDLE_CACHE_BUSY | - CPUIDLE_DIFF_CORE | CPUIDLE_DIFF_THREAD; - int cpu_tmp; - - if (cpu_isset(best_cpu, *tmpmask)) - goto out; - - for_each_cpu_mask(cpu_tmp, *tmpmask) { - int ranking, locality; - struct rq *tmp_rq; - - ranking = 0; - tmp_rq = cpu_rq(cpu_tmp); - - locality = rq->cpu_locality[cpu_tmp]; -#ifdef CONFIG_NUMA - if (locality > 3) - ranking |= CPUIDLE_DIFF_NODE; - else -#endif - if (locality > 2) - ranking |= CPUIDLE_DIFF_CPU; -#ifdef CONFIG_SCHED_MC - else if (locality == 2) - ranking |= CPUIDLE_DIFF_CORE; - if (!(tmp_rq->cache_idle(cpu_tmp))) - ranking |= CPUIDLE_CACHE_BUSY; -#endif -#ifdef CONFIG_SCHED_SMT - if (locality == 1) - ranking |= CPUIDLE_DIFF_THREAD; - if (!(tmp_rq->siblings_idle(cpu_tmp))) - ranking |= CPUIDLE_THREAD_BUSY; -#endif - if (scaling_rq(tmp_rq)) - ranking |= CPUIDLE_THROTTLED; - - if (ranking < best_ranking) { - best_cpu = cpu_tmp; - best_ranking = ranking; - } - } -out: - resched_task(cpu_rq(best_cpu)->curr); -} - -bool cpus_share_cache(int this_cpu, int that_cpu) -{ - struct rq *this_rq = cpu_rq(this_cpu); - - return (this_rq->cpu_locality[that_cpu] < 3); -} - -static void resched_best_idle(struct task_struct *p) -{ - cpumask_t tmpmask; - - cpus_and(tmpmask, p->cpus_allowed, grq.cpu_idle_map); - resched_best_mask(task_cpu(p), task_rq(p), &tmpmask); -} - -static inline void resched_suitable_idle(struct task_struct *p) -{ - if (suitable_idle_cpus(p)) - resched_best_idle(p); -} -/* - * Flags to tell us whether this CPU is running a CPU frequency governor that - * has slowed its speed or not. No locking required as the very rare wrongly - * read value would be harmless. - */ -void cpu_scaling(int cpu) -{ - cpu_rq(cpu)->scaling = true; -} - -void cpu_nonscaling(int cpu) -{ - cpu_rq(cpu)->scaling = false; -} - -static inline bool scaling_rq(struct rq *rq) -{ - return rq->scaling; -} - -static inline int locality_diff(struct task_struct *p, struct rq *rq) -{ - return rq->cpu_locality[task_cpu(p)]; -} -#else /* CONFIG_SMP */ -static inline void inc_qnr(void) -{ -} - -static inline void dec_qnr(void) -{ -} - -static inline int queued_notrunning(void) -{ - return grq.nr_running; -} - -static inline void set_cpuidle_map(int cpu) -{ -} - -static inline void clear_cpuidle_map(int cpu) -{ -} - -static inline bool suitable_idle_cpus(struct task_struct *p) -{ - return uprq->curr == uprq->idle; -} - -static inline void resched_suitable_idle(struct task_struct *p) -{ -} - -void cpu_scaling(int __unused) -{ -} - -void cpu_nonscaling(int __unused) -{ -} - -/* - * Although CPUs can scale in UP, there is nowhere else for tasks to go so this - * always returns 0. - */ -static inline bool scaling_rq(struct rq *rq) -{ - return false; -} - -static inline int locality_diff(struct task_struct *p, struct rq *rq) -{ - return 0; -} -#endif /* CONFIG_SMP */ -EXPORT_SYMBOL_GPL(cpu_scaling); -EXPORT_SYMBOL_GPL(cpu_nonscaling); - -/* - * activate_idle_task - move idle task to the _front_ of runqueue. - */ -static inline void activate_idle_task(struct task_struct *p) -{ - enqueue_task_head(p); - grq.nr_running++; - inc_qnr(); -} - -static inline int normal_prio(struct task_struct *p) -{ - if (has_rt_policy(p)) - return MAX_RT_PRIO - 1 - p->rt_priority; - if (idleprio_task(p)) - return IDLE_PRIO; - if (iso_task(p)) - return ISO_PRIO; - return NORMAL_PRIO; -} - -/* - * Calculate the current priority, i.e. the priority - * taken into account by the scheduler. This value might - * be boosted by RT tasks as it will be RT if the task got - * RT-boosted. If not then it returns p->normal_prio. - */ -static int effective_prio(struct task_struct *p) -{ - p->normal_prio = normal_prio(p); - /* - * If we are RT tasks or we were boosted to RT priority, - * keep the priority unchanged. Otherwise, update priority - * to the normal priority: - */ - if (!rt_prio(p->prio)) - return p->normal_prio; - return p->prio; -} - -/* - * activate_task - move a task to the runqueue. Enter with grq locked. - */ -static void activate_task(struct task_struct *p, struct rq *rq) -{ - update_clocks(rq); - - /* - * Sleep time is in units of nanosecs, so shift by 20 to get a - * milliseconds-range estimation of the amount of time that the task - * spent sleeping: - */ - if (unlikely(prof_on == SLEEP_PROFILING)) { - if (p->state == TASK_UNINTERRUPTIBLE) - profile_hits(SLEEP_PROFILING, (void *)get_wchan(p), - (rq->clock_task - p->last_ran) >> 20); - } - - p->prio = effective_prio(p); - if (task_contributes_to_load(p)) - grq.nr_uninterruptible--; - enqueue_task(p); - grq.nr_running++; - inc_qnr(); -} - -static inline void clear_sticky(struct task_struct *p); - -/* - * deactivate_task - If it's running, it's not on the grq and we can just - * decrement the nr_running. Enter with grq locked. - */ -static inline void deactivate_task(struct task_struct *p) -{ - if (task_contributes_to_load(p)) - grq.nr_uninterruptible++; - grq.nr_running--; - clear_sticky(p); -} - -static ATOMIC_NOTIFIER_HEAD(task_migration_notifier); - -void register_task_migration_notifier(struct notifier_block *n) -{ - atomic_notifier_chain_register(&task_migration_notifier, n); -} - -#ifdef CONFIG_SMP -void set_task_cpu(struct task_struct *p, unsigned int cpu) -{ -#ifdef CONFIG_LOCKDEP - /* - * The caller should hold grq lock. - */ - WARN_ON_ONCE(debug_locks && !lockdep_is_held(&grq.lock)); -#endif - trace_sched_migrate_task(p, cpu); - if (task_cpu(p) != cpu) - perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0); - - /* - * After ->cpu is set up to a new value, task_grq_lock(p, ...) can be - * successfully executed on another CPU. We must ensure that updates of - * per-task data have been completed by this moment. - */ - smp_wmb(); - task_thread_info(p)->cpu = cpu; -} - -static inline void clear_sticky(struct task_struct *p) -{ - p->sticky = false; -} - -static inline bool task_sticky(struct task_struct *p) -{ - return p->sticky; -} - -/* Reschedule the best idle CPU that is not this one. */ -static void -resched_closest_idle(struct rq *rq, int cpu, struct task_struct *p) -{ - cpumask_t tmpmask; - - cpus_and(tmpmask, p->cpus_allowed, grq.cpu_idle_map); - cpu_clear(cpu, tmpmask); - if (cpus_empty(tmpmask)) - return; - resched_best_mask(cpu, rq, &tmpmask); -} - -/* - * We set the sticky flag on a task that is descheduled involuntarily meaning - * it is awaiting further CPU time. If the last sticky task is still sticky - * but unlucky enough to not be the next task scheduled, we unstick it and try - * to find it an idle CPU. Realtime tasks do not stick to minimise their - * latency at all times. - */ -static inline void -swap_sticky(struct rq *rq, int cpu, struct task_struct *p) -{ - if (rq->sticky_task) { - if (rq->sticky_task == p) { - p->sticky = true; - return; - } - if (task_sticky(rq->sticky_task)) { - clear_sticky(rq->sticky_task); - resched_closest_idle(rq, cpu, rq->sticky_task); - } - } - if (!rt_task(p)) { - p->sticky = true; - rq->sticky_task = p; - } else { - resched_closest_idle(rq, cpu, p); - rq->sticky_task = NULL; - } -} - -static inline void unstick_task(struct rq *rq, struct task_struct *p) -{ - rq->sticky_task = NULL; - clear_sticky(p); -} -#else -static inline void clear_sticky(struct task_struct *p) -{ -} - -static inline bool task_sticky(struct task_struct *p) -{ - return false; -} - -static inline void -swap_sticky(struct rq *rq, int cpu, struct task_struct *p) -{ -} - -static inline void unstick_task(struct rq *rq, struct task_struct *p) -{ -} -#endif - -/* - * Move a task off the global queue and take it to a cpu for it will - * become the running task. - */ -static inline void take_task(int cpu, struct task_struct *p) -{ - set_task_cpu(p, cpu); - dequeue_task(p); - clear_sticky(p); - dec_qnr(); -} - -/* - * Returns a descheduling task to the grq runqueue unless it is being - * deactivated. - */ -static inline void return_task(struct task_struct *p, bool deactivate) -{ - if (deactivate) - deactivate_task(p); - else { - inc_qnr(); - enqueue_task(p); - } -} - -/* - * resched_task - mark a task 'to be rescheduled now'. - * - * On UP this means the setting of the need_resched flag, on SMP it - * might also involve a cross-CPU call to trigger the scheduler on - * the target CPU. - */ -#ifdef CONFIG_SMP - -#ifndef tsk_is_polling -#define tsk_is_polling(t) 0 -#endif - -static void resched_task(struct task_struct *p) -{ - int cpu; - - assert_raw_spin_locked(&grq.lock); - - if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED))) - return; - - set_tsk_thread_flag(p, TIF_NEED_RESCHED); - - cpu = task_cpu(p); - if (cpu == smp_processor_id()) - return; - - /* NEED_RESCHED must be visible before we test polling */ - smp_mb(); - if (!tsk_is_polling(p)) - smp_send_reschedule(cpu); -} - -#else -static inline void resched_task(struct task_struct *p) -{ - assert_raw_spin_locked(&grq.lock); - set_tsk_need_resched(p); -} -#endif - -/** - * task_curr - is this task currently executing on a CPU? - * @p: the task in question. - * - * Return: 1 if the task is currently executing. 0 otherwise. - */ -inline int task_curr(const struct task_struct *p) -{ - return cpu_curr(task_cpu(p)) == p; -} - -#ifdef CONFIG_SMP -struct migration_req { - struct task_struct *task; - int dest_cpu; -}; - -/* - * wait_task_inactive - wait for a thread to unschedule. - * - * If @match_state is nonzero, it's the @p->state value just checked and - * not expected to change. If it changes, i.e. @p might have woken up, - * then return zero. When we succeed in waiting for @p to be off its CPU, - * we return a positive number (its total switch count). If a second call - * a short while later returns the same number, the caller can be sure that - * @p has remained unscheduled the whole time. - * - * The caller must ensure that the task *will* unschedule sometime soon, - * else this function might spin for a *long* time. This function can't - * be called with interrupts off, or it may introduce deadlock with - * smp_call_function() if an IPI is sent by the same process we are - * waiting to become inactive. - */ -unsigned long wait_task_inactive(struct task_struct *p, long match_state) -{ - unsigned long flags; - bool running, on_rq; - unsigned long ncsw; - struct rq *rq; - - for (;;) { - /* - * We do the initial early heuristics without holding - * any task-queue locks at all. We'll only try to get - * the runqueue lock when things look like they will - * work out! In the unlikely event rq is dereferenced - * since we're lockless, grab it again. - */ -#ifdef CONFIG_SMP -retry_rq: - rq = task_rq(p); - if (unlikely(!rq)) - goto retry_rq; -#else /* CONFIG_SMP */ - rq = task_rq(p); -#endif - /* - * If the task is actively running on another CPU - * still, just relax and busy-wait without holding - * any locks. - * - * NOTE! Since we don't hold any locks, it's not - * even sure that "rq" stays as the right runqueue! - * But we don't care, since this will return false - * if the runqueue has changed and p is actually now - * running somewhere else! - */ - while (task_running(p) && p == rq->curr) { - if (match_state && unlikely(p->state != match_state)) - return 0; - cpu_relax(); - } - - /* - * Ok, time to look more closely! We need the grq - * lock now, to be *sure*. If we're wrong, we'll - * just go back and repeat. - */ - rq = task_grq_lock(p, &flags); - trace_sched_wait_task(p); - running = task_running(p); - on_rq = task_queued(p); - ncsw = 0; - if (!match_state || p->state == match_state) - ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ - task_grq_unlock(&flags); - - /* - * If it changed from the expected state, bail out now. - */ - if (unlikely(!ncsw)) - break; - - /* - * Was it really running after all now that we - * checked with the proper locks actually held? - * - * Oops. Go back and try again.. - */ - if (unlikely(running)) { - cpu_relax(); - continue; - } - - /* - * It's not enough that it's not actively running, - * it must be off the runqueue _entirely_, and not - * preempted! - * - * So if it was still runnable (but just not actively - * running right now), it's preempted, and we should - * yield - it could be a while. - */ - if (unlikely(on_rq)) { - ktime_t to = ktime_set(0, NSEC_PER_SEC / HZ); - - set_current_state(TASK_UNINTERRUPTIBLE); - schedule_hrtimeout(&to, HRTIMER_MODE_REL); - continue; - } - - /* - * Ahh, all good. It wasn't running, and it wasn't - * runnable, which means that it will never become - * running in the future either. We're all done! - */ - break; - } - - return ncsw; -} - -/*** - * kick_process - kick a running thread to enter/exit the kernel - * @p: the to-be-kicked thread - * - * Cause a process which is running on another CPU to enter - * kernel-mode, without any delay. (to get signals handled.) - * - * NOTE: this function doesn't have to take the runqueue lock, - * because all it wants to ensure is that the remote task enters - * the kernel. If the IPI races and the task has been migrated - * to another CPU then no harm is done and the purpose has been - * achieved as well. - */ -void kick_process(struct task_struct *p) -{ - int cpu; - - preempt_disable(); - cpu = task_cpu(p); - if ((cpu != smp_processor_id()) && task_curr(p)) - smp_send_reschedule(cpu); - preempt_enable(); -} -EXPORT_SYMBOL_GPL(kick_process); -#endif - -#define rq_idle(rq) ((rq)->rq_prio == PRIO_LIMIT) - -/* - * RT tasks preempt purely on priority. SCHED_NORMAL tasks preempt on the - * basis of earlier deadlines. SCHED_IDLEPRIO don't preempt anything else or - * between themselves, they cooperatively multitask. An idle rq scores as - * prio PRIO_LIMIT so it is always preempted. - */ -static inline bool -can_preempt(struct task_struct *p, int prio, u64 deadline) -{ - /* Better static priority RT task or better policy preemption */ - if (p->prio < prio) - return true; - if (p->prio > prio) - return false; - /* SCHED_NORMAL, BATCH and ISO will preempt based on deadline */ - if (!deadline_before(p->deadline, deadline)) - return false; - return true; -} - -#ifdef CONFIG_SMP -#define cpu_online_map (*(cpumask_t *)cpu_online_mask) -#ifdef CONFIG_HOTPLUG_CPU -/* - * Check to see if there is a task that is affined only to offline CPUs but - * still wants runtime. This happens to kernel threads during suspend/halt and - * disabling of CPUs. - */ -static inline bool online_cpus(struct task_struct *p) -{ - return (likely(cpus_intersects(cpu_online_map, p->cpus_allowed))); -} -#else /* CONFIG_HOTPLUG_CPU */ -/* All available CPUs are always online without hotplug. */ -static inline bool online_cpus(struct task_struct *p) -{ - return true; -} -#endif - -/* - * Check to see if p can run on cpu, and if not, whether there are any online - * CPUs it can run on instead. - */ -static inline bool needs_other_cpu(struct task_struct *p, int cpu) -{ - if (unlikely(!cpu_isset(cpu, p->cpus_allowed))) - return true; - return false; -} - -/* - * When all else is equal, still prefer this_rq. - */ -static void try_preempt(struct task_struct *p, struct rq *this_rq) -{ - struct rq *highest_prio_rq = NULL; - int cpu, highest_prio; - u64 latest_deadline; - cpumask_t tmp; - - /* - * We clear the sticky flag here because for a task to have called - * try_preempt with the sticky flag enabled means some complicated - * re-scheduling has occurred and we should ignore the sticky flag. - */ - clear_sticky(p); - - if (suitable_idle_cpus(p)) { - resched_best_idle(p); - return; - } - - /* IDLEPRIO tasks never preempt anything but idle */ - if (p->policy == SCHED_IDLEPRIO) - return; - - if (likely(online_cpus(p))) - cpus_and(tmp, cpu_online_map, p->cpus_allowed); - else - return; - - highest_prio = latest_deadline = 0; - - for_each_cpu_mask(cpu, tmp) { - struct rq *rq; - int rq_prio; - - rq = cpu_rq(cpu); - rq_prio = rq->rq_prio; - if (rq_prio < highest_prio) - continue; - - if (rq_prio > highest_prio || - deadline_after(rq->rq_deadline, latest_deadline)) { - latest_deadline = rq->rq_deadline; - highest_prio = rq_prio; - highest_prio_rq = rq; - } - } - - if (likely(highest_prio_rq)) { - if (can_preempt(p, highest_prio, highest_prio_rq->rq_deadline)) - resched_task(highest_prio_rq->curr); - } -} -#else /* CONFIG_SMP */ -static inline bool needs_other_cpu(struct task_struct *p, int cpu) -{ - return false; -} - -static void try_preempt(struct task_struct *p, struct rq *this_rq) -{ - if (p->policy == SCHED_IDLEPRIO) - return; - if (can_preempt(p, uprq->rq_prio, uprq->rq_deadline)) - resched_task(uprq->curr); -} -#endif /* CONFIG_SMP */ - -static void -ttwu_stat(struct task_struct *p, int cpu, int wake_flags) -{ -#ifdef CONFIG_SCHEDSTATS - struct rq *rq = this_rq(); - -#ifdef CONFIG_SMP - int this_cpu = smp_processor_id(); - - if (cpu == this_cpu) - schedstat_inc(rq, ttwu_local); - else { - struct sched_domain *sd; - - rcu_read_lock(); - for_each_domain(this_cpu, sd) { - if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { - schedstat_inc(sd, ttwu_wake_remote); - break; - } - } - rcu_read_unlock(); - } - -#endif /* CONFIG_SMP */ - - schedstat_inc(rq, ttwu_count); -#endif /* CONFIG_SCHEDSTATS */ -} - -static inline void ttwu_activate(struct task_struct *p, struct rq *rq, - bool is_sync) -{ - activate_task(p, rq); - - /* - * Sync wakeups (i.e. those types of wakeups where the waker - * has indicated that it will leave the CPU in short order) - * don't trigger a preemption if there are no idle cpus, - * instead waiting for current to deschedule. - */ - if (!is_sync || suitable_idle_cpus(p)) - try_preempt(p, rq); -} - -static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq, - bool success) -{ - trace_sched_wakeup(p, success); - p->state = TASK_RUNNING; - - /* - * if a worker is waking up, notify workqueue. Note that on BFS, we - * don't really know what cpu it will be, so we fake it for - * wq_worker_waking_up :/ - */ - if ((p->flags & PF_WQ_WORKER) && success) - wq_worker_waking_up(p, cpu_of(rq)); -} - -#ifdef CONFIG_SMP -static void -ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags) -{ - ttwu_activate(p, rq, false); - ttwu_post_activation(p, rq, true); -} - -static void sched_ttwu_pending(void) -{ - struct rq *rq = this_rq(); - struct llist_node *llist = llist_del_all(&rq->wake_list); - struct task_struct *p; - - grq_lock(); - - while (llist) { - p = llist_entry(llist, struct task_struct, wake_entry); - llist = llist_next(llist); - ttwu_do_activate(rq, p, 0); - } - - grq_unlock(); -} - -void scheduler_ipi(void) -{ - if (llist_empty(&this_rq()->wake_list)) - return; - - /* - * Not all reschedule IPI handlers call irq_enter/irq_exit, since - * traditionally all their work was done from the interrupt return - * path. Now that we actually do some work, we need to make sure - * we do call them. - * - * Some archs already do call them, luckily irq_enter/exit nest - * properly. - * - * Arguably we should visit all archs and update all handlers, - * however a fair share of IPIs are still resched only so this would - * somewhat pessimize the simple resched case. - */ - irq_enter(); - sched_ttwu_pending(); - - irq_exit(); -} -#endif /* CONFIG_SMP */ - -/* - * wake flags - */ -#define WF_SYNC 0x01 /* waker goes to sleep after wakeup */ -#define WF_FORK 0x02 /* child wakeup after fork */ -#define WF_MIGRATED 0x4 /* internal use, task got migrated */ - -/*** - * try_to_wake_up - wake up a thread - * @p: the thread to be awakened - * @state: the mask of task states that can be woken - * @wake_flags: wake modifier flags (WF_*) - * - * Put it on the run-queue if it's not already there. The "current" - * thread is always on the run-queue (except when the actual - * re-schedule is in progress), and as such you're allowed to do - * the simpler "current->state = TASK_RUNNING" to mark yourself - * runnable without the overhead of this. - * - * Return: %true if @p was woken up, %false if it was already running. - * or @state didn't match @p's state. - */ -static bool try_to_wake_up(struct task_struct *p, unsigned int state, - int wake_flags) -{ - bool success = false; - unsigned long flags; - struct rq *rq; - int cpu; - - get_cpu(); - - /* - * If we are going to wake up a thread waiting for CONDITION we - * need to ensure that CONDITION=1 done by the caller can not be - * reordered with p->state check below. This pairs with mb() in - * set_current_state() the waiting thread does. - */ - smp_mb__before_spinlock(); - - /* - * No need to do time_lock_grq as we only need to update the rq clock - * if we activate the task - */ - rq = task_grq_lock(p, &flags); - cpu = task_cpu(p); - - /* state is a volatile long, どうして、分からない */ - if (!((unsigned int)p->state & state)) - goto out_unlock; - - if (task_queued(p) || task_running(p)) - goto out_running; - - ttwu_activate(p, rq, wake_flags & WF_SYNC); - success = true; - -out_running: - ttwu_post_activation(p, rq, success); -out_unlock: - task_grq_unlock(&flags); - - ttwu_stat(p, cpu, wake_flags); - - put_cpu(); - - return success; -} - -/** - * try_to_wake_up_local - try to wake up a local task with grq lock held - * @p: the thread to be awakened - * - * Put @p on the run-queue if it's not already there. The caller must - * ensure that grq is locked and, @p is not the current task. - * grq stays locked over invocation. - */ -static void try_to_wake_up_local(struct task_struct *p) -{ - struct rq *rq = task_rq(p); - bool success = false; - - lockdep_assert_held(&grq.lock); - - if (!(p->state & TASK_NORMAL)) - return; - - if (!task_queued(p)) { - if (likely(!task_running(p))) { - schedstat_inc(rq, ttwu_count); - schedstat_inc(rq, ttwu_local); - } - ttwu_activate(p, rq, false); - ttwu_stat(p, smp_processor_id(), 0); - success = true; - } - ttwu_post_activation(p, rq, success); -} - -/** - * wake_up_process - Wake up a specific process - * @p: The process to be woken up. - * - * Attempt to wake up the nominated process and move it to the set of runnable - * processes. - * - * Return: 1 if the process was woken up, 0 if it was already running. - * - * It may be assumed that this function implies a write memory barrier before - * changing the task state if and only if any tasks are woken up. - */ -int wake_up_process(struct task_struct *p) -{ - WARN_ON(task_is_stopped_or_traced(p)); - return try_to_wake_up(p, TASK_NORMAL, 0); -} -EXPORT_SYMBOL(wake_up_process); - -int wake_up_state(struct task_struct *p, unsigned int state) -{ - return try_to_wake_up(p, state, 0); -} - -static void time_slice_expired(struct task_struct *p); - -/* - * Perform scheduler related setup for a newly forked process p. - * p is forked by current. - */ -void sched_fork(struct task_struct *p) -{ -#ifdef CONFIG_PREEMPT_NOTIFIERS - INIT_HLIST_HEAD(&p->preempt_notifiers); -#endif - /* - * The process state is set to the same value of the process executing - * do_fork() code. That is running. This guarantees that nobody will - * actually run it, and a signal or other external event cannot wake - * it up and insert it on the runqueue either. - */ - - /* Should be reset in fork.c but done here for ease of bfs patching */ - p->utime = - p->stime = - p->utimescaled = - p->stimescaled = - p->sched_time = - p->stime_pc = - p->utime_pc = 0; - - /* - * Revert to default priority/policy on fork if requested. - */ - if (unlikely(p->sched_reset_on_fork)) { - if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) { - p->policy = SCHED_NORMAL; - p->normal_prio = normal_prio(p); - } - - if (PRIO_TO_NICE(p->static_prio) < 0) { - p->static_prio = NICE_TO_PRIO(0); - p->normal_prio = p->static_prio; - } - - /* - * We don't need the reset flag anymore after the fork. It has - * fulfilled its duty: - */ - p->sched_reset_on_fork = 0; - } - - INIT_LIST_HEAD(&p->run_list); -#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) - if (unlikely(sched_info_on())) - memset(&p->sched_info, 0, sizeof(p->sched_info)); -#endif - p->on_cpu = false; - clear_sticky(p); - -#ifdef CONFIG_PREEMPT_COUNT - /* Want to start with kernel preemption disabled. */ - task_thread_info(p)->preempt_count = 1; -#endif -} - -/* - * wake_up_new_task - wake up a newly created task for the first time. - * - * This function will do some initial scheduler statistics housekeeping - * that must be done for every newly created context, then puts the task - * on the runqueue and wakes it. - */ -void wake_up_new_task(struct task_struct *p) -{ - struct task_struct *parent; - unsigned long flags; - struct rq *rq; - - parent = p->parent; - rq = task_grq_lock(p, &flags); - - /* - * Reinit new task deadline as its creator deadline could have changed - * since call to dup_task_struct(). - */ - p->deadline = rq->rq_deadline; - - /* - * If the task is a new process, current and parent are the same. If - * the task is a new thread in the thread group, it will have much more - * in common with current than with the parent. - */ - set_task_cpu(p, task_cpu(rq->curr)); - - /* - * Make sure we do not leak PI boosting priority to the child. - */ - p->prio = rq->curr->normal_prio; - - activate_task(p, rq); - trace_sched_wakeup_new(p, 1); - if (unlikely(p->policy == SCHED_FIFO)) - goto after_ts_init; - - /* - * Share the timeslice between parent and child, thus the - * total amount of pending timeslices in the system doesn't change, - * resulting in more scheduling fairness. If it's negative, it won't - * matter since that's the same as being 0. current's time_slice is - * actually in rq_time_slice when it's running, as is its last_ran - * value. rq->rq_deadline is only modified within schedule() so it - * is always equal to current->deadline. - */ - p->last_ran = rq->rq_last_ran; - if (likely(rq->rq_time_slice >= RESCHED_US * 2)) { - rq->rq_time_slice /= 2; - p->time_slice = rq->rq_time_slice; -after_ts_init: - if (rq->curr == parent && !suitable_idle_cpus(p)) { - /* - * The VM isn't cloned, so we're in a good position to - * do child-runs-first in anticipation of an exec. This - * usually avoids a lot of COW overhead. - */ - set_tsk_need_resched(parent); - } else - try_preempt(p, rq); - } else { - if (rq->curr == parent) { - /* - * Forking task has run out of timeslice. Reschedule it and - * start its child with a new time slice and deadline. The - * child will end up running first because its deadline will - * be slightly earlier. - */ - rq->rq_time_slice = 0; - set_tsk_need_resched(parent); - } - time_slice_expired(p); - } - task_grq_unlock(&flags); -} - -#ifdef CONFIG_PREEMPT_NOTIFIERS - -/** - * preempt_notifier_register - tell me when current is being preempted & rescheduled - * @notifier: notifier struct to register - */ -void preempt_notifier_register(struct preempt_notifier *notifier) -{ - hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); -} -EXPORT_SYMBOL_GPL(preempt_notifier_register); - -/** - * preempt_notifier_unregister - no longer interested in preemption notifications - * @notifier: notifier struct to unregister - * - * This is safe to call from within a preemption notifier. - */ -void preempt_notifier_unregister(struct preempt_notifier *notifier) -{ - hlist_del(¬ifier->link); -} -EXPORT_SYMBOL_GPL(preempt_notifier_unregister); - -static void fire_sched_in_preempt_notifiers(struct task_struct *curr) -{ - struct preempt_notifier *notifier; - - hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) - notifier->ops->sched_in(notifier, raw_smp_processor_id()); -} - -static void -fire_sched_out_preempt_notifiers(struct task_struct *curr, - struct task_struct *next) -{ - struct preempt_notifier *notifier; - - hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) - notifier->ops->sched_out(notifier, next); -} - -#else /* !CONFIG_PREEMPT_NOTIFIERS */ - -static void fire_sched_in_preempt_notifiers(struct task_struct *curr) -{ -} - -static void -fire_sched_out_preempt_notifiers(struct task_struct *curr, - struct task_struct *next) -{ -} - -#endif /* CONFIG_PREEMPT_NOTIFIERS */ - -/** - * prepare_task_switch - prepare to switch tasks - * @rq: the runqueue preparing to switch - * @next: the task we are going to switch to. - * - * This is called with the rq lock held and interrupts off. It must - * be paired with a subsequent finish_task_switch after the context - * switch. - * - * prepare_task_switch sets up locking and calls architecture specific - * hooks. - */ -static inline void -prepare_task_switch(struct rq *rq, struct task_struct *prev, - struct task_struct *next) -{ - sched_info_switch(prev, next); - perf_event_task_sched_out(prev, next); - fire_sched_out_preempt_notifiers(prev, next); - prepare_lock_switch(rq, next); - prepare_arch_switch(next); - trace_sched_switch(prev, next); -} - -/** - * finish_task_switch - clean up after a task-switch - * @rq: runqueue associated with task-switch - * @prev: the thread we just switched away from. - * - * finish_task_switch must be called after the context switch, paired - * with a prepare_task_switch call before the context switch. - * finish_task_switch will reconcile locking set up by prepare_task_switch, - * and do any other architecture-specific cleanup actions. - * - * Note that we may have delayed dropping an mm in context_switch(). If - * so, we finish that here outside of the runqueue lock. (Doing it - * with the lock held can cause deadlocks; see schedule() for - * details.) - */ -static inline void finish_task_switch(struct rq *rq, struct task_struct *prev) - __releases(grq.lock) -{ - struct mm_struct *mm = rq->prev_mm; - long prev_state; - - rq->prev_mm = NULL; - - /* - * A task struct has one reference for the use as "current". - * If a task dies, then it sets TASK_DEAD in tsk->state and calls - * schedule one last time. The schedule call will never return, and - * the scheduled task must drop that reference. - * The test for TASK_DEAD must occur while the runqueue locks are - * still held, otherwise prev could be scheduled on another cpu, die - * there before we look at prev->state, and then the reference would - * be dropped twice. - * Manfred Spraul - */ - prev_state = prev->state; - vtime_task_switch(prev); - finish_arch_switch(prev); - perf_event_task_sched_in(prev, current); - finish_lock_switch(rq, prev); - finish_arch_post_lock_switch(); - - fire_sched_in_preempt_notifiers(current); - if (mm) - mmdrop(mm); - if (unlikely(prev_state == TASK_DEAD)) { - /* - * Remove function-return probe instances associated with this - * task and put them back on the free list. - */ - kprobe_flush_task(prev); - put_task_struct(prev); - } -} - -/** - * schedule_tail - first thing a freshly forked thread must call. - * @prev: the thread we just switched away from. - */ -asmlinkage void schedule_tail(struct task_struct *prev) - __releases(grq.lock) -{ - struct rq *rq = this_rq(); - - finish_task_switch(rq, prev); -#ifdef __ARCH_WANT_UNLOCKED_CTXSW - /* In this case, finish_task_switch does not reenable preemption */ - preempt_enable(); -#endif - if (current->set_child_tid) - put_user(current->pid, current->set_child_tid); -} - -/* - * context_switch - switch to the new MM and the new - * thread's register state. - */ -static inline void -context_switch(struct rq *rq, struct task_struct *prev, - struct task_struct *next) -{ - struct mm_struct *mm, *oldmm; - - prepare_task_switch(rq, prev, next); - - mm = next->mm; - oldmm = prev->active_mm; - /* - * For paravirt, this is coupled with an exit in switch_to to - * combine the page table reload and the switch backend into - * one hypercall. - */ - arch_start_context_switch(prev); - - if (!mm) { - next->active_mm = oldmm; - atomic_inc(&oldmm->mm_count); - enter_lazy_tlb(oldmm, next); - } else - switch_mm(oldmm, mm, next); - - if (!prev->mm) { - prev->active_mm = NULL; - rq->prev_mm = oldmm; - } - /* - * Since the runqueue lock will be released by the next - * task (which is an invalid locking op but in the case - * of the scheduler it's an obvious special-case), so we - * do an early lockdep release here: - */ -#ifndef __ARCH_WANT_UNLOCKED_CTXSW - spin_release(&grq.lock.dep_map, 1, _THIS_IP_); -#endif - - /* Here we just switch the register state and the stack. */ - context_tracking_task_switch(prev, next); - switch_to(prev, next, prev); - - barrier(); - /* - * this_rq must be evaluated again because prev may have moved - * CPUs since it called schedule(), thus the 'rq' on its stack - * frame will be invalid. - */ - finish_task_switch(this_rq(), prev); -} - -/* - * nr_running, nr_uninterruptible and nr_context_switches: - * - * externally visible scheduler statistics: current number of runnable - * threads, total number of context switches performed since bootup. All are - * measured without grabbing the grq lock but the occasional inaccurate result - * doesn't matter so long as it's positive. - */ -unsigned long nr_running(void) -{ - long nr = grq.nr_running; - - if (unlikely(nr < 0)) - nr = 0; - return (unsigned long)nr; -} - -static unsigned long nr_uninterruptible(void) -{ - long nu = grq.nr_uninterruptible; - - if (unlikely(nu < 0)) - nu = 0; - return nu; -} - -unsigned long long nr_context_switches(void) -{ - long long ns = grq.nr_switches; - - /* This is of course impossible */ - if (unlikely(ns < 0)) - ns = 1; - return (unsigned long long)ns; -} - -unsigned long nr_iowait(void) -{ - unsigned long i, sum = 0; - - for_each_possible_cpu(i) - sum += atomic_read(&cpu_rq(i)->nr_iowait); - - return sum; -} - -unsigned long nr_iowait_cpu(int cpu) -{ - struct rq *this = cpu_rq(cpu); - return atomic_read(&this->nr_iowait); -} - -unsigned long nr_active(void) -{ - return nr_running() + nr_uninterruptible(); -} - -/* Beyond a task running on this CPU, load is equal everywhere on BFS */ -unsigned long this_cpu_load(void) -{ - return this_rq()->rq_running + - ((queued_notrunning() + nr_uninterruptible()) / grq.noc); -} - -/* Variables and functions for calc_load */ -static unsigned long calc_load_update; -unsigned long avenrun[3]; -EXPORT_SYMBOL(avenrun); - -/** - * get_avenrun - get the load average array - * @loads: pointer to dest load array - * @offset: offset to add - * @shift: shift count to shift the result left - * - * These values are estimates at best, so no need for locking. - */ -void get_avenrun(unsigned long *loads, unsigned long offset, int shift) -{ - loads[0] = (avenrun[0] + offset) << shift; - loads[1] = (avenrun[1] + offset) << shift; - loads[2] = (avenrun[2] + offset) << shift; -} - -static unsigned long -calc_load(unsigned long load, unsigned long exp, unsigned long active) -{ - load *= exp; - load += active * (FIXED_1 - exp); - return load >> FSHIFT; -} - -/* - * calc_load - update the avenrun load estimates every LOAD_FREQ seconds. - */ -void calc_global_load(unsigned long ticks) -{ - long active; - - if (time_before(jiffies, calc_load_update)) - return; - active = nr_active() * FIXED_1; - - avenrun[0] = calc_load(avenrun[0], EXP_1, active); - avenrun[1] = calc_load(avenrun[1], EXP_5, active); - avenrun[2] = calc_load(avenrun[2], EXP_15, active); - - calc_load_update = jiffies + LOAD_FREQ; -} - -DEFINE_PER_CPU(struct kernel_stat, kstat); -DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); - -EXPORT_PER_CPU_SYMBOL(kstat); -EXPORT_PER_CPU_SYMBOL(kernel_cpustat); - -#ifdef CONFIG_IRQ_TIME_ACCOUNTING - -/* - * There are no locks covering percpu hardirq/softirq time. - * They are only modified in account_system_vtime, on corresponding CPU - * with interrupts disabled. So, writes are safe. - * They are read and saved off onto struct rq in update_rq_clock(). - * This may result in other CPU reading this CPU's irq time and can - * race with irq/account_system_vtime on this CPU. We would either get old - * or new value with a side effect of accounting a slice of irq time to wrong - * task when irq is in progress while we read rq->clock. That is a worthy - * compromise in place of having locks on each irq in account_system_time. - */ -static DEFINE_PER_CPU(u64, cpu_hardirq_time); -static DEFINE_PER_CPU(u64, cpu_softirq_time); - -static DEFINE_PER_CPU(u64, irq_start_time); -static int sched_clock_irqtime; - -void enable_sched_clock_irqtime(void) -{ - sched_clock_irqtime = 1; -} - -void disable_sched_clock_irqtime(void) -{ - sched_clock_irqtime = 0; -} - -#ifndef CONFIG_64BIT -static DEFINE_PER_CPU(seqcount_t, irq_time_seq); - -static inline void irq_time_write_begin(void) -{ - __this_cpu_inc(irq_time_seq.sequence); - smp_wmb(); -} - -static inline void irq_time_write_end(void) -{ - smp_wmb(); - __this_cpu_inc(irq_time_seq.sequence); -} - -static inline u64 irq_time_read(int cpu) -{ - u64 irq_time; - unsigned seq; - - do { - seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu)); - irq_time = per_cpu(cpu_softirq_time, cpu) + - per_cpu(cpu_hardirq_time, cpu); - } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq)); - - return irq_time; -} -#else /* CONFIG_64BIT */ -static inline void irq_time_write_begin(void) -{ -} - -static inline void irq_time_write_end(void) -{ -} - -static inline u64 irq_time_read(int cpu) -{ - return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu); -} -#endif /* CONFIG_64BIT */ - -/* - * Called before incrementing preempt_count on {soft,}irq_enter - * and before decrementing preempt_count on {soft,}irq_exit. - */ -void irqtime_account_irq(struct task_struct *curr) -{ - unsigned long flags; - s64 delta; - int cpu; - - if (!sched_clock_irqtime) - return; - - local_irq_save(flags); - - cpu = smp_processor_id(); - delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time); - __this_cpu_add(irq_start_time, delta); - - irq_time_write_begin(); - /* - * We do not account for softirq time from ksoftirqd here. - * We want to continue accounting softirq time to ksoftirqd thread - * in that case, so as not to confuse scheduler with a special task - * that do not consume any time, but still wants to run. - */ - if (hardirq_count()) - __this_cpu_add(cpu_hardirq_time, delta); - else if (in_serving_softirq() && curr != this_cpu_ksoftirqd()) - __this_cpu_add(cpu_softirq_time, delta); - - irq_time_write_end(); - local_irq_restore(flags); -} -EXPORT_SYMBOL_GPL(irqtime_account_irq); - -#endif /* CONFIG_IRQ_TIME_ACCOUNTING */ - -#ifdef CONFIG_PARAVIRT -static inline u64 steal_ticks(u64 steal) -{ - if (unlikely(steal > NSEC_PER_SEC)) - return div_u64(steal, TICK_NSEC); - - return __iter_div_u64_rem(steal, TICK_NSEC, &steal); -} -#endif - -static void update_rq_clock_task(struct rq *rq, s64 delta) -{ -/* - * In theory, the compile should just see 0 here, and optimize out the call - * to sched_rt_avg_update. But I don't trust it... - */ -#ifdef CONFIG_IRQ_TIME_ACCOUNTING - s64 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; - - /* - * Since irq_time is only updated on {soft,}irq_exit, we might run into - * this case when a previous update_rq_clock() happened inside a - * {soft,}irq region. - * - * When this happens, we stop ->clock_task and only update the - * prev_irq_time stamp to account for the part that fit, so that a next - * update will consume the rest. This ensures ->clock_task is - * monotonic. - * - * It does however cause some slight miss-attribution of {soft,}irq - * time, a more accurate solution would be to update the irq_time using - * the current rq->clock timestamp, except that would require using - * atomic ops. - */ - if (irq_delta > delta) - irq_delta = delta; - - rq->prev_irq_time += irq_delta; - delta -= irq_delta; -#endif -#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING - if (static_key_false((¶virt_steal_rq_enabled))) { - s64 steal = paravirt_steal_clock(cpu_of(rq)); - u64 st; - - steal -= rq->prev_steal_time_rq; - - if (unlikely(steal > delta)) - steal = delta; - - st = steal_ticks(steal); - steal = st * TICK_NSEC; - - rq->prev_steal_time_rq += steal; - - delta -= steal; - } -#endif - - rq->clock_task += delta; -} - -#ifndef nsecs_to_cputime -# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs) -#endif - -#ifdef CONFIG_IRQ_TIME_ACCOUNTING -static void irqtime_account_hi_si(void) -{ - u64 *cpustat = kcpustat_this_cpu->cpustat; - u64 latest_ns; - - latest_ns = nsecs_to_cputime64(this_cpu_read(cpu_hardirq_time)); - if (latest_ns > cpustat[CPUTIME_IRQ]) - cpustat[CPUTIME_IRQ] += (__force u64)cputime_one_jiffy; - - latest_ns = nsecs_to_cputime64(this_cpu_read(cpu_softirq_time)); - if (latest_ns > cpustat[CPUTIME_SOFTIRQ]) - cpustat[CPUTIME_SOFTIRQ] += (__force u64)cputime_one_jiffy; -} -#else /* CONFIG_IRQ_TIME_ACCOUNTING */ - -#define sched_clock_irqtime (0) - -static inline void irqtime_account_hi_si(void) -{ -} -#endif /* CONFIG_IRQ_TIME_ACCOUNTING */ - -static __always_inline bool steal_account_process_tick(void) -{ -#ifdef CONFIG_PARAVIRT - if (static_key_false(¶virt_steal_enabled)) { - u64 steal, st = 0; - - steal = paravirt_steal_clock(smp_processor_id()); - steal -= this_rq()->prev_steal_time; - - st = steal_ticks(steal); - this_rq()->prev_steal_time += st * TICK_NSEC; - - account_steal_time(st); - return st; - } -#endif - return false; -} - -/* - * Accumulate raw cputime values of dead tasks (sig->[us]time) and live - * tasks (sum on group iteration) belonging to @tsk's group. - */ -void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times) -{ - struct signal_struct *sig = tsk->signal; - cputime_t utime, stime; - struct task_struct *t; - - times->utime = sig->utime; - times->stime = sig->stime; - times->sum_exec_runtime = sig->sum_sched_runtime; - - rcu_read_lock(); - /* make sure we can trust tsk->thread_group list */ - if (!likely(pid_alive(tsk))) - goto out; - - t = tsk; - do { - task_cputime(t, &utime, &stime); - times->utime += utime; - times->stime += stime; - times->sum_exec_runtime += task_sched_runtime(t); - } while_each_thread(tsk, t); -out: - rcu_read_unlock(); -} - -/* - * On each tick, see what percentage of that tick was attributed to each - * component and add the percentage to the _pc values. Once a _pc value has - * accumulated one tick's worth, account for that. This means the total - * percentage of load components will always be 128 (pseudo 100) per tick. - */ -static void pc_idle_time(struct rq *rq, struct task_struct *idle, unsigned long pc) -{ - u64 *cpustat = kcpustat_this_cpu->cpustat; - - if (atomic_read(&rq->nr_iowait) > 0) { - rq->iowait_pc += pc; - if (rq->iowait_pc >= 128) { - cpustat[CPUTIME_IOWAIT] += (__force u64)cputime_one_jiffy * rq->iowait_pc / 128; - rq->iowait_pc %= 128; - } - } else { - rq->idle_pc += pc; - if (rq->idle_pc >= 128) { - cpustat[CPUTIME_IDLE] += (__force u64)cputime_one_jiffy * rq->idle_pc / 128; - rq->idle_pc %= 128; - } - } - acct_update_integrals(idle); -} - -static void -pc_system_time(struct rq *rq, struct task_struct *p, int hardirq_offset, - unsigned long pc, unsigned long ns) -{ - u64 *cpustat = kcpustat_this_cpu->cpustat; - cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); - - p->stime_pc += pc; - if (p->stime_pc >= 128) { - int jiffs = p->stime_pc / 128; - - p->stime_pc %= 128; - p->stime += (__force u64)cputime_one_jiffy * jiffs; - p->stimescaled += one_jiffy_scaled * jiffs; - account_group_system_time(p, cputime_one_jiffy * jiffs); - } - p->sched_time += ns; - /* - * Do not update the cputimer if the task is already released by - * release_task(). - * - * This could be executed if a tick happens when a task is inside - * do_exit() between the call to release_task() and its final - * schedule() call for autoreaping tasks. - */ - if (likely(p->sighand)) - account_group_exec_runtime(p, ns); - - if (hardirq_count() - hardirq_offset) { - rq->irq_pc += pc; - if (rq->irq_pc >= 128) { - cpustat[CPUTIME_IRQ] += (__force u64)cputime_one_jiffy * rq->irq_pc / 128; - rq->irq_pc %= 128; - } - } else if (in_serving_softirq()) { - rq->softirq_pc += pc; - if (rq->softirq_pc >= 128) { - cpustat[CPUTIME_SOFTIRQ] += (__force u64)cputime_one_jiffy * rq->softirq_pc / 128; - rq->softirq_pc %= 128; - } - } else { - rq->system_pc += pc; - if (rq->system_pc >= 128) { - cpustat[CPUTIME_SYSTEM] += (__force u64)cputime_one_jiffy * rq->system_pc / 128; - rq->system_pc %= 128; - } - } - acct_update_integrals(p); -} - -static void pc_user_time(struct rq *rq, struct task_struct *p, - unsigned long pc, unsigned long ns) -{ - u64 *cpustat = kcpustat_this_cpu->cpustat; - cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); - - p->utime_pc += pc; - if (p->utime_pc >= 128) { - int jiffs = p->utime_pc / 128; - - p->utime_pc %= 128; - p->utime += (__force u64)cputime_one_jiffy * jiffs; - p->utimescaled += one_jiffy_scaled * jiffs; - account_group_user_time(p, cputime_one_jiffy * jiffs); - } - p->sched_time += ns; - /* - * Do not update the cputimer if the task is already released by - * release_task(). - * - * it would preferable to defer the autoreap release_task - * after the last context switch but harder to do. - */ - if (likely(p->sighand)) - account_group_exec_runtime(p, ns); - - if (this_cpu_ksoftirqd() == p) { - /* - * ksoftirqd time do not get accounted in cpu_softirq_time. - * So, we have to handle it separately here. - */ - rq->softirq_pc += pc; - if (rq->softirq_pc >= 128) { - cpustat[CPUTIME_SOFTIRQ] += (__force u64)cputime_one_jiffy * rq->softirq_pc / 128; - rq->softirq_pc %= 128; - } - } - - if (TASK_NICE(p) > 0 || idleprio_task(p)) { - rq->nice_pc += pc; - if (rq->nice_pc >= 128) { - cpustat[CPUTIME_NICE] += (__force u64)cputime_one_jiffy * rq->nice_pc / 128; - rq->nice_pc %= 128; - } - } else { - rq->user_pc += pc; - if (rq->user_pc >= 128) { - cpustat[CPUTIME_USER] += (__force u64)cputime_one_jiffy * rq->user_pc / 128; - rq->user_pc %= 128; - } - } - acct_update_integrals(p); -} - -/* - * Convert nanoseconds to pseudo percentage of one tick. Use 128 for fast - * shifts instead of 100 - */ -#define NS_TO_PC(NS) (NS * 128 / JIFFY_NS) - -/* - * This is called on clock ticks. - * Bank in p->sched_time the ns elapsed since the last tick or switch. - * CPU scheduler quota accounting is also performed here in microseconds. - */ -static void -update_cpu_clock_tick(struct rq *rq, struct task_struct *p) -{ - long account_ns = rq->clock_task - rq->rq_last_ran; - struct task_struct *idle = rq->idle; - unsigned long account_pc; - - if (unlikely(account_ns < 0) || steal_account_process_tick()) - goto ts_account; - - account_pc = NS_TO_PC(account_ns); - - /* Accurate tick timekeeping */ - if (user_mode(get_irq_regs())) - pc_user_time(rq, p, account_pc, account_ns); - else if (p != idle || (irq_count() != HARDIRQ_OFFSET)) - pc_system_time(rq, p, HARDIRQ_OFFSET, - account_pc, account_ns); - else - pc_idle_time(rq, idle, account_pc); - - if (sched_clock_irqtime) - irqtime_account_hi_si(); - -ts_account: - /* time_slice accounting is done in usecs to avoid overflow on 32bit */ - if (rq->rq_policy != SCHED_FIFO && p != idle) { - s64 time_diff = rq->clock - rq->timekeep_clock; - - niffy_diff(&time_diff, 1); - rq->rq_time_slice -= NS_TO_US(time_diff); - } - - rq->rq_last_ran = rq->clock_task; - rq->timekeep_clock = rq->clock; -} - -/* - * This is called on context switches. - * Bank in p->sched_time the ns elapsed since the last tick or switch. - * CPU scheduler quota accounting is also performed here in microseconds. - */ -static void -update_cpu_clock_switch(struct rq *rq, struct task_struct *p) -{ - long account_ns = rq->clock_task - rq->rq_last_ran; - struct task_struct *idle = rq->idle; - unsigned long account_pc; - - if (unlikely(account_ns < 0)) - goto ts_account; - - account_pc = NS_TO_PC(account_ns); - - /* Accurate subtick timekeeping */ - if (p != idle) { - pc_user_time(rq, p, account_pc, account_ns); - } - else - pc_idle_time(rq, idle, account_pc); - -ts_account: - /* time_slice accounting is done in usecs to avoid overflow on 32bit */ - if (rq->rq_policy != SCHED_FIFO && p != idle) { - s64 time_diff = rq->clock - rq->timekeep_clock; - - niffy_diff(&time_diff, 1); - rq->rq_time_slice -= NS_TO_US(time_diff); - } - - rq->rq_last_ran = rq->clock_task; - rq->timekeep_clock = rq->clock; -} - -/* - * Return any ns on the sched_clock that have not yet been accounted in - * @p in case that task is currently running. - * - * Called with task_grq_lock() held. - */ -static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq) -{ - u64 ns = 0; - - if (p == rq->curr) { - update_clocks(rq); - ns = rq->clock_task - rq->rq_last_ran; - if (unlikely((s64)ns < 0)) - ns = 0; - } - - return ns; -} - -unsigned long long task_delta_exec(struct task_struct *p) -{ - unsigned long flags; - struct rq *rq; - u64 ns; - - rq = task_grq_lock(p, &flags); - ns = do_task_delta_exec(p, rq); - task_grq_unlock(&flags); - - return ns; -} - -/* - * Return accounted runtime for the task. - * Return separately the current's pending runtime that have not been - * accounted yet. - * - * grq lock already acquired. - */ -unsigned long long task_sched_runtime(struct task_struct *p) -{ - unsigned long flags; - struct rq *rq; - u64 ns; - - rq = task_grq_lock(p, &flags); - ns = p->sched_time + do_task_delta_exec(p, rq); - task_grq_unlock(&flags); - - return ns; -} - -/* - * Return accounted runtime for the task. - * Return separately the current's pending runtime that have not been - * accounted yet. - */ -unsigned long long task_sched_runtime_nodelta(struct task_struct *p, unsigned long long *delta) -{ - unsigned long flags; - struct rq *rq; - u64 ns; - - rq = task_grq_lock(p, &flags); - ns = p->sched_time; - *delta = do_task_delta_exec(p, rq); - task_grq_unlock(&flags); - - return ns; -} - -/* Compatibility crap */ -void account_user_time(struct task_struct *p, cputime_t cputime, - cputime_t cputime_scaled) -{ -} - -void account_idle_time(cputime_t cputime) -{ -} - -void update_cpu_load_nohz(void) -{ -} - -#ifdef CONFIG_NO_HZ_COMMON -void calc_load_enter_idle(void) -{ -} - -void calc_load_exit_idle(void) -{ -} -#endif /* CONFIG_NO_HZ_COMMON */ - -/* - * Account guest cpu time to a process. - * @p: the process that the cpu time gets accounted to - * @cputime: the cpu time spent in virtual machine since the last update - * @cputime_scaled: cputime scaled by cpu frequency - */ -static void account_guest_time(struct task_struct *p, cputime_t cputime, - cputime_t cputime_scaled) -{ - u64 *cpustat = kcpustat_this_cpu->cpustat; - - /* Add guest time to process. */ - p->utime += (__force u64)cputime; - p->utimescaled += (__force u64)cputime_scaled; - account_group_user_time(p, cputime); - p->gtime += (__force u64)cputime; - - /* Add guest time to cpustat. */ - if (TASK_NICE(p) > 0) { - cpustat[CPUTIME_NICE] += (__force u64)cputime; - cpustat[CPUTIME_GUEST_NICE] += (__force u64)cputime; - } else { - cpustat[CPUTIME_USER] += (__force u64)cputime; - cpustat[CPUTIME_GUEST] += (__force u64)cputime; - } -} - -/* - * Account system cpu time to a process and desired cpustat field - * @p: the process that the cpu time gets accounted to - * @cputime: the cpu time spent in kernel space since the last update - * @cputime_scaled: cputime scaled by cpu frequency - * @target_cputime64: pointer to cpustat field that has to be updated - */ -static inline -void __account_system_time(struct task_struct *p, cputime_t cputime, - cputime_t cputime_scaled, cputime64_t *target_cputime64) -{ - /* Add system time to process. */ - p->stime += (__force u64)cputime; - p->stimescaled += (__force u64)cputime_scaled; - account_group_system_time(p, cputime); - - /* Add system time to cpustat. */ - *target_cputime64 += (__force u64)cputime; - - /* Account for system time used */ - acct_update_integrals(p); -} - -/* - * Account system cpu time to a process. - * @p: the process that the cpu time gets accounted to - * @hardirq_offset: the offset to subtract from hardirq_count() - * @cputime: the cpu time spent in kernel space since the last update - * @cputime_scaled: cputime scaled by cpu frequency - * This is for guest only now. - */ -void account_system_time(struct task_struct *p, int hardirq_offset, - cputime_t cputime, cputime_t cputime_scaled) -{ - - if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) - account_guest_time(p, cputime, cputime_scaled); -} - -/* - * Account for involuntary wait time. - * @steal: the cpu time spent in involuntary wait - */ -void account_steal_time(cputime_t cputime) -{ - u64 *cpustat = kcpustat_this_cpu->cpustat; - - cpustat[CPUTIME_STEAL] += (__force u64)cputime; -} - -/* - * Account for idle time. - * @cputime: the cpu time spent in idle wait - */ -static void account_idle_times(cputime_t cputime) -{ - u64 *cpustat = kcpustat_this_cpu->cpustat; - struct rq *rq = this_rq(); - - if (atomic_read(&rq->nr_iowait) > 0) - cpustat[CPUTIME_IOWAIT] += (__force u64)cputime; - else - cpustat[CPUTIME_IDLE] += (__force u64)cputime; -} - -#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE - -void account_process_tick(struct task_struct *p, int user_tick) -{ -} - -/* - * Account multiple ticks of steal time. - * @p: the process from which the cpu time has been stolen - * @ticks: number of stolen ticks - */ -void account_steal_ticks(unsigned long ticks) -{ - account_steal_time(jiffies_to_cputime(ticks)); -} - -/* - * Account multiple ticks of idle time. - * @ticks: number of stolen ticks - */ -void account_idle_ticks(unsigned long ticks) -{ - account_idle_times(jiffies_to_cputime(ticks)); -} -#endif - -static inline void grq_iso_lock(void) - __acquires(grq.iso_lock) -{ - raw_spin_lock(&grq.iso_lock); -} - -static inline void grq_iso_unlock(void) - __releases(grq.iso_lock) -{ - raw_spin_unlock(&grq.iso_lock); -} - -/* - * Functions to test for when SCHED_ISO tasks have used their allocated - * quota as real time scheduling and convert them back to SCHED_NORMAL. - * Where possible, the data is tested lockless, to avoid grabbing iso_lock - * because the occasional inaccurate result won't matter. However the - * tick data is only ever modified under lock. iso_refractory is only simply - * set to 0 or 1 so it's not worth grabbing the lock yet again for that. - */ -static bool set_iso_refractory(void) -{ - grq.iso_refractory = true; - return grq.iso_refractory; -} - -static bool clear_iso_refractory(void) -{ - grq.iso_refractory = false; - return grq.iso_refractory; -} - -/* - * Test if SCHED_ISO tasks have run longer than their alloted period as RT - * tasks and set the refractory flag if necessary. There is 10% hysteresis - * for unsetting the flag. 115/128 is ~90/100 as a fast shift instead of a - * slow division. - */ -static bool test_ret_isorefractory(struct rq *rq) -{ - if (likely(!grq.iso_refractory)) { - if (grq.iso_ticks > ISO_PERIOD * sched_iso_cpu) - return set_iso_refractory(); - } else { - if (grq.iso_ticks < ISO_PERIOD * (sched_iso_cpu * 115 / 128)) - return clear_iso_refractory(); - } - return grq.iso_refractory; -} - -static void iso_tick(void) -{ - grq_iso_lock(); - grq.iso_ticks += 100; - grq_iso_unlock(); -} - -/* No SCHED_ISO task was running so decrease rq->iso_ticks */ -static inline void no_iso_tick(void) -{ - if (grq.iso_ticks) { - grq_iso_lock(); - grq.iso_ticks -= grq.iso_ticks / ISO_PERIOD + 1; - if (unlikely(grq.iso_refractory && grq.iso_ticks < - ISO_PERIOD * (sched_iso_cpu * 115 / 128))) - clear_iso_refractory(); - grq_iso_unlock(); - } -} - -/* This manages tasks that have run out of timeslice during a scheduler_tick */ -static void task_running_tick(struct rq *rq) -{ - struct task_struct *p; - - /* - * If a SCHED_ISO task is running we increment the iso_ticks. In - * order to prevent SCHED_ISO tasks from causing starvation in the - * presence of true RT tasks we account those as iso_ticks as well. - */ - if ((rt_queue(rq) || (iso_queue(rq) && !grq.iso_refractory))) { - if (grq.iso_ticks <= (ISO_PERIOD * 128) - 128) - iso_tick(); - } else - no_iso_tick(); - - if (iso_queue(rq)) { - if (unlikely(test_ret_isorefractory(rq))) { - if (rq_running_iso(rq)) { - /* - * SCHED_ISO task is running as RT and limit - * has been hit. Force it to reschedule as - * SCHED_NORMAL by zeroing its time_slice - */ - rq->rq_time_slice = 0; - } - } - } - - /* SCHED_FIFO tasks never run out of timeslice. */ - if (rq->rq_policy == SCHED_FIFO) - return; - /* - * Tasks that were scheduled in the first half of a tick are not - * allowed to run into the 2nd half of the next tick if they will - * run out of time slice in the interim. Otherwise, if they have - * less than RESCHED_US μs of time slice left they will be rescheduled. - */ - if (rq->dither) { - if (rq->rq_time_slice > HALF_JIFFY_US) - return; - else - rq->rq_time_slice = 0; - } else if (rq->rq_time_slice >= RESCHED_US) - return; - - /* p->time_slice < RESCHED_US. We only modify task_struct under grq lock */ - p = rq->curr; - grq_lock(); - requeue_task(p); - set_tsk_need_resched(p); - grq_unlock(); -} - -/* - * This function gets called by the timer code, with HZ frequency. - * We call it with interrupts disabled. The data modified is all - * local to struct rq so we don't need to grab grq lock. - */ -void scheduler_tick(void) -{ - int cpu __maybe_unused = smp_processor_id(); - struct rq *rq = cpu_rq(cpu); - - sched_clock_tick(); - /* grq lock not grabbed, so only update rq clock */ - update_rq_clock(rq); - update_cpu_clock_tick(rq, rq->curr); - if (!rq_idle(rq)) - task_running_tick(rq); - else - no_iso_tick(); - rq->last_tick = rq->clock; - perf_event_task_tick(); -} - -notrace unsigned long get_parent_ip(unsigned long addr) -{ - if (in_lock_functions(addr)) { - addr = CALLER_ADDR2; - if (in_lock_functions(addr)) - addr = CALLER_ADDR3; - } - return addr; -} - -#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ - defined(CONFIG_PREEMPT_TRACER)) -void __kprobes add_preempt_count(int val) -{ -#ifdef CONFIG_DEBUG_PREEMPT - /* - * Underflow? - */ - if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) - return; -#endif - preempt_count() += val; -#ifdef CONFIG_DEBUG_PREEMPT - /* - * Spinlock count overflowing soon? - */ - DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= - PREEMPT_MASK - 10); -#endif - if (preempt_count() == val) - trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); -} -EXPORT_SYMBOL(add_preempt_count); - -void __kprobes sub_preempt_count(int val) -{ -#ifdef CONFIG_DEBUG_PREEMPT - /* - * Underflow? - */ - if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) - return; - /* - * Is the spinlock portion underflowing? - */ - if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && - !(preempt_count() & PREEMPT_MASK))) - return; -#endif - - if (preempt_count() == val) - trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); - preempt_count() -= val; -} -EXPORT_SYMBOL(sub_preempt_count); -#endif - -/* - * Deadline is "now" in niffies + (offset by priority). Setting the deadline - * is the key to everything. It distributes cpu fairly amongst tasks of the - * same nice value, it proportions cpu according to nice level, it means the - * task that last woke up the longest ago has the earliest deadline, thus - * ensuring that interactive tasks get low latency on wake up. The CPU - * proportion works out to the square of the virtual deadline difference, so - * this equation will give nice 19 3% CPU compared to nice 0. - */ -static inline u64 prio_deadline_diff(int user_prio) -{ - return (prio_ratios[user_prio] * rr_interval * (MS_TO_NS(1) / 128)); -} - -static inline u64 task_deadline_diff(struct task_struct *p) -{ - return prio_deadline_diff(TASK_USER_PRIO(p)); -} - -static inline u64 static_deadline_diff(int static_prio) -{ - return prio_deadline_diff(USER_PRIO(static_prio)); -} - -static inline int longest_deadline_diff(void) -{ - return prio_deadline_diff(39); -} - -static inline int ms_longest_deadline_diff(void) -{ - return NS_TO_MS(longest_deadline_diff()); -} - -/* - * The time_slice is only refilled when it is empty and that is when we set a - * new deadline. - */ -static void time_slice_expired(struct task_struct *p) -{ - p->time_slice = timeslice(); - p->deadline = grq.niffies + task_deadline_diff(p); -} - -/* - * Timeslices below RESCHED_US are considered as good as expired as there's no - * point rescheduling when there's so little time left. SCHED_BATCH tasks - * have been flagged be not latency sensitive and likely to be fully CPU - * bound so every time they're rescheduled they have their time_slice - * refilled, but get a new later deadline to have little effect on - * SCHED_NORMAL tasks. - - */ -static inline void check_deadline(struct task_struct *p) -{ - if (p->time_slice < RESCHED_US || batch_task(p)) - time_slice_expired(p); -} - -#define BITOP_WORD(nr) ((nr) / BITS_PER_LONG) - -/* - * Scheduler queue bitmap specific find next bit. - */ -static inline unsigned long -next_sched_bit(const unsigned long *addr, unsigned long offset) -{ - const unsigned long *p; - unsigned long result; - unsigned long size; - unsigned long tmp; - - size = PRIO_LIMIT; - if (offset >= size) - return size; - - p = addr + BITOP_WORD(offset); - result = offset & ~(BITS_PER_LONG-1); - size -= result; - offset %= BITS_PER_LONG; - if (offset) { - tmp = *(p++); - tmp &= (~0UL << offset); - if (size < BITS_PER_LONG) - goto found_first; - if (tmp) - goto found_middle; - size -= BITS_PER_LONG; - result += BITS_PER_LONG; - } - while (size & ~(BITS_PER_LONG-1)) { - if ((tmp = *(p++))) - goto found_middle; - result += BITS_PER_LONG; - size -= BITS_PER_LONG; - } - if (!size) - return result; - tmp = *p; - -found_first: - tmp &= (~0UL >> (BITS_PER_LONG - size)); - if (tmp == 0UL) /* Are any bits set? */ - return result + size; /* Nope. */ -found_middle: - return result + __ffs(tmp); -} - -/* - * O(n) lookup of all tasks in the global runqueue. The real brainfuck - * of lock contention and O(n). It's not really O(n) as only the queued, - * but not running tasks are scanned, and is O(n) queued in the worst case - * scenario only because the right task can be found before scanning all of - * them. - * Tasks are selected in this order: - * Real time tasks are selected purely by their static priority and in the - * order they were queued, so the lowest value idx, and the first queued task - * of that priority value is chosen. - * If no real time tasks are found, the SCHED_ISO priority is checked, and - * all SCHED_ISO tasks have the same priority value, so they're selected by - * the earliest deadline value. - * If no SCHED_ISO tasks are found, SCHED_NORMAL tasks are selected by the - * earliest deadline. - * Finally if no SCHED_NORMAL tasks are found, SCHED_IDLEPRIO tasks are - * selected by the earliest deadline. - */ -static inline struct -task_struct *earliest_deadline_task(struct rq *rq, int cpu, struct task_struct *idle) -{ - struct task_struct *edt = NULL; - unsigned long idx = -1; - - do { - struct list_head *queue; - struct task_struct *p; - u64 earliest_deadline; - - idx = next_sched_bit(grq.prio_bitmap, ++idx); - if (idx >= PRIO_LIMIT) - return idle; - queue = grq.queue + idx; - - if (idx < MAX_RT_PRIO) { - /* We found an rt task */ - list_for_each_entry(p, queue, run_list) { - /* Make sure cpu affinity is ok */ - if (needs_other_cpu(p, cpu)) - continue; - edt = p; - goto out_take; - } - /* - * None of the RT tasks at this priority can run on - * this cpu - */ - continue; - } - - /* - * No rt tasks. Find the earliest deadline task. Now we're in - * O(n) territory. - */ - earliest_deadline = ~0ULL; - list_for_each_entry(p, queue, run_list) { - u64 dl; - - /* Make sure cpu affinity is ok */ - if (needs_other_cpu(p, cpu)) - continue; - - /* - * Soft affinity happens here by not scheduling a task - * with its sticky flag set that ran on a different CPU - * last when the CPU is scaling, or by greatly biasing - * against its deadline when not, based on cpu cache - * locality. - */ - if (task_sticky(p) && task_rq(p) != rq) { - if (scaling_rq(rq)) - continue; - dl = p->deadline << locality_diff(p, rq); - } else - dl = p->deadline; - - if (deadline_before(dl, earliest_deadline)) { - earliest_deadline = dl; - edt = p; - } - } - } while (!edt); - -out_take: - take_task(cpu, edt); - return edt; -} - - -/* - * Print scheduling while atomic bug: - */ -static noinline void __schedule_bug(struct task_struct *prev) -{ - if (oops_in_progress) - return; - - printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", - prev->comm, prev->pid, preempt_count()); - - debug_show_held_locks(prev); - print_modules(); - if (irqs_disabled()) - print_irqtrace_events(prev); - dump_stack(); - add_taint(TAINT_WARN, LOCKDEP_STILL_OK); -} - -/* - * Various schedule()-time debugging checks and statistics: - */ -static inline void schedule_debug(struct task_struct *prev) -{ - /* - * Test if we are atomic. Since do_exit() needs to call into - * schedule() atomically, we ignore that path for now. - * Otherwise, whine if we are scheduling when we should not be. - */ - if (unlikely(in_atomic_preempt_off() && !prev->exit_state)) - __schedule_bug(prev); - rcu_sleep_check(); - - profile_hit(SCHED_PROFILING, __builtin_return_address(0)); - - schedstat_inc(this_rq(), sched_count); -} - -/* - * The currently running task's information is all stored in rq local data - * which is only modified by the local CPU, thereby allowing the data to be - * changed without grabbing the grq lock. - */ -static inline void set_rq_task(struct rq *rq, struct task_struct *p) -{ - rq->rq_time_slice = p->time_slice; - rq->rq_deadline = p->deadline; - rq->rq_last_ran = p->last_ran = rq->clock_task; - rq->rq_policy = p->policy; - rq->rq_prio = p->prio; - if (p != rq->idle) - rq->rq_running = true; - else - rq->rq_running = false; -} - -static void reset_rq_task(struct rq *rq, struct task_struct *p) -{ - rq->rq_policy = p->policy; - rq->rq_prio = p->prio; -} - -/* - * schedule() is the main scheduler function. - * - * The main means of driving the scheduler and thus entering this function are: - * - * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. - * - * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return - * paths. For example, see arch/x86/entry_64.S. - * - * To drive preemption between tasks, the scheduler sets the flag in timer - * interrupt handler scheduler_tick(). - * - * 3. Wakeups don't really cause entry into schedule(). They add a - * task to the run-queue and that's it. - * - * Now, if the new task added to the run-queue preempts the current - * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets - * called on the nearest possible occasion: - * - * - If the kernel is preemptible (CONFIG_PREEMPT=y): - * - * - in syscall or exception context, at the next outmost - * preempt_enable(). (this might be as soon as the wake_up()'s - * spin_unlock()!) - * - * - in IRQ context, return from interrupt-handler to - * preemptible context - * - * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) - * then at the next: - * - * - cond_resched() call - * - explicit schedule() call - * - return from syscall or exception to user-space - * - return from interrupt-handler to user-space - */ -asmlinkage void __sched schedule(void) -{ - struct task_struct *prev, *next, *idle; - unsigned long *switch_count; - bool deactivate; - struct rq *rq; - int cpu; - -need_resched: - preempt_disable(); - cpu = smp_processor_id(); - rq = cpu_rq(cpu); - rcu_note_context_switch(cpu); - prev = rq->curr; - - deactivate = false; - schedule_debug(prev); - - /* - * Make sure that signal_pending_state()->signal_pending() below - * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) - * done by the caller to avoid the race with signal_wake_up(). - */ - smp_mb__before_spinlock(); - grq_lock_irq(); - - switch_count = &prev->nivcsw; - if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { - if (unlikely(signal_pending_state(prev->state, prev))) { - prev->state = TASK_RUNNING; - } else { - deactivate = true; - /* - * If a worker is going to sleep, notify and - * ask workqueue whether it wants to wake up a - * task to maintain concurrency. If so, wake - * up the task. - */ - if (prev->flags & PF_WQ_WORKER) { - struct task_struct *to_wakeup; - - to_wakeup = wq_worker_sleeping(prev, cpu); - if (to_wakeup) { - /* This shouldn't happen, but does */ - if (unlikely(to_wakeup == prev)) - deactivate = false; - else - try_to_wake_up_local(to_wakeup); - } - } - } - switch_count = &prev->nvcsw; - } - - /* - * If we are going to sleep and we have plugged IO queued, make - * sure to submit it to avoid deadlocks. - */ - if (unlikely(deactivate && blk_needs_flush_plug(prev))) { - grq_unlock_irq(); - preempt_enable_no_resched(); - blk_schedule_flush_plug(prev); - goto need_resched; - } - - update_clocks(rq); - update_cpu_clock_switch(rq, prev); - if (rq->clock - rq->last_tick > HALF_JIFFY_NS) - rq->dither = false; - else - rq->dither = true; - - clear_tsk_need_resched(prev); - - idle = rq->idle; - if (idle != prev) { - /* Update all the information stored on struct rq */ - prev->time_slice = rq->rq_time_slice; - prev->deadline = rq->rq_deadline; - check_deadline(prev); - prev->last_ran = rq->clock_task; - - /* Task changed affinity off this CPU */ - if (needs_other_cpu(prev, cpu)) { - if (!deactivate) - resched_suitable_idle(prev); - } else if (!deactivate) { - if (!queued_notrunning()) { - /* - * We now know prev is the only thing that is - * awaiting CPU so we can bypass rechecking for - * the earliest deadline task and just run it - * again. - */ - set_rq_task(rq, prev); - grq_unlock_irq(); - goto rerun_prev_unlocked; - } else - swap_sticky(rq, cpu, prev); - } - return_task(prev, deactivate); - } - - if (unlikely(!queued_notrunning())) { - /* - * This CPU is now truly idle as opposed to when idle is - * scheduled as a high priority task in its own right. - */ - next = idle; - schedstat_inc(rq, sched_goidle); - set_cpuidle_map(cpu); - } else { - next = earliest_deadline_task(rq, cpu, idle); - if (likely(next->prio != PRIO_LIMIT)) - clear_cpuidle_map(cpu); - else - set_cpuidle_map(cpu); - } - - if (likely(prev != next)) { - resched_suitable_idle(prev); - /* - * Don't stick tasks when a real time task is going to run as - * they may literally get stuck. - */ - if (rt_task(next)) - unstick_task(rq, prev); - set_rq_task(rq, next); - grq.nr_switches++; - prev->on_cpu = false; - next->on_cpu = true; - rq->curr = next; - ++*switch_count; - - context_switch(rq, prev, next); /* unlocks the grq */ - /* - * The context switch have flipped the stack from under us - * and restored the local variables which were saved when - * this task called schedule() in the past. prev == current - * is still correct, but it can be moved to another cpu/rq. - */ - cpu = smp_processor_id(); - rq = cpu_rq(cpu); - idle = rq->idle; - } else - grq_unlock_irq(); - -rerun_prev_unlocked: - sched_preempt_enable_no_resched(); - if (unlikely(need_resched())) - goto need_resched; -} -EXPORT_SYMBOL(schedule); - -#ifdef CONFIG_RCU_USER_QS -asmlinkage void __sched schedule_user(void) -{ - /* - * If we come here after a random call to set_need_resched(), - * or we have been woken up remotely but the IPI has not yet arrived, - * we haven't yet exited the RCU idle mode. Do it here manually until - * we find a better solution. - */ - user_exit(); - schedule(); - user_enter(); -} -#endif - -/** - * schedule_preempt_disabled - called with preemption disabled - * - * Returns with preemption disabled. Note: preempt_count must be 1 - */ -void __sched schedule_preempt_disabled(void) -{ - sched_preempt_enable_no_resched(); - schedule(); - preempt_disable(); -} - -#ifdef CONFIG_PREEMPT -/* - * this is the entry point to schedule() from in-kernel preemption - * off of preempt_enable. Kernel preemptions off return from interrupt - * occur there and call schedule directly. - */ -asmlinkage void __sched notrace preempt_schedule(void) -{ - struct thread_info *ti = current_thread_info(); - - /* - * If there is a non-zero preempt_count or interrupts are disabled, - * we do not want to preempt the current task. Just return.. - */ - if (likely(ti->preempt_count || irqs_disabled())) - return; - - do { - add_preempt_count_notrace(PREEMPT_ACTIVE); - schedule(); - sub_preempt_count_notrace(PREEMPT_ACTIVE); - - /* - * Check again in case we missed a preemption opportunity - * between schedule and now. - */ - barrier(); - } while (need_resched()); -} -EXPORT_SYMBOL(preempt_schedule); - -/* - * this is the entry point to schedule() from kernel preemption - * off of irq context. - * Note, that this is called and return with irqs disabled. This will - * protect us against recursive calling from irq. - */ -asmlinkage void __sched preempt_schedule_irq(void) -{ - struct thread_info *ti = current_thread_info(); - enum ctx_state prev_state; - - /* Catch callers which need to be fixed */ - BUG_ON(ti->preempt_count || !irqs_disabled()); - - prev_state = exception_enter(); - - do { - add_preempt_count(PREEMPT_ACTIVE); - local_irq_enable(); - schedule(); - local_irq_disable(); - sub_preempt_count(PREEMPT_ACTIVE); - - /* - * Check again in case we missed a preemption opportunity - * between schedule and now. - */ - barrier(); - } while (need_resched()); - - exception_exit(prev_state); -} - -#endif /* CONFIG_PREEMPT */ - -int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, - void *key) -{ - return try_to_wake_up(curr->private, mode, wake_flags); -} -EXPORT_SYMBOL(default_wake_function); - -/* - * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just - * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve - * number) then we wake all the non-exclusive tasks and one exclusive task. - * - * There are circumstances in which we can try to wake a task which has already - * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns - * zero in this (rare) case, and we handle it by continuing to scan the queue. - */ -static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, - int nr_exclusive, int wake_flags, void *key) -{ - struct list_head *tmp, *next; - - list_for_each_safe(tmp, next, &q->task_list) { - wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list); - unsigned int flags = curr->flags; - - if (curr->func(curr, mode, wake_flags, key) && - (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) - break; - } -} - -/** - * __wake_up - wake up threads blocked on a waitqueue. - * @q: the waitqueue - * @mode: which threads - * @nr_exclusive: how many wake-one or wake-many threads to wake up - * @key: is directly passed to the wakeup function - * - * It may be assumed that this function implies a write memory barrier before - * changing the task state if and only if any tasks are woken up. - */ -void __wake_up(wait_queue_head_t *q, unsigned int mode, - int nr_exclusive, void *key) -{ - unsigned long flags; - - spin_lock_irqsave(&q->lock, flags); - __wake_up_common(q, mode, nr_exclusive, 0, key); - spin_unlock_irqrestore(&q->lock, flags); -} -EXPORT_SYMBOL(__wake_up); - -/* - * Same as __wake_up but called with the spinlock in wait_queue_head_t held. - */ -void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr) -{ - __wake_up_common(q, mode, nr, 0, NULL); -} -EXPORT_SYMBOL_GPL(__wake_up_locked); - -void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key) -{ - __wake_up_common(q, mode, 1, 0, key); -} -EXPORT_SYMBOL_GPL(__wake_up_locked_key); - -/** - * __wake_up_sync_key - wake up threads blocked on a waitqueue. - * @q: the waitqueue - * @mode: which threads - * @nr_exclusive: how many wake-one or wake-many threads to wake up - * @key: opaque value to be passed to wakeup targets - * - * The sync wakeup differs that the waker knows that it will schedule - * away soon, so while the target thread will be woken up, it will not - * be migrated to another CPU - ie. the two threads are 'synchronised' - * with each other. This can prevent needless bouncing between CPUs. - * - * On UP it can prevent extra preemption. - * - * It may be assumed that this function implies a write memory barrier before - * changing the task state if and only if any tasks are woken up. - */ -void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, - int nr_exclusive, void *key) -{ - unsigned long flags; - int wake_flags = WF_SYNC; - - if (unlikely(!q)) - return; - - if (unlikely(!nr_exclusive)) - wake_flags = 0; - - spin_lock_irqsave(&q->lock, flags); - __wake_up_common(q, mode, nr_exclusive, wake_flags, key); - spin_unlock_irqrestore(&q->lock, flags); -} -EXPORT_SYMBOL_GPL(__wake_up_sync_key); - -/** - * __wake_up_sync - wake up threads blocked on a waitqueue. - * @q: the waitqueue - * @mode: which threads - * @nr_exclusive: how many wake-one or wake-many threads to wake up - * - * The sync wakeup differs that the waker knows that it will schedule - * away soon, so while the target thread will be woken up, it will not - * be migrated to another CPU - ie. the two threads are 'synchronised' - * with each other. This can prevent needless bouncing between CPUs. - * - * On UP it can prevent extra preemption. - */ -void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) -{ - unsigned long flags; - int sync = 1; - - if (unlikely(!q)) - return; - - if (unlikely(!nr_exclusive)) - sync = 0; - - spin_lock_irqsave(&q->lock, flags); - __wake_up_common(q, mode, nr_exclusive, sync, NULL); - spin_unlock_irqrestore(&q->lock, flags); -} -EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ - -/** - * complete: - signals a single thread waiting on this completion - * @x: holds the state of this particular completion - * - * This will wake up a single thread waiting on this completion. Threads will be - * awakened in the same order in which they were queued. - * - * See also complete_all(), wait_for_completion() and related routines. - * - * It may be assumed that this function implies a write memory barrier before - * changing the task state if and only if any tasks are woken up. - */ -void complete(struct completion *x) -{ - unsigned long flags; - - spin_lock_irqsave(&x->wait.lock, flags); - x->done++; - __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL); - spin_unlock_irqrestore(&x->wait.lock, flags); -} -EXPORT_SYMBOL(complete); - -/** - * complete_all: - signals all threads waiting on this completion - * @x: holds the state of this particular completion - * - * This will wake up all threads waiting on this particular completion event. - * - * It may be assumed that this function implies a write memory barrier before - * changing the task state if and only if any tasks are woken up. - */ -void complete_all(struct completion *x) -{ - unsigned long flags; - - spin_lock_irqsave(&x->wait.lock, flags); - x->done += UINT_MAX/2; - __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL); - spin_unlock_irqrestore(&x->wait.lock, flags); -} -EXPORT_SYMBOL(complete_all); - -static inline long __sched -do_wait_for_common(struct completion *x, - long (*action)(long), long timeout, int state) -{ - if (!x->done) { - DECLARE_WAITQUEUE(wait, current); - - __add_wait_queue_tail_exclusive(&x->wait, &wait); - do { - if (signal_pending_state(state, current)) { - timeout = -ERESTARTSYS; - break; - } - __set_current_state(state); - spin_unlock_irq(&x->wait.lock); - timeout = action(timeout); - spin_lock_irq(&x->wait.lock); - } while (!x->done && timeout); - __remove_wait_queue(&x->wait, &wait); - if (!x->done) - return timeout; - } - x->done--; - return timeout ?: 1; -} - -static inline long __sched -__wait_for_common(struct completion *x, - long (*action)(long), long timeout, int state) -{ - might_sleep(); - - spin_lock_irq(&x->wait.lock); - timeout = do_wait_for_common(x, action, timeout, state); - spin_unlock_irq(&x->wait.lock); - return timeout; -} - -static long __sched -wait_for_common(struct completion *x, long timeout, int state) -{ - return __wait_for_common(x, schedule_timeout, timeout, state); -} - -static long __sched -wait_for_common_io(struct completion *x, long timeout, int state) -{ - return __wait_for_common(x, io_schedule_timeout, timeout, state); -} - -/** - * wait_for_completion: - waits for completion of a task - * @x: holds the state of this particular completion - * - * This waits to be signaled for completion of a specific task. It is NOT - * interruptible and there is no timeout. - * - * See also similar routines (i.e. wait_for_completion_timeout()) with timeout - * and interrupt capability. Also see complete(). - */ -void __sched wait_for_completion(struct completion *x) -{ - wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE); -} -EXPORT_SYMBOL(wait_for_completion); - -/** - * wait_for_completion_timeout: - waits for completion of a task (w/timeout) - * @x: holds the state of this particular completion - * @timeout: timeout value in jiffies - * - * This waits for either a completion of a specific task to be signaled or for a - * specified timeout to expire. The timeout is in jiffies. It is not - * interruptible. - * - * Return: 0 if timed out, and positive (at least 1, or number of jiffies left - * till timeout) if completed. - */ -unsigned long __sched -wait_for_completion_timeout(struct completion *x, unsigned long timeout) -{ - return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE); -} -EXPORT_SYMBOL(wait_for_completion_timeout); - - /** - * wait_for_completion_io: - waits for completion of a task - * @x: holds the state of this particular completion - * - * This waits to be signaled for completion of a specific task. It is NOT - * interruptible and there is no timeout. The caller is accounted as waiting - * for IO. - */ -void __sched wait_for_completion_io(struct completion *x) -{ - wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE); -} -EXPORT_SYMBOL(wait_for_completion_io); - -/** - * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout) - * @x: holds the state of this particular completion - * @timeout: timeout value in jiffies - * - * This waits for either a completion of a specific task to be signaled or for a - * specified timeout to expire. The timeout is in jiffies. It is not - * interruptible. The caller is accounted as waiting for IO. - * - * Return: 0 if timed out, and positive (at least 1, or number of jiffies left - * till timeout) if completed. - */ -unsigned long __sched -wait_for_completion_io_timeout(struct completion *x, unsigned long timeout) -{ - return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE); -} -EXPORT_SYMBOL(wait_for_completion_io_timeout); - -/** - * wait_for_completion_interruptible: - waits for completion of a task (w/intr) - * @x: holds the state of this particular completion - * - * This waits for completion of a specific task to be signaled. It is - * interruptible. - * - * Return: -ERESTARTSYS if interrupted, 0 if completed. - */ -int __sched wait_for_completion_interruptible(struct completion *x) -{ - long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE); - if (t == -ERESTARTSYS) - return t; - return 0; -} -EXPORT_SYMBOL(wait_for_completion_interruptible); - -/** - * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr)) - * @x: holds the state of this particular completion - * @timeout: timeout value in jiffies - * - * This waits for either a completion of a specific task to be signaled or for a - * specified timeout to expire. It is interruptible. The timeout is in jiffies. - * - * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1, - * or number of jiffies left till timeout) if completed. - */ -long __sched -wait_for_completion_interruptible_timeout(struct completion *x, - unsigned long timeout) -{ - return wait_for_common(x, timeout, TASK_INTERRUPTIBLE); -} -EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); - -/** - * wait_for_completion_killable: - waits for completion of a task (killable) - * @x: holds the state of this particular completion - * - * This waits to be signaled for completion of a specific task. It can be - * interrupted by a kill signal. - * - * Return: -ERESTARTSYS if interrupted, 0 if completed. - */ -int __sched wait_for_completion_killable(struct completion *x) -{ - long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE); - if (t == -ERESTARTSYS) - return t; - return 0; -} -EXPORT_SYMBOL(wait_for_completion_killable); - -/** - * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable)) - * @x: holds the state of this particular completion - * @timeout: timeout value in jiffies - * - * This waits for either a completion of a specific task to be - * signaled or for a specified timeout to expire. It can be - * interrupted by a kill signal. The timeout is in jiffies. - * - * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1, - * or number of jiffies left till timeout) if completed. - */ -long __sched -wait_for_completion_killable_timeout(struct completion *x, - unsigned long timeout) -{ - return wait_for_common(x, timeout, TASK_KILLABLE); -} -EXPORT_SYMBOL(wait_for_completion_killable_timeout); - -/** - * try_wait_for_completion - try to decrement a completion without blocking - * @x: completion structure - * - * Return: 0 if a decrement cannot be done without blocking - * 1 if a decrement succeeded. - * - * If a completion is being used as a counting completion, - * attempt to decrement the counter without blocking. This - * enables us to avoid waiting if the resource the completion - * is protecting is not available. - */ -bool try_wait_for_completion(struct completion *x) -{ - unsigned long flags; - int ret = 1; - - spin_lock_irqsave(&x->wait.lock, flags); - if (!x->done) - ret = 0; - else - x->done--; - spin_unlock_irqrestore(&x->wait.lock, flags); - return ret; -} -EXPORT_SYMBOL(try_wait_for_completion); - -/** - * completion_done - Test to see if a completion has any waiters - * @x: completion structure - * - * Return: 0 if there are waiters (wait_for_completion() in progress) - * 1 if there are no waiters. - * - */ -bool completion_done(struct completion *x) -{ - unsigned long flags; - int ret = 1; - - spin_lock_irqsave(&x->wait.lock, flags); - if (!x->done) - ret = 0; - spin_unlock_irqrestore(&x->wait.lock, flags); - return ret; -} -EXPORT_SYMBOL(completion_done); - -static long __sched -sleep_on_common(wait_queue_head_t *q, int state, long timeout) -{ - unsigned long flags; - wait_queue_t wait; - - init_waitqueue_entry(&wait, current); - - __set_current_state(state); - - spin_lock_irqsave(&q->lock, flags); - __add_wait_queue(q, &wait); - spin_unlock(&q->lock); - timeout = schedule_timeout(timeout); - spin_lock_irq(&q->lock); - __remove_wait_queue(q, &wait); - spin_unlock_irqrestore(&q->lock, flags); - - return timeout; -} - -void __sched interruptible_sleep_on(wait_queue_head_t *q) -{ - sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); -} -EXPORT_SYMBOL(interruptible_sleep_on); - -long __sched -interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout) -{ - return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout); -} -EXPORT_SYMBOL(interruptible_sleep_on_timeout); - -void __sched sleep_on(wait_queue_head_t *q) -{ - sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); -} -EXPORT_SYMBOL(sleep_on); - -long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout) -{ - return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout); -} -EXPORT_SYMBOL(sleep_on_timeout); - -#ifdef CONFIG_RT_MUTEXES - -/* - * rt_mutex_setprio - set the current priority of a task - * @p: task - * @prio: prio value (kernel-internal form) - * - * This function changes the 'effective' priority of a task. It does - * not touch ->normal_prio like __setscheduler(). - * - * Used by the rt_mutex code to implement priority inheritance logic. - */ -void rt_mutex_setprio(struct task_struct *p, int prio) -{ - unsigned long flags; - int queued, oldprio; - struct rq *rq; - - BUG_ON(prio < 0 || prio > MAX_PRIO); - - rq = task_grq_lock(p, &flags); - - /* - * Idle task boosting is a nono in general. There is one - * exception, when PREEMPT_RT and NOHZ is active: - * - * The idle task calls get_next_timer_interrupt() and holds - * the timer wheel base->lock on the CPU and another CPU wants - * to access the timer (probably to cancel it). We can safely - * ignore the boosting request, as the idle CPU runs this code - * with interrupts disabled and will complete the lock - * protected section without being interrupted. So there is no - * real need to boost. - */ - if (unlikely(p == rq->idle)) { - WARN_ON(p != rq->curr); - WARN_ON(p->pi_blocked_on); - goto out_unlock; - } - - trace_sched_pi_setprio(p, prio); - oldprio = p->prio; - queued = task_queued(p); - if (queued) - dequeue_task(p); - p->prio = prio; - if (task_running(p) && prio > oldprio) - resched_task(p); - if (queued) { - enqueue_task(p); - try_preempt(p, rq); - } - -out_unlock: - task_grq_unlock(&flags); -} - -#endif - -/* - * Adjust the deadline for when the priority is to change, before it's - * changed. - */ -static inline void adjust_deadline(struct task_struct *p, int new_prio) -{ - p->deadline += static_deadline_diff(new_prio) - task_deadline_diff(p); -} - -void set_user_nice(struct task_struct *p, long nice) -{ - int queued, new_static, old_static; - unsigned long flags; - struct rq *rq; - - if (TASK_NICE(p) == nice || nice < -20 || nice > 19) - return; - new_static = NICE_TO_PRIO(nice); - /* - * We have to be careful, if called from sys_setpriority(), - * the task might be in the middle of scheduling on another CPU. - */ - rq = time_task_grq_lock(p, &flags); - /* - * The RT priorities are set via sched_setscheduler(), but we still - * allow the 'normal' nice value to be set - but as expected - * it wont have any effect on scheduling until the task is - * not SCHED_NORMAL/SCHED_BATCH: - */ - if (has_rt_policy(p)) { - p->static_prio = new_static; - goto out_unlock; - } - queued = task_queued(p); - if (queued) - dequeue_task(p); - - adjust_deadline(p, new_static); - old_static = p->static_prio; - p->static_prio = new_static; - p->prio = effective_prio(p); - - if (queued) { - enqueue_task(p); - if (new_static < old_static) - try_preempt(p, rq); - } else if (task_running(p)) { - reset_rq_task(rq, p); - if (old_static < new_static) - resched_task(p); - } -out_unlock: - task_grq_unlock(&flags); -} -EXPORT_SYMBOL(set_user_nice); - -/* - * can_nice - check if a task can reduce its nice value - * @p: task - * @nice: nice value - */ -int can_nice(const struct task_struct *p, const int nice) -{ - /* convert nice value [19,-20] to rlimit style value [1,40] */ - int nice_rlim = 20 - nice; - - return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || - capable(CAP_SYS_NICE)); -} - -#ifdef __ARCH_WANT_SYS_NICE - -/* - * sys_nice - change the priority of the current process. - * @increment: priority increment - * - * sys_setpriority is a more generic, but much slower function that - * does similar things. - */ -SYSCALL_DEFINE1(nice, int, increment) -{ - long nice, retval; - - /* - * Setpriority might change our priority at the same moment. - * We don't have to worry. Conceptually one call occurs first - * and we have a single winner. - */ - if (increment < -40) - increment = -40; - if (increment > 40) - increment = 40; - - nice = TASK_NICE(current) + increment; - if (nice < -20) - nice = -20; - if (nice > 19) - nice = 19; - - if (increment < 0 && !can_nice(current, nice)) - return -EPERM; - - retval = security_task_setnice(current, nice); - if (retval) - return retval; - - set_user_nice(current, nice); - return 0; -} - -#endif - -/** - * task_prio - return the priority value of a given task. - * @p: the task in question. - * - * Return: The priority value as seen by users in /proc. - * RT tasks are offset by -100. Normal tasks are centered around 1, value goes - * from 0 (SCHED_ISO) up to 82 (nice +19 SCHED_IDLEPRIO). - */ -int task_prio(const struct task_struct *p) -{ - int delta, prio = p->prio - MAX_RT_PRIO; - - /* rt tasks and iso tasks */ - if (prio <= 0) - goto out; - - /* Convert to ms to avoid overflows */ - delta = NS_TO_MS(p->deadline - grq.niffies); - delta = delta * 40 / ms_longest_deadline_diff(); - if (delta > 0 && delta <= 80) - prio += delta; - if (idleprio_task(p)) - prio += 40; -out: - return prio; -} - -/** - * task_nice - return the nice value of a given task. - * @p: the task in question. - * - * Return: The nice value [ -20 ... 0 ... 19 ]. - */ -int task_nice(const struct task_struct *p) -{ - return TASK_NICE(p); -} -EXPORT_SYMBOL_GPL(task_nice); - -/** - * idle_cpu - is a given cpu idle currently? - * @cpu: the processor in question. - * - * Return: 1 if the CPU is currently idle. 0 otherwise. - */ -int idle_cpu(int cpu) -{ -#ifdef CONFIG_SMP - struct rq *rq = cpu_rq(cpu); - - if (!llist_empty(&rq->wake_list)) - return 0; -#endif - return cpu_curr(cpu) == cpu_rq(cpu)->idle; -} - -/** - * idle_task - return the idle task for a given cpu. - * @cpu: the processor in question. - * - * Return: The idle task for the cpu @cpu. - */ -struct task_struct *idle_task(int cpu) -{ - return cpu_rq(cpu)->idle; -} - -/** - * find_process_by_pid - find a process with a matching PID value. - * @pid: the pid in question. - * - * The task of @pid, if found. %NULL otherwise. - */ -static inline struct task_struct *find_process_by_pid(pid_t pid) -{ - return pid ? find_task_by_vpid(pid) : current; -} - -/* Actually do priority change: must hold grq lock. */ -static void -__setscheduler(struct task_struct *p, struct rq *rq, int policy, int prio) -{ - int oldrtprio, oldprio; - - p->policy = policy; - oldrtprio = p->rt_priority; - p->rt_priority = prio; - p->normal_prio = normal_prio(p); - oldprio = p->prio; - /* we are holding p->pi_lock already */ - p->prio = rt_mutex_getprio(p); - if (task_running(p)) { - reset_rq_task(rq, p); - /* Resched only if we might now be preempted */ - if (p->prio > oldprio || p->rt_priority > oldrtprio) - resched_task(p); - } -} - -/* - * check the target process has a UID that matches the current process's - */ -static bool check_same_owner(struct task_struct *p) -{ - const struct cred *cred = current_cred(), *pcred; - bool match; - - rcu_read_lock(); - pcred = __task_cred(p); - match = (uid_eq(cred->euid, pcred->euid) || - uid_eq(cred->euid, pcred->uid)); - rcu_read_unlock(); - return match; -} - -static int __sched_setscheduler(struct task_struct *p, int policy, - const struct sched_param *param, bool user) -{ - struct sched_param zero_param = { .sched_priority = 0 }; - int queued, retval, oldpolicy = -1; - unsigned long flags, rlim_rtprio = 0; - int reset_on_fork; - struct rq *rq; - - /* may grab non-irq protected spin_locks */ - BUG_ON(in_interrupt()); - - if (is_rt_policy(policy) && !capable(CAP_SYS_NICE)) { - unsigned long lflags; - - if (!lock_task_sighand(p, &lflags)) - return -ESRCH; - rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO); - unlock_task_sighand(p, &lflags); - if (rlim_rtprio) - goto recheck; - /* - * If the caller requested an RT policy without having the - * necessary rights, we downgrade the policy to SCHED_ISO. - * We also set the parameter to zero to pass the checks. - */ - policy = SCHED_ISO; - param = &zero_param; - } -recheck: - /* double check policy once rq lock held */ - if (policy < 0) { - reset_on_fork = p->sched_reset_on_fork; - policy = oldpolicy = p->policy; - } else { - reset_on_fork = !!(policy & SCHED_RESET_ON_FORK); - policy &= ~SCHED_RESET_ON_FORK; - - if (!SCHED_RANGE(policy)) - return -EINVAL; - } - - /* - * Valid priorities for SCHED_FIFO and SCHED_RR are - * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and - * SCHED_BATCH is 0. - */ - if (param->sched_priority < 0 || - (p->mm && param->sched_priority > MAX_USER_RT_PRIO - 1) || - (!p->mm && param->sched_priority > MAX_RT_PRIO - 1)) - return -EINVAL; - if (is_rt_policy(policy) != (param->sched_priority != 0)) - return -EINVAL; - - /* - * Allow unprivileged RT tasks to decrease priority: - */ - if (user && !capable(CAP_SYS_NICE)) { - if (is_rt_policy(policy)) { - unsigned long rlim_rtprio = - task_rlimit(p, RLIMIT_RTPRIO); - - /* can't set/change the rt policy */ - if (policy != p->policy && !rlim_rtprio) - return -EPERM; - - /* can't increase priority */ - if (param->sched_priority > p->rt_priority && - param->sched_priority > rlim_rtprio) - return -EPERM; - } else { - switch (p->policy) { - /* - * Can only downgrade policies but not back to - * SCHED_NORMAL - */ - case SCHED_ISO: - if (policy == SCHED_ISO) - goto out; - if (policy == SCHED_NORMAL) - return -EPERM; - break; - case SCHED_BATCH: - if (policy == SCHED_BATCH) - goto out; - if (policy != SCHED_IDLEPRIO) - return -EPERM; - break; - case SCHED_IDLEPRIO: - if (policy == SCHED_IDLEPRIO) - goto out; - return -EPERM; - default: - break; - } - } - - /* can't change other user's priorities */ - if (!check_same_owner(p)) - return -EPERM; - - /* Normal users shall not reset the sched_reset_on_fork flag */ - if (p->sched_reset_on_fork && !reset_on_fork) - return -EPERM; - } - - if (user) { - retval = security_task_setscheduler(p); - if (retval) - return retval; - } - - /* - * make sure no PI-waiters arrive (or leave) while we are - * changing the priority of the task: - */ - raw_spin_lock_irqsave(&p->pi_lock, flags); - /* - * To be able to change p->policy safely, the grunqueue lock must be - * held. - */ - rq = __task_grq_lock(p); - - /* - * Changing the policy of the stop threads its a very bad idea - */ - if (p == rq->stop) { - __task_grq_unlock(); - raw_spin_unlock_irqrestore(&p->pi_lock, flags); - return -EINVAL; - } - - /* - * If not changing anything there's no need to proceed further: - */ - if (unlikely(policy == p->policy && (!is_rt_policy(policy) || - param->sched_priority == p->rt_priority))) { - - __task_grq_unlock(); - raw_spin_unlock_irqrestore(&p->pi_lock, flags); - return 0; - } - - /* recheck policy now with rq lock held */ - if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { - policy = oldpolicy = -1; - __task_grq_unlock(); - raw_spin_unlock_irqrestore(&p->pi_lock, flags); - goto recheck; - } - update_clocks(rq); - p->sched_reset_on_fork = reset_on_fork; - - queued = task_queued(p); - if (queued) - dequeue_task(p); - __setscheduler(p, rq, policy, param->sched_priority); - if (queued) { - enqueue_task(p); - try_preempt(p, rq); - } - __task_grq_unlock(); - raw_spin_unlock_irqrestore(&p->pi_lock, flags); - - rt_mutex_adjust_pi(p); -out: - return 0; -} - -/** - * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. - * @p: the task in question. - * @policy: new policy. - * @param: structure containing the new RT priority. - * - * Return: 0 on success. An error code otherwise. - * - * NOTE that the task may be already dead. - */ -int sched_setscheduler(struct task_struct *p, int policy, - const struct sched_param *param) -{ - return __sched_setscheduler(p, policy, param, true); -} - -EXPORT_SYMBOL_GPL(sched_setscheduler); - -/** - * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. - * @p: the task in question. - * @policy: new policy. - * @param: structure containing the new RT priority. - * - * Just like sched_setscheduler, only don't bother checking if the - * current context has permission. For example, this is needed in - * stop_machine(): we create temporary high priority worker threads, - * but our caller might not have that capability. - * - * Return: 0 on success. An error code otherwise. - */ -int sched_setscheduler_nocheck(struct task_struct *p, int policy, - const struct sched_param *param) -{ - return __sched_setscheduler(p, policy, param, false); -} - -static int -do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) -{ - struct sched_param lparam; - struct task_struct *p; - int retval; - - if (!param || pid < 0) - return -EINVAL; - if (copy_from_user(&lparam, param, sizeof(struct sched_param))) - return -EFAULT; - - rcu_read_lock(); - retval = -ESRCH; - p = find_process_by_pid(pid); - if (p != NULL) - retval = sched_setscheduler(p, policy, &lparam); - rcu_read_unlock(); - - return retval; -} - -/** - * sys_sched_setscheduler - set/change the scheduler policy and RT priority - * @pid: the pid in question. - * @policy: new policy. - * - * Return: 0 on success. An error code otherwise. - * @param: structure containing the new RT priority. - */ -asmlinkage long sys_sched_setscheduler(pid_t pid, int policy, - struct sched_param __user *param) -{ - /* negative values for policy are not valid */ - if (policy < 0) - return -EINVAL; - - return do_sched_setscheduler(pid, policy, param); -} - -/** - * sys_sched_setparam - set/change the RT priority of a thread - * @pid: the pid in question. - * @param: structure containing the new RT priority. - * - * Return: 0 on success. An error code otherwise. - */ -SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) -{ - return do_sched_setscheduler(pid, -1, param); -} - -/** - * sys_sched_getscheduler - get the policy (scheduling class) of a thread - * @pid: the pid in question. - * - * Return: On success, the policy of the thread. Otherwise, a negative error - * code. - */ -SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) -{ - struct task_struct *p; - int retval = -EINVAL; - - if (pid < 0) - goto out_nounlock; - - retval = -ESRCH; - rcu_read_lock(); - p = find_process_by_pid(pid); - if (p) { - retval = security_task_getscheduler(p); - if (!retval) - retval = p->policy; - } - rcu_read_unlock(); - -out_nounlock: - return retval; -} - -/** - * sys_sched_getscheduler - get the RT priority of a thread - * @pid: the pid in question. - * @param: structure containing the RT priority. - * - * Return: On success, 0 and the RT priority is in @param. Otherwise, an error - * code. - */ -SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) -{ - struct sched_param lp; - struct task_struct *p; - int retval = -EINVAL; - - if (!param || pid < 0) - goto out_nounlock; - - rcu_read_lock(); - p = find_process_by_pid(pid); - retval = -ESRCH; - if (!p) - goto out_unlock; - - retval = security_task_getscheduler(p); - if (retval) - goto out_unlock; - - lp.sched_priority = p->rt_priority; - rcu_read_unlock(); - - /* - * This one might sleep, we cannot do it with a spinlock held ... - */ - retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; - -out_nounlock: - return retval; - -out_unlock: - rcu_read_unlock(); - return retval; -} - -long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) -{ - cpumask_var_t cpus_allowed, new_mask; - struct task_struct *p; - int retval; - - get_online_cpus(); - rcu_read_lock(); - - p = find_process_by_pid(pid); - if (!p) { - rcu_read_unlock(); - put_online_cpus(); - return -ESRCH; - } - - /* Prevent p going away */ - get_task_struct(p); - rcu_read_unlock(); - - if (p->flags & PF_NO_SETAFFINITY) { - retval = -EINVAL; - goto out_put_task; - } - if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { - retval = -ENOMEM; - goto out_put_task; - } - if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { - retval = -ENOMEM; - goto out_free_cpus_allowed; - } - retval = -EPERM; - if (!check_same_owner(p)) { - rcu_read_lock(); - if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { - rcu_read_unlock(); - goto out_unlock; - } - rcu_read_unlock(); - } - - retval = security_task_setscheduler(p); - if (retval) - goto out_unlock; - - cpuset_cpus_allowed(p, cpus_allowed); - cpumask_and(new_mask, in_mask, cpus_allowed); -again: - retval = set_cpus_allowed_ptr(p, new_mask); - - if (!retval) { - cpuset_cpus_allowed(p, cpus_allowed); - if (!cpumask_subset(new_mask, cpus_allowed)) { - /* - * We must have raced with a concurrent cpuset - * update. Just reset the cpus_allowed to the - * cpuset's cpus_allowed - */ - cpumask_copy(new_mask, cpus_allowed); - goto again; - } - } -out_unlock: - free_cpumask_var(new_mask); -out_free_cpus_allowed: - free_cpumask_var(cpus_allowed); -out_put_task: - put_task_struct(p); - put_online_cpus(); - return retval; -} - -static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, - cpumask_t *new_mask) -{ - if (len < sizeof(cpumask_t)) { - memset(new_mask, 0, sizeof(cpumask_t)); - } else if (len > sizeof(cpumask_t)) { - len = sizeof(cpumask_t); - } - return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; -} - - -/** - * sys_sched_setaffinity - set the cpu affinity of a process - * @pid: pid of the process - * @len: length in bytes of the bitmask pointed to by user_mask_ptr - * @user_mask_ptr: user-space pointer to the new cpu mask - * - * Return: 0 on success. An error code otherwise. - */ -SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, - unsigned long __user *, user_mask_ptr) -{ - cpumask_var_t new_mask; - int retval; - - if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) - return -ENOMEM; - - retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); - if (retval == 0) - retval = sched_setaffinity(pid, new_mask); - free_cpumask_var(new_mask); - return retval; -} - -long sched_getaffinity(pid_t pid, cpumask_t *mask) -{ - struct task_struct *p; - unsigned long flags; - int retval; - - get_online_cpus(); - rcu_read_lock(); - - retval = -ESRCH; - p = find_process_by_pid(pid); - if (!p) - goto out_unlock; - - retval = security_task_getscheduler(p); - if (retval) - goto out_unlock; - - grq_lock_irqsave(&flags); - cpumask_and(mask, tsk_cpus_allowed(p), cpu_online_mask); - grq_unlock_irqrestore(&flags); - -out_unlock: - rcu_read_unlock(); - put_online_cpus(); - - return retval; -} - -/** - * sys_sched_getaffinity - get the cpu affinity of a process - * @pid: pid of the process - * @len: length in bytes of the bitmask pointed to by user_mask_ptr - * @user_mask_ptr: user-space pointer to hold the current cpu mask - * - * Return: 0 on success. An error code otherwise. - */ -SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, - unsigned long __user *, user_mask_ptr) -{ - int ret; - cpumask_var_t mask; - - if ((len * BITS_PER_BYTE) < nr_cpu_ids) - return -EINVAL; - if (len & (sizeof(unsigned long)-1)) - return -EINVAL; - - if (!alloc_cpumask_var(&mask, GFP_KERNEL)) - return -ENOMEM; - - ret = sched_getaffinity(pid, mask); - if (ret == 0) { - size_t retlen = min_t(size_t, len, cpumask_size()); - - if (copy_to_user(user_mask_ptr, mask, retlen)) - ret = -EFAULT; - else - ret = retlen; - } - free_cpumask_var(mask); - - return ret; -} - -/** - * sys_sched_yield - yield the current processor to other threads. - * - * This function yields the current CPU to other tasks. It does this by - * scheduling away the current task. If it still has the earliest deadline - * it will be scheduled again as the next task. - * - * Return: 0. - */ -SYSCALL_DEFINE0(sched_yield) -{ - struct task_struct *p; - - p = current; - grq_lock_irq(); - schedstat_inc(task_rq(p), yld_count); - requeue_task(p); - - /* - * Since we are going to call schedule() anyway, there's - * no need to preempt or enable interrupts: - */ - __release(grq.lock); - spin_release(&grq.lock.dep_map, 1, _THIS_IP_); - do_raw_spin_unlock(&grq.lock); - sched_preempt_enable_no_resched(); - - schedule(); - - return 0; -} - -static inline bool should_resched(void) -{ - return need_resched() && !(preempt_count() & PREEMPT_ACTIVE); -} - -static void __cond_resched(void) -{ - add_preempt_count(PREEMPT_ACTIVE); - schedule(); - sub_preempt_count(PREEMPT_ACTIVE); -} - -int __sched _cond_resched(void) -{ - if (should_resched()) { - __cond_resched(); - return 1; - } - return 0; -} -EXPORT_SYMBOL(_cond_resched); - -/* - * __cond_resched_lock() - if a reschedule is pending, drop the given lock, - * call schedule, and on return reacquire the lock. - * - * This works OK both with and without CONFIG_PREEMPT. We do strange low-level - * operations here to prevent schedule() from being called twice (once via - * spin_unlock(), once by hand). - */ -int __cond_resched_lock(spinlock_t *lock) -{ - int resched = should_resched(); - int ret = 0; - - lockdep_assert_held(lock); - - if (spin_needbreak(lock) || resched) { - spin_unlock(lock); - if (resched) - __cond_resched(); - else - cpu_relax(); - ret = 1; - spin_lock(lock); - } - return ret; -} -EXPORT_SYMBOL(__cond_resched_lock); - -int __sched __cond_resched_softirq(void) -{ - BUG_ON(!in_softirq()); - - if (should_resched()) { - local_bh_enable(); - __cond_resched(); - local_bh_disable(); - return 1; - } - return 0; -} -EXPORT_SYMBOL(__cond_resched_softirq); - -/** - * yield - yield the current processor to other threads. - * - * Do not ever use this function, there's a 99% chance you're doing it wrong. - * - * The scheduler is at all times free to pick the calling task as the most - * eligible task to run, if removing the yield() call from your code breaks - * it, its already broken. - * - * Typical broken usage is: - * - * while (!event) - * yield(); - * - * where one assumes that yield() will let 'the other' process run that will - * make event true. If the current task is a SCHED_FIFO task that will never - * happen. Never use yield() as a progress guarantee!! - * - * If you want to use yield() to wait for something, use wait_event(). - * If you want to use yield() to be 'nice' for others, use cond_resched(). - * If you still want to use yield(), do not! - */ -void __sched yield(void) -{ - set_current_state(TASK_RUNNING); - sys_sched_yield(); -} -EXPORT_SYMBOL(yield); - -/** - * yield_to - yield the current processor to another thread in - * your thread group, or accelerate that thread toward the - * processor it's on. - * @p: target task - * @preempt: whether task preemption is allowed or not - * - * It's the caller's job to ensure that the target task struct - * can't go away on us before we can do any checks. - * - * Return: - * true (>0) if we indeed boosted the target task. - * false (0) if we failed to boost the target. - * -ESRCH if there's no task to yield to. - */ -bool __sched yield_to(struct task_struct *p, bool preempt) -{ - unsigned long flags; - int yielded = 0; - struct rq *rq; - - rq = this_rq(); - grq_lock_irqsave(&flags); - if (task_running(p) || p->state) { - yielded = -ESRCH; - goto out_unlock; - } - yielded = 1; - if (p->deadline > rq->rq_deadline) - p->deadline = rq->rq_deadline; - p->time_slice += rq->rq_time_slice; - rq->rq_time_slice = 0; - if (p->time_slice > timeslice()) - p->time_slice = timeslice(); - set_tsk_need_resched(rq->curr); -out_unlock: - grq_unlock_irqrestore(&flags); - - if (yielded > 0) - schedule(); - return yielded; -} -EXPORT_SYMBOL_GPL(yield_to); - -/* - * This task is about to go to sleep on IO. Increment rq->nr_iowait so - * that process accounting knows that this is a task in IO wait state. - * - * But don't do that if it is a deliberate, throttling IO wait (this task - * has set its backing_dev_info: the queue against which it should throttle) - */ -void __sched io_schedule(void) -{ - struct rq *rq = raw_rq(); - - delayacct_blkio_start(); - atomic_inc(&rq->nr_iowait); - blk_flush_plug(current); - current->in_iowait = 1; - schedule(); - current->in_iowait = 0; - atomic_dec(&rq->nr_iowait); - delayacct_blkio_end(); -} -EXPORT_SYMBOL(io_schedule); - -long __sched io_schedule_timeout(long timeout) -{ - struct rq *rq = raw_rq(); - long ret; - - delayacct_blkio_start(); - atomic_inc(&rq->nr_iowait); - blk_flush_plug(current); - current->in_iowait = 1; - ret = schedule_timeout(timeout); - current->in_iowait = 0; - atomic_dec(&rq->nr_iowait); - delayacct_blkio_end(); - return ret; -} - -/** - * sys_sched_get_priority_max - return maximum RT priority. - * @policy: scheduling class. - * - * Return: On success, this syscall returns the maximum - * rt_priority that can be used by a given scheduling class. - * On failure, a negative error code is returned. - */ -SYSCALL_DEFINE1(sched_get_priority_max, int, policy) -{ - int ret = -EINVAL; - - switch (policy) { - case SCHED_FIFO: - case SCHED_RR: - ret = MAX_USER_RT_PRIO-1; - break; - case SCHED_NORMAL: - case SCHED_BATCH: - case SCHED_ISO: - case SCHED_IDLEPRIO: - ret = 0; - break; - } - return ret; -} - -/** - * sys_sched_get_priority_min - return minimum RT priority. - * @policy: scheduling class. - * - * Return: On success, this syscall returns the minimum - * rt_priority that can be used by a given scheduling class. - * On failure, a negative error code is returned. - */ -SYSCALL_DEFINE1(sched_get_priority_min, int, policy) -{ - int ret = -EINVAL; - - switch (policy) { - case SCHED_FIFO: - case SCHED_RR: - ret = 1; - break; - case SCHED_NORMAL: - case SCHED_BATCH: - case SCHED_ISO: - case SCHED_IDLEPRIO: - ret = 0; - break; - } - return ret; -} - -/** - * sys_sched_rr_get_interval - return the default timeslice of a process. - * @pid: pid of the process. - * @interval: userspace pointer to the timeslice value. - * - * - * Return: On success, 0 and the timeslice is in @interval. Otherwise, - * an error code. - */ -SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, - struct timespec __user *, interval) -{ - struct task_struct *p; - unsigned int time_slice; - unsigned long flags; - int retval; - struct timespec t; - - if (pid < 0) - return -EINVAL; - - retval = -ESRCH; - rcu_read_lock(); - p = find_process_by_pid(pid); - if (!p) - goto out_unlock; - - retval = security_task_getscheduler(p); - if (retval) - goto out_unlock; - - grq_lock_irqsave(&flags); - time_slice = p->policy == SCHED_FIFO ? 0 : MS_TO_NS(task_timeslice(p)); - grq_unlock_irqrestore(&flags); - - rcu_read_unlock(); - t = ns_to_timespec(time_slice); - retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; - return retval; - -out_unlock: - rcu_read_unlock(); - return retval; -} - -static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; - -void sched_show_task(struct task_struct *p) -{ - unsigned long free = 0; - int ppid; - unsigned state; - - state = p->state ? __ffs(p->state) + 1 : 0; - printk(KERN_INFO "%-15.15s %c", p->comm, - state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); -#if BITS_PER_LONG == 32 - if (state == TASK_RUNNING) - printk(KERN_CONT " running "); - else - printk(KERN_CONT " %08lx ", thread_saved_pc(p)); -#else - if (state == TASK_RUNNING) - printk(KERN_CONT " running task "); - else - printk(KERN_CONT " %016lx ", thread_saved_pc(p)); -#endif -#ifdef CONFIG_DEBUG_STACK_USAGE - free = stack_not_used(p); -#endif - rcu_read_lock(); - ppid = task_pid_nr(rcu_dereference(p->real_parent)); - rcu_read_unlock(); - printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, - task_pid_nr(p), ppid, - (unsigned long)task_thread_info(p)->flags); - - print_worker_info(KERN_INFO, p); - show_stack(p, NULL); -} - -void show_state_filter(unsigned long state_filter) -{ - struct task_struct *g, *p; - -#if BITS_PER_LONG == 32 - printk(KERN_INFO - " task PC stack pid father\n"); -#else - printk(KERN_INFO - " task PC stack pid father\n"); -#endif - rcu_read_lock(); - do_each_thread(g, p) { - /* - * reset the NMI-timeout, listing all files on a slow - * console might take a lot of time: - */ - touch_nmi_watchdog(); - if (!state_filter || (p->state & state_filter)) - sched_show_task(p); - } while_each_thread(g, p); - - touch_all_softlockup_watchdogs(); - - rcu_read_unlock(); - /* - * Only show locks if all tasks are dumped: - */ - if (!state_filter) - debug_show_all_locks(); -} - -void dump_cpu_task(int cpu) -{ - pr_info("Task dump for CPU %d:\n", cpu); - sched_show_task(cpu_curr(cpu)); -} - -#ifdef CONFIG_SMP -void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) -{ - cpumask_copy(tsk_cpus_allowed(p), new_mask); -} -#endif - -/** - * init_idle - set up an idle thread for a given CPU - * @idle: task in question - * @cpu: cpu the idle task belongs to - * - * NOTE: this function does not set the idle thread's NEED_RESCHED - * flag, to make booting more robust. - */ -void init_idle(struct task_struct *idle, int cpu) -{ - struct rq *rq = cpu_rq(cpu); - unsigned long flags; - - time_grq_lock(rq, &flags); - idle->last_ran = rq->clock_task; - idle->state = TASK_RUNNING; - /* Setting prio to illegal value shouldn't matter when never queued */ - idle->prio = PRIO_LIMIT; - set_rq_task(rq, idle); - do_set_cpus_allowed(idle, &cpumask_of_cpu(cpu)); - /* Silence PROVE_RCU */ - rcu_read_lock(); - set_task_cpu(idle, cpu); - rcu_read_unlock(); - rq->curr = rq->idle = idle; - idle->on_cpu = 1; - grq_unlock_irqrestore(&flags); - - /* Set the preempt count _outside_ the spinlocks! */ - task_thread_info(idle)->preempt_count = 0; - - ftrace_graph_init_idle_task(idle, cpu); -#if defined(CONFIG_SMP) - sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); -#endif -} - -#ifdef CONFIG_SMP -#ifdef CONFIG_NO_HZ_COMMON -void nohz_balance_enter_idle(int cpu) -{ -} - -void select_nohz_load_balancer(int stop_tick) -{ -} - -void set_cpu_sd_state_idle(void) {} -#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) -/** - * lowest_flag_domain - Return lowest sched_domain containing flag. - * @cpu: The cpu whose lowest level of sched domain is to - * be returned. - * @flag: The flag to check for the lowest sched_domain - * for the given cpu. - * - * Returns the lowest sched_domain of a cpu which contains the given flag. - */ -static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) -{ - struct sched_domain *sd; - - for_each_domain(cpu, sd) - if (sd && (sd->flags & flag)) - break; - - return sd; -} - -/** - * for_each_flag_domain - Iterates over sched_domains containing the flag. - * @cpu: The cpu whose domains we're iterating over. - * @sd: variable holding the value of the power_savings_sd - * for cpu. - * @flag: The flag to filter the sched_domains to be iterated. - * - * Iterates over all the scheduler domains for a given cpu that has the 'flag' - * set, starting from the lowest sched_domain to the highest. - */ -#define for_each_flag_domain(cpu, sd, flag) \ - for (sd = lowest_flag_domain(cpu, flag); \ - (sd && (sd->flags & flag)); sd = sd->parent) - -#endif /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */ - -static inline void resched_cpu(int cpu) -{ - unsigned long flags; - - grq_lock_irqsave(&flags); - resched_task(cpu_curr(cpu)); - grq_unlock_irqrestore(&flags); -} - -/* - * In the semi idle case, use the nearest busy cpu for migrating timers - * from an idle cpu. This is good for power-savings. - * - * We don't do similar optimization for completely idle system, as - * selecting an idle cpu will add more delays to the timers than intended - * (as that cpu's timer base may not be uptodate wrt jiffies etc). - */ -int get_nohz_timer_target(void) -{ - int cpu = smp_processor_id(); - int i; - struct sched_domain *sd; - - rcu_read_lock(); - for_each_domain(cpu, sd) { - for_each_cpu(i, sched_domain_span(sd)) { - if (!idle_cpu(i)) - cpu = i; - goto unlock; - } - } -unlock: - rcu_read_unlock(); - return cpu; -} - -/* - * When add_timer_on() enqueues a timer into the timer wheel of an - * idle CPU then this timer might expire before the next timer event - * which is scheduled to wake up that CPU. In case of a completely - * idle system the next event might even be infinite time into the - * future. wake_up_idle_cpu() ensures that the CPU is woken up and - * leaves the inner idle loop so the newly added timer is taken into - * account when the CPU goes back to idle and evaluates the timer - * wheel for the next timer event. - */ -void wake_up_idle_cpu(int cpu) -{ - struct task_struct *idle; - struct rq *rq; - - if (cpu == smp_processor_id()) - return; - - rq = cpu_rq(cpu); - idle = rq->idle; - - /* - * This is safe, as this function is called with the timer - * wheel base lock of (cpu) held. When the CPU is on the way - * to idle and has not yet set rq->curr to idle then it will - * be serialised on the timer wheel base lock and take the new - * timer into account automatically. - */ - if (unlikely(rq->curr != idle)) - return; - - /* - * We can set TIF_RESCHED on the idle task of the other CPU - * lockless. The worst case is that the other CPU runs the - * idle task through an additional NOOP schedule() - */ - set_tsk_need_resched(idle); - - /* NEED_RESCHED must be visible before we test polling */ - smp_mb(); - if (!tsk_is_polling(idle)) - smp_send_reschedule(cpu); -} - -void wake_up_nohz_cpu(int cpu) -{ - wake_up_idle_cpu(cpu); -} -#endif /* CONFIG_NO_HZ_COMMON */ - -/* - * Change a given task's CPU affinity. Migrate the thread to a - * proper CPU and schedule it away if the CPU it's executing on - * is removed from the allowed bitmask. - * - * NOTE: the caller must have a valid reference to the task, the - * task must not exit() & deallocate itself prematurely. The - * call is not atomic; no spinlocks may be held. - */ -int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) -{ - bool running_wrong = false; - bool queued = false; - unsigned long flags; - struct rq *rq; - int ret = 0; - - rq = task_grq_lock(p, &flags); - - if (cpumask_equal(tsk_cpus_allowed(p), new_mask)) - goto out; - - if (!cpumask_intersects(new_mask, cpu_active_mask)) { - ret = -EINVAL; - goto out; - } - - queued = task_queued(p); - - do_set_cpus_allowed(p, new_mask); - - /* Can the task run on the task's current CPU? If so, we're done */ - if (cpumask_test_cpu(task_cpu(p), new_mask)) - goto out; - - if (task_running(p)) { - /* Task is running on the wrong cpu now, reschedule it. */ - if (rq == this_rq()) { - set_tsk_need_resched(p); - running_wrong = true; - } else - resched_task(p); - } else - set_task_cpu(p, cpumask_any_and(cpu_active_mask, new_mask)); - -out: - if (queued) - try_preempt(p, rq); - task_grq_unlock(&flags); - - if (running_wrong) - _cond_resched(); - - return ret; -} -EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); - -#ifdef CONFIG_HOTPLUG_CPU -extern struct task_struct *cpu_stopper_task; -/* Run through task list and find tasks affined to just the dead cpu, then - * allocate a new affinity */ -static void break_sole_affinity(int src_cpu, struct task_struct *idle) -{ - struct task_struct *p, *t, *stopper; - - stopper = per_cpu(cpu_stopper_task, src_cpu); - do_each_thread(t, p) { - if (p != stopper && p != idle && !online_cpus(p)) { - cpumask_copy(tsk_cpus_allowed(p), cpu_possible_mask); - /* - * Don't tell them about moving exiting tasks or - * kernel threads (both mm NULL), since they never - * leave kernel. - */ - if (p->mm && printk_ratelimit()) { - printk(KERN_INFO "process %d (%s) no " - "longer affine to cpu %d\n", - task_pid_nr(p), p->comm, src_cpu); - } - } - clear_sticky(p); - } while_each_thread(t, p); -} - -/* - * Ensures that the idle task is using init_mm right before its cpu goes - * offline. - */ -void idle_task_exit(void) -{ - struct mm_struct *mm = current->active_mm; - - BUG_ON(cpu_online(smp_processor_id())); - - if (mm != &init_mm) - switch_mm(mm, &init_mm, current); - mmdrop(mm); -} -#endif /* CONFIG_HOTPLUG_CPU */ -void sched_set_stop_task(int cpu, struct task_struct *stop) -{ - struct sched_param stop_param = { .sched_priority = STOP_PRIO }; - struct sched_param start_param = { .sched_priority = 0 }; - struct task_struct *old_stop = cpu_rq(cpu)->stop; - - if (stop) { - /* - * Make it appear like a SCHED_FIFO task, its something - * userspace knows about and won't get confused about. - * - * Also, it will make PI more or less work without too - * much confusion -- but then, stop work should not - * rely on PI working anyway. - */ - sched_setscheduler_nocheck(stop, SCHED_FIFO, &stop_param); - } - - cpu_rq(cpu)->stop = stop; - - if (old_stop) { - /* - * Reset it back to a normal scheduling policy so that - * it can die in pieces. - */ - sched_setscheduler_nocheck(old_stop, SCHED_NORMAL, &start_param); - } -} - - -#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) - -static struct ctl_table sd_ctl_dir[] = { - { - .procname = "sched_domain", - .mode = 0555, - }, - {} -}; - -static struct ctl_table sd_ctl_root[] = { - { - .procname = "kernel", - .mode = 0555, - .child = sd_ctl_dir, - }, - {} -}; - -static struct ctl_table *sd_alloc_ctl_entry(int n) -{ - struct ctl_table *entry = - kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); - - return entry; -} - -static void sd_free_ctl_entry(struct ctl_table **tablep) -{ - struct ctl_table *entry; - - /* - * In the intermediate directories, both the child directory and - * procname are dynamically allocated and could fail but the mode - * will always be set. In the lowest directory the names are - * static strings and all have proc handlers. - */ - for (entry = *tablep; entry->mode; entry++) { - if (entry->child) - sd_free_ctl_entry(&entry->child); - if (entry->proc_handler == NULL) - kfree(entry->procname); - } - - kfree(*tablep); - *tablep = NULL; -} - -static void -set_table_entry(struct ctl_table *entry, - const char *procname, void *data, int maxlen, - mode_t mode, proc_handler *proc_handler) -{ - entry->procname = procname; - entry->data = data; - entry->maxlen = maxlen; - entry->mode = mode; - entry->proc_handler = proc_handler; -} - -static struct ctl_table * -sd_alloc_ctl_domain_table(struct sched_domain *sd) -{ - struct ctl_table *table = sd_alloc_ctl_entry(13); - - if (table == NULL) - return NULL; - - set_table_entry(&table[0], "min_interval", &sd->min_interval, - sizeof(long), 0644, proc_doulongvec_minmax); - set_table_entry(&table[1], "max_interval", &sd->max_interval, - sizeof(long), 0644, proc_doulongvec_minmax); - set_table_entry(&table[2], "busy_idx", &sd->busy_idx, - sizeof(int), 0644, proc_dointvec_minmax); - set_table_entry(&table[3], "idle_idx", &sd->idle_idx, - sizeof(int), 0644, proc_dointvec_minmax); - set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, - sizeof(int), 0644, proc_dointvec_minmax); - set_table_entry(&table[5], "wake_idx", &sd->wake_idx, - sizeof(int), 0644, proc_dointvec_minmax); - set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, - sizeof(int), 0644, proc_dointvec_minmax); - set_table_entry(&table[7], "busy_factor", &sd->busy_factor, - sizeof(int), 0644, proc_dointvec_minmax); - set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, - sizeof(int), 0644, proc_dointvec_minmax); - set_table_entry(&table[9], "cache_nice_tries", - &sd->cache_nice_tries, - sizeof(int), 0644, proc_dointvec_minmax); - set_table_entry(&table[10], "flags", &sd->flags, - sizeof(int), 0644, proc_dointvec_minmax); - set_table_entry(&table[11], "name", sd->name, - CORENAME_MAX_SIZE, 0444, proc_dostring); - /* &table[12] is terminator */ - - return table; -} - -static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu) -{ - struct ctl_table *entry, *table; - struct sched_domain *sd; - int domain_num = 0, i; - char buf[32]; - - for_each_domain(cpu, sd) - domain_num++; - entry = table = sd_alloc_ctl_entry(domain_num + 1); - if (table == NULL) - return NULL; - - i = 0; - for_each_domain(cpu, sd) { - snprintf(buf, 32, "domain%d", i); - entry->procname = kstrdup(buf, GFP_KERNEL); - entry->mode = 0555; - entry->child = sd_alloc_ctl_domain_table(sd); - entry++; - i++; - } - return table; -} - -static struct ctl_table_header *sd_sysctl_header; -static void register_sched_domain_sysctl(void) -{ - int i, cpu_num = num_possible_cpus(); - struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); - char buf[32]; - - WARN_ON(sd_ctl_dir[0].child); - sd_ctl_dir[0].child = entry; - - if (entry == NULL) - return; - - for_each_possible_cpu(i) { - snprintf(buf, 32, "cpu%d", i); - entry->procname = kstrdup(buf, GFP_KERNEL); - entry->mode = 0555; - entry->child = sd_alloc_ctl_cpu_table(i); - entry++; - } - - WARN_ON(sd_sysctl_header); - sd_sysctl_header = register_sysctl_table(sd_ctl_root); -} - -/* may be called multiple times per register */ -static void unregister_sched_domain_sysctl(void) -{ - if (sd_sysctl_header) - unregister_sysctl_table(sd_sysctl_header); - sd_sysctl_header = NULL; - if (sd_ctl_dir[0].child) - sd_free_ctl_entry(&sd_ctl_dir[0].child); -} -#else -static void register_sched_domain_sysctl(void) -{ -} -static void unregister_sched_domain_sysctl(void) -{ -} -#endif - -static void set_rq_online(struct rq *rq) -{ - if (!rq->online) { - cpumask_set_cpu(cpu_of(rq), rq->rd->online); - rq->online = true; - } -} - -static void set_rq_offline(struct rq *rq) -{ - if (rq->online) { - cpumask_clear_cpu(cpu_of(rq), rq->rd->online); - rq->online = false; - } -} - -/* - * migration_call - callback that gets triggered when a CPU is added. - */ -static int -migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) -{ - int cpu = (long)hcpu; - unsigned long flags; - struct rq *rq = cpu_rq(cpu); -#ifdef CONFIG_HOTPLUG_CPU - struct task_struct *idle = rq->idle; -#endif - - switch (action & ~CPU_TASKS_FROZEN) { - - case CPU_UP_PREPARE: - break; - - case CPU_ONLINE: - /* Update our root-domain */ - grq_lock_irqsave(&flags); - if (rq->rd) { - BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); - - set_rq_online(rq); - } - grq.noc = num_online_cpus(); - grq_unlock_irqrestore(&flags); - break; - -#ifdef CONFIG_HOTPLUG_CPU - case CPU_DEAD: - /* Idle task back to normal (off runqueue, low prio) */ - grq_lock_irq(); - return_task(idle, true); - idle->static_prio = MAX_PRIO; - __setscheduler(idle, rq, SCHED_NORMAL, 0); - idle->prio = PRIO_LIMIT; - set_rq_task(rq, idle); - update_clocks(rq); - grq_unlock_irq(); - break; - - case CPU_DYING: - sched_ttwu_pending(); - /* Update our root-domain */ - grq_lock_irqsave(&flags); - if (rq->rd) { - BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); - set_rq_offline(rq); - } - break_sole_affinity(cpu, idle); - grq.noc = num_online_cpus(); - grq_unlock_irqrestore(&flags); - break; -#endif - } - return NOTIFY_OK; -} - -/* - * Register at high priority so that task migration (migrate_all_tasks) - * happens before everything else. This has to be lower priority than - * the notifier in the perf_counter subsystem, though. - */ -static struct notifier_block migration_notifier = { - .notifier_call = migration_call, - .priority = CPU_PRI_MIGRATION, -}; - -static int sched_cpu_active(struct notifier_block *nfb, - unsigned long action, void *hcpu) -{ - switch (action & ~CPU_TASKS_FROZEN) { - case CPU_STARTING: - case CPU_DOWN_FAILED: - set_cpu_active((long)hcpu, true); - return NOTIFY_OK; - default: - return NOTIFY_DONE; - } -} - -static int sched_cpu_inactive(struct notifier_block *nfb, - unsigned long action, void *hcpu) -{ - switch (action & ~CPU_TASKS_FROZEN) { - case CPU_DOWN_PREPARE: - set_cpu_active((long)hcpu, false); - return NOTIFY_OK; - default: - return NOTIFY_DONE; - } -} - -int __init migration_init(void) -{ - void *cpu = (void *)(long)smp_processor_id(); - int err; - - /* Initialise migration for the boot CPU */ - err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); - BUG_ON(err == NOTIFY_BAD); - migration_call(&migration_notifier, CPU_ONLINE, cpu); - register_cpu_notifier(&migration_notifier); - - /* Register cpu active notifiers */ - cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE); - cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE); - - return 0; -} -early_initcall(migration_init); -#endif - -#ifdef CONFIG_SMP - -static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */ - -#ifdef CONFIG_SCHED_DEBUG - -static __read_mostly int sched_debug_enabled; - -static int __init sched_debug_setup(char *str) -{ - sched_debug_enabled = 1; - - return 0; -} -early_param("sched_debug", sched_debug_setup); - -static inline bool sched_debug(void) -{ - return sched_debug_enabled; -} - -static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, - struct cpumask *groupmask) -{ - char str[256]; - - cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd)); - cpumask_clear(groupmask); - - printk(KERN_DEBUG "%*s domain %d: ", level, "", level); - - if (!(sd->flags & SD_LOAD_BALANCE)) { - printk("does not load-balance\n"); - if (sd->parent) - printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" - " has parent"); - return -1; - } - - printk(KERN_CONT "span %s level %s\n", str, sd->name); - - if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { - printk(KERN_ERR "ERROR: domain->span does not contain " - "CPU%d\n", cpu); - } - - printk(KERN_CONT "\n"); - - if (!cpumask_equal(sched_domain_span(sd), groupmask)) - printk(KERN_ERR "ERROR: groups don't span domain->span\n"); - - if (sd->parent && - !cpumask_subset(groupmask, sched_domain_span(sd->parent))) - printk(KERN_ERR "ERROR: parent span is not a superset " - "of domain->span\n"); - return 0; -} - -static void sched_domain_debug(struct sched_domain *sd, int cpu) -{ - int level = 0; - - if (!sched_debug_enabled) - return; - - if (!sd) { - printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); - return; - } - - printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); - - for (;;) { - if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) - break; - level++; - sd = sd->parent; - if (!sd) - break; - } -} -#else /* !CONFIG_SCHED_DEBUG */ -# define sched_domain_debug(sd, cpu) do { } while (0) -static inline bool sched_debug(void) -{ - return false; -} -#endif /* CONFIG_SCHED_DEBUG */ - -static int sd_degenerate(struct sched_domain *sd) -{ - if (cpumask_weight(sched_domain_span(sd)) == 1) - return 1; - - /* Following flags don't use groups */ - if (sd->flags & (SD_WAKE_AFFINE)) - return 0; - - return 1; -} - -static int -sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) -{ - unsigned long cflags = sd->flags, pflags = parent->flags; - - if (sd_degenerate(parent)) - return 1; - - if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) - return 0; - - if (~cflags & pflags) - return 0; - - return 1; -} - -static void free_rootdomain(struct rcu_head *rcu) -{ - struct root_domain *rd = container_of(rcu, struct root_domain, rcu); - - cpupri_cleanup(&rd->cpupri); - free_cpumask_var(rd->rto_mask); - free_cpumask_var(rd->online); - free_cpumask_var(rd->span); - kfree(rd); -} - -static void rq_attach_root(struct rq *rq, struct root_domain *rd) -{ - struct root_domain *old_rd = NULL; - unsigned long flags; - - grq_lock_irqsave(&flags); - - if (rq->rd) { - old_rd = rq->rd; - - if (cpumask_test_cpu(rq->cpu, old_rd->online)) - set_rq_offline(rq); - - cpumask_clear_cpu(rq->cpu, old_rd->span); - - /* - * If we dont want to free the old_rt yet then - * set old_rd to NULL to skip the freeing later - * in this function: - */ - if (!atomic_dec_and_test(&old_rd->refcount)) - old_rd = NULL; - } - - atomic_inc(&rd->refcount); - rq->rd = rd; - - cpumask_set_cpu(rq->cpu, rd->span); - if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) - set_rq_online(rq); - - grq_unlock_irqrestore(&flags); - - if (old_rd) - call_rcu_sched(&old_rd->rcu, free_rootdomain); -} - -static int init_rootdomain(struct root_domain *rd) -{ - memset(rd, 0, sizeof(*rd)); - - if (!alloc_cpumask_var(&rd->span, GFP_KERNEL)) - goto out; - if (!alloc_cpumask_var(&rd->online, GFP_KERNEL)) - goto free_span; - if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) - goto free_online; - - if (cpupri_init(&rd->cpupri) != 0) - goto free_rto_mask; - return 0; - -free_rto_mask: - free_cpumask_var(rd->rto_mask); -free_online: - free_cpumask_var(rd->online); -free_span: - free_cpumask_var(rd->span); -out: - return -ENOMEM; -} - -static void init_defrootdomain(void) -{ - init_rootdomain(&def_root_domain); - - atomic_set(&def_root_domain.refcount, 1); -} - -static struct root_domain *alloc_rootdomain(void) -{ - struct root_domain *rd; - - rd = kmalloc(sizeof(*rd), GFP_KERNEL); - if (!rd) - return NULL; - - if (init_rootdomain(rd) != 0) { - kfree(rd); - return NULL; - } - - return rd; -} - -static void free_sched_domain(struct rcu_head *rcu) -{ - struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); - - kfree(sd); -} - -static void destroy_sched_domain(struct sched_domain *sd, int cpu) -{ - call_rcu(&sd->rcu, free_sched_domain); -} - -static void destroy_sched_domains(struct sched_domain *sd, int cpu) -{ - for (; sd; sd = sd->parent) - destroy_sched_domain(sd, cpu); -} - -/* - * Attach the domain 'sd' to 'cpu' as its base domain. Callers must - * hold the hotplug lock. - */ -static void -cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) -{ - struct rq *rq = cpu_rq(cpu); - struct sched_domain *tmp; - - /* Remove the sched domains which do not contribute to scheduling. */ - for (tmp = sd; tmp; ) { - struct sched_domain *parent = tmp->parent; - if (!parent) - break; - - if (sd_parent_degenerate(tmp, parent)) { - tmp->parent = parent->parent; - if (parent->parent) - parent->parent->child = tmp; - destroy_sched_domain(parent, cpu); - } else - tmp = tmp->parent; - } - - if (sd && sd_degenerate(sd)) { - tmp = sd; - sd = sd->parent; - destroy_sched_domain(tmp, cpu); - if (sd) - sd->child = NULL; - } - - sched_domain_debug(sd, cpu); - - rq_attach_root(rq, rd); - tmp = rq->sd; - rcu_assign_pointer(rq->sd, sd); - destroy_sched_domains(tmp, cpu); -} - -/* cpus with isolated domains */ -static cpumask_var_t cpu_isolated_map; - -/* Setup the mask of cpus configured for isolated domains */ -static int __init isolated_cpu_setup(char *str) -{ - alloc_bootmem_cpumask_var(&cpu_isolated_map); - cpulist_parse(str, cpu_isolated_map); - return 1; -} - -__setup("isolcpus=", isolated_cpu_setup); - -static const struct cpumask *cpu_cpu_mask(int cpu) -{ - return cpumask_of_node(cpu_to_node(cpu)); -} - -struct sd_data { - struct sched_domain **__percpu sd; -}; - -struct s_data { - struct sched_domain ** __percpu sd; - struct root_domain *rd; -}; - -enum s_alloc { - sa_rootdomain, - sa_sd, - sa_sd_storage, - sa_none, -}; - -struct sched_domain_topology_level; - -typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu); -typedef const struct cpumask *(*sched_domain_mask_f)(int cpu); - -#define SDTL_OVERLAP 0x01 - -struct sched_domain_topology_level { - sched_domain_init_f init; - sched_domain_mask_f mask; - int flags; - int numa_level; - struct sd_data data; -}; - -/* - * Initializers for schedule domains - * Non-inlined to reduce accumulated stack pressure in build_sched_domains() - */ - -#ifdef CONFIG_SCHED_DEBUG -# define SD_INIT_NAME(sd, type) sd->name = #type -#else -# define SD_INIT_NAME(sd, type) do { } while (0) -#endif - -#define SD_INIT_FUNC(type) \ -static noinline struct sched_domain * \ -sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \ -{ \ - struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \ - *sd = SD_##type##_INIT; \ - SD_INIT_NAME(sd, type); \ - sd->private = &tl->data; \ - return sd; \ -} - -SD_INIT_FUNC(CPU) -#ifdef CONFIG_SCHED_SMT - SD_INIT_FUNC(SIBLING) -#endif -#ifdef CONFIG_SCHED_MC - SD_INIT_FUNC(MC) -#endif -#ifdef CONFIG_SCHED_BOOK - SD_INIT_FUNC(BOOK) -#endif - -static int default_relax_domain_level = -1; -int sched_domain_level_max; - -static int __init setup_relax_domain_level(char *str) -{ - if (kstrtoint(str, 0, &default_relax_domain_level)) - pr_warn("Unable to set relax_domain_level\n"); - - return 1; -} -__setup("relax_domain_level=", setup_relax_domain_level); - -static void set_domain_attribute(struct sched_domain *sd, - struct sched_domain_attr *attr) -{ - int request; - - if (!attr || attr->relax_domain_level < 0) { - if (default_relax_domain_level < 0) - return; - else - request = default_relax_domain_level; - } else - request = attr->relax_domain_level; - if (request < sd->level) { - /* turn off idle balance on this domain */ - sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); - } else { - /* turn on idle balance on this domain */ - sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); - } -} - -static void __sdt_free(const struct cpumask *cpu_map); -static int __sdt_alloc(const struct cpumask *cpu_map); - -static void __free_domain_allocs(struct s_data *d, enum s_alloc what, - const struct cpumask *cpu_map) -{ - switch (what) { - case sa_rootdomain: - if (!atomic_read(&d->rd->refcount)) - free_rootdomain(&d->rd->rcu); /* fall through */ - case sa_sd: - free_percpu(d->sd); /* fall through */ - case sa_sd_storage: - __sdt_free(cpu_map); /* fall through */ - case sa_none: - break; - } -} - -static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, - const struct cpumask *cpu_map) -{ - memset(d, 0, sizeof(*d)); - - if (__sdt_alloc(cpu_map)) - return sa_sd_storage; - d->sd = alloc_percpu(struct sched_domain *); - if (!d->sd) - return sa_sd_storage; - d->rd = alloc_rootdomain(); - if (!d->rd) - return sa_sd; - return sa_rootdomain; -} - -/* - * NULL the sd_data elements we've used to build the sched_domain - * structure so that the subsequent __free_domain_allocs() - * will not free the data we're using. - */ -static void claim_allocations(int cpu, struct sched_domain *sd) -{ - struct sd_data *sdd = sd->private; - - WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); - *per_cpu_ptr(sdd->sd, cpu) = NULL; -} - -#ifdef CONFIG_SCHED_SMT -static const struct cpumask *cpu_smt_mask(int cpu) -{ - return topology_thread_cpumask(cpu); -} -#endif - -/* - * Topology list, bottom-up. - */ -static struct sched_domain_topology_level default_topology[] = { -#ifdef CONFIG_SCHED_SMT - { sd_init_SIBLING, cpu_smt_mask, }, -#endif -#ifdef CONFIG_SCHED_MC - { sd_init_MC, cpu_coregroup_mask, }, -#endif -#ifdef CONFIG_SCHED_BOOK - { sd_init_BOOK, cpu_book_mask, }, -#endif - { sd_init_CPU, cpu_cpu_mask, }, - { NULL, }, -}; - -static struct sched_domain_topology_level *sched_domain_topology = default_topology; - -#define for_each_sd_topology(tl) \ - for (tl = sched_domain_topology; tl->init; tl++) - -#ifdef CONFIG_NUMA - -static int sched_domains_numa_levels; -static int *sched_domains_numa_distance; -static struct cpumask ***sched_domains_numa_masks; -static int sched_domains_curr_level; - -static inline int sd_local_flags(int level) -{ - if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE) - return 0; - - return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE; -} - -static struct sched_domain * -sd_numa_init(struct sched_domain_topology_level *tl, int cpu) -{ - struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); - int level = tl->numa_level; - int sd_weight = cpumask_weight( - sched_domains_numa_masks[level][cpu_to_node(cpu)]); - - *sd = (struct sched_domain){ - .min_interval = sd_weight, - .max_interval = 2*sd_weight, - .busy_factor = 32, - .imbalance_pct = 125, - .cache_nice_tries = 2, - .busy_idx = 3, - .idle_idx = 2, - .newidle_idx = 0, - .wake_idx = 0, - .forkexec_idx = 0, - - .flags = 1*SD_LOAD_BALANCE - | 1*SD_BALANCE_NEWIDLE - | 0*SD_BALANCE_EXEC - | 0*SD_BALANCE_FORK - | 0*SD_BALANCE_WAKE - | 0*SD_WAKE_AFFINE - | 0*SD_SHARE_CPUPOWER - | 0*SD_SHARE_PKG_RESOURCES - | 1*SD_SERIALIZE - | 0*SD_PREFER_SIBLING - | sd_local_flags(level) - , - .last_balance = jiffies, - .balance_interval = sd_weight, - }; - SD_INIT_NAME(sd, NUMA); - sd->private = &tl->data; - - /* - * Ugly hack to pass state to sd_numa_mask()... - */ - sched_domains_curr_level = tl->numa_level; - - return sd; -} - -static const struct cpumask *sd_numa_mask(int cpu) -{ - return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; -} - -static void sched_numa_warn(const char *str) -{ - static int done = false; - int i,j; - - if (done) - return; - - done = true; - - printk(KERN_WARNING "ERROR: %s\n\n", str); - - for (i = 0; i < nr_node_ids; i++) { - printk(KERN_WARNING " "); - for (j = 0; j < nr_node_ids; j++) - printk(KERN_CONT "%02d ", node_distance(i,j)); - printk(KERN_CONT "\n"); - } - printk(KERN_WARNING "\n"); -} - -static bool find_numa_distance(int distance) -{ - int i; - - if (distance == node_distance(0, 0)) - return true; - - for (i = 0; i < sched_domains_numa_levels; i++) { - if (sched_domains_numa_distance[i] == distance) - return true; - } - - return false; -} - -static void sched_init_numa(void) -{ - int next_distance, curr_distance = node_distance(0, 0); - struct sched_domain_topology_level *tl; - int level = 0; - int i, j, k; - - sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL); - if (!sched_domains_numa_distance) - return; - - /* - * O(nr_nodes^2) deduplicating selection sort -- in order to find the - * unique distances in the node_distance() table. - * - * Assumes node_distance(0,j) includes all distances in - * node_distance(i,j) in order to avoid cubic time. - */ - next_distance = curr_distance; - for (i = 0; i < nr_node_ids; i++) { - for (j = 0; j < nr_node_ids; j++) { - for (k = 0; k < nr_node_ids; k++) { - int distance = node_distance(i, k); - - if (distance > curr_distance && - (distance < next_distance || - next_distance == curr_distance)) - next_distance = distance; - - /* - * While not a strong assumption it would be nice to know - * about cases where if node A is connected to B, B is not - * equally connected to A. - */ - if (sched_debug() && node_distance(k, i) != distance) - sched_numa_warn("Node-distance not symmetric"); - - if (sched_debug() && i && !find_numa_distance(distance)) - sched_numa_warn("Node-0 not representative"); - } - if (next_distance != curr_distance) { - sched_domains_numa_distance[level++] = next_distance; - sched_domains_numa_levels = level; - curr_distance = next_distance; - } else break; - } - - /* - * In case of sched_debug() we verify the above assumption. - */ - if (!sched_debug()) - break; - } - /* - * 'level' contains the number of unique distances, excluding the - * identity distance node_distance(i,i). - * - * The sched_domains_numa_distance[] array includes the actual distance - * numbers. - */ - - /* - * Here, we should temporarily reset sched_domains_numa_levels to 0. - * If it fails to allocate memory for array sched_domains_numa_masks[][], - * the array will contain less then 'level' members. This could be - * dangerous when we use it to iterate array sched_domains_numa_masks[][] - * in other functions. - * - * We reset it to 'level' at the end of this function. - */ - sched_domains_numa_levels = 0; - - sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); - if (!sched_domains_numa_masks) - return; - - /* - * Now for each level, construct a mask per node which contains all - * cpus of nodes that are that many hops away from us. - */ - for (i = 0; i < level; i++) { - sched_domains_numa_masks[i] = - kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); - if (!sched_domains_numa_masks[i]) - return; - - for (j = 0; j < nr_node_ids; j++) { - struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); - if (!mask) - return; - - sched_domains_numa_masks[i][j] = mask; - - for (k = 0; k < nr_node_ids; k++) { - if (node_distance(j, k) > sched_domains_numa_distance[i]) - continue; - - cpumask_or(mask, mask, cpumask_of_node(k)); - } - } - } - - tl = kzalloc((ARRAY_SIZE(default_topology) + level) * - sizeof(struct sched_domain_topology_level), GFP_KERNEL); - if (!tl) - return; - - /* - * Copy the default topology bits.. - */ - for (i = 0; default_topology[i].init; i++) - tl[i] = default_topology[i]; - - /* - * .. and append 'j' levels of NUMA goodness. - */ - for (j = 0; j < level; i++, j++) { - tl[i] = (struct sched_domain_topology_level){ - .init = sd_numa_init, - .mask = sd_numa_mask, - .flags = SDTL_OVERLAP, - .numa_level = j, - }; - } - - sched_domain_topology = tl; - - sched_domains_numa_levels = level; -} - -static void sched_domains_numa_masks_set(int cpu) -{ - int i, j; - int node = cpu_to_node(cpu); - - for (i = 0; i < sched_domains_numa_levels; i++) { - for (j = 0; j < nr_node_ids; j++) { - if (node_distance(j, node) <= sched_domains_numa_distance[i]) - cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); - } - } -} - -static void sched_domains_numa_masks_clear(int cpu) -{ - int i, j; - for (i = 0; i < sched_domains_numa_levels; i++) { - for (j = 0; j < nr_node_ids; j++) - cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); - } -} - -/* - * Update sched_domains_numa_masks[level][node] array when new cpus - * are onlined. - */ -static int sched_domains_numa_masks_update(struct notifier_block *nfb, - unsigned long action, - void *hcpu) -{ - int cpu = (long)hcpu; - - switch (action & ~CPU_TASKS_FROZEN) { - case CPU_ONLINE: - sched_domains_numa_masks_set(cpu); - break; - - case CPU_DEAD: - sched_domains_numa_masks_clear(cpu); - break; - - default: - return NOTIFY_DONE; - } - - return NOTIFY_OK; -} -#else -static inline void sched_init_numa(void) -{ -} - -static int sched_domains_numa_masks_update(struct notifier_block *nfb, - unsigned long action, - void *hcpu) -{ - return 0; -} -#endif /* CONFIG_NUMA */ - -static int __sdt_alloc(const struct cpumask *cpu_map) -{ - struct sched_domain_topology_level *tl; - int j; - - for_each_sd_topology(tl) { - struct sd_data *sdd = &tl->data; - - sdd->sd = alloc_percpu(struct sched_domain *); - if (!sdd->sd) - return -ENOMEM; - - for_each_cpu(j, cpu_map) { - struct sched_domain *sd; - - sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), - GFP_KERNEL, cpu_to_node(j)); - if (!sd) - return -ENOMEM; - - *per_cpu_ptr(sdd->sd, j) = sd; - } - } - - return 0; -} - -static void __sdt_free(const struct cpumask *cpu_map) -{ - struct sched_domain_topology_level *tl; - int j; - - for_each_sd_topology(tl) { - struct sd_data *sdd = &tl->data; - - for_each_cpu(j, cpu_map) { - struct sched_domain *sd; - - if (sdd->sd) { - sd = *per_cpu_ptr(sdd->sd, j); - kfree(*per_cpu_ptr(sdd->sd, j)); - } - } - free_percpu(sdd->sd); - sdd->sd = NULL; - } -} - -struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, - const struct cpumask *cpu_map, struct sched_domain_attr *attr, - struct sched_domain *child, int cpu) -{ - struct sched_domain *sd = tl->init(tl, cpu); - if (!sd) - return child; - - cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); - if (child) { - sd->level = child->level + 1; - sched_domain_level_max = max(sched_domain_level_max, sd->level); - child->parent = sd; - sd->child = child; - } - set_domain_attribute(sd, attr); - - return sd; -} - -/* - * Build sched domains for a given set of cpus and attach the sched domains - * to the individual cpus - */ -static int build_sched_domains(const struct cpumask *cpu_map, - struct sched_domain_attr *attr) -{ - enum s_alloc alloc_state; - struct sched_domain *sd; - struct s_data d; - int i, ret = -ENOMEM; - - alloc_state = __visit_domain_allocation_hell(&d, cpu_map); - if (alloc_state != sa_rootdomain) - goto error; - - /* Set up domains for cpus specified by the cpu_map. */ - for_each_cpu(i, cpu_map) { - struct sched_domain_topology_level *tl; - - sd = NULL; - for_each_sd_topology(tl) { - sd = build_sched_domain(tl, cpu_map, attr, sd, i); - if (tl == sched_domain_topology) - *per_cpu_ptr(d.sd, i) = sd; - if (tl->flags & SDTL_OVERLAP) - sd->flags |= SD_OVERLAP; - if (cpumask_equal(cpu_map, sched_domain_span(sd))) - break; - } - } - - /* Calculate CPU power for physical packages and nodes */ - for (i = nr_cpumask_bits-1; i >= 0; i--) { - if (!cpumask_test_cpu(i, cpu_map)) - continue; - - for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { - claim_allocations(i, sd); - } - } - - /* Attach the domains */ - rcu_read_lock(); - for_each_cpu(i, cpu_map) { - sd = *per_cpu_ptr(d.sd, i); - cpu_attach_domain(sd, d.rd, i); - } - rcu_read_unlock(); - - ret = 0; -error: - __free_domain_allocs(&d, alloc_state, cpu_map); - return ret; -} - -static cpumask_var_t *doms_cur; /* current sched domains */ -static int ndoms_cur; /* number of sched domains in 'doms_cur' */ -static struct sched_domain_attr *dattr_cur; - /* attribues of custom domains in 'doms_cur' */ - -/* - * Special case: If a kmalloc of a doms_cur partition (array of - * cpumask) fails, then fallback to a single sched domain, - * as determined by the single cpumask fallback_doms. - */ -static cpumask_var_t fallback_doms; - -/* - * arch_update_cpu_topology lets virtualized architectures update the - * cpu core maps. It is supposed to return 1 if the topology changed - * or 0 if it stayed the same. - */ -int __attribute__((weak)) arch_update_cpu_topology(void) -{ - return 0; -} - -cpumask_var_t *alloc_sched_domains(unsigned int ndoms) -{ - int i; - cpumask_var_t *doms; - - doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); - if (!doms) - return NULL; - for (i = 0; i < ndoms; i++) { - if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { - free_sched_domains(doms, i); - return NULL; - } - } - return doms; -} - -void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) -{ - unsigned int i; - for (i = 0; i < ndoms; i++) - free_cpumask_var(doms[i]); - kfree(doms); -} - -/* - * Set up scheduler domains and groups. Callers must hold the hotplug lock. - * For now this just excludes isolated cpus, but could be used to - * exclude other special cases in the future. - */ -static int init_sched_domains(const struct cpumask *cpu_map) -{ - int err; - - arch_update_cpu_topology(); - ndoms_cur = 1; - doms_cur = alloc_sched_domains(ndoms_cur); - if (!doms_cur) - doms_cur = &fallback_doms; - cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); - err = build_sched_domains(doms_cur[0], NULL); - register_sched_domain_sysctl(); - - return err; -} - -/* - * Detach sched domains from a group of cpus specified in cpu_map - * These cpus will now be attached to the NULL domain - */ -static void detach_destroy_domains(const struct cpumask *cpu_map) -{ - int i; - - rcu_read_lock(); - for_each_cpu(i, cpu_map) - cpu_attach_domain(NULL, &def_root_domain, i); - rcu_read_unlock(); -} - -/* handle null as "default" */ -static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, - struct sched_domain_attr *new, int idx_new) -{ - struct sched_domain_attr tmp; - - /* fast path */ - if (!new && !cur) - return 1; - - tmp = SD_ATTR_INIT; - return !memcmp(cur ? (cur + idx_cur) : &tmp, - new ? (new + idx_new) : &tmp, - sizeof(struct sched_domain_attr)); -} - -/* - * Partition sched domains as specified by the 'ndoms_new' - * cpumasks in the array doms_new[] of cpumasks. This compares - * doms_new[] to the current sched domain partitioning, doms_cur[]. - * It destroys each deleted domain and builds each new domain. - * - * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. - * The masks don't intersect (don't overlap.) We should setup one - * sched domain for each mask. CPUs not in any of the cpumasks will - * not be load balanced. If the same cpumask appears both in the - * current 'doms_cur' domains and in the new 'doms_new', we can leave - * it as it is. - * - * The passed in 'doms_new' should be allocated using - * alloc_sched_domains. This routine takes ownership of it and will - * free_sched_domains it when done with it. If the caller failed the - * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, - * and partition_sched_domains() will fallback to the single partition - * 'fallback_doms', it also forces the domains to be rebuilt. - * - * If doms_new == NULL it will be replaced with cpu_online_mask. - * ndoms_new == 0 is a special case for destroying existing domains, - * and it will not create the default domain. - * - * Call with hotplug lock held - */ -void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], - struct sched_domain_attr *dattr_new) -{ - int i, j, n; - int new_topology; - - mutex_lock(&sched_domains_mutex); - - /* always unregister in case we don't destroy any domains */ - unregister_sched_domain_sysctl(); - - /* Let architecture update cpu core mappings. */ - new_topology = arch_update_cpu_topology(); - - n = doms_new ? ndoms_new : 0; - - /* Destroy deleted domains */ - for (i = 0; i < ndoms_cur; i++) { - for (j = 0; j < n && !new_topology; j++) { - if (cpumask_equal(doms_cur[i], doms_new[j]) - && dattrs_equal(dattr_cur, i, dattr_new, j)) - goto match1; - } - /* no match - a current sched domain not in new doms_new[] */ - detach_destroy_domains(doms_cur[i]); -match1: - ; - } - - if (doms_new == NULL) { - ndoms_cur = 0; - doms_new = &fallback_doms; - cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); - WARN_ON_ONCE(dattr_new); - } - - /* Build new domains */ - for (i = 0; i < ndoms_new; i++) { - for (j = 0; j < ndoms_cur && !new_topology; j++) { - if (cpumask_equal(doms_new[i], doms_cur[j]) - && dattrs_equal(dattr_new, i, dattr_cur, j)) - goto match2; - } - /* no match - add a new doms_new */ - build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); -match2: - ; - } - - /* Remember the new sched domains */ - if (doms_cur != &fallback_doms) - free_sched_domains(doms_cur, ndoms_cur); - kfree(dattr_cur); /* kfree(NULL) is safe */ - doms_cur = doms_new; - dattr_cur = dattr_new; - ndoms_cur = ndoms_new; - - register_sched_domain_sysctl(); - - mutex_unlock(&sched_domains_mutex); -} - -/* - * Update cpusets according to cpu_active mask. If cpusets are - * disabled, cpuset_update_active_cpus() becomes a simple wrapper - * around partition_sched_domains(). - */ -static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action, - void *hcpu) -{ - switch (action & ~CPU_TASKS_FROZEN) { - case CPU_ONLINE: - case CPU_DOWN_FAILED: - cpuset_update_active_cpus(true); - return NOTIFY_OK; - default: - return NOTIFY_DONE; - } -} - -static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action, - void *hcpu) -{ - switch (action & ~CPU_TASKS_FROZEN) { - case CPU_DOWN_PREPARE: - cpuset_update_active_cpus(false); - return NOTIFY_OK; - default: - return NOTIFY_DONE; - } -} - -#if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC) -/* - * Cheaper version of the below functions in case support for SMT and MC is - * compiled in but CPUs have no siblings. - */ -static bool sole_cpu_idle(int cpu) -{ - return rq_idle(cpu_rq(cpu)); -} -#endif -#ifdef CONFIG_SCHED_SMT -/* All this CPU's SMT siblings are idle */ -static bool siblings_cpu_idle(int cpu) -{ - return cpumask_subset(&(cpu_rq(cpu)->smt_siblings), - &grq.cpu_idle_map); -} -#endif -#ifdef CONFIG_SCHED_MC -/* All this CPU's shared cache siblings are idle */ -static bool cache_cpu_idle(int cpu) -{ - return cpumask_subset(&(cpu_rq(cpu)->cache_siblings), - &grq.cpu_idle_map); -} -#endif - -enum sched_domain_level { - SD_LV_NONE = 0, - SD_LV_SIBLING, - SD_LV_MC, - SD_LV_BOOK, - SD_LV_CPU, - SD_LV_NODE, - SD_LV_ALLNODES, - SD_LV_MAX -}; - -void __init sched_init_smp(void) -{ - struct sched_domain *sd; - int cpu; - - cpumask_var_t non_isolated_cpus; - - alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); - alloc_cpumask_var(&fallback_doms, GFP_KERNEL); - - sched_init_numa(); - - get_online_cpus(); - mutex_lock(&sched_domains_mutex); - init_sched_domains(cpu_active_mask); - cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); - if (cpumask_empty(non_isolated_cpus)) - cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); - mutex_unlock(&sched_domains_mutex); - put_online_cpus(); - - hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE); - hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE); - hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE); - - /* Move init over to a non-isolated CPU */ - if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) - BUG(); - free_cpumask_var(non_isolated_cpus); - - grq_lock_irq(); - /* - * Set up the relative cache distance of each online cpu from each - * other in a simple array for quick lookup. Locality is determined - * by the closest sched_domain that CPUs are separated by. CPUs with - * shared cache in SMT and MC are treated as local. Separate CPUs - * (within the same package or physically) within the same node are - * treated as not local. CPUs not even in the same domain (different - * nodes) are treated as very distant. - */ - for_each_online_cpu(cpu) { - struct rq *rq = cpu_rq(cpu); - - mutex_lock(&sched_domains_mutex); - for_each_domain(cpu, sd) { - int locality, other_cpu; - -#ifdef CONFIG_SCHED_SMT - if (sd->level == SD_LV_SIBLING) { - for_each_cpu_mask(other_cpu, *sched_domain_span(sd)) - cpumask_set_cpu(other_cpu, &rq->smt_siblings); - } -#endif -#ifdef CONFIG_SCHED_MC - if (sd->level == SD_LV_MC) { - for_each_cpu_mask(other_cpu, *sched_domain_span(sd)) - cpumask_set_cpu(other_cpu, &rq->cache_siblings); - } -#endif - if (sd->level <= SD_LV_SIBLING) - locality = 1; - else if (sd->level <= SD_LV_MC) - locality = 2; - else if (sd->level <= SD_LV_NODE) - locality = 3; - else - continue; - - for_each_cpu_mask(other_cpu, *sched_domain_span(sd)) { - if (locality < rq->cpu_locality[other_cpu]) - rq->cpu_locality[other_cpu] = locality; - } - } - mutex_unlock(&sched_domains_mutex); - - /* - * Each runqueue has its own function in case it doesn't have - * siblings of its own allowing mixed topologies. - */ -#ifdef CONFIG_SCHED_SMT - if (cpus_weight(rq->smt_siblings) > 1) - rq->siblings_idle = siblings_cpu_idle; -#endif -#ifdef CONFIG_SCHED_MC - if (cpus_weight(rq->cache_siblings) > 1) - rq->cache_idle = cache_cpu_idle; -#endif - } - grq_unlock_irq(); -} -#else -void __init sched_init_smp(void) -{ -} -#endif /* CONFIG_SMP */ - -unsigned int sysctl_timer_migration = 1; - -int in_sched_functions(unsigned long addr) -{ - return in_lock_functions(addr) || - (addr >= (unsigned long)__sched_text_start - && addr < (unsigned long)__sched_text_end); -} - -void __init sched_init(void) -{ - int i; - struct rq *rq; - - prio_ratios[0] = 128; - for (i = 1 ; i < PRIO_RANGE ; i++) - prio_ratios[i] = prio_ratios[i - 1] * 11 / 10; - - raw_spin_lock_init(&grq.lock); - grq.nr_running = grq.nr_uninterruptible = grq.nr_switches = 0; - grq.niffies = 0; - grq.last_jiffy = jiffies; - raw_spin_lock_init(&grq.iso_lock); - grq.iso_ticks = 0; - grq.iso_refractory = false; - grq.noc = 1; -#ifdef CONFIG_SMP - init_defrootdomain(); - grq.qnr = grq.idle_cpus = 0; - cpumask_clear(&grq.cpu_idle_map); -#else - uprq = &per_cpu(runqueues, 0); -#endif - for_each_possible_cpu(i) { - rq = cpu_rq(i); - rq->user_pc = rq->nice_pc = rq->softirq_pc = rq->system_pc = - rq->iowait_pc = rq->idle_pc = 0; - rq->dither = false; -#ifdef CONFIG_SMP - rq->sticky_task = NULL; - rq->last_niffy = 0; - rq->sd = NULL; - rq->rd = NULL; - rq->online = false; - rq->cpu = i; - rq_attach_root(rq, &def_root_domain); -#endif - atomic_set(&rq->nr_iowait, 0); - } - -#ifdef CONFIG_SMP - nr_cpu_ids = i; - /* - * Set the base locality for cpu cache distance calculation to - * "distant" (3). Make sure the distance from a CPU to itself is 0. - */ - for_each_possible_cpu(i) { - int j; - - rq = cpu_rq(i); -#ifdef CONFIG_SCHED_SMT - cpumask_clear(&rq->smt_siblings); - cpumask_set_cpu(i, &rq->smt_siblings); - rq->siblings_idle = sole_cpu_idle; - cpumask_set_cpu(i, &rq->smt_siblings); -#endif -#ifdef CONFIG_SCHED_MC - cpumask_clear(&rq->cache_siblings); - cpumask_set_cpu(i, &rq->cache_siblings); - rq->cache_idle = sole_cpu_idle; - cpumask_set_cpu(i, &rq->cache_siblings); -#endif - rq->cpu_locality = kmalloc(nr_cpu_ids * sizeof(int *), GFP_ATOMIC); - for_each_possible_cpu(j) { - if (i == j) - rq->cpu_locality[j] = 0; - else - rq->cpu_locality[j] = 4; - } - } -#endif - - for (i = 0; i < PRIO_LIMIT; i++) - INIT_LIST_HEAD(grq.queue + i); - /* delimiter for bitsearch */ - __set_bit(PRIO_LIMIT, grq.prio_bitmap); - -#ifdef CONFIG_PREEMPT_NOTIFIERS - INIT_HLIST_HEAD(&init_task.preempt_notifiers); -#endif - -#ifdef CONFIG_RT_MUTEXES - plist_head_init(&init_task.pi_waiters); -#endif - - /* - * The boot idle thread does lazy MMU switching as well: - */ - atomic_inc(&init_mm.mm_count); - enter_lazy_tlb(&init_mm, current); - - /* - * Make us the idle thread. Technically, schedule() should not be - * called from this thread, however somewhere below it might be, - * but because we are the idle thread, we just pick up running again - * when this runqueue becomes "idle". - */ - init_idle(current, smp_processor_id()); - -#ifdef CONFIG_SMP - zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); - /* May be allocated at isolcpus cmdline parse time */ - if (cpu_isolated_map == NULL) - zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); - idle_thread_set_boot_cpu(); -#endif /* SMP */ -} - -#ifdef CONFIG_DEBUG_ATOMIC_SLEEP -static inline int preempt_count_equals(int preempt_offset) -{ - int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth(); - - return (nested == preempt_offset); -} - -void __might_sleep(const char *file, int line, int preempt_offset) -{ - static unsigned long prev_jiffy; /* ratelimiting */ - - rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */ - if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) || - system_state != SYSTEM_RUNNING || oops_in_progress) - return; - if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) - return; - prev_jiffy = jiffies; - - printk(KERN_ERR - "BUG: sleeping function called from invalid context at %s:%d\n", - file, line); - printk(KERN_ERR - "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", - in_atomic(), irqs_disabled(), - current->pid, current->comm); - - debug_show_held_locks(current); - if (irqs_disabled()) - print_irqtrace_events(current); - dump_stack(); -} -EXPORT_SYMBOL(__might_sleep); -#endif - -#ifdef CONFIG_MAGIC_SYSRQ -void normalize_rt_tasks(void) -{ - struct task_struct *g, *p; - unsigned long flags; - struct rq *rq; - int queued; - - read_lock_irqsave(&tasklist_lock, flags); - - do_each_thread(g, p) { - if (!rt_task(p) && !iso_task(p)) - continue; - - raw_spin_lock(&p->pi_lock); - rq = __task_grq_lock(p); - - queued = task_queued(p); - if (queued) - dequeue_task(p); - __setscheduler(p, rq, SCHED_NORMAL, 0); - if (queued) { - enqueue_task(p); - try_preempt(p, rq); - } - - __task_grq_unlock(); - raw_spin_unlock(&p->pi_lock); - } while_each_thread(g, p); - - read_unlock_irqrestore(&tasklist_lock, flags); -} -#endif /* CONFIG_MAGIC_SYSRQ */ - -#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) -/* - * These functions are only useful for the IA64 MCA handling, or kdb. - * - * They can only be called when the whole system has been - * stopped - every CPU needs to be quiescent, and no scheduling - * activity can take place. Using them for anything else would - * be a serious bug, and as a result, they aren't even visible - * under any other configuration. - */ - -/** - * curr_task - return the current task for a given cpu. - * @cpu: the processor in question. - * - * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! - * - * Return: The current task for @cpu. - */ -struct task_struct *curr_task(int cpu) -{ - return cpu_curr(cpu); -} - -#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ - -#ifdef CONFIG_IA64 -/** - * set_curr_task - set the current task for a given cpu. - * @cpu: the processor in question. - * @p: the task pointer to set. - * - * Description: This function must only be used when non-maskable interrupts - * are serviced on a separate stack. It allows the architecture to switch the - * notion of the current task on a cpu in a non-blocking manner. This function - * must be called with all CPU's synchronised, and interrupts disabled, the - * and caller must save the original value of the current task (see - * curr_task() above) and restore that value before reenabling interrupts and - * re-starting the system. - * - * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! - */ -void set_curr_task(int cpu, struct task_struct *p) -{ - cpu_curr(cpu) = p; -} - -#endif - -/* - * Use precise platform statistics if available: - */ -#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE -void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st) -{ - *ut = p->utime; - *st = p->stime; -} - -void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st) -{ - struct task_cputime cputime; - - thread_group_cputime(p, &cputime); - - *ut = cputime.utime; - *st = cputime.stime; -} - -void vtime_account_system_irqsafe(struct task_struct *tsk) -{ - unsigned long flags; - - local_irq_save(flags); - vtime_account_system(tsk); - local_irq_restore(flags); -} -EXPORT_SYMBOL_GPL(vtime_account_system_irqsafe); - -#ifndef __ARCH_HAS_VTIME_TASK_SWITCH -void vtime_task_switch(struct task_struct *prev) -{ - if (is_idle_task(prev)) - vtime_account_idle(prev); - else - vtime_account_system(prev); - - vtime_account_user(prev); - arch_vtime_task_switch(prev); -} -#endif - -#else -/* - * Perform (stime * rtime) / total, but avoid multiplication overflow by - * losing precision when the numbers are big. - */ -static cputime_t scale_stime(u64 stime, u64 rtime, u64 total) -{ - u64 scaled; - - for (;;) { - /* Make sure "rtime" is the bigger of stime/rtime */ - if (stime > rtime) { - u64 tmp = rtime; rtime = stime; stime = tmp; - } - - /* Make sure 'total' fits in 32 bits */ - if (total >> 32) - goto drop_precision; - - /* Does rtime (and thus stime) fit in 32 bits? */ - if (!(rtime >> 32)) - break; - - /* Can we just balance rtime/stime rather than dropping bits? */ - if (stime >> 31) - goto drop_precision; - - /* We can grow stime and shrink rtime and try to make them both fit */ - stime <<= 1; - rtime >>= 1; - continue; - -drop_precision: - /* We drop from rtime, it has more bits than stime */ - rtime >>= 1; - total >>= 1; - } - - /* - * Make sure gcc understands that this is a 32x32->64 multiply, - * followed by a 64/32->64 divide. - */ - scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total); - return (__force cputime_t) scaled; -} - -/* - * Adjust tick based cputime random precision against scheduler - * runtime accounting. - */ -static void cputime_adjust(struct task_cputime *curr, - struct cputime *prev, - cputime_t *ut, cputime_t *st) -{ - cputime_t rtime, stime, utime, total; - - stime = curr->stime; - total = stime + curr->utime; - - /* - * Tick based cputime accounting depend on random scheduling - * timeslices of a task to be interrupted or not by the timer. - * Depending on these circumstances, the number of these interrupts - * may be over or under-optimistic, matching the real user and system - * cputime with a variable precision. - * - * Fix this by scaling these tick based values against the total - * runtime accounted by the CFS scheduler. - */ - rtime = nsecs_to_cputime(curr->sum_exec_runtime); - - /* - * Update userspace visible utime/stime values only if actual execution - * time is bigger than already exported. Note that can happen, that we - * provided bigger values due to scaling inaccuracy on big numbers. - */ - if (prev->stime + prev->utime >= rtime) - goto out; - - if (total) { - stime = scale_stime((__force u64)stime, - (__force u64)rtime, (__force u64)total); - utime = rtime - stime; - } else { - stime = rtime; - utime = 0; - } - - /* - * If the tick based count grows faster than the scheduler one, - * the result of the scaling may go backward. - * Let's enforce monotonicity. - */ - prev->stime = max(prev->stime, stime); - prev->utime = max(prev->utime, utime); - -out: - *ut = prev->utime; - *st = prev->stime; -} - -void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st) -{ - struct task_cputime cputime = { - .sum_exec_runtime = tsk_seruntime(p), - }; - - task_cputime(p, &cputime.utime, &cputime.stime); - cputime_adjust(&cputime, &p->prev_cputime, ut, st); -} - -/* - * Must be called with siglock held. - */ -void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st) -{ - struct task_cputime cputime; - - thread_group_cputime(p, &cputime); - cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st); -} -#endif - -void init_idle_bootup_task(struct task_struct *idle) -{} - -#ifdef CONFIG_SCHED_DEBUG -void proc_sched_show_task(struct task_struct *p, struct seq_file *m) -{} - -void proc_sched_set_task(struct task_struct *p) -{} -#endif - -#ifdef CONFIG_SMP -#define SCHED_LOAD_SHIFT (10) -#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT) - -unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu) -{ - return SCHED_LOAD_SCALE; -} - -unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu) -{ - unsigned long weight = cpumask_weight(sched_domain_span(sd)); - unsigned long smt_gain = sd->smt_gain; - - smt_gain /= weight; - - return smt_gain; -} -#endif diff --git a/kernel/sched/bfs_sched.h b/kernel/sched/bfs_sched.h deleted file mode 100644 index 92847a3..0000000 --- a/kernel/sched/bfs_sched.h +++ /dev/null @@ -1,116 +0,0 @@ -#include - -#ifndef BFS_SCHED_H -#define BFS_SCHED_H - -/* - * This is the main, per-CPU runqueue data structure. - * This data should only be modified by the local cpu. - */ -struct rq { - struct task_struct *curr, *idle, *stop; - struct mm_struct *prev_mm; - - /* Stored data about rq->curr to work outside grq lock */ - u64 rq_deadline; - unsigned int rq_policy; - int rq_time_slice; - u64 rq_last_ran; - int rq_prio; - bool rq_running; /* There is a task running */ - - /* Accurate timekeeping data */ - u64 timekeep_clock; - unsigned long user_pc, nice_pc, irq_pc, softirq_pc, system_pc, - iowait_pc, idle_pc; - atomic_t nr_iowait; - -#ifdef CONFIG_SMP - int cpu; /* cpu of this runqueue */ - bool online; - bool scaling; /* This CPU is managed by a scaling CPU freq governor */ - struct task_struct *sticky_task; - - struct root_domain *rd; - struct sched_domain *sd; - int *cpu_locality; /* CPU relative cache distance */ -#ifdef CONFIG_SCHED_SMT - bool (*siblings_idle)(int cpu); - /* See if all smt siblings are idle */ - cpumask_t smt_siblings; -#endif /* CONFIG_SCHED_SMT */ -#ifdef CONFIG_SCHED_MC - bool (*cache_idle)(int cpu); - /* See if all cache siblings are idle */ - cpumask_t cache_siblings; -#endif /* CONFIG_SCHED_MC */ - u64 last_niffy; /* Last time this RQ updated grq.niffies */ -#endif /* CONFIG_SMP */ -#ifdef CONFIG_IRQ_TIME_ACCOUNTING - u64 prev_irq_time; -#endif /* CONFIG_IRQ_TIME_ACCOUNTING */ -#ifdef CONFIG_PARAVIRT - u64 prev_steal_time; -#endif /* CONFIG_PARAVIRT */ -#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING - u64 prev_steal_time_rq; -#endif /* CONFIG_PARAVIRT_TIME_ACCOUNTING */ - - u64 clock, old_clock, last_tick; - u64 clock_task; - bool dither; - -#ifdef CONFIG_SCHEDSTATS - - /* latency stats */ - struct sched_info rq_sched_info; - unsigned long long rq_cpu_time; - /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ - - /* sys_sched_yield() stats */ - unsigned int yld_count; - - /* schedule() stats */ - unsigned int sched_switch; - unsigned int sched_count; - unsigned int sched_goidle; - - /* try_to_wake_up() stats */ - unsigned int ttwu_count; - unsigned int ttwu_local; -#endif /* CONFIG_SCHEDSTATS */ - -#ifdef CONFIG_SMP - struct llist_head wake_list; -#endif -}; - -#ifdef CONFIG_SMP -struct rq *cpu_rq(int cpu); -#endif - -static inline u64 rq_clock(struct rq *rq) -{ - return rq->clock; -} - -static inline u64 rq_clock_task(struct rq *rq) -{ - return rq->clock_task; -} - -#define rcu_dereference_check_sched_domain(p) \ - rcu_dereference_check((p), \ - lockdep_is_held(&sched_domains_mutex)) - -/* - * The domain tree (rq->sd) is protected by RCU's quiescent state transition. - * See detach_destroy_domains: synchronize_sched for details. - * - * The domain tree of any CPU may only be accessed from within - * preempt-disabled sections. - */ -#define for_each_domain(cpu, __sd) \ - for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent) - -#endif diff --git a/kernel/sched/stats.c b/kernel/sched/stats.c index ac83b57..da98af3 100644 --- a/kernel/sched/stats.c +++ b/kernel/sched/stats.c @@ -4,11 +4,7 @@ #include #include -#ifndef CONFIG_SCHED_BFS #include "sched.h" -#else -#include "bfs_sched.h" -#endif /* * bump this up when changing the output format or the meaning of an existing diff --git a/kernel/stop_machine.c b/kernel/stop_machine.c index ed79f74..c09f295 100644 --- a/kernel/stop_machine.c +++ b/kernel/stop_machine.c @@ -40,8 +40,7 @@ struct cpu_stopper { }; static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper); -DEFINE_PER_CPU(struct task_struct *, cpu_stopper_task); - +static DEFINE_PER_CPU(struct task_struct *, cpu_stopper_task); static bool stop_machine_initialized = false; static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo) diff --git a/kernel/sysctl.c b/kernel/sysctl.c index eb46cd4..b2f06f3 100644 --- a/kernel/sysctl.c +++ b/kernel/sysctl.c @@ -127,12 +127,7 @@ static int __maybe_unused one = 1; static int __maybe_unused two = 2; static int __maybe_unused three = 3; static unsigned long one_ul = 1; -static int __maybe_unused one_hundred = 100; -#ifdef CONFIG_SCHED_BFS -extern int rr_interval; -extern int sched_iso_cpu; -static int __read_mostly one_thousand = 1000; -#endif +static int one_hundred = 100; #ifdef CONFIG_PRINTK static int ten_thousand = 10000; #endif @@ -260,7 +255,7 @@ static struct ctl_table sysctl_base_table[] = { { } }; -#if defined(CONFIG_SCHED_DEBUG) && !defined(CONFIG_SCHED_BFS) +#ifdef CONFIG_SCHED_DEBUG static int min_sched_granularity_ns = 100000; /* 100 usecs */ static int max_sched_granularity_ns = NSEC_PER_SEC; /* 1 second */ static int min_wakeup_granularity_ns; /* 0 usecs */ @@ -277,7 +272,6 @@ static int max_extfrag_threshold = 1000; #endif static struct ctl_table kern_table[] = { -#ifndef CONFIG_SCHED_BFS { .procname = "sched_child_runs_first", .data = &sysctl_sched_child_runs_first, @@ -441,7 +435,6 @@ static struct ctl_table kern_table[] = { .extra1 = &one, }, #endif -#endif /* !CONFIG_SCHED_BFS */ #ifdef CONFIG_PROVE_LOCKING { .procname = "prove_locking", @@ -920,26 +913,6 @@ static struct ctl_table kern_table[] = { .proc_handler = proc_dointvec, }, #endif -#ifdef CONFIG_SCHED_BFS - { - .procname = "rr_interval", - .data = &rr_interval, - .maxlen = sizeof (int), - .mode = 0644, - .proc_handler = &proc_dointvec_minmax, - .extra1 = &one, - .extra2 = &one_thousand, - }, - { - .procname = "iso_cpu", - .data = &sched_iso_cpu, - .maxlen = sizeof (int), - .mode = 0644, - .proc_handler = &proc_dointvec_minmax, - .extra1 = &zero, - .extra2 = &one_hundred, - }, -#endif #if defined(CONFIG_S390) && defined(CONFIG_SMP) { .procname = "spin_retry", diff --git a/kernel/time/Kconfig b/kernel/time/Kconfig index bcf7411..2b62fe8 100644 --- a/kernel/time/Kconfig +++ b/kernel/time/Kconfig @@ -94,7 +94,7 @@ config NO_HZ_IDLE config NO_HZ_FULL bool "Full dynticks system (tickless)" # NO_HZ_COMMON dependency - depends on !ARCH_USES_GETTIMEOFFSET && GENERIC_CLOCKEVENTS && !SCHED_BFS + depends on !ARCH_USES_GETTIMEOFFSET && GENERIC_CLOCKEVENTS # We need at least one periodic CPU for timekeeping depends on SMP # RCU_USER_QS dependency diff --git a/lib/Kconfig.debug b/lib/Kconfig.debug index 21fdba1..06344d9 100644 --- a/lib/Kconfig.debug +++ b/lib/Kconfig.debug @@ -1125,7 +1125,7 @@ config SPARSE_RCU_POINTER config RCU_TORTURE_TEST tristate "torture tests for RCU" - depends on DEBUG_KERNEL && !SCHED_BFS + depends on DEBUG_KERNEL default n help This option provides a kernel module that runs torture tests -- 1.8.1.2