summaryrefslogtreecommitdiffstats
path: root/net/ipv4/netfilter/nf_nat_h323.c
blob: 574f7ebba0b6238d8e61ffd08dead06a07a619c5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
/*
 * H.323 extension for NAT alteration.
 *
 * Copyright (c) 2006 Jing Min Zhao <zhaojingmin@users.sourceforge.net>
 * Copyright (c) 2006-2012 Patrick McHardy <kaber@trash.net>
 *
 * This source code is licensed under General Public License version 2.
 *
 * Based on the 'brute force' H.323 NAT module by
 * Jozsef Kadlecsik <kadlec@blackhole.kfki.hu>
 */

#include <linux/module.h>
#include <linux/tcp.h>
#include <net/tcp.h>

#include <net/netfilter/nf_nat.h>
#include <net/netfilter/nf_nat_helper.h>
#include <net/netfilter/nf_conntrack_helper.h>
#include <net/netfilter/nf_conntrack_expect.h>
#include <linux/netfilter/nf_conntrack_h323.h>

/****************************************************************************/
static int set_addr(struct sk_buff *skb, unsigned int protoff,
		    unsigned char **data, int dataoff,
		    unsigned int addroff, __be32 ip, __be16 port)
{
	enum ip_conntrack_info ctinfo;
	struct nf_conn *ct = nf_ct_get(skb, &ctinfo);
	struct {
		__be32 ip;
		__be16 port;
	} __attribute__ ((__packed__)) buf;
	const struct tcphdr *th;
	struct tcphdr _tcph;

	buf.ip = ip;
	buf.port = port;
	addroff += dataoff;

	if (ip_hdr(skb)->protocol == IPPROTO_TCP) {
		if (!nf_nat_mangle_tcp_packet(skb, ct, ctinfo,
					      protoff, addroff, sizeof(buf),
					      (char *) &buf, sizeof(buf))) {
			net_notice_ratelimited("nf_nat_h323: nf_nat_mangle_tcp_packet error\n");
			return -1;
		}

		/* Relocate data pointer */
		th = skb_header_pointer(skb, ip_hdrlen(skb),
					sizeof(_tcph), &_tcph);
		if (th == NULL)
			return -1;
		*data = skb->data + ip_hdrlen(skb) + th->doff * 4 + dataoff;
	} else {
		if (!nf_nat_mangle_udp_packet(skb, ct, ctinfo,
					      protoff, addroff, sizeof(buf),
					      (char *) &buf, sizeof(buf))) {
			net_notice_ratelimited("nf_nat_h323: nf_nat_mangle_udp_packet error\n");
			return -1;
		}
		/* nf_nat_mangle_udp_packet uses skb_make_writable() to copy
		 * or pull everything in a linear buffer, so we can safely
		 * use the skb pointers now */
		*data = skb->data + ip_hdrlen(skb) + sizeof(struct udphdr);
	}

	return 0;
}

/****************************************************************************/
static int set_h225_addr(struct sk_buff *skb, unsigned int protoff,
			 unsigned char **data, int dataoff,
			 TransportAddress *taddr,
			 union nf_inet_addr *addr, __be16 port)
{
	return set_addr(skb, protoff, data, dataoff, taddr->ipAddress.ip,
			addr->ip, port);
}

/****************************************************************************/
static int set_h245_addr(struct sk_buff *skb, unsigned protoff,
			 unsigned char **data, int dataoff,
			 H245_TransportAddress *taddr,
			 union nf_inet_addr *addr, __be16 port)
{
	return set_addr(skb, protoff, data, dataoff,
			taddr->unicastAddress.iPAddress.network,
			addr->ip, port);
}

/****************************************************************************/
static int set_sig_addr(struct sk_buff *skb, struct nf_conn *ct,
			enum ip_conntrack_info ctinfo,
			unsigned int protoff, unsigned char **data,
			TransportAddress *taddr, int count)
{
	const struct nf_ct_h323_master *info = nfct_help_data(ct);
	int dir = CTINFO2DIR(ctinfo);
	int i;
	__be16 port;
	union nf_inet_addr addr;

	for (i = 0; i < count; i++) {
		if (get_h225_addr(ct, *data, &taddr[i], &addr, &port)) {
			if (addr.ip == ct->tuplehash[dir].tuple.src.u3.ip &&
			    port == info->sig_port[dir]) {
				/* GW->GK */

				/* Fix for Gnomemeeting */
				if (i > 0 &&
				    get_h225_addr(ct, *data, &taddr[0],
						  &addr, &port) &&
				    (ntohl(addr.ip) & 0xff000000) == 0x7f000000)
					i = 0;

				pr_debug("nf_nat_ras: set signal address %pI4:%hu->%pI4:%hu\n",
					 &addr.ip, port,
					 &ct->tuplehash[!dir].tuple.dst.u3.ip,
					 info->sig_port[!dir]);
				return set_h225_addr(skb, protoff, data, 0,
						     &taddr[i],
						     &ct->tuplehash[!dir].
						     tuple.dst.u3,
						     info->sig_port[!dir]);
			} else if (addr.ip == ct->tuplehash[dir].tuple.dst.u3.ip &&
				   port == info->sig_port[dir]) {
				/* GK->GW */
				pr_debug("nf_nat_ras: set signal address %pI4:%hu->%pI4:%hu\n",
					 &addr.ip, port,
					 &ct->tuplehash[!dir].tuple.src.u3.ip,
					 info->sig_port[!dir]);
				return set_h225_addr(skb, protoff, data, 0,
						     &taddr[i],
						     &ct->tuplehash[!dir].
						     tuple.src.u3,
						     info->sig_port[!dir]);
			}
		}
	}

	return 0;
}

/****************************************************************************/
static int set_ras_addr(struct sk_buff *skb, struct nf_conn *ct,
			enum ip_conntrack_info ctinfo,
			unsigned int protoff, unsigned char **data,
			TransportAddress *taddr, int count)
{
	int dir = CTINFO2DIR(ctinfo);
	int i;
	__be16 port;
	union nf_inet_addr addr;

	for (i = 0; i < count; i++) {
		if (get_h225_addr(ct, *data, &taddr[i], &addr, &port) &&
		    addr.ip == ct->tuplehash[dir].tuple.src.u3.ip &&
		    port == ct->tuplehash[dir].tuple.src.u.udp.port) {
			pr_debug("nf_nat_ras: set rasAddress %pI4:%hu->%pI4:%hu\n",
				 &addr.ip, ntohs(port),
				 &ct->tuplehash[!dir].tuple.dst.u3.ip,
				 ntohs(ct->tuplehash[!dir].tuple.dst.u.udp.port));
			return set_h225_addr(skb, protoff, data, 0, &taddr[i],
					     &ct->tuplehash[!dir].tuple.dst.u3,
					     ct->tuplehash[!dir].tuple.
								dst.u.udp.port);
		}
	}

	return 0;
}

/****************************************************************************/
static int nat_rtp_rtcp(struct sk_buff *skb, struct nf_conn *ct,
			enum ip_conntrack_info ctinfo,
			unsigned int protoff, unsigned char **data, int dataoff,
			H245_TransportAddress *taddr,
			__be16 port, __be16 rtp_port,
			struct nf_conntrack_expect *rtp_exp,
			struct nf_conntrack_expect *rtcp_exp)
{
	struct nf_ct_h323_master *info = nfct_help_data(ct);
	int dir = CTINFO2DIR(ctinfo);
	int i;
	u_int16_t nated_port;

	/* Set expectations for NAT */
	rtp_exp->saved_proto.udp.port = rtp_exp->tuple.dst.u.udp.port;
	rtp_exp->expectfn = nf_nat_follow_master;
	rtp_exp->dir = !dir;
	rtcp_exp->saved_proto.udp.port = rtcp_exp->tuple.dst.u.udp.port;
	rtcp_exp->expectfn = nf_nat_follow_master;
	rtcp_exp->dir = !dir;

	/* Lookup existing expects */
	for (i = 0; i < H323_RTP_CHANNEL_MAX; i++) {
		if (info->rtp_port[i][dir] == rtp_port) {
			/* Expected */

			/* Use allocated ports first. This will refresh
			 * the expects */
			rtp_exp->tuple.dst.u.udp.port = info->rtp_port[i][dir];
			rtcp_exp->tuple.dst.u.udp.port =
			    htons(ntohs(info->rtp_port[i][dir]) + 1);
			break;
		} else if (info->rtp_port[i][dir] == 0) {
			/* Not expected */
			break;
		}
	}

	/* Run out of expectations */
	if (i >= H323_RTP_CHANNEL_MAX) {
		net_notice_ratelimited("nf_nat_h323: out of expectations\n");
		return 0;
	}

	/* Try to get a pair of ports. */
	for (nated_port = ntohs(rtp_exp->tuple.dst.u.udp.port);
	     nated_port != 0; nated_port += 2) {
		int ret;

		rtp_exp->tuple.dst.u.udp.port = htons(nated_port);
		ret = nf_ct_expect_related(rtp_exp);
		if (ret == 0) {
			rtcp_exp->tuple.dst.u.udp.port =
			    htons(nated_port + 1);
			ret = nf_ct_expect_related(rtcp_exp);
			if (ret == 0)
				break;
			else if (ret == -EBUSY) {
				nf_ct_unexpect_related(rtp_exp);
				continue;
			} else if (ret < 0) {
				nf_ct_unexpect_related(rtp_exp);
				nated_port = 0;
				break;
			}
		} else if (ret != -EBUSY) {
			nated_port = 0;
			break;
		}
	}

	if (nated_port == 0) {	/* No port available */
		net_notice_ratelimited("nf_nat_h323: out of RTP ports\n");
		return 0;
	}

	/* Modify signal */
	if (set_h245_addr(skb, protoff, data, dataoff, taddr,
			  &ct->tuplehash[!dir].tuple.dst.u3,
			  htons((port & htons(1)) ? nated_port + 1 :
						    nated_port)) == 0) {
		/* Save ports */
		info->rtp_port[i][dir] = rtp_port;
		info->rtp_port[i][!dir] = htons(nated_port);
	} else {
		nf_ct_unexpect_related(rtp_exp);
		nf_ct_unexpect_related(rtcp_exp);
		return -1;
	}

	/* Success */
	pr_debug("nf_nat_h323: expect RTP %pI4:%hu->%pI4:%hu\n",
		 &rtp_exp->tuple.src.u3.ip,
		 ntohs(rtp_exp->tuple.src.u.udp.port),
		 &rtp_exp->tuple.dst.u3.ip,
		 ntohs(rtp_exp->tuple.dst.u.udp.port));
	pr_debug("nf_nat_h323: expect RTCP %pI4:%hu->%pI4:%hu\n",
		 &rtcp_exp->tuple.src.u3.ip,
		 ntohs(rtcp_exp->tuple.src.u.udp.port),
		 &rtcp_exp->tuple.dst.u3.ip,
		 ntohs(rtcp_exp->tuple.dst.u.udp.port));

	return 0;
}

/****************************************************************************/
static int nat_t120(struct sk_buff *skb, struct nf_conn *ct,
		    enum ip_conntrack_info ctinfo,
		    unsigned int protoff, unsigned char **data, int dataoff,
		    H245_TransportAddress *taddr, __be16 port,
		    struct nf_conntrack_expect *exp)
{
	int dir = CTINFO2DIR(ctinfo);
	u_int16_t nated_port = ntohs(port);

	/* Set expectations for NAT */
	exp->saved_proto.tcp.port = exp->tuple.dst.u.tcp.port;
	exp->expectfn = nf_nat_follow_master;
	exp->dir = !dir;

	/* Try to get same port: if not, try to change it. */
	for (; nated_port != 0; nated_port++) {
		int ret;

		exp->tuple.dst.u.tcp.port = htons(nated_port);
		ret = nf_ct_expect_related(exp);
		if (ret == 0)
			break;
		else if (ret != -EBUSY) {
			nated_port = 0;
			break;
		}
	}

	if (nated_port == 0) {	/* No port available */
		net_notice_ratelimited("nf_nat_h323: out of TCP ports\n");
		return 0;
	}

	/* Modify signal */
	if (set_h245_addr(skb, protoff, data, dataoff, taddr,
			  &ct->tuplehash[!dir].tuple.dst.u3,
			  htons(nated_port)) < 0) {
		nf_ct_unexpect_related(exp);
		return -1;
	}

	pr_debug("nf_nat_h323: expect T.120 %pI4:%hu->%pI4:%hu\n",
		 &exp->tuple.src.u3.ip,
		 ntohs(exp->tuple.src.u.tcp.port),
		 &exp->tuple.dst.u3.ip,
		 ntohs(exp->tuple.dst.u.tcp.port));

	return 0;
}

/****************************************************************************/
static int nat_h245(struct sk_buff *skb, struct nf_conn *ct,
		    enum ip_conntrack_info ctinfo,
		    unsigned int protoff, unsigned char **data, int dataoff,
		    TransportAddress *taddr, __be16 port,
		    struct nf_conntrack_expect *exp)
{
	struct nf_ct_h323_master *info = nfct_help_data(ct);
	int dir = CTINFO2DIR(ctinfo);
	u_int16_t nated_port = ntohs(port);

	/* Set expectations for NAT */
	exp->saved_proto.tcp.port = exp->tuple.dst.u.tcp.port;
	exp->expectfn = nf_nat_follow_master;
	exp->dir = !dir;

	/* Check existing expects */
	if (info->sig_port[dir] == port)
		nated_port = ntohs(info->sig_port[!dir]);

	/* Try to get same port: if not, try to change it. */
	for (; nated_port != 0; nated_port++) {
		int ret;

		exp->tuple.dst.u.tcp.port = htons(nated_port);
		ret = nf_ct_expect_related(exp);
		if (ret == 0)
			break;
		else if (ret != -EBUSY) {
			nated_port = 0;
			break;
		}
	}

	if (nated_port == 0) {	/* No port available */
		net_notice_ratelimited("nf_nat_q931: out of TCP ports\n");
		return 0;
	}

	/* Modify signal */
	if (set_h225_addr(skb, protoff, data, dataoff, taddr,
			  &ct->tuplehash[!dir].tuple.dst.u3,
			  htons(nated_port)) == 0) {
		/* Save ports */
		info->sig_port[dir] = port;
		info->sig_port[!dir] = htons(nated_port);
	} else {
		nf_ct_unexpect_related(exp);
		return -1;
	}

	pr_debug("nf_nat_q931: expect H.245 %pI4:%hu->%pI4:%hu\n",
		 &exp->tuple.src.u3.ip,
		 ntohs(exp->tuple.src.u.tcp.port),
		 &exp->tuple.dst.u3.ip,
		 ntohs(exp->tuple.dst.u.tcp.port));

	return 0;
}

/****************************************************************************
 * This conntrack expect function replaces nf_conntrack_q931_expect()
 * which was set by nf_conntrack_h323.c.
 ****************************************************************************/
static void ip_nat_q931_expect(struct nf_conn *new,
			       struct nf_conntrack_expect *this)
{
	struct nf_nat_range range;

	if (this->tuple.src.u3.ip != 0) {	/* Only accept calls from GK */
		nf_nat_follow_master(new, this);
		return;
	}

	/* This must be a fresh one. */
	BUG_ON(new->status & IPS_NAT_DONE_MASK);

	/* Change src to where master sends to */
	range.flags = NF_NAT_RANGE_MAP_IPS;
	range.min_addr = range.max_addr =
	    new->tuplehash[!this->dir].tuple.src.u3;
	nf_nat_setup_info(new, &range, NF_NAT_MANIP_SRC);

	/* For DST manip, map port here to where it's expected. */
	range.flags = (NF_NAT_RANGE_MAP_IPS | NF_NAT_RANGE_PROTO_SPECIFIED);
	range.min_proto = range.max_proto = this->saved_proto;
	range.min_addr = range.max_addr =
	    new->master->tuplehash[!this->dir].tuple.src.u3;
	nf_nat_setup_info(new, &range, NF_NAT_MANIP_DST);
}

/****************************************************************************/
static int nat_q931(struct sk_buff *skb, struct nf_conn *ct,
		    enum ip_conntrack_info ctinfo,
		    unsigned int protoff, unsigned char **data,
		    TransportAddress *taddr, int idx,
		    __be16 port, struct nf_conntrack_expect *exp)
{
	struct nf_ct_h323_master *info = nfct_help_data(ct);
	int dir = CTINFO2DIR(ctinfo);
	u_int16_t nated_port = ntohs(port);
	union nf_inet_addr addr;

	/* Set expectations for NAT */
	exp->saved_proto.tcp.port = exp->tuple.dst.u.tcp.port;
	exp->expectfn = ip_nat_q931_expect;
	exp->dir = !dir;

	/* Check existing expects */
	if (info->sig_port[dir] == port)
		nated_port = ntohs(info->sig_port[!dir]);

	/* Try to get same port: if not, try to change it. */
	for (; nated_port != 0; nated_port++) {
		int ret;

		exp->tuple.dst.u.tcp.port = htons(nated_port);
		ret = nf_ct_expect_related(exp);
		if (ret == 0)
			break;
		else if (ret != -EBUSY) {
			nated_port = 0;
			break;
		}
	}

	if (nated_port == 0) {	/* No port available */
		net_notice_ratelimited("nf_nat_ras: out of TCP ports\n");
		return 0;
	}

	/* Modify signal */
	if (set_h225_addr(skb, protoff, data, 0, &taddr[idx],
			  &ct->tuplehash[!dir].tuple.dst.u3,
			  htons(nated_port)) == 0) {
		/* Save ports */
		info->sig_port[dir] = port;
		info->sig_port[!dir] = htons(nated_port);

		/* Fix for Gnomemeeting */
		if (idx > 0 &&
		    get_h225_addr(ct, *data, &taddr[0], &addr, &port) &&
		    (ntohl(addr.ip) & 0xff000000) == 0x7f000000) {
			set_h225_addr(skb, protoff, data, 0, &taddr[0],
				      &ct->tuplehash[!dir].tuple.dst.u3,
				      info->sig_port[!dir]);
		}
	} else {
		nf_ct_unexpect_related(exp);
		return -1;
	}

	/* Success */
	pr_debug("nf_nat_ras: expect Q.931 %pI4:%hu->%pI4:%hu\n",
		 &exp->tuple.src.u3.ip,
		 ntohs(exp->tuple.src.u.tcp.port),
		 &exp->tuple.dst.u3.ip,
		 ntohs(exp->tuple.dst.u.tcp.port));

	return 0;
}

/****************************************************************************/
static void ip_nat_callforwarding_expect(struct nf_conn *new,
					 struct nf_conntrack_expect *this)
{
	struct nf_nat_range range;

	/* This must be a fresh one. */
	BUG_ON(new->status & IPS_NAT_DONE_MASK);

	/* Change src to where master sends to */
	range.flags = NF_NAT_RANGE_MAP_IPS;
	range.min_addr = range.max_addr =
	    new->tuplehash[!this->dir].tuple.src.u3;
	nf_nat_setup_info(new, &range, NF_NAT_MANIP_SRC);

	/* For DST manip, map port here to where it's expected. */
	range.flags = (NF_NAT_RANGE_MAP_IPS | NF_NAT_RANGE_PROTO_SPECIFIED);
	range.min_proto = range.max_proto = this->saved_proto;
	range.min_addr = range.max_addr = this->saved_addr;
	nf_nat_setup_info(new, &range, NF_NAT_MANIP_DST);
}

/****************************************************************************/
static int nat_callforwarding(struct sk_buff *skb, struct nf_conn *ct,
			      enum ip_conntrack_info ctinfo,
			      unsigned int protoff,
			      unsigned char **data, int dataoff,
			      TransportAddress *taddr, __be16 port,
			      struct nf_conntrack_expect *exp)
{
	int dir = CTINFO2DIR(ctinfo);
	u_int16_t nated_port;

	/* Set expectations for NAT */
	exp->saved_addr = exp->tuple.dst.u3;
	exp->tuple.dst.u3.ip = ct->tuplehash[!dir].tuple.dst.u3.ip;
	exp->saved_proto.tcp.port = exp->tuple.dst.u.tcp.port;
	exp->expectfn = ip_nat_callforwarding_expect;
	exp->dir = !dir;

	/* Try to get same port: if not, try to change it. */
	for (nated_port = ntohs(port); nated_port != 0; nated_port++) {
		int ret;

		exp->tuple.dst.u.tcp.port = htons(nated_port);
		ret = nf_ct_expect_related(exp);
		if (ret == 0)
			break;
		else if (ret != -EBUSY) {
			nated_port = 0;
			break;
		}
	}

	if (nated_port == 0) {	/* No port available */
		net_notice_ratelimited("nf_nat_q931: out of TCP ports\n");
		return 0;
	}

	/* Modify signal */
	if (!set_h225_addr(skb, protoff, data, dataoff, taddr,
			   &ct->tuplehash[!dir].tuple.dst.u3,
			   htons(nated_port)) == 0) {
		nf_ct_unexpect_related(exp);
		return -1;
	}

	/* Success */
	pr_debug("nf_nat_q931: expect Call Forwarding %pI4:%hu->%pI4:%hu\n",
		 &exp->tuple.src.u3.ip,
		 ntohs(exp->tuple.src.u.tcp.port),
		 &exp->tuple.dst.u3.ip,
		 ntohs(exp->tuple.dst.u.tcp.port));

	return 0;
}

static struct nf_ct_helper_expectfn q931_nat = {
	.name		= "Q.931",
	.expectfn	= ip_nat_q931_expect,
};

static struct nf_ct_helper_expectfn callforwarding_nat = {
	.name		= "callforwarding",
	.expectfn	= ip_nat_callforwarding_expect,
};

/****************************************************************************/
static int __init init(void)
{
	BUG_ON(set_h245_addr_hook != NULL);
	BUG_ON(set_h225_addr_hook != NULL);
	BUG_ON(set_sig_addr_hook != NULL);
	BUG_ON(set_ras_addr_hook != NULL);
	BUG_ON(nat_rtp_rtcp_hook != NULL);
	BUG_ON(nat_t120_hook != NULL);
	BUG_ON(nat_h245_hook != NULL);
	BUG_ON(nat_callforwarding_hook != NULL);
	BUG_ON(nat_q931_hook != NULL);

	RCU_INIT_POINTER(set_h245_addr_hook, set_h245_addr);
	RCU_INIT_POINTER(set_h225_addr_hook, set_h225_addr);
	RCU_INIT_POINTER(set_sig_addr_hook, set_sig_addr);
	RCU_INIT_POINTER(set_ras_addr_hook, set_ras_addr);
	RCU_INIT_POINTER(nat_rtp_rtcp_hook, nat_rtp_rtcp);
	RCU_INIT_POINTER(nat_t120_hook, nat_t120);
	RCU_INIT_POINTER(nat_h245_hook, nat_h245);
	RCU_INIT_POINTER(nat_callforwarding_hook, nat_callforwarding);
	RCU_INIT_POINTER(nat_q931_hook, nat_q931);
	nf_ct_helper_expectfn_register(&q931_nat);
	nf_ct_helper_expectfn_register(&callforwarding_nat);
	return 0;
}

/****************************************************************************/
static void __exit fini(void)
{
	RCU_INIT_POINTER(set_h245_addr_hook, NULL);
	RCU_INIT_POINTER(set_h225_addr_hook, NULL);
	RCU_INIT_POINTER(set_sig_addr_hook, NULL);
	RCU_INIT_POINTER(set_ras_addr_hook, NULL);
	RCU_INIT_POINTER(nat_rtp_rtcp_hook, NULL);
	RCU_INIT_POINTER(nat_t120_hook, NULL);
	RCU_INIT_POINTER(nat_h245_hook, NULL);
	RCU_INIT_POINTER(nat_callforwarding_hook, NULL);
	RCU_INIT_POINTER(nat_q931_hook, NULL);
	nf_ct_helper_expectfn_unregister(&q931_nat);
	nf_ct_helper_expectfn_unregister(&callforwarding_nat);
	synchronize_rcu();
}

/****************************************************************************/
module_init(init);
module_exit(fini);

MODULE_AUTHOR("Jing Min Zhao <zhaojingmin@users.sourceforge.net>");
MODULE_DESCRIPTION("H.323 NAT helper");
MODULE_LICENSE("GPL");
MODULE_ALIAS("ip_nat_h323");
m">/* * Hotplug activation bits for this device */ uint16_t hotplug_active; /** * This is set if we're going to treat the device as TV-out. * * While we have these nice friendly flags for output types that ought * to decide this for us, the S-Video output on our HDMI+S-Video card * shows up as RGB1 (VGA). */ bool is_tv; enum port port; /** * This is set if we treat the device as HDMI, instead of DVI. */ bool is_hdmi; bool has_hdmi_monitor; bool has_hdmi_audio; bool rgb_quant_range_selectable; /** * This is set if we detect output of sdvo device as LVDS and * have a valid fixed mode to use with the panel. */ bool is_lvds; /** * This is sdvo fixed pannel mode pointer */ struct drm_display_mode *sdvo_lvds_fixed_mode; /* DDC bus used by this SDVO encoder */ uint8_t ddc_bus; /* * the sdvo flag gets lost in round trip: dtd->adjusted_mode->dtd */ uint8_t dtd_sdvo_flags; }; struct intel_sdvo_connector { struct intel_connector base; /* Mark the type of connector */ uint16_t output_flag; /* This contains all current supported TV format */ u8 tv_format_supported[TV_FORMAT_NUM]; int format_supported_num; struct drm_property *tv_format; /* add the property for the SDVO-TV */ struct drm_property *left; struct drm_property *right; struct drm_property *top; struct drm_property *bottom; struct drm_property *hpos; struct drm_property *vpos; struct drm_property *contrast; struct drm_property *saturation; struct drm_property *hue; struct drm_property *sharpness; struct drm_property *flicker_filter; struct drm_property *flicker_filter_adaptive; struct drm_property *flicker_filter_2d; struct drm_property *tv_chroma_filter; struct drm_property *tv_luma_filter; struct drm_property *dot_crawl; /* add the property for the SDVO-TV/LVDS */ struct drm_property *brightness; /* this is to get the range of margin.*/ u32 max_hscan, max_vscan; }; struct intel_sdvo_connector_state { /* base.base: tv.saturation/contrast/hue/brightness */ struct intel_digital_connector_state base; struct { unsigned overscan_h, overscan_v, hpos, vpos, sharpness; unsigned flicker_filter, flicker_filter_2d, flicker_filter_adaptive; unsigned chroma_filter, luma_filter, dot_crawl; } tv; }; static struct intel_sdvo *to_sdvo(struct intel_encoder *encoder) { return container_of(encoder, struct intel_sdvo, base); } static struct intel_sdvo *intel_attached_sdvo(struct drm_connector *connector) { return to_sdvo(intel_attached_encoder(connector)); } static struct intel_sdvo_connector * to_intel_sdvo_connector(struct drm_connector *connector) { return container_of(connector, struct intel_sdvo_connector, base.base); } #define to_intel_sdvo_connector_state(conn_state) \ container_of((conn_state), struct intel_sdvo_connector_state, base.base) static bool intel_sdvo_output_setup(struct intel_sdvo *intel_sdvo, uint16_t flags); static bool intel_sdvo_tv_create_property(struct intel_sdvo *intel_sdvo, struct intel_sdvo_connector *intel_sdvo_connector, int type); static bool intel_sdvo_create_enhance_property(struct intel_sdvo *intel_sdvo, struct intel_sdvo_connector *intel_sdvo_connector); /* * Writes the SDVOB or SDVOC with the given value, but always writes both * SDVOB and SDVOC to work around apparent hardware issues (according to * comments in the BIOS). */ static void intel_sdvo_write_sdvox(struct intel_sdvo *intel_sdvo, u32 val) { struct drm_device *dev = intel_sdvo->base.base.dev; struct drm_i915_private *dev_priv = to_i915(dev); u32 bval = val, cval = val; int i; if (HAS_PCH_SPLIT(dev_priv)) { I915_WRITE(intel_sdvo->sdvo_reg, val); POSTING_READ(intel_sdvo->sdvo_reg); /* * HW workaround, need to write this twice for issue * that may result in first write getting masked. */ if (HAS_PCH_IBX(dev_priv)) { I915_WRITE(intel_sdvo->sdvo_reg, val); POSTING_READ(intel_sdvo->sdvo_reg); } return; } if (intel_sdvo->port == PORT_B) cval = I915_READ(GEN3_SDVOC); else bval = I915_READ(GEN3_SDVOB); /* * Write the registers twice for luck. Sometimes, * writing them only once doesn't appear to 'stick'. * The BIOS does this too. Yay, magic */ for (i = 0; i < 2; i++) { I915_WRITE(GEN3_SDVOB, bval); POSTING_READ(GEN3_SDVOB); I915_WRITE(GEN3_SDVOC, cval); POSTING_READ(GEN3_SDVOC); } } static bool intel_sdvo_read_byte(struct intel_sdvo *intel_sdvo, u8 addr, u8 *ch) { struct i2c_msg msgs[] = { { .addr = intel_sdvo->slave_addr, .flags = 0, .len = 1, .buf = &addr, }, { .addr = intel_sdvo->slave_addr, .flags = I2C_M_RD, .len = 1, .buf = ch, } }; int ret; if ((ret = i2c_transfer(intel_sdvo->i2c, msgs, 2)) == 2) return true; DRM_DEBUG_KMS("i2c transfer returned %d\n", ret); return false; } #define SDVO_CMD_NAME_ENTRY(cmd) {cmd, #cmd} /** Mapping of command numbers to names, for debug output */ static const struct _sdvo_cmd_name { u8 cmd; const char *name; } __attribute__ ((packed)) sdvo_cmd_names[] = { SDVO_CMD_NAME_ENTRY(SDVO_CMD_RESET), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_DEVICE_CAPS), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_FIRMWARE_REV), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_TRAINED_INPUTS), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_ACTIVE_OUTPUTS), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_ACTIVE_OUTPUTS), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_IN_OUT_MAP), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_IN_OUT_MAP), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_ATTACHED_DISPLAYS), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_HOT_PLUG_SUPPORT), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_ACTIVE_HOT_PLUG), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_ACTIVE_HOT_PLUG), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_INTERRUPT_EVENT_SOURCE), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_TARGET_INPUT), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_TARGET_OUTPUT), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_INPUT_TIMINGS_PART1), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_INPUT_TIMINGS_PART2), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_INPUT_TIMINGS_PART1), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_INPUT_TIMINGS_PART2), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_INPUT_TIMINGS_PART1), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_OUTPUT_TIMINGS_PART1), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_OUTPUT_TIMINGS_PART2), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_OUTPUT_TIMINGS_PART1), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_OUTPUT_TIMINGS_PART2), SDVO_CMD_NAME_ENTRY(SDVO_CMD_CREATE_PREFERRED_INPUT_TIMING), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_PREFERRED_INPUT_TIMING_PART1), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_PREFERRED_INPUT_TIMING_PART2), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_INPUT_PIXEL_CLOCK_RANGE), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_OUTPUT_PIXEL_CLOCK_RANGE), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SUPPORTED_CLOCK_RATE_MULTS), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_CLOCK_RATE_MULT), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_CLOCK_RATE_MULT), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SUPPORTED_TV_FORMATS), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_TV_FORMAT), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_TV_FORMAT), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SUPPORTED_POWER_STATES), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_POWER_STATE), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_ENCODER_POWER_STATE), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_DISPLAY_POWER_STATE), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_CONTROL_BUS_SWITCH), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SDTV_RESOLUTION_SUPPORT), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SCALED_HDTV_RESOLUTION_SUPPORT), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SUPPORTED_ENHANCEMENTS), /* Add the op code for SDVO enhancements */ SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_HPOS), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_HPOS), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_HPOS), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_VPOS), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_VPOS), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_VPOS), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_SATURATION), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SATURATION), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_SATURATION), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_HUE), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_HUE), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_HUE), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_CONTRAST), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_CONTRAST), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_CONTRAST), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_BRIGHTNESS), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_BRIGHTNESS), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_BRIGHTNESS), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_OVERSCAN_H), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_OVERSCAN_H), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_OVERSCAN_H), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_OVERSCAN_V), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_OVERSCAN_V), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_OVERSCAN_V), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_FLICKER_FILTER), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_FLICKER_FILTER), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_FLICKER_FILTER), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_FLICKER_FILTER_ADAPTIVE), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_FLICKER_FILTER_ADAPTIVE), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_FLICKER_FILTER_ADAPTIVE), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_FLICKER_FILTER_2D), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_FLICKER_FILTER_2D), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_FLICKER_FILTER_2D), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_SHARPNESS), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SHARPNESS), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_SHARPNESS), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_DOT_CRAWL), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_DOT_CRAWL), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_TV_CHROMA_FILTER), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_TV_CHROMA_FILTER), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_TV_CHROMA_FILTER), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_TV_LUMA_FILTER), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_TV_LUMA_FILTER), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_TV_LUMA_FILTER), /* HDMI op code */ SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SUPP_ENCODE), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_ENCODE), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_ENCODE), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_PIXEL_REPLI), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_PIXEL_REPLI), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_COLORIMETRY_CAP), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_COLORIMETRY), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_COLORIMETRY), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_AUDIO_ENCRYPT_PREFER), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_AUDIO_STAT), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_AUDIO_STAT), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_HBUF_INDEX), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_HBUF_INDEX), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_HBUF_INFO), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_HBUF_AV_SPLIT), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_HBUF_AV_SPLIT), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_HBUF_TXRATE), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_HBUF_TXRATE), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_HBUF_DATA), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_HBUF_DATA), }; #define SDVO_NAME(svdo) ((svdo)->port == PORT_B ? "SDVOB" : "SDVOC") static void intel_sdvo_debug_write(struct intel_sdvo *intel_sdvo, u8 cmd, const void *args, int args_len) { int i, pos = 0; #define BUF_LEN 256 char buffer[BUF_LEN]; #define BUF_PRINT(args...) \ pos += snprintf(buffer + pos, max_t(int, BUF_LEN - pos, 0), args) for (i = 0; i < args_len; i++) { BUF_PRINT("%02X ", ((u8 *)args)[i]); } for (; i < 8; i++) { BUF_PRINT(" "); } for (i = 0; i < ARRAY_SIZE(sdvo_cmd_names); i++) { if (cmd == sdvo_cmd_names[i].cmd) { BUF_PRINT("(%s)", sdvo_cmd_names[i].name); break; } } if (i == ARRAY_SIZE(sdvo_cmd_names)) { BUF_PRINT("(%02X)", cmd); } BUG_ON(pos >= BUF_LEN - 1); #undef BUF_PRINT #undef BUF_LEN DRM_DEBUG_KMS("%s: W: %02X %s\n", SDVO_NAME(intel_sdvo), cmd, buffer); } static const char * const cmd_status_names[] = { "Power on", "Success", "Not supported", "Invalid arg", "Pending", "Target not specified", "Scaling not supported" }; static bool __intel_sdvo_write_cmd(struct intel_sdvo *intel_sdvo, u8 cmd, const void *args, int args_len, bool unlocked) { u8 *buf, status; struct i2c_msg *msgs; int i, ret = true; /* Would be simpler to allocate both in one go ? */ buf = kzalloc(args_len * 2 + 2, GFP_KERNEL); if (!buf) return false; msgs = kcalloc(args_len + 3, sizeof(*msgs), GFP_KERNEL); if (!msgs) { kfree(buf); return false; } intel_sdvo_debug_write(intel_sdvo, cmd, args, args_len); for (i = 0; i < args_len; i++) { msgs[i].addr = intel_sdvo->slave_addr; msgs[i].flags = 0; msgs[i].len = 2; msgs[i].buf = buf + 2 *i; buf[2*i + 0] = SDVO_I2C_ARG_0 - i; buf[2*i + 1] = ((u8*)args)[i]; } msgs[i].addr = intel_sdvo->slave_addr; msgs[i].flags = 0; msgs[i].len = 2; msgs[i].buf = buf + 2*i; buf[2*i + 0] = SDVO_I2C_OPCODE; buf[2*i + 1] = cmd; /* the following two are to read the response */ status = SDVO_I2C_CMD_STATUS; msgs[i+1].addr = intel_sdvo->slave_addr; msgs[i+1].flags = 0; msgs[i+1].len = 1; msgs[i+1].buf = &status; msgs[i+2].addr = intel_sdvo->slave_addr; msgs[i+2].flags = I2C_M_RD; msgs[i+2].len = 1; msgs[i+2].buf = &status; if (unlocked) ret = i2c_transfer(intel_sdvo->i2c, msgs, i+3); else ret = __i2c_transfer(intel_sdvo->i2c, msgs, i+3); if (ret < 0) { DRM_DEBUG_KMS("I2c transfer returned %d\n", ret); ret = false; goto out; } if (ret != i+3) { /* failure in I2C transfer */ DRM_DEBUG_KMS("I2c transfer returned %d/%d\n", ret, i+3); ret = false; } out: kfree(msgs); kfree(buf); return ret; } static bool intel_sdvo_write_cmd(struct intel_sdvo *intel_sdvo, u8 cmd, const void *args, int args_len) { return __intel_sdvo_write_cmd(intel_sdvo, cmd, args, args_len, true); } static bool intel_sdvo_read_response(struct intel_sdvo *intel_sdvo, void *response, int response_len) { u8 retry = 15; /* 5 quick checks, followed by 10 long checks */ u8 status; int i, pos = 0; #define BUF_LEN 256 char buffer[BUF_LEN]; /* * The documentation states that all commands will be * processed within 15µs, and that we need only poll * the status byte a maximum of 3 times in order for the * command to be complete. * * Check 5 times in case the hardware failed to read the docs. * * Also beware that the first response by many devices is to * reply PENDING and stall for time. TVs are notorious for * requiring longer than specified to complete their replies. * Originally (in the DDX long ago), the delay was only ever 15ms * with an additional delay of 30ms applied for TVs added later after * many experiments. To accommodate both sets of delays, we do a * sequence of slow checks if the device is falling behind and fails * to reply within 5*15µs. */ if (!intel_sdvo_read_byte(intel_sdvo, SDVO_I2C_CMD_STATUS, &status)) goto log_fail; while ((status == SDVO_CMD_STATUS_PENDING || status == SDVO_CMD_STATUS_TARGET_NOT_SPECIFIED) && --retry) { if (retry < 10) msleep(15); else udelay(15); if (!intel_sdvo_read_byte(intel_sdvo, SDVO_I2C_CMD_STATUS, &status)) goto log_fail; } #define BUF_PRINT(args...) \ pos += snprintf(buffer + pos, max_t(int, BUF_LEN - pos, 0), args) if (status <= SDVO_CMD_STATUS_SCALING_NOT_SUPP) BUF_PRINT("(%s)", cmd_status_names[status]); else BUF_PRINT("(??? %d)", status); if (status != SDVO_CMD_STATUS_SUCCESS) goto log_fail; /* Read the command response */ for (i = 0; i < response_len; i++) { if (!intel_sdvo_read_byte(intel_sdvo, SDVO_I2C_RETURN_0 + i, &((u8 *)response)[i])) goto log_fail; BUF_PRINT(" %02X", ((u8 *)response)[i]); } BUG_ON(pos >= BUF_LEN - 1); #undef BUF_PRINT #undef BUF_LEN DRM_DEBUG_KMS("%s: R: %s\n", SDVO_NAME(intel_sdvo), buffer); return true; log_fail: DRM_DEBUG_KMS("%s: R: ... failed\n", SDVO_NAME(intel_sdvo)); return false; } static int intel_sdvo_get_pixel_multiplier(const struct drm_display_mode *adjusted_mode) { if (adjusted_mode->crtc_clock >= 100000) return 1; else if (adjusted_mode->crtc_clock >= 50000) return 2; else return 4; } static bool __intel_sdvo_set_control_bus_switch(struct intel_sdvo *intel_sdvo, u8 ddc_bus) { /* This must be the immediately preceding write before the i2c xfer */ return __intel_sdvo_write_cmd(intel_sdvo, SDVO_CMD_SET_CONTROL_BUS_SWITCH, &ddc_bus, 1, false); } static bool intel_sdvo_set_value(struct intel_sdvo *intel_sdvo, u8 cmd, const void *data, int len) { if (!intel_sdvo_write_cmd(intel_sdvo, cmd, data, len)) return false; return intel_sdvo_read_response(intel_sdvo, NULL, 0); } static bool intel_sdvo_get_value(struct intel_sdvo *intel_sdvo, u8 cmd, void *value, int len) { if (!intel_sdvo_write_cmd(intel_sdvo, cmd, NULL, 0)) return false; return intel_sdvo_read_response(intel_sdvo, value, len); } static bool intel_sdvo_set_target_input(struct intel_sdvo *intel_sdvo) { struct intel_sdvo_set_target_input_args targets = {0}; return intel_sdvo_set_value(intel_sdvo, SDVO_CMD_SET_TARGET_INPUT, &targets, sizeof(targets)); } /* * Return whether each input is trained. * * This function is making an assumption about the layout of the response, * which should be checked against the docs. */ static bool intel_sdvo_get_trained_inputs(struct intel_sdvo *intel_sdvo, bool *input_1, bool *input_2) { struct intel_sdvo_get_trained_inputs_response response; BUILD_BUG_ON(sizeof(response) != 1); if (!intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_TRAINED_INPUTS, &response, sizeof(response))) return false; *input_1 = response.input0_trained; *input_2 = response.input1_trained; return true; } static bool intel_sdvo_set_active_outputs(struct intel_sdvo *intel_sdvo, u16 outputs) { return intel_sdvo_set_value(intel_sdvo, SDVO_CMD_SET_ACTIVE_OUTPUTS, &outputs, sizeof(outputs)); } static bool intel_sdvo_get_active_outputs(struct intel_sdvo *intel_sdvo, u16 *outputs) { return intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_ACTIVE_OUTPUTS, outputs, sizeof(*outputs)); } static bool intel_sdvo_set_encoder_power_state(struct intel_sdvo *intel_sdvo, int mode) { u8 state = SDVO_ENCODER_STATE_ON; switch (mode) { case DRM_MODE_DPMS_ON: state = SDVO_ENCODER_STATE_ON; break; case DRM_MODE_DPMS_STANDBY: state = SDVO_ENCODER_STATE_STANDBY; break; case DRM_MODE_DPMS_SUSPEND: state = SDVO_ENCODER_STATE_SUSPEND; break; case DRM_MODE_DPMS_OFF: state = SDVO_ENCODER_STATE_OFF; break; } return intel_sdvo_set_value(intel_sdvo, SDVO_CMD_SET_ENCODER_POWER_STATE, &state, sizeof(state)); } static bool intel_sdvo_get_input_pixel_clock_range(struct intel_sdvo *intel_sdvo, int *clock_min, int *clock_max) { struct intel_sdvo_pixel_clock_range clocks; BUILD_BUG_ON(sizeof(clocks) != 4); if (!intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_INPUT_PIXEL_CLOCK_RANGE, &clocks, sizeof(clocks))) return false; /* Convert the values from units of 10 kHz to kHz. */ *clock_min = clocks.min * 10; *clock_max = clocks.max * 10; return true; } static bool intel_sdvo_set_target_output(struct intel_sdvo *intel_sdvo, u16 outputs) { return intel_sdvo_set_value(intel_sdvo, SDVO_CMD_SET_TARGET_OUTPUT, &outputs, sizeof(outputs)); } static bool intel_sdvo_set_timing(struct intel_sdvo *intel_sdvo, u8 cmd, struct intel_sdvo_dtd *dtd) { return intel_sdvo_set_value(intel_sdvo, cmd, &dtd->part1, sizeof(dtd->part1)) && intel_sdvo_set_value(intel_sdvo, cmd + 1, &dtd->part2, sizeof(dtd->part2)); } static bool intel_sdvo_get_timing(struct intel_sdvo *intel_sdvo, u8 cmd, struct intel_sdvo_dtd *dtd) { return intel_sdvo_get_value(intel_sdvo, cmd, &dtd->part1, sizeof(dtd->part1)) && intel_sdvo_get_value(intel_sdvo, cmd + 1, &dtd->part2, sizeof(dtd->part2)); } static bool intel_sdvo_set_input_timing(struct intel_sdvo *intel_sdvo, struct intel_sdvo_dtd *dtd) { return intel_sdvo_set_timing(intel_sdvo, SDVO_CMD_SET_INPUT_TIMINGS_PART1, dtd); } static bool intel_sdvo_set_output_timing(struct intel_sdvo *intel_sdvo, struct intel_sdvo_dtd *dtd) { return intel_sdvo_set_timing(intel_sdvo, SDVO_CMD_SET_OUTPUT_TIMINGS_PART1, dtd); } static bool intel_sdvo_get_input_timing(struct intel_sdvo *intel_sdvo, struct intel_sdvo_dtd *dtd) { return intel_sdvo_get_timing(intel_sdvo, SDVO_CMD_GET_INPUT_TIMINGS_PART1, dtd); } static bool intel_sdvo_create_preferred_input_timing(struct intel_sdvo *intel_sdvo, uint16_t clock, uint16_t width, uint16_t height) { struct intel_sdvo_preferred_input_timing_args args; memset(&args, 0, sizeof(args)); args.clock = clock; args.width = width; args.height = height; args.interlace = 0; if (intel_sdvo->is_lvds && (intel_sdvo->sdvo_lvds_fixed_mode->hdisplay != width || intel_sdvo->sdvo_lvds_fixed_mode->vdisplay != height)) args.scaled = 1; return intel_sdvo_set_value(intel_sdvo, SDVO_CMD_CREATE_PREFERRED_INPUT_TIMING, &args, sizeof(args)); } static bool intel_sdvo_get_preferred_input_timing(struct intel_sdvo *intel_sdvo, struct intel_sdvo_dtd *dtd) { BUILD_BUG_ON(sizeof(dtd->part1) != 8); BUILD_BUG_ON(sizeof(dtd->part2) != 8); return intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_PREFERRED_INPUT_TIMING_PART1, &dtd->part1, sizeof(dtd->part1)) && intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_PREFERRED_INPUT_TIMING_PART2, &dtd->part2, sizeof(dtd->part2)); } static bool intel_sdvo_set_clock_rate_mult(struct intel_sdvo *intel_sdvo, u8 val) { return intel_sdvo_set_value(intel_sdvo, SDVO_CMD_SET_CLOCK_RATE_MULT, &val, 1); } static void intel_sdvo_get_dtd_from_mode(struct intel_sdvo_dtd *dtd, const struct drm_display_mode *mode) { uint16_t width, height; uint16_t h_blank_len, h_sync_len, v_blank_len, v_sync_len; uint16_t h_sync_offset, v_sync_offset; int mode_clock; memset(dtd, 0, sizeof(*dtd)); width = mode->hdisplay; height = mode->vdisplay; /* do some mode translations */ h_blank_len = mode->htotal - mode->hdisplay; h_sync_len = mode->hsync_end - mode->hsync_start; v_blank_len = mode->vtotal - mode->vdisplay; v_sync_len = mode->vsync_end - mode->vsync_start; h_sync_offset = mode->hsync_start - mode->hdisplay; v_sync_offset = mode->vsync_start - mode->vdisplay; mode_clock = mode->clock; mode_clock /= 10; dtd->part1.clock = mode_clock; dtd->part1.h_active = width & 0xff; dtd->part1.h_blank = h_blank_len & 0xff; dtd->part1.h_high = (((width >> 8) & 0xf) << 4) | ((h_blank_len >> 8) & 0xf); dtd->part1.v_active = height & 0xff; dtd->part1.v_blank = v_blank_len & 0xff; dtd->part1.v_high = (((height >> 8) & 0xf) << 4) | ((v_blank_len >> 8) & 0xf); dtd->part2.h_sync_off = h_sync_offset & 0xff; dtd->part2.h_sync_width = h_sync_len & 0xff; dtd->part2.v_sync_off_width = (v_sync_offset & 0xf) << 4 | (v_sync_len & 0xf); dtd->part2.sync_off_width_high = ((h_sync_offset & 0x300) >> 2) | ((h_sync_len & 0x300) >> 4) | ((v_sync_offset & 0x30) >> 2) | ((v_sync_len & 0x30) >> 4); dtd->part2.dtd_flags = 0x18; if (mode->flags & DRM_MODE_FLAG_INTERLACE) dtd->part2.dtd_flags |= DTD_FLAG_INTERLACE; if (mode->flags & DRM_MODE_FLAG_PHSYNC) dtd->part2.dtd_flags |= DTD_FLAG_HSYNC_POSITIVE; if (mode->flags & DRM_MODE_FLAG_PVSYNC) dtd->part2.dtd_flags |= DTD_FLAG_VSYNC_POSITIVE; dtd->part2.v_sync_off_high = v_sync_offset & 0xc0; } static void intel_sdvo_get_mode_from_dtd(struct drm_display_mode *pmode, const struct intel_sdvo_dtd *dtd) { struct drm_display_mode mode = {}; mode.hdisplay = dtd->part1.h_active; mode.hdisplay += ((dtd->part1.h_high >> 4) & 0x0f) << 8; mode.hsync_start = mode.hdisplay + dtd->part2.h_sync_off; mode.hsync_start += (dtd->part2.sync_off_width_high & 0xc0) << 2; mode.hsync_end = mode.hsync_start + dtd->part2.h_sync_width; mode.hsync_end += (dtd->part2.sync_off_width_high & 0x30) << 4; mode.htotal = mode.hdisplay + dtd->part1.h_blank; mode.htotal += (dtd->part1.h_high & 0xf) << 8; mode.vdisplay = dtd->part1.v_active; mode.vdisplay += ((dtd->part1.v_high >> 4) & 0x0f) << 8; mode.vsync_start = mode.vdisplay; mode.vsync_start += (dtd->part2.v_sync_off_width >> 4) & 0xf; mode.vsync_start += (dtd->part2.sync_off_width_high & 0x0c) << 2; mode.vsync_start += dtd->part2.v_sync_off_high & 0xc0; mode.vsync_end = mode.vsync_start + (dtd->part2.v_sync_off_width & 0xf); mode.vsync_end += (dtd->part2.sync_off_width_high & 0x3) << 4; mode.vtotal = mode.vdisplay + dtd->part1.v_blank; mode.vtotal += (dtd->part1.v_high & 0xf) << 8; mode.clock = dtd->part1.clock * 10; if (dtd->part2.dtd_flags & DTD_FLAG_INTERLACE) mode.flags |= DRM_MODE_FLAG_INTERLACE; if (dtd->part2.dtd_flags & DTD_FLAG_HSYNC_POSITIVE) mode.flags |= DRM_MODE_FLAG_PHSYNC; else mode.flags |= DRM_MODE_FLAG_NHSYNC; if (dtd->part2.dtd_flags & DTD_FLAG_VSYNC_POSITIVE) mode.flags |= DRM_MODE_FLAG_PVSYNC; else mode.flags |= DRM_MODE_FLAG_NVSYNC; drm_mode_set_crtcinfo(&mode, 0); drm_mode_copy(pmode, &mode); } static bool intel_sdvo_check_supp_encode(struct intel_sdvo *intel_sdvo) { struct intel_sdvo_encode encode; BUILD_BUG_ON(sizeof(encode) != 2); return intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_SUPP_ENCODE, &encode, sizeof(encode)); } static bool intel_sdvo_set_encode(struct intel_sdvo *intel_sdvo, uint8_t mode) { return intel_sdvo_set_value(intel_sdvo, SDVO_CMD_SET_ENCODE, &mode, 1); } static bool intel_sdvo_set_colorimetry(struct intel_sdvo *intel_sdvo, uint8_t mode) { return intel_sdvo_set_value(intel_sdvo, SDVO_CMD_SET_COLORIMETRY, &mode, 1); } #if 0 static void intel_sdvo_dump_hdmi_buf(struct intel_sdvo *intel_sdvo) { int i, j; uint8_t set_buf_index[2]; uint8_t av_split; uint8_t buf_size; uint8_t buf[48]; uint8_t *pos; intel_sdvo_get_value(encoder, SDVO_CMD_GET_HBUF_AV_SPLIT, &av_split, 1); for (i = 0; i <= av_split; i++) { set_buf_index[0] = i; set_buf_index[1] = 0; intel_sdvo_write_cmd(encoder, SDVO_CMD_SET_HBUF_INDEX, set_buf_index, 2); intel_sdvo_write_cmd(encoder, SDVO_CMD_GET_HBUF_INFO, NULL, 0); intel_sdvo_read_response(encoder, &buf_size, 1); pos = buf; for (j = 0; j <= buf_size; j += 8) { intel_sdvo_write_cmd(encoder, SDVO_CMD_GET_HBUF_DATA, NULL, 0); intel_sdvo_read_response(encoder, pos, 8); pos += 8; } } } #endif static bool intel_sdvo_write_infoframe(struct intel_sdvo *intel_sdvo, unsigned if_index, uint8_t tx_rate, const uint8_t *data, unsigned length) { uint8_t set_buf_index[2] = { if_index, 0 }; uint8_t hbuf_size, tmp[8]; int i; if (!intel_sdvo_set_value(intel_sdvo, SDVO_CMD_SET_HBUF_INDEX, set_buf_index, 2)) return false; if (!intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_HBUF_INFO, &hbuf_size, 1)) return false; /* Buffer size is 0 based, hooray! */ hbuf_size++; DRM_DEBUG_KMS("writing sdvo hbuf: %i, hbuf_size %i, hbuf_size: %i\n", if_index, length, hbuf_size); for (i = 0; i < hbuf_size; i += 8) { memset(tmp, 0, 8); if (i < length) memcpy(tmp, data + i, min_t(unsigned, 8, length - i)); if (!intel_sdvo_set_value(intel_sdvo, SDVO_CMD_SET_HBUF_DATA, tmp, 8)) return false; } return intel_sdvo_set_value(intel_sdvo, SDVO_CMD_SET_HBUF_TXRATE, &tx_rate, 1); } static bool intel_sdvo_set_avi_infoframe(struct intel_sdvo *intel_sdvo, const struct intel_crtc_state *pipe_config) { uint8_t sdvo_data[HDMI_INFOFRAME_SIZE(AVI)]; union hdmi_infoframe frame; int ret; ssize_t len; ret = drm_hdmi_avi_infoframe_from_display_mode(&frame.avi, &pipe_config->base.adjusted_mode, false); if (ret < 0) { DRM_ERROR("couldn't fill AVI infoframe\n"); return false; } if (intel_sdvo->rgb_quant_range_selectable) { if (pipe_config->limited_color_range) frame.avi.quantization_range = HDMI_QUANTIZATION_RANGE_LIMITED; else frame.avi.quantization_range = HDMI_QUANTIZATION_RANGE_FULL; } len = hdmi_infoframe_pack(&frame, sdvo_data, sizeof(sdvo_data)); if (len < 0) return false; return intel_sdvo_write_infoframe(intel_sdvo, SDVO_HBUF_INDEX_AVI_IF, SDVO_HBUF_TX_VSYNC, sdvo_data, sizeof(sdvo_data)); } static bool intel_sdvo_set_tv_format(struct intel_sdvo *intel_sdvo, const struct drm_connector_state *conn_state) { struct intel_sdvo_tv_format format; uint32_t format_map; format_map = 1 << conn_state->tv.mode; memset(&format, 0, sizeof(format)); memcpy(&format, &format_map, min(sizeof(format), sizeof(format_map))); BUILD_BUG_ON(sizeof(format) != 6); return intel_sdvo_set_value(intel_sdvo, SDVO_CMD_SET_TV_FORMAT, &format, sizeof(format)); } static bool intel_sdvo_set_output_timings_from_mode(struct intel_sdvo *intel_sdvo, const struct drm_display_mode *mode) { struct intel_sdvo_dtd output_dtd; if (!intel_sdvo_set_target_output(intel_sdvo, intel_sdvo->attached_output)) return false; intel_sdvo_get_dtd_from_mode(&output_dtd, mode); if (!intel_sdvo_set_output_timing(intel_sdvo, &output_dtd)) return false; return true; } /* * Asks the sdvo controller for the preferred input mode given the output mode. * Unfortunately we have to set up the full output mode to do that. */ static bool intel_sdvo_get_preferred_input_mode(struct intel_sdvo *intel_sdvo, const struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct intel_sdvo_dtd input_dtd; /* Reset the input timing to the screen. Assume always input 0. */ if (!intel_sdvo_set_target_input(intel_sdvo)) return false; if (!intel_sdvo_create_preferred_input_timing(intel_sdvo, mode->clock / 10, mode->hdisplay, mode->vdisplay)) return false; if (!intel_sdvo_get_preferred_input_timing(intel_sdvo, &input_dtd)) return false; intel_sdvo_get_mode_from_dtd(adjusted_mode, &input_dtd); intel_sdvo->dtd_sdvo_flags = input_dtd.part2.sdvo_flags; return true; } static void i9xx_adjust_sdvo_tv_clock(struct intel_crtc_state *pipe_config) { unsigned dotclock = pipe_config->port_clock; struct dpll *clock = &pipe_config->dpll; /* * SDVO TV has fixed PLL values depend on its clock range, * this mirrors vbios setting. */ if (dotclock >= 100000 && dotclock < 140500) { clock->p1 = 2; clock->p2 = 10; clock->n = 3; clock->m1 = 16; clock->m2 = 8; } else if (dotclock >= 140500 && dotclock <= 200000) { clock->p1 = 1; clock->p2 = 10; clock->n = 6; clock->m1 = 12; clock->m2 = 8; } else { WARN(1, "SDVO TV clock out of range: %i\n", dotclock); } pipe_config->clock_set = true; } static bool intel_sdvo_compute_config(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config, struct drm_connector_state *conn_state) { struct intel_sdvo *intel_sdvo = to_sdvo(encoder); struct intel_sdvo_connector_state *intel_sdvo_state = to_intel_sdvo_connector_state(conn_state); struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode; struct drm_display_mode *mode = &pipe_config->base.mode; DRM_DEBUG_KMS("forcing bpc to 8 for SDVO\n"); pipe_config->pipe_bpp = 8*3; if (HAS_PCH_SPLIT(to_i915(encoder->base.dev))) pipe_config->has_pch_encoder = true; /* * We need to construct preferred input timings based on our * output timings. To do that, we have to set the output * timings, even though this isn't really the right place in * the sequence to do it. Oh well. */ if (intel_sdvo->is_tv) { if (!intel_sdvo_set_output_timings_from_mode(intel_sdvo, mode)) return false; (void) intel_sdvo_get_preferred_input_mode(intel_sdvo, mode, adjusted_mode); pipe_config->sdvo_tv_clock = true; } else if (intel_sdvo->is_lvds) { if (!intel_sdvo_set_output_timings_from_mode(intel_sdvo, intel_sdvo->sdvo_lvds_fixed_mode)) return false; (void) intel_sdvo_get_preferred_input_mode(intel_sdvo, mode, adjusted_mode); } if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) return false; /* * Make the CRTC code factor in the SDVO pixel multiplier. The * SDVO device will factor out the multiplier during mode_set. */ pipe_config->pixel_multiplier = intel_sdvo_get_pixel_multiplier(adjusted_mode); if (intel_sdvo_state->base.force_audio != HDMI_AUDIO_OFF_DVI) pipe_config->has_hdmi_sink = intel_sdvo->has_hdmi_monitor; if (intel_sdvo_state->base.force_audio == HDMI_AUDIO_ON || (intel_sdvo_state->base.force_audio == HDMI_AUDIO_AUTO && intel_sdvo->has_hdmi_audio)) pipe_config->has_audio = true; if (intel_sdvo_state->base.broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) { /* * See CEA-861-E - 5.1 Default Encoding Parameters * * FIXME: This bit is only valid when using TMDS encoding and 8 * bit per color mode. */ if (pipe_config->has_hdmi_sink && drm_match_cea_mode(adjusted_mode) > 1) pipe_config->limited_color_range = true; } else { if (pipe_config->has_hdmi_sink && intel_sdvo_state->base.broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED) pipe_config->limited_color_range = true; } /* Clock computation needs to happen after pixel multiplier. */ if (intel_sdvo->is_tv) i9xx_adjust_sdvo_tv_clock(pipe_config); /* Set user selected PAR to incoming mode's member */ if (intel_sdvo->is_hdmi) adjusted_mode->picture_aspect_ratio = conn_state->picture_aspect_ratio; return true; } #define UPDATE_PROPERTY(input, NAME) \ do { \ val = input; \ intel_sdvo_set_value(intel_sdvo, SDVO_CMD_SET_##NAME, &val, sizeof(val)); \ } while (0) static void intel_sdvo_update_props(struct intel_sdvo *intel_sdvo, const struct intel_sdvo_connector_state *sdvo_state) { const struct drm_connector_state *conn_state = &sdvo_state->base.base; struct intel_sdvo_connector *intel_sdvo_conn = to_intel_sdvo_connector(conn_state->connector); uint16_t val; if (intel_sdvo_conn->left) UPDATE_PROPERTY(sdvo_state->tv.overscan_h, OVERSCAN_H); if (intel_sdvo_conn->top) UPDATE_PROPERTY(sdvo_state->tv.overscan_v, OVERSCAN_V); if (intel_sdvo_conn->hpos) UPDATE_PROPERTY(sdvo_state->tv.hpos, HPOS); if (intel_sdvo_conn->vpos) UPDATE_PROPERTY(sdvo_state->tv.vpos, VPOS); if (intel_sdvo_conn->saturation) UPDATE_PROPERTY(conn_state->tv.saturation, SATURATION); if (intel_sdvo_conn->contrast) UPDATE_PROPERTY(conn_state->tv.contrast, CONTRAST); if (intel_sdvo_conn->hue) UPDATE_PROPERTY(conn_state->tv.hue, HUE); if (intel_sdvo_conn->brightness) UPDATE_PROPERTY(conn_state->tv.brightness, BRIGHTNESS); if (intel_sdvo_conn->sharpness) UPDATE_PROPERTY(sdvo_state->tv.sharpness, SHARPNESS); if (intel_sdvo_conn->flicker_filter) UPDATE_PROPERTY(sdvo_state->tv.flicker_filter, FLICKER_FILTER); if (intel_sdvo_conn->flicker_filter_2d) UPDATE_PROPERTY(sdvo_state->tv.flicker_filter_2d, FLICKER_FILTER_2D); if (intel_sdvo_conn->flicker_filter_adaptive) UPDATE_PROPERTY(sdvo_state->tv.flicker_filter_adaptive, FLICKER_FILTER_ADAPTIVE); if (intel_sdvo_conn->tv_chroma_filter) UPDATE_PROPERTY(sdvo_state->tv.chroma_filter, TV_CHROMA_FILTER); if (intel_sdvo_conn->tv_luma_filter) UPDATE_PROPERTY(sdvo_state->tv.luma_filter, TV_LUMA_FILTER); if (intel_sdvo_conn->dot_crawl) UPDATE_PROPERTY(sdvo_state->tv.dot_crawl, DOT_CRAWL); #undef UPDATE_PROPERTY } static void intel_sdvo_pre_enable(struct intel_encoder *intel_encoder, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev); struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); const struct drm_display_mode *adjusted_mode = &crtc_state->base.adjusted_mode; const struct intel_sdvo_connector_state *sdvo_state = to_intel_sdvo_connector_state(conn_state); const struct drm_display_mode *mode = &crtc_state->base.mode; struct intel_sdvo *intel_sdvo = to_sdvo(intel_encoder); u32 sdvox; struct intel_sdvo_in_out_map in_out; struct intel_sdvo_dtd input_dtd, output_dtd; int rate; intel_sdvo_update_props(intel_sdvo, sdvo_state); /* * First, set the input mapping for the first input to our controlled * output. This is only correct if we're a single-input device, in * which case the first input is the output from the appropriate SDVO * channel on the motherboard. In a two-input device, the first input * will be SDVOB and the second SDVOC. */ in_out.in0 = intel_sdvo->attached_output; in_out.in1 = 0; intel_sdvo_set_value(intel_sdvo, SDVO_CMD_SET_IN_OUT_MAP, &in_out, sizeof(in_out)); /* Set the output timings to the screen */ if (!intel_sdvo_set_target_output(intel_sdvo, intel_sdvo->attached_output)) return; /* lvds has a special fixed output timing. */ if (intel_sdvo->is_lvds) intel_sdvo_get_dtd_from_mode(&output_dtd, intel_sdvo->sdvo_lvds_fixed_mode); else intel_sdvo_get_dtd_from_mode(&output_dtd, mode); if (!intel_sdvo_set_output_timing(intel_sdvo, &output_dtd)) DRM_INFO("Setting output timings on %s failed\n", SDVO_NAME(intel_sdvo)); /* Set the input timing to the screen. Assume always input 0. */ if (!intel_sdvo_set_target_input(intel_sdvo)) return; if (crtc_state->has_hdmi_sink) { intel_sdvo_set_encode(intel_sdvo, SDVO_ENCODE_HDMI); intel_sdvo_set_colorimetry(intel_sdvo, SDVO_COLORIMETRY_RGB256); intel_sdvo_set_avi_infoframe(intel_sdvo, crtc_state); } else intel_sdvo_set_encode(intel_sdvo, SDVO_ENCODE_DVI); if (intel_sdvo->is_tv && !intel_sdvo_set_tv_format(intel_sdvo, conn_state)) return; intel_sdvo_get_dtd_from_mode(&input_dtd, adjusted_mode); if (intel_sdvo->is_tv || intel_sdvo->is_lvds) input_dtd.part2.sdvo_flags = intel_sdvo->dtd_sdvo_flags; if (!intel_sdvo_set_input_timing(intel_sdvo, &input_dtd)) DRM_INFO("Setting input timings on %s failed\n", SDVO_NAME(intel_sdvo)); switch (crtc_state->pixel_multiplier) { default: WARN(1, "unknown pixel multiplier specified\n"); case 1: rate = SDVO_CLOCK_RATE_MULT_1X; break; case 2: rate = SDVO_CLOCK_RATE_MULT_2X; break; case 4: rate = SDVO_CLOCK_RATE_MULT_4X; break; } if (!intel_sdvo_set_clock_rate_mult(intel_sdvo, rate)) return; /* Set the SDVO control regs. */ if (INTEL_GEN(dev_priv) >= 4) { /* The real mode polarity is set by the SDVO commands, using * struct intel_sdvo_dtd. */ sdvox = SDVO_VSYNC_ACTIVE_HIGH | SDVO_HSYNC_ACTIVE_HIGH; if (!HAS_PCH_SPLIT(dev_priv) && crtc_state->limited_color_range) sdvox |= HDMI_COLOR_RANGE_16_235; if (INTEL_GEN(dev_priv) < 5) sdvox |= SDVO_BORDER_ENABLE; } else { sdvox = I915_READ(intel_sdvo->sdvo_reg); if (intel_sdvo->port == PORT_B) sdvox &= SDVOB_PRESERVE_MASK; else sdvox &= SDVOC_PRESERVE_MASK; sdvox |= (9 << 19) | SDVO_BORDER_ENABLE; } if (HAS_PCH_CPT(dev_priv)) sdvox |= SDVO_PIPE_SEL_CPT(crtc->pipe); else sdvox |= SDVO_PIPE_SEL(crtc->pipe); if (crtc_state->has_audio) { WARN_ON_ONCE(INTEL_GEN(dev_priv) < 4); sdvox |= SDVO_AUDIO_ENABLE; } if (INTEL_GEN(dev_priv) >= 4) { /* done in crtc_mode_set as the dpll_md reg must be written early */ } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) || IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) { /* done in crtc_mode_set as it lives inside the dpll register */ } else { sdvox |= (crtc_state->pixel_multiplier - 1) << SDVO_PORT_MULTIPLY_SHIFT; } if (input_dtd.part2.sdvo_flags & SDVO_NEED_TO_STALL && INTEL_GEN(dev_priv) < 5) sdvox |= SDVO_STALL_SELECT; intel_sdvo_write_sdvox(intel_sdvo, sdvox); } static bool intel_sdvo_connector_get_hw_state(struct intel_connector *connector) { struct intel_sdvo_connector *intel_sdvo_connector = to_intel_sdvo_connector(&connector->base); struct intel_sdvo *intel_sdvo = intel_attached_sdvo(&connector->base); u16 active_outputs = 0; intel_sdvo_get_active_outputs(intel_sdvo, &active_outputs); if (active_outputs & intel_sdvo_connector->output_flag) return true; else return false; } static bool intel_sdvo_get_hw_state(struct intel_encoder *encoder, enum pipe *pipe) { struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); struct intel_sdvo *intel_sdvo = to_sdvo(encoder); u16 active_outputs = 0; u32 tmp; tmp = I915_READ(intel_sdvo->sdvo_reg); intel_sdvo_get_active_outputs(intel_sdvo, &active_outputs); if (!(tmp & SDVO_ENABLE) && (active_outputs == 0)) return false; if (HAS_PCH_CPT(dev_priv)) *pipe = PORT_TO_PIPE_CPT(tmp); else *pipe = PORT_TO_PIPE(tmp); return true; } static void intel_sdvo_get_config(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config) { struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); struct intel_sdvo *intel_sdvo = to_sdvo(encoder); struct intel_sdvo_dtd dtd; int encoder_pixel_multiplier = 0; int dotclock; u32 flags = 0, sdvox; u8 val; bool ret; pipe_config->output_types |= BIT(INTEL_OUTPUT_SDVO); sdvox = I915_READ(intel_sdvo->sdvo_reg); ret = intel_sdvo_get_input_timing(intel_sdvo, &dtd); if (!ret) { /* * Some sdvo encoders are not spec compliant and don't * implement the mandatory get_timings function. */ DRM_DEBUG_DRIVER("failed to retrieve SDVO DTD\n"); pipe_config->quirks |= PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS; } else { if (dtd.part2.dtd_flags & DTD_FLAG_HSYNC_POSITIVE) flags |= DRM_MODE_FLAG_PHSYNC; else flags |= DRM_MODE_FLAG_NHSYNC; if (dtd.part2.dtd_flags & DTD_FLAG_VSYNC_POSITIVE) flags |= DRM_MODE_FLAG_PVSYNC; else flags |= DRM_MODE_FLAG_NVSYNC; } pipe_config->base.adjusted_mode.flags |= flags; /* * pixel multiplier readout is tricky: Only on i915g/gm it is stored in * the sdvo port register, on all other platforms it is part of the dpll * state. Since the general pipe state readout happens before the * encoder->get_config we so already have a valid pixel multplier on all * other platfroms. */ if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) { pipe_config->pixel_multiplier = ((sdvox & SDVO_PORT_MULTIPLY_MASK) >> SDVO_PORT_MULTIPLY_SHIFT) + 1; } dotclock = pipe_config->port_clock; if (pipe_config->pixel_multiplier) dotclock /= pipe_config->pixel_multiplier; pipe_config->base.adjusted_mode.crtc_clock = dotclock; /* Cross check the port pixel multiplier with the sdvo encoder state. */ if (intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_CLOCK_RATE_MULT, &val, 1)) { switch (val) { case SDVO_CLOCK_RATE_MULT_1X: encoder_pixel_multiplier = 1; break; case SDVO_CLOCK_RATE_MULT_2X: encoder_pixel_multiplier = 2; break; case SDVO_CLOCK_RATE_MULT_4X: encoder_pixel_multiplier = 4; break; } } if (sdvox & HDMI_COLOR_RANGE_16_235) pipe_config->limited_color_range = true; if (sdvox & SDVO_AUDIO_ENABLE) pipe_config->has_audio = true; if (intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_ENCODE, &val, 1)) { if (val == SDVO_ENCODE_HDMI) pipe_config->has_hdmi_sink = true; } WARN(encoder_pixel_multiplier != pipe_config->pixel_multiplier, "SDVO pixel multiplier mismatch, port: %i, encoder: %i\n", pipe_config->pixel_multiplier, encoder_pixel_multiplier); } static void intel_disable_sdvo(struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *conn_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_sdvo *intel_sdvo = to_sdvo(encoder); struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc); u32 temp; intel_sdvo_set_active_outputs(intel_sdvo, 0); if (0) intel_sdvo_set_encoder_power_state(intel_sdvo, DRM_MODE_DPMS_OFF); temp = I915_READ(intel_sdvo->sdvo_reg); temp &= ~SDVO_ENABLE; intel_sdvo_write_sdvox(intel_sdvo, temp); /* * HW workaround for IBX, we need to move the port * to transcoder A after disabling it to allow the * matching DP port to be enabled on transcoder A. */ if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B) { /* * We get CPU/PCH FIFO underruns on the other pipe when * doing the workaround. Sweep them under the rug. */ intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false); intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false); temp &= ~SDVO_PIPE_B_SELECT; temp |= SDVO_ENABLE; intel_sdvo_write_sdvox(intel_sdvo, temp); temp &= ~SDVO_ENABLE; intel_sdvo_write_sdvox(intel_sdvo, temp); intel_wait_for_vblank_if_active(dev_priv, PIPE_A); intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true); intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true); } } static void pch_disable_sdvo(struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { } static void pch_post_disable_sdvo(struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { intel_disable_sdvo(encoder, old_crtc_state, old_conn_state); } static void intel_enable_sdvo(struct intel_encoder *encoder, const struct intel_crtc_state *pipe_config, const struct drm_connector_state *conn_state) { struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); struct intel_sdvo *intel_sdvo = to_sdvo(encoder); struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc); u32 temp; bool input1, input2; int i; bool success; temp = I915_READ(intel_sdvo->sdvo_reg); temp |= SDVO_ENABLE; intel_sdvo_write_sdvox(intel_sdvo, temp); for (i = 0; i < 2; i++) intel_wait_for_vblank(dev_priv, intel_crtc->pipe); success = intel_sdvo_get_trained_inputs(intel_sdvo, &input1, &input2); /* * Warn if the device reported failure to sync. * * A lot of SDVO devices fail to notify of sync, but it's * a given it the status is a success, we succeeded. */ if (success && !input1) { DRM_DEBUG_KMS("First %s output reported failure to " "sync\n", SDVO_NAME(intel_sdvo)); } if (0) intel_sdvo_set_encoder_power_state(intel_sdvo, DRM_MODE_DPMS_ON); intel_sdvo_set_active_outputs(intel_sdvo, intel_sdvo->attached_output); } static enum drm_mode_status intel_sdvo_mode_valid(struct drm_connector *connector, struct drm_display_mode *mode) { struct intel_sdvo *intel_sdvo = intel_attached_sdvo(connector); int max_dotclk = to_i915(connector->dev)->max_dotclk_freq; if (mode->flags & DRM_MODE_FLAG_DBLSCAN) return MODE_NO_DBLESCAN; if (intel_sdvo->pixel_clock_min > mode->clock) return MODE_CLOCK_LOW; if (intel_sdvo->pixel_clock_max < mode->clock) return MODE_CLOCK_HIGH; if (mode->clock > max_dotclk) return MODE_CLOCK_HIGH; if (intel_sdvo->is_lvds) { if (mode->hdisplay > intel_sdvo->sdvo_lvds_fixed_mode->hdisplay) return MODE_PANEL; if (mode->vdisplay > intel_sdvo->sdvo_lvds_fixed_mode->vdisplay) return MODE_PANEL; } return MODE_OK; } static bool intel_sdvo_get_capabilities(struct intel_sdvo *intel_sdvo, struct intel_sdvo_caps *caps) { BUILD_BUG_ON(sizeof(*caps) != 8); if (!intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_DEVICE_CAPS, caps, sizeof(*caps))) return false; DRM_DEBUG_KMS("SDVO capabilities:\n" " vendor_id: %d\n" " device_id: %d\n" " device_rev_id: %d\n" " sdvo_version_major: %d\n" " sdvo_version_minor: %d\n" " sdvo_inputs_mask: %d\n" " smooth_scaling: %d\n" " sharp_scaling: %d\n" " up_scaling: %d\n" " down_scaling: %d\n" " stall_support: %d\n" " output_flags: %d\n", caps->vendor_id, caps->device_id, caps->device_rev_id, caps->sdvo_version_major, caps->sdvo_version_minor, caps->sdvo_inputs_mask, caps->smooth_scaling, caps->sharp_scaling, caps->up_scaling, caps->down_scaling, caps->stall_support, caps->output_flags); return true; } static uint16_t intel_sdvo_get_hotplug_support(struct intel_sdvo *intel_sdvo) { struct drm_i915_private *dev_priv = to_i915(intel_sdvo->base.base.dev); uint16_t hotplug; if (!I915_HAS_HOTPLUG(dev_priv)) return 0; /* * HW Erratum: SDVO Hotplug is broken on all i945G chips, there's noise * on the line. */ if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) return 0; if (!intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_HOT_PLUG_SUPPORT, &hotplug, sizeof(hotplug))) return 0; return hotplug; } static void intel_sdvo_enable_hotplug(struct intel_encoder *encoder) { struct intel_sdvo *intel_sdvo = to_sdvo(encoder); intel_sdvo_write_cmd(intel_sdvo, SDVO_CMD_SET_ACTIVE_HOT_PLUG, &intel_sdvo->hotplug_active, 2); } static bool intel_sdvo_hotplug(struct intel_encoder *encoder, struct intel_connector *connector) { intel_sdvo_enable_hotplug(encoder); return intel_encoder_hotplug(encoder, connector); } static bool intel_sdvo_multifunc_encoder(struct intel_sdvo *intel_sdvo) { /* Is there more than one type of output? */ return hweight16(intel_sdvo->caps.output_flags) > 1; } static struct edid * intel_sdvo_get_edid(struct drm_connector *connector) { struct intel_sdvo *sdvo = intel_attached_sdvo(connector); return drm_get_edid(connector, &sdvo->ddc); } /* Mac mini hack -- use the same DDC as the analog connector */ static struct edid * intel_sdvo_get_analog_edid(struct drm_connector *connector) { struct drm_i915_private *dev_priv = to_i915(connector->dev); return drm_get_edid(connector, intel_gmbus_get_adapter(dev_priv, dev_priv->vbt.crt_ddc_pin)); } static enum drm_connector_status intel_sdvo_tmds_sink_detect(struct drm_connector *connector) { struct intel_sdvo *intel_sdvo = intel_attached_sdvo(connector); enum drm_connector_status status; struct edid *edid; edid = intel_sdvo_get_edid(connector); if (edid == NULL && intel_sdvo_multifunc_encoder(intel_sdvo)) { u8 ddc, saved_ddc = intel_sdvo->ddc_bus; /* * Don't use the 1 as the argument of DDC bus switch to get * the EDID. It is used for SDVO SPD ROM. */ for (ddc = intel_sdvo->ddc_bus >> 1; ddc > 1; ddc >>= 1) { intel_sdvo->ddc_bus = ddc; edid = intel_sdvo_get_edid(connector); if (edid) break; } /* * If we found the EDID on the other bus, * assume that is the correct DDC bus. */ if (edid == NULL) intel_sdvo->ddc_bus = saved_ddc; } /* * When there is no edid and no monitor is connected with VGA * port, try to use the CRT ddc to read the EDID for DVI-connector. */ if (edid == NULL) edid = intel_sdvo_get_analog_edid(connector); status = connector_status_unknown; if (edid != NULL) { /* DDC bus is shared, match EDID to connector type */ if (edid->input & DRM_EDID_INPUT_DIGITAL) { status = connector_status_connected; if (intel_sdvo->is_hdmi) { intel_sdvo->has_hdmi_monitor = drm_detect_hdmi_monitor(edid); intel_sdvo->has_hdmi_audio = drm_detect_monitor_audio(edid); intel_sdvo->rgb_quant_range_selectable = drm_rgb_quant_range_selectable(edid); } } else status = connector_status_disconnected; kfree(edid); } return status; } static bool intel_sdvo_connector_matches_edid(struct intel_sdvo_connector *sdvo, struct edid *edid) { bool monitor_is_digital = !!(edid->input & DRM_EDID_INPUT_DIGITAL); bool connector_is_digital = !!IS_DIGITAL(sdvo); DRM_DEBUG_KMS("connector_is_digital? %d, monitor_is_digital? %d\n", connector_is_digital, monitor_is_digital); return connector_is_digital == monitor_is_digital; } static enum drm_connector_status intel_sdvo_detect(struct drm_connector *connector, bool force) { uint16_t response; struct intel_sdvo *intel_sdvo = intel_attached_sdvo(connector); struct intel_sdvo_connector *intel_sdvo_connector = to_intel_sdvo_connector(connector); enum drm_connector_status ret; DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id, connector->name); if (!intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_ATTACHED_DISPLAYS, &response, 2)) return connector_status_unknown; DRM_DEBUG_KMS("SDVO response %d %d [%x]\n", response & 0xff, response >> 8, intel_sdvo_connector->output_flag); if (response == 0) return connector_status_disconnected; intel_sdvo->attached_output = response; intel_sdvo->has_hdmi_monitor = false; intel_sdvo->has_hdmi_audio = false; intel_sdvo->rgb_quant_range_selectable = false; if ((intel_sdvo_connector->output_flag & response) == 0) ret = connector_status_disconnected; else if (IS_TMDS(intel_sdvo_connector)) ret = intel_sdvo_tmds_sink_detect(connector); else { struct edid *edid; /* if we have an edid check it matches the connection */ edid = intel_sdvo_get_edid(connector); if (edid == NULL) edid = intel_sdvo_get_analog_edid(connector); if (edid != NULL) { if (intel_sdvo_connector_matches_edid(intel_sdvo_connector, edid)) ret = connector_status_connected; else ret = connector_status_disconnected; kfree(edid); } else ret = connector_status_connected; } /* May update encoder flag for like clock for SDVO TV, etc.*/ if (ret == connector_status_connected) { intel_sdvo->is_tv = false; intel_sdvo->is_lvds = false; if (response & SDVO_TV_MASK) intel_sdvo->is_tv = true; if (response & SDVO_LVDS_MASK) intel_sdvo->is_lvds = intel_sdvo->sdvo_lvds_fixed_mode != NULL; } return ret; } static void intel_sdvo_get_ddc_modes(struct drm_connector *connector) { struct edid *edid; DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id, connector->name); /* set the bus switch and get the modes */ edid = intel_sdvo_get_edid(connector); /* * Mac mini hack. On this device, the DVI-I connector shares one DDC * link between analog and digital outputs. So, if the regular SDVO * DDC fails, check to see if the analog output is disconnected, in * which case we'll look there for the digital DDC data. */ if (edid == NULL) edid = intel_sdvo_get_analog_edid(connector); if (edid != NULL) { if (intel_sdvo_connector_matches_edid(to_intel_sdvo_connector(connector), edid)) { drm_mode_connector_update_edid_property(connector, edid); drm_add_edid_modes(connector, edid); } kfree(edid); } } /* * Set of SDVO TV modes. * Note! This is in reply order (see loop in get_tv_modes). * XXX: all 60Hz refresh? */ static const struct drm_display_mode sdvo_tv_modes[] = { { DRM_MODE("320x200", DRM_MODE_TYPE_DRIVER, 5815, 320, 321, 384, 416, 0, 200, 201, 232, 233, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, { DRM_MODE("320x240", DRM_MODE_TYPE_DRIVER, 6814, 320, 321, 384, 416, 0, 240, 241, 272, 273, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, { DRM_MODE("400x300", DRM_MODE_TYPE_DRIVER, 9910, 400, 401, 464, 496, 0, 300, 301, 332, 333, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, { DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 16913, 640, 641, 704, 736, 0, 350, 351, 382, 383, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, { DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 19121, 640, 641, 704, 736, 0, 400, 401, 432, 433, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 22654, 640, 641, 704, 736, 0, 480, 481, 512, 513, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, { DRM_MODE("704x480", DRM_MODE_TYPE_DRIVER, 24624, 704, 705, 768, 800, 0, 480, 481, 512, 513, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, { DRM_MODE("704x576", DRM_MODE_TYPE_DRIVER, 29232, 704, 705, 768, 800, 0, 576, 577, 608, 609, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, { DRM_MODE("720x350", DRM_MODE_TYPE_DRIVER, 18751, 720, 721, 784, 816, 0, 350, 351, 382, 383, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 21199, 720, 721, 784, 816, 0, 400, 401, 432, 433, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 25116, 720, 721, 784, 816, 0, 480, 481, 512, 513, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, { DRM_MODE("720x540", DRM_MODE_TYPE_DRIVER, 28054, 720, 721, 784, 816, 0, 540, 541, 572, 573, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 29816, 720, 721, 784, 816, 0, 576, 577, 608, 609, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, { DRM_MODE("768x576", DRM_MODE_TYPE_DRIVER, 31570, 768, 769, 832, 864, 0, 576, 577, 608, 609, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 34030, 800, 801, 864, 896, 0, 600, 601, 632, 633, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, { DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 36581, 832, 833, 896, 928, 0, 624, 625, 656, 657, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, { DRM_MODE("920x766", DRM_MODE_TYPE_DRIVER, 48707, 920, 921, 984, 1016, 0, 766, 767, 798, 799, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 53827, 1024, 1025, 1088, 1120, 0, 768, 769, 800, 801, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 87265, 1280, 1281, 1344, 1376, 0, 1024, 1025, 1056, 1057, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, }; static void intel_sdvo_get_tv_modes(struct drm_connector *connector) { struct intel_sdvo *intel_sdvo = intel_attached_sdvo(connector); const struct drm_connector_state *conn_state = connector->state; struct intel_sdvo_sdtv_resolution_request tv_res; uint32_t reply = 0, format_map = 0; int i; DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id, connector->name); /* * Read the list of supported input resolutions for the selected TV * format. */ format_map = 1 << conn_state->tv.mode; memcpy(&tv_res, &format_map, min(sizeof(format_map), sizeof(struct intel_sdvo_sdtv_resolution_request))); if (!intel_sdvo_set_target_output(intel_sdvo, intel_sdvo->attached_output)) return; BUILD_BUG_ON(sizeof(tv_res) != 3); if (!intel_sdvo_write_cmd(intel_sdvo, SDVO_CMD_GET_SDTV_RESOLUTION_SUPPORT, &tv_res, sizeof(tv_res))) return; if (!intel_sdvo_read_response(intel_sdvo, &reply, 3)) return; for (i = 0; i < ARRAY_SIZE(sdvo_tv_modes); i++) if (reply & (1 << i)) { struct drm_display_mode *nmode; nmode = drm_mode_duplicate(connector->dev, &sdvo_tv_modes[i]); if (nmode) drm_mode_probed_add(connector, nmode); } } static void intel_sdvo_get_lvds_modes(struct drm_connector *connector) { struct intel_sdvo *intel_sdvo = intel_attached_sdvo(connector); struct drm_i915_private *dev_priv = to_i915(connector->dev); struct drm_display_mode *newmode; DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id, connector->name); /* * Fetch modes from VBT. For SDVO prefer the VBT mode since some * SDVO->LVDS transcoders can't cope with the EDID mode. */ if (dev_priv->vbt.sdvo_lvds_vbt_mode != NULL) { newmode = drm_mode_duplicate(connector->dev, dev_priv->vbt.sdvo_lvds_vbt_mode); if (newmode != NULL) { /* Guarantee the mode is preferred */ newmode->type = (DRM_MODE_TYPE_PREFERRED | DRM_MODE_TYPE_DRIVER); drm_mode_probed_add(connector, newmode); } } /* * Attempt to get the mode list from DDC. * Assume that the preferred modes are * arranged in priority order. */ intel_ddc_get_modes(connector, &intel_sdvo->ddc); list_for_each_entry(newmode, &connector->probed_modes, head) { if (newmode->type & DRM_MODE_TYPE_PREFERRED) { intel_sdvo->sdvo_lvds_fixed_mode = drm_mode_duplicate(connector->dev, newmode); intel_sdvo->is_lvds = true; break; } } } static int intel_sdvo_get_modes(struct drm_connector *connector) { struct intel_sdvo_connector *intel_sdvo_connector = to_intel_sdvo_connector(connector); if (IS_TV(intel_sdvo_connector)) intel_sdvo_get_tv_modes(connector); else if (IS_LVDS(intel_sdvo_connector)) intel_sdvo_get_lvds_modes(connector); else intel_sdvo_get_ddc_modes(connector); return !list_empty(&connector->probed_modes); } static void intel_sdvo_destroy(struct drm_connector *connector) { struct intel_sdvo_connector *intel_sdvo_connector = to_intel_sdvo_connector(connector); drm_connector_cleanup(connector); kfree(intel_sdvo_connector); } static int intel_sdvo_connector_atomic_get_property(struct drm_connector *connector, const struct drm_connector_state *state, struct drm_property *property, uint64_t *val) { struct intel_sdvo_connector *intel_sdvo_connector = to_intel_sdvo_connector(connector); const struct intel_sdvo_connector_state *sdvo_state = to_intel_sdvo_connector_state((void *)state); if (property == intel_sdvo_connector->tv_format) { int i; for (i = 0; i < intel_sdvo_connector->format_supported_num; i++) if (state->tv.mode == intel_sdvo_connector->tv_format_supported[i]) { *val = i; return 0; } WARN_ON(1); *val = 0; } else if (property == intel_sdvo_connector->top || property == intel_sdvo_connector->bottom) *val = intel_sdvo_connector->max_vscan - sdvo_state->tv.overscan_v; else if (property == intel_sdvo_connector->left || property == intel_sdvo_connector->right) *val = intel_sdvo_connector->max_hscan - sdvo_state->tv.overscan_h; else if (property == intel_sdvo_connector->hpos) *val = sdvo_state->tv.hpos; else if (property == intel_sdvo_connector->vpos) *val = sdvo_state->tv.vpos; else if (property == intel_sdvo_connector->saturation) *val = state->tv.saturation; else if (property == intel_sdvo_connector->contrast) *val = state->tv.contrast; else if (property == intel_sdvo_connector->hue) *val = state->tv.hue; else if (property == intel_sdvo_connector->brightness) *val = state->tv.brightness; else if (property == intel_sdvo_connector->sharpness) *val = sdvo_state->tv.sharpness; else if (property == intel_sdvo_connector->flicker_filter) *val = sdvo_state->tv.flicker_filter; else if (property == intel_sdvo_connector->flicker_filter_2d) *val = sdvo_state->tv.flicker_filter_2d; else if (property == intel_sdvo_connector->flicker_filter_adaptive) *val = sdvo_state->tv.flicker_filter_adaptive; else if (property == intel_sdvo_connector->tv_chroma_filter) *val = sdvo_state->tv.chroma_filter; else if (property == intel_sdvo_connector->tv_luma_filter) *val = sdvo_state->tv.luma_filter; else if (property == intel_sdvo_connector->dot_crawl) *val = sdvo_state->tv.dot_crawl; else return intel_digital_connector_atomic_get_property(connector, state, property, val); return 0; } static int intel_sdvo_connector_atomic_set_property(struct drm_connector *connector, struct drm_connector_state *state, struct drm_property *property, uint64_t val) { struct intel_sdvo_connector *intel_sdvo_connector = to_intel_sdvo_connector(connector); struct intel_sdvo_connector_state *sdvo_state = to_intel_sdvo_connector_state(state); if (property == intel_sdvo_connector->tv_format) { state->tv.mode = intel_sdvo_connector->tv_format_supported[val]; if (state->crtc) { struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state->state, state->crtc); crtc_state->connectors_changed = true; } } else if (property == intel_sdvo_connector->top || property == intel_sdvo_connector->bottom) /* Cannot set these independent from each other */ sdvo_state->tv.overscan_v = intel_sdvo_connector->max_vscan - val; else if (property == intel_sdvo_connector->left || property == intel_sdvo_connector->right) /* Cannot set these independent from each other */ sdvo_state->tv.overscan_h = intel_sdvo_connector->max_hscan - val; else if (property == intel_sdvo_connector->hpos) sdvo_state->tv.hpos = val; else if (property == intel_sdvo_connector->vpos) sdvo_state->tv.vpos = val; else if (property == intel_sdvo_connector->saturation) state->tv.saturation = val; else if (property == intel_sdvo_connector->contrast) state->tv.contrast = val; else if (property == intel_sdvo_connector->hue) state->tv.hue = val; else if (property == intel_sdvo_connector->brightness) state->tv.brightness = val; else if (property == intel_sdvo_connector->sharpness) sdvo_state->tv.sharpness = val; else if (property == intel_sdvo_connector->flicker_filter) sdvo_state->tv.flicker_filter = val; else if (property == intel_sdvo_connector->flicker_filter_2d) sdvo_state->tv.flicker_filter_2d = val; else if (property == intel_sdvo_connector->flicker_filter_adaptive) sdvo_state->tv.flicker_filter_adaptive = val; else if (property == intel_sdvo_connector->tv_chroma_filter) sdvo_state->tv.chroma_filter = val; else if (property == intel_sdvo_connector->tv_luma_filter) sdvo_state->tv.luma_filter = val; else if (property == intel_sdvo_connector->dot_crawl) sdvo_state->tv.dot_crawl = val; else return intel_digital_connector_atomic_set_property(connector, state, property, val); return 0; } static int intel_sdvo_connector_register(struct drm_connector *connector) { struct intel_sdvo *sdvo = intel_attached_sdvo(connector); int ret; ret = intel_connector_register(connector); if (ret) return ret; return sysfs_create_link(&connector->kdev->kobj, &sdvo->ddc.dev.kobj, sdvo->ddc.dev.kobj.name); } static void intel_sdvo_connector_unregister(struct drm_connector *connector) { struct intel_sdvo *sdvo = intel_attached_sdvo(connector); sysfs_remove_link(&connector->kdev->kobj, sdvo->ddc.dev.kobj.name); intel_connector_unregister(connector); } static struct drm_connector_state * intel_sdvo_connector_duplicate_state(struct drm_connector *connector) { struct intel_sdvo_connector_state *state; state = kmemdup(connector->state, sizeof(*state), GFP_KERNEL); if (!state) return NULL; __drm_atomic_helper_connector_duplicate_state(connector, &state->base.base); return &state->base.base; } static const struct drm_connector_funcs intel_sdvo_connector_funcs = { .detect = intel_sdvo_detect, .fill_modes = drm_helper_probe_single_connector_modes, .atomic_get_property = intel_sdvo_connector_atomic_get_property, .atomic_set_property = intel_sdvo_connector_atomic_set_property, .late_register = intel_sdvo_connector_register, .early_unregister = intel_sdvo_connector_unregister, .destroy = intel_sdvo_destroy, .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, .atomic_duplicate_state = intel_sdvo_connector_duplicate_state, }; static int intel_sdvo_atomic_check(struct drm_connector *conn, struct drm_connector_state *new_conn_state) { struct drm_atomic_state *state = new_conn_state->state; struct drm_connector_state *old_conn_state = drm_atomic_get_old_connector_state(state, conn); struct intel_sdvo_connector_state *old_state = to_intel_sdvo_connector_state(old_conn_state); struct intel_sdvo_connector_state *new_state = to_intel_sdvo_connector_state(new_conn_state); if (new_conn_state->crtc && (memcmp(&old_state->tv, &new_state->tv, sizeof(old_state->tv)) || memcmp(&old_conn_state->tv, &new_conn_state->tv, sizeof(old_conn_state->tv)))) { struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(new_conn_state->state, new_conn_state->crtc); crtc_state->connectors_changed = true; } return intel_digital_connector_atomic_check(conn, new_conn_state); } static const struct drm_connector_helper_funcs intel_sdvo_connector_helper_funcs = { .get_modes = intel_sdvo_get_modes, .mode_valid = intel_sdvo_mode_valid, .atomic_check = intel_sdvo_atomic_check, }; static void intel_sdvo_enc_destroy(struct drm_encoder *encoder) { struct intel_sdvo *intel_sdvo = to_sdvo(to_intel_encoder(encoder)); if (intel_sdvo->sdvo_lvds_fixed_mode != NULL) drm_mode_destroy(encoder->dev, intel_sdvo->sdvo_lvds_fixed_mode); i2c_del_adapter(&intel_sdvo->ddc); intel_encoder_destroy(encoder); } static const struct drm_encoder_funcs intel_sdvo_enc_funcs = { .destroy = intel_sdvo_enc_destroy, }; static void intel_sdvo_guess_ddc_bus(struct intel_sdvo *sdvo) { uint16_t mask = 0; unsigned int num_bits; /* * Make a mask of outputs less than or equal to our own priority in the * list. */ switch (sdvo->controlled_output) { case SDVO_OUTPUT_LVDS1: mask |= SDVO_OUTPUT_LVDS1; case SDVO_OUTPUT_LVDS0: mask |= SDVO_OUTPUT_LVDS0; case SDVO_OUTPUT_TMDS1: mask |= SDVO_OUTPUT_TMDS1; case SDVO_OUTPUT_TMDS0: mask |= SDVO_OUTPUT_TMDS0; case SDVO_OUTPUT_RGB1: mask |= SDVO_OUTPUT_RGB1; case SDVO_OUTPUT_RGB0: mask |= SDVO_OUTPUT_RGB0; break; } /* Count bits to find what number we are in the priority list. */ mask &= sdvo->caps.output_flags; num_bits = hweight16(mask); /* If more than 3 outputs, default to DDC bus 3 for now. */ if (num_bits > 3) num_bits = 3; /* Corresponds to SDVO_CONTROL_BUS_DDCx */ sdvo->ddc_bus = 1 << num_bits; } /* * Choose the appropriate DDC bus for control bus switch command for this * SDVO output based on the controlled output. * * DDC bus number assignment is in a priority order of RGB outputs, then TMDS * outputs, then LVDS outputs. */ static void intel_sdvo_select_ddc_bus(struct drm_i915_private *dev_priv, struct intel_sdvo *sdvo) { struct sdvo_device_mapping *mapping; if (sdvo->port == PORT_B) mapping = &dev_priv->vbt.sdvo_mappings[0]; else mapping = &dev_priv->vbt.sdvo_mappings[1]; if (mapping->initialized) sdvo->ddc_bus = 1 << ((mapping->ddc_pin & 0xf0) >> 4); else intel_sdvo_guess_ddc_bus(sdvo); } static void intel_sdvo_select_i2c_bus(struct drm_i915_private *dev_priv, struct intel_sdvo *sdvo) { struct sdvo_device_mapping *mapping; u8 pin; if (sdvo->port == PORT_B) mapping = &dev_priv->vbt.sdvo_mappings[0]; else mapping = &dev_priv->vbt.sdvo_mappings[1]; if (mapping->initialized && intel_gmbus_is_valid_pin(dev_priv, mapping->i2c_pin)) pin = mapping->i2c_pin; else pin = GMBUS_PIN_DPB; sdvo->i2c = intel_gmbus_get_adapter(dev_priv, pin); /* * With gmbus we should be able to drive sdvo i2c at 2MHz, but somehow * our code totally fails once we start using gmbus. Hence fall back to * bit banging for now. */ intel_gmbus_force_bit(sdvo->i2c, true); } /* undo any changes intel_sdvo_select_i2c_bus() did to sdvo->i2c */ static void intel_sdvo_unselect_i2c_bus(struct intel_sdvo *sdvo) { intel_gmbus_force_bit(sdvo->i2c, false); } static bool intel_sdvo_is_hdmi_connector(struct intel_sdvo *intel_sdvo, int device) { return intel_sdvo_check_supp_encode(intel_sdvo); } static u8 intel_sdvo_get_slave_addr(struct drm_i915_private *dev_priv, struct intel_sdvo *sdvo) { struct sdvo_device_mapping *my_mapping, *other_mapping; if (sdvo->port == PORT_B) { my_mapping = &dev_priv->vbt.sdvo_mappings[0]; other_mapping = &dev_priv->vbt.sdvo_mappings[1]; } else { my_mapping = &dev_priv->vbt.sdvo_mappings[1]; other_mapping = &dev_priv->vbt.sdvo_mappings[0]; } /* If the BIOS described our SDVO device, take advantage of it. */ if (my_mapping->slave_addr) return my_mapping->slave_addr; /* * If the BIOS only described a different SDVO device, use the * address that it isn't using. */ if (other_mapping->slave_addr) { if (other_mapping->slave_addr == 0x70) return 0x72; else return 0x70; } /* * No SDVO device info is found for another DVO port, * so use mapping assumption we had before BIOS parsing. */ if (sdvo->port == PORT_B) return 0x70; else return 0x72; } static int intel_sdvo_connector_init(struct intel_sdvo_connector *connector, struct intel_sdvo *encoder) { struct drm_connector *drm_connector; int ret; drm_connector = &connector->base.base; ret = drm_connector_init(encoder->base.base.dev, drm_connector, &intel_sdvo_connector_funcs, connector->base.base.connector_type); if (ret < 0) return ret; drm_connector_helper_add(drm_connector, &intel_sdvo_connector_helper_funcs); connector->base.base.interlace_allowed = 1; connector->base.base.doublescan_allowed = 0; connector->base.base.display_info.subpixel_order = SubPixelHorizontalRGB; connector->base.get_hw_state = intel_sdvo_connector_get_hw_state; intel_connector_attach_encoder(&connector->base, &encoder->base); return 0; } static void intel_sdvo_add_hdmi_properties(struct intel_sdvo *intel_sdvo, struct intel_sdvo_connector *connector) { struct drm_i915_private *dev_priv = to_i915(connector->base.base.dev); intel_attach_force_audio_property(&connector->base.base); if (INTEL_GEN(dev_priv) >= 4 && IS_MOBILE(dev_priv)) { intel_attach_broadcast_rgb_property(&connector->base.base); } intel_attach_aspect_ratio_property(&connector->base.base); connector->base.base.state->picture_aspect_ratio = HDMI_PICTURE_ASPECT_NONE; } static struct intel_sdvo_connector *intel_sdvo_connector_alloc(void) { struct intel_sdvo_connector *sdvo_connector; struct intel_sdvo_connector_state *conn_state; sdvo_connector = kzalloc(sizeof(*sdvo_connector), GFP_KERNEL); if (!sdvo_connector) return NULL; conn_state = kzalloc(sizeof(*conn_state), GFP_KERNEL); if (!conn_state) { kfree(sdvo_connector); return NULL; } __drm_atomic_helper_connector_reset(&sdvo_connector->base.base, &conn_state->base.base); return sdvo_connector; } static bool intel_sdvo_dvi_init(struct intel_sdvo *intel_sdvo, int device) { struct drm_encoder *encoder = &intel_sdvo->base.base; struct drm_i915_private *dev_priv = to_i915(encoder->dev); struct drm_connector *connector; struct intel_encoder *intel_encoder = to_intel_encoder(encoder); struct intel_connector *intel_connector; struct intel_sdvo_connector *intel_sdvo_connector; DRM_DEBUG_KMS("initialising DVI device %d\n", device); intel_sdvo_connector = intel_sdvo_connector_alloc(); if (!intel_sdvo_connector) return false; if (device == 0) { intel_sdvo->controlled_output |= SDVO_OUTPUT_TMDS0; intel_sdvo_connector->output_flag = SDVO_OUTPUT_TMDS0; } else if (device == 1) { intel_sdvo->controlled_output |= SDVO_OUTPUT_TMDS1; intel_sdvo_connector->output_flag = SDVO_OUTPUT_TMDS1; } intel_connector = &intel_sdvo_connector->base; connector = &intel_connector->base; if (intel_sdvo_get_hotplug_support(intel_sdvo) & intel_sdvo_connector->output_flag) { intel_sdvo->hotplug_active |= intel_sdvo_connector->output_flag; /* * Some SDVO devices have one-shot hotplug interrupts. * Ensure that they get re-enabled when an interrupt happens. */ intel_encoder->hotplug = intel_sdvo_hotplug; intel_sdvo_enable_hotplug(intel_encoder); } else { intel_connector->polled = DRM_CONNECTOR_POLL_CONNECT | DRM_CONNECTOR_POLL_DISCONNECT; } encoder->encoder_type = DRM_MODE_ENCODER_TMDS; connector->connector_type = DRM_MODE_CONNECTOR_DVID; /* gen3 doesn't do the hdmi bits in the SDVO register */ if (INTEL_GEN(dev_priv) >= 4 && intel_sdvo_is_hdmi_connector(intel_sdvo, device)) { connector->connector_type = DRM_MODE_CONNECTOR_HDMIA; intel_sdvo->is_hdmi = true; } if (intel_sdvo_connector_init(intel_sdvo_connector, intel_sdvo) < 0) { kfree(intel_sdvo_connector); return false; } if (intel_sdvo->is_hdmi) intel_sdvo_add_hdmi_properties(intel_sdvo, intel_sdvo_connector); return true; } static bool intel_sdvo_tv_init(struct intel_sdvo *intel_sdvo, int type) { struct drm_encoder *encoder = &intel_sdvo->base.base; struct drm_connector *connector; struct intel_connector *intel_connector; struct intel_sdvo_connector *intel_sdvo_connector; DRM_DEBUG_KMS("initialising TV type %d\n", type); intel_sdvo_connector = intel_sdvo_connector_alloc(); if (!intel_sdvo_connector) return false; intel_connector = &intel_sdvo_connector->base; connector = &intel_connector->base; encoder->encoder_type = DRM_MODE_ENCODER_TVDAC; connector->connector_type = DRM_MODE_CONNECTOR_SVIDEO; intel_sdvo->controlled_output |= type; intel_sdvo_connector->output_flag = type; intel_sdvo->is_tv = true; if (intel_sdvo_connector_init(intel_sdvo_connector, intel_sdvo) < 0) { kfree(intel_sdvo_connector); return false; } if (!intel_sdvo_tv_create_property(intel_sdvo, intel_sdvo_connector, type)) goto err; if (!intel_sdvo_create_enhance_property(intel_sdvo, intel_sdvo_connector)) goto err; return true; err: intel_sdvo_destroy(connector); return false; } static bool intel_sdvo_analog_init(struct intel_sdvo *intel_sdvo, int device) { struct drm_encoder *encoder = &intel_sdvo->base.base; struct drm_connector *connector; struct intel_connector *intel_connector; struct intel_sdvo_connector *intel_sdvo_connector; DRM_DEBUG_KMS("initialising analog device %d\n", device); intel_sdvo_connector = intel_sdvo_connector_alloc(); if (!intel_sdvo_connector) return false; intel_connector = &intel_sdvo_connector->base; connector = &intel_connector->base; intel_connector->polled = DRM_CONNECTOR_POLL_CONNECT; encoder->encoder_type = DRM_MODE_ENCODER_DAC; connector->connector_type = DRM_MODE_CONNECTOR_VGA; if (device == 0) { intel_sdvo->controlled_output |= SDVO_OUTPUT_RGB0; intel_sdvo_connector->output_flag = SDVO_OUTPUT_RGB0; } else if (device == 1) { intel_sdvo->controlled_output |= SDVO_OUTPUT_RGB1; intel_sdvo_connector->output_flag = SDVO_OUTPUT_RGB1; } if (intel_sdvo_connector_init(intel_sdvo_connector, intel_sdvo) < 0) { kfree(intel_sdvo_connector); return false; } return true; } static bool intel_sdvo_lvds_init(struct intel_sdvo *intel_sdvo, int device) { struct drm_encoder *encoder = &intel_sdvo->base.base; struct drm_connector *connector; struct intel_connector *intel_connector; struct intel_sdvo_connector *intel_sdvo_connector; DRM_DEBUG_KMS("initialising LVDS device %d\n", device); intel_sdvo_connector = intel_sdvo_connector_alloc(); if (!intel_sdvo_connector) return false; intel_connector = &intel_sdvo_connector->base; connector = &intel_connector->base; encoder->encoder_type = DRM_MODE_ENCODER_LVDS; connector->connector_type = DRM_MODE_CONNECTOR_LVDS; if (device == 0) { intel_sdvo->controlled_output |= SDVO_OUTPUT_LVDS0; intel_sdvo_connector->output_flag = SDVO_OUTPUT_LVDS0; } else if (device == 1) { intel_sdvo->controlled_output |= SDVO_OUTPUT_LVDS1; intel_sdvo_connector->output_flag = SDVO_OUTPUT_LVDS1; } if (intel_sdvo_connector_init(intel_sdvo_connector, intel_sdvo) < 0) { kfree(intel_sdvo_connector); return false; } if (!intel_sdvo_create_enhance_property(intel_sdvo, intel_sdvo_connector)) goto err; return true; err: intel_sdvo_destroy(connector); return false; } static bool intel_sdvo_output_setup(struct intel_sdvo *intel_sdvo, uint16_t flags) { intel_sdvo->is_tv = false; intel_sdvo->is_lvds = false; /* SDVO requires XXX1 function may not exist unless it has XXX0 function.*/ if (flags & SDVO_OUTPUT_TMDS0) if (!intel_sdvo_dvi_init(intel_sdvo, 0)) return false; if ((flags & SDVO_TMDS_MASK) == SDVO_TMDS_MASK) if (!intel_sdvo_dvi_init(intel_sdvo, 1)) return false; /* TV has no XXX1 function block */ if (flags & SDVO_OUTPUT_SVID0) if (!intel_sdvo_tv_init(intel_sdvo, SDVO_OUTPUT_SVID0)) return false; if (flags & SDVO_OUTPUT_CVBS0) if (!intel_sdvo_tv_init(intel_sdvo, SDVO_OUTPUT_CVBS0)) return false; if (flags & SDVO_OUTPUT_YPRPB0) if (!intel_sdvo_tv_init(intel_sdvo, SDVO_OUTPUT_YPRPB0)) return false; if (flags & SDVO_OUTPUT_RGB0) if (!intel_sdvo_analog_init(intel_sdvo, 0)) return false; if ((flags & SDVO_RGB_MASK) == SDVO_RGB_MASK) if (!intel_sdvo_analog_init(intel_sdvo, 1)) return false; if (flags & SDVO_OUTPUT_LVDS0) if (!intel_sdvo_lvds_init(intel_sdvo, 0)) return false; if ((flags & SDVO_LVDS_MASK) == SDVO_LVDS_MASK) if (!intel_sdvo_lvds_init(intel_sdvo, 1)) return false; if ((flags & SDVO_OUTPUT_MASK) == 0) { unsigned char bytes[2]; intel_sdvo->controlled_output = 0; memcpy(bytes, &intel_sdvo->caps.output_flags, 2); DRM_DEBUG_KMS("%s: Unknown SDVO output type (0x%02x%02x)\n", SDVO_NAME(intel_sdvo), bytes[0], bytes[1]); return false; } intel_sdvo->base.crtc_mask = (1 << 0) | (1 << 1) | (1 << 2); return true; } static void intel_sdvo_output_cleanup(struct intel_sdvo *intel_sdvo) { struct drm_device *dev = intel_sdvo->base.base.dev; struct drm_connector *connector, *tmp; list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) { if (intel_attached_encoder(connector) == &intel_sdvo->base) { drm_connector_unregister(connector); intel_sdvo_destroy(connector); } } } static bool intel_sdvo_tv_create_property(struct intel_sdvo *intel_sdvo, struct intel_sdvo_connector *intel_sdvo_connector, int type) { struct drm_device *dev = intel_sdvo->base.base.dev; struct intel_sdvo_tv_format format; uint32_t format_map, i; if (!intel_sdvo_set_target_output(intel_sdvo, type)) return false; BUILD_BUG_ON(sizeof(format) != 6); if (!intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_SUPPORTED_TV_FORMATS, &format, sizeof(format))) return false; memcpy(&format_map, &format, min(sizeof(format_map), sizeof(format))); if (format_map == 0) return false; intel_sdvo_connector->format_supported_num = 0; for (i = 0 ; i < TV_FORMAT_NUM; i++) if (format_map & (1 << i)) intel_sdvo_connector->tv_format_supported[intel_sdvo_connector->format_supported_num++] = i; intel_sdvo_connector->tv_format = drm_property_create(dev, DRM_MODE_PROP_ENUM, "mode", intel_sdvo_connector->format_supported_num); if (!intel_sdvo_connector->tv_format) return false; for (i = 0; i < intel_sdvo_connector->format_supported_num; i++) drm_property_add_enum(intel_sdvo_connector->tv_format, i, tv_format_names[intel_sdvo_connector->tv_format_supported[i]]); intel_sdvo_connector->base.base.state->tv.mode = intel_sdvo_connector->tv_format_supported[0]; drm_object_attach_property(&intel_sdvo_connector->base.base.base, intel_sdvo_connector->tv_format, 0); return true; } #define _ENHANCEMENT(state_assignment, name, NAME) do { \ if (enhancements.name) { \ if (!intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_MAX_##NAME, &data_value, 4) || \ !intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_##NAME, &response, 2)) \ return false; \ intel_sdvo_connector->name = \ drm_property_create_range(dev, 0, #name, 0, data_value[0]); \ if (!intel_sdvo_connector->name) return false; \ state_assignment = response; \ drm_object_attach_property(&connector->base, \ intel_sdvo_connector->name, 0); \ DRM_DEBUG_KMS(#name ": max %d, default %d, current %d\n", \ data_value[0], data_value[1], response); \ } \ } while (0) #define ENHANCEMENT(state, name, NAME) _ENHANCEMENT((state)->name, name, NAME) static bool intel_sdvo_create_enhance_property_tv(struct intel_sdvo *intel_sdvo, struct intel_sdvo_connector *intel_sdvo_connector, struct intel_sdvo_enhancements_reply enhancements) { struct drm_device *dev = intel_sdvo->base.base.dev; struct drm_connector *connector = &intel_sdvo_connector->base.base; struct drm_connector_state *conn_state = connector->state; struct intel_sdvo_connector_state *sdvo_state = to_intel_sdvo_connector_state(conn_state); uint16_t response, data_value[2]; /* when horizontal overscan is supported, Add the left/right property */ if (enhancements.overscan_h) { if (!intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_MAX_OVERSCAN_H, &data_value, 4)) return false; if (!intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_OVERSCAN_H, &response, 2)) return false; sdvo_state->tv.overscan_h = response; intel_sdvo_connector->max_hscan = data_value[0]; intel_sdvo_connector->left = drm_property_create_range(dev, 0, "left_margin", 0, data_value[0]); if (!intel_sdvo_connector->left) return false; drm_object_attach_property(&connector->base, intel_sdvo_connector->left, 0); intel_sdvo_connector->right = drm_property_create_range(dev, 0, "right_margin", 0, data_value[0]); if (!intel_sdvo_connector->right) return false; drm_object_attach_property(&connector->base, intel_sdvo_connector->right, 0); DRM_DEBUG_KMS("h_overscan: max %d, " "default %d, current %d\n", data_value[0], data_value[1], response); } if (enhancements.overscan_v) { if (!intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_MAX_OVERSCAN_V, &data_value, 4)) return false; if (!intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_OVERSCAN_V, &response, 2)) return false; sdvo_state->tv.overscan_v = response; intel_sdvo_connector->max_vscan = data_value[0]; intel_sdvo_connector->top = drm_property_create_range(dev, 0, "top_margin", 0, data_value[0]); if (!intel_sdvo_connector->top) return false; drm_object_attach_property(&connector->base, intel_sdvo_connector->top, 0); intel_sdvo_connector->bottom = drm_property_create_range(dev, 0, "bottom_margin", 0, data_value[0]); if (!intel_sdvo_connector->bottom) return false; drm_object_attach_property(&connector->base, intel_sdvo_connector->bottom, 0); DRM_DEBUG_KMS("v_overscan: max %d, " "default %d, current %d\n", data_value[0], data_value[1], response); } ENHANCEMENT(&sdvo_state->tv, hpos, HPOS); ENHANCEMENT(&sdvo_state->tv, vpos, VPOS); ENHANCEMENT(&conn_state->tv, saturation, SATURATION); ENHANCEMENT(&conn_state->tv, contrast, CONTRAST); ENHANCEMENT(&conn_state->tv, hue, HUE); ENHANCEMENT(&conn_state->tv, brightness, BRIGHTNESS); ENHANCEMENT(&sdvo_state->tv, sharpness, SHARPNESS); ENHANCEMENT(&sdvo_state->tv, flicker_filter, FLICKER_FILTER); ENHANCEMENT(&sdvo_state->tv, flicker_filter_adaptive, FLICKER_FILTER_ADAPTIVE); ENHANCEMENT(&sdvo_state->tv, flicker_filter_2d, FLICKER_FILTER_2D); _ENHANCEMENT(sdvo_state->tv.chroma_filter, tv_chroma_filter, TV_CHROMA_FILTER); _ENHANCEMENT(sdvo_state->tv.luma_filter, tv_luma_filter, TV_LUMA_FILTER); if (enhancements.dot_crawl) { if (!intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_DOT_CRAWL, &response, 2)) return false; sdvo_state->tv.dot_crawl = response & 0x1; intel_sdvo_connector->dot_crawl = drm_property_create_range(dev, 0, "dot_crawl", 0, 1); if (!intel_sdvo_connector->dot_crawl) return false; drm_object_attach_property(&connector->base, intel_sdvo_connector->dot_crawl, 0); DRM_DEBUG_KMS("dot crawl: current %d\n", response); } return true; } static bool intel_sdvo_create_enhance_property_lvds(struct intel_sdvo *intel_sdvo, struct intel_sdvo_connector *intel_sdvo_connector, struct intel_sdvo_enhancements_reply enhancements) { struct drm_device *dev = intel_sdvo->base.base.dev; struct drm_connector *connector = &intel_sdvo_connector->base.base; uint16_t response, data_value[2]; ENHANCEMENT(&connector->state->tv, brightness, BRIGHTNESS); return true; } #undef ENHANCEMENT #undef _ENHANCEMENT static bool intel_sdvo_create_enhance_property(struct intel_sdvo *intel_sdvo, struct intel_sdvo_connector *intel_sdvo_connector) { union { struct intel_sdvo_enhancements_reply reply; uint16_t response; } enhancements; BUILD_BUG_ON(sizeof(enhancements) != 2); if (!intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_SUPPORTED_ENHANCEMENTS, &enhancements, sizeof(enhancements)) || enhancements.response == 0) { DRM_DEBUG_KMS("No enhancement is supported\n"); return true; } if (IS_TV(intel_sdvo_connector)) return intel_sdvo_create_enhance_property_tv(intel_sdvo, intel_sdvo_connector, enhancements.reply); else if (IS_LVDS(intel_sdvo_connector)) return intel_sdvo_create_enhance_property_lvds(intel_sdvo, intel_sdvo_connector, enhancements.reply); else return true; } static int intel_sdvo_ddc_proxy_xfer(struct i2c_adapter *adapter, struct i2c_msg *msgs, int num) { struct intel_sdvo *sdvo = adapter->algo_data; if (!__intel_sdvo_set_control_bus_switch(sdvo, sdvo->ddc_bus)) return -EIO; return sdvo->i2c->algo->master_xfer(sdvo->i2c, msgs, num); } static u32 intel_sdvo_ddc_proxy_func(struct i2c_adapter *adapter) { struct intel_sdvo *sdvo = adapter->algo_data; return sdvo->i2c->algo->functionality(sdvo->i2c); } static const struct i2c_algorithm intel_sdvo_ddc_proxy = { .master_xfer = intel_sdvo_ddc_proxy_xfer, .functionality = intel_sdvo_ddc_proxy_func }; static void proxy_lock_bus(struct i2c_adapter *adapter, unsigned int flags) { struct intel_sdvo *sdvo = adapter->algo_data; sdvo->i2c->lock_ops->lock_bus(sdvo->i2c, flags); } static int proxy_trylock_bus(struct i2c_adapter *adapter, unsigned int flags) { struct intel_sdvo *sdvo = adapter->algo_data; return sdvo->i2c->lock_ops->trylock_bus(sdvo->i2c, flags); } static void proxy_unlock_bus(struct i2c_adapter *adapter, unsigned int flags) { struct intel_sdvo *sdvo = adapter->algo_data; sdvo->i2c->lock_ops->unlock_bus(sdvo->i2c, flags); } static const struct i2c_lock_operations proxy_lock_ops = { .lock_bus = proxy_lock_bus, .trylock_bus = proxy_trylock_bus, .unlock_bus = proxy_unlock_bus, }; static bool intel_sdvo_init_ddc_proxy(struct intel_sdvo *sdvo, struct drm_i915_private *dev_priv) { struct pci_dev *pdev = dev_priv->drm.pdev; sdvo->ddc.owner = THIS_MODULE; sdvo->ddc.class = I2C_CLASS_DDC; snprintf(sdvo->ddc.name, I2C_NAME_SIZE, "SDVO DDC proxy"); sdvo->ddc.dev.parent = &pdev->dev; sdvo->ddc.algo_data = sdvo; sdvo->ddc.algo = &intel_sdvo_ddc_proxy; sdvo->ddc.lock_ops = &proxy_lock_ops; return i2c_add_adapter(&sdvo->ddc) == 0; } static void assert_sdvo_port_valid(const struct drm_i915_private *dev_priv, enum port port) { if (HAS_PCH_SPLIT(dev_priv)) WARN_ON(port != PORT_B); else WARN_ON(port != PORT_B && port != PORT_C); } bool intel_sdvo_init(struct drm_i915_private *dev_priv, i915_reg_t sdvo_reg, enum port port) { struct intel_encoder *intel_encoder; struct intel_sdvo *intel_sdvo; int i; assert_sdvo_port_valid(dev_priv, port); intel_sdvo = kzalloc(sizeof(*intel_sdvo), GFP_KERNEL); if (!intel_sdvo) return false; intel_sdvo->sdvo_reg = sdvo_reg; intel_sdvo->port = port; intel_sdvo->slave_addr = intel_sdvo_get_slave_addr(dev_priv, intel_sdvo) >> 1; intel_sdvo_select_i2c_bus(dev_priv, intel_sdvo); if (!intel_sdvo_init_ddc_proxy(intel_sdvo, dev_priv)) goto err_i2c_bus; /* encoder type will be decided later */ intel_encoder = &intel_sdvo->base; intel_encoder->type = INTEL_OUTPUT_SDVO; intel_encoder->power_domain = POWER_DOMAIN_PORT_OTHER; intel_encoder->port = port; drm_encoder_init(&dev_priv->drm, &intel_encoder->base, &intel_sdvo_enc_funcs, 0, "SDVO %c", port_name(port)); /* Read the regs to test if we can talk to the device */ for (i = 0; i < 0x40; i++) { u8 byte; if (!intel_sdvo_read_byte(intel_sdvo, i, &byte)) { DRM_DEBUG_KMS("No SDVO device found on %s\n", SDVO_NAME(intel_sdvo)); goto err; } } intel_encoder->compute_config = intel_sdvo_compute_config; if (HAS_PCH_SPLIT(dev_priv)) { intel_encoder->disable = pch_disable_sdvo; intel_encoder->post_disable = pch_post_disable_sdvo; } else { intel_encoder->disable = intel_disable_sdvo; } intel_encoder->pre_enable = intel_sdvo_pre_enable; intel_encoder->enable = intel_enable_sdvo; intel_encoder->get_hw_state = intel_sdvo_get_hw_state; intel_encoder->get_config = intel_sdvo_get_config; /* In default case sdvo lvds is false */ if (!intel_sdvo_get_capabilities(intel_sdvo, &intel_sdvo->caps)) goto err; if (intel_sdvo_output_setup(intel_sdvo, intel_sdvo->caps.output_flags) != true) { DRM_DEBUG_KMS("SDVO output failed to setup on %s\n", SDVO_NAME(intel_sdvo)); /* Output_setup can leave behind connectors! */ goto err_output; } /* * Only enable the hotplug irq if we need it, to work around noisy * hotplug lines. */ if (intel_sdvo->hotplug_active) { if (intel_sdvo->port == PORT_B) intel_encoder->hpd_pin = HPD_SDVO_B; else intel_encoder->hpd_pin = HPD_SDVO_C; } /* * Cloning SDVO with anything is often impossible, since the SDVO * encoder can request a special input timing mode. And even if that's * not the case we have evidence that cloning a plain unscaled mode with * VGA doesn't really work. Furthermore the cloning flags are way too * simplistic anyway to express such constraints, so just give up on * cloning for SDVO encoders. */ intel_sdvo->base.cloneable = 0; intel_sdvo_select_ddc_bus(dev_priv, intel_sdvo); /* Set the input timing to the screen. Assume always input 0. */ if (!intel_sdvo_set_target_input(intel_sdvo)) goto err_output; if (!intel_sdvo_get_input_pixel_clock_range(intel_sdvo, &intel_sdvo->pixel_clock_min, &intel_sdvo->pixel_clock_max)) goto err_output; DRM_DEBUG_KMS("%s device VID/DID: %02X:%02X.%02X, " "clock range %dMHz - %dMHz, " "input 1: %c, input 2: %c, " "output 1: %c, output 2: %c\n", SDVO_NAME(intel_sdvo), intel_sdvo->caps.vendor_id, intel_sdvo->caps.device_id, intel_sdvo->caps.device_rev_id, intel_sdvo->pixel_clock_min / 1000, intel_sdvo->pixel_clock_max / 1000, (intel_sdvo->caps.sdvo_inputs_mask & 0x1) ? 'Y' : 'N', (intel_sdvo->caps.sdvo_inputs_mask & 0x2) ? 'Y' : 'N', /* check currently supported outputs */ intel_sdvo->caps.output_flags & (SDVO_OUTPUT_TMDS0 | SDVO_OUTPUT_RGB0) ? 'Y' : 'N', intel_sdvo->caps.output_flags & (SDVO_OUTPUT_TMDS1 | SDVO_OUTPUT_RGB1) ? 'Y' : 'N'); return true; err_output: intel_sdvo_output_cleanup(intel_sdvo); err: drm_encoder_cleanup(&intel_encoder->base); i2c_del_adapter(&intel_sdvo->ddc); err_i2c_bus: intel_sdvo_unselect_i2c_bus(intel_sdvo); kfree(intel_sdvo); return false; }