aboutsummaryrefslogtreecommitdiffstats
path: root/arch/arm64/kernel/module-plts.c
blob: 1ce90d8450ae9b64fe24d8ea86503a716b1e7097 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
/*
 * Copyright (C) 2014-2016 Linaro Ltd. <ard.biesheuvel@linaro.org>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/elf.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/sort.h>

struct plt_entry {
	/*
	 * A program that conforms to the AArch64 Procedure Call Standard
	 * (AAPCS64) must assume that a veneer that alters IP0 (x16) and/or
	 * IP1 (x17) may be inserted at any branch instruction that is
	 * exposed to a relocation that supports long branches. Since that
	 * is exactly what we are dealing with here, we are free to use x16
	 * as a scratch register in the PLT veneers.
	 */
	__le32	mov0;	/* movn	x16, #0x....			*/
	__le32	mov1;	/* movk	x16, #0x...., lsl #16		*/
	__le32	mov2;	/* movk	x16, #0x...., lsl #32		*/
	__le32	br;	/* br	x16				*/
};

u64 module_emit_plt_entry(struct module *mod, const Elf64_Rela *rela,
			  Elf64_Sym *sym)
{
	struct plt_entry *plt = (struct plt_entry *)mod->arch.plt->sh_addr;
	int i = mod->arch.plt_num_entries;
	u64 val = sym->st_value + rela->r_addend;

	/*
	 * We only emit PLT entries against undefined (SHN_UNDEF) symbols,
	 * which are listed in the ELF symtab section, but without a type
	 * or a size.
	 * So, similar to how the module loader uses the Elf64_Sym::st_value
	 * field to store the resolved addresses of undefined symbols, let's
	 * borrow the Elf64_Sym::st_size field (whose value is never used by
	 * the module loader, even for symbols that are defined) to record
	 * the address of a symbol's associated PLT entry as we emit it for a
	 * zero addend relocation (which is the only kind we have to deal with
	 * in practice). This allows us to find duplicates without having to
	 * go through the table every time.
	 */
	if (rela->r_addend == 0 && sym->st_size != 0) {
		BUG_ON(sym->st_size < (u64)plt || sym->st_size >= (u64)&plt[i]);
		return sym->st_size;
	}

	mod->arch.plt_num_entries++;
	BUG_ON(mod->arch.plt_num_entries > mod->arch.plt_max_entries);

	/*
	 * MOVK/MOVN/MOVZ opcode:
	 * +--------+------------+--------+-----------+-------------+---------+
	 * | sf[31] | opc[30:29] | 100101 | hw[22:21] | imm16[20:5] | Rd[4:0] |
	 * +--------+------------+--------+-----------+-------------+---------+
	 *
	 * Rd     := 0x10 (x16)
	 * hw     := 0b00 (no shift), 0b01 (lsl #16), 0b10 (lsl #32)
	 * opc    := 0b11 (MOVK), 0b00 (MOVN), 0b10 (MOVZ)
	 * sf     := 1 (64-bit variant)
	 */
	plt[i] = (struct plt_entry){
		cpu_to_le32(0x92800010 | (((~val      ) & 0xffff)) << 5),
		cpu_to_le32(0xf2a00010 | ((( val >> 16) & 0xffff)) << 5),
		cpu_to_le32(0xf2c00010 | ((( val >> 32) & 0xffff)) << 5),
		cpu_to_le32(0xd61f0200)
	};

	if (rela->r_addend == 0)
		sym->st_size = (u64)&plt[i];

	return (u64)&plt[i];
}

#define cmp_3way(a,b)	((a) < (b) ? -1 : (a) > (b))

static int cmp_rela(const void *a, const void *b)
{
	const Elf64_Rela *x = a, *y = b;
	int i;

	/* sort by type, symbol index and addend */
	i = cmp_3way(ELF64_R_TYPE(x->r_info), ELF64_R_TYPE(y->r_info));
	if (i == 0)
		i = cmp_3way(ELF64_R_SYM(x->r_info), ELF64_R_SYM(y->r_info));
	if (i == 0)
		i = cmp_3way(x->r_addend, y->r_addend);
	return i;
}

static bool duplicate_rel(const Elf64_Rela *rela, int num)
{
	/*
	 * Entries are sorted by type, symbol index and addend. That means
	 * that, if a duplicate entry exists, it must be in the preceding
	 * slot.
	 */
	return num > 0 && cmp_rela(rela + num, rela + num - 1) == 0;
}

static unsigned int count_plts(Elf64_Sym *syms, Elf64_Rela *rela, int num)
{
	unsigned int ret = 0;
	Elf64_Sym *s;
	int i;

	for (i = 0; i < num; i++) {
		switch (ELF64_R_TYPE(rela[i].r_info)) {
		case R_AARCH64_JUMP26:
		case R_AARCH64_CALL26:
			/*
			 * We only have to consider branch targets that resolve
			 * to undefined symbols. This is not simply a heuristic,
			 * it is a fundamental limitation, since the PLT itself
			 * is part of the module, and needs to be within 128 MB
			 * as well, so modules can never grow beyond that limit.
			 */
			s = syms + ELF64_R_SYM(rela[i].r_info);
			if (s->st_shndx != SHN_UNDEF)
				break;

			/*
			 * Jump relocations with non-zero addends against
			 * undefined symbols are supported by the ELF spec, but
			 * do not occur in practice (e.g., 'jump n bytes past
			 * the entry point of undefined function symbol f').
			 * So we need to support them, but there is no need to
			 * take them into consideration when trying to optimize
			 * this code. So let's only check for duplicates when
			 * the addend is zero: this allows us to record the PLT
			 * entry address in the symbol table itself, rather than
			 * having to search the list for duplicates each time we
			 * emit one.
			 */
			if (rela[i].r_addend != 0 || !duplicate_rel(rela, i))
				ret++;
			break;
		}
	}
	return ret;
}

int module_frob_arch_sections(Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
			      char *secstrings, struct module *mod)
{
	unsigned long plt_max_entries = 0;
	Elf64_Sym *syms = NULL;
	int i;

	/*
	 * Find the empty .plt section so we can expand it to store the PLT
	 * entries. Record the symtab address as well.
	 */
	for (i = 0; i < ehdr->e_shnum; i++) {
		if (strcmp(".plt", secstrings + sechdrs[i].sh_name) == 0)
			mod->arch.plt = sechdrs + i;
		else if (sechdrs[i].sh_type == SHT_SYMTAB)
			syms = (Elf64_Sym *)sechdrs[i].sh_addr;
	}

	if (!mod->arch.plt) {
		pr_err("%s: module PLT section missing\n", mod->name);
		return -ENOEXEC;
	}
	if (!syms) {
		pr_err("%s: module symtab section missing\n", mod->name);
		return -ENOEXEC;
	}

	for (i = 0; i < ehdr->e_shnum; i++) {
		Elf64_Rela *rels = (void *)ehdr + sechdrs[i].sh_offset;
		int numrels = sechdrs[i].sh_size / sizeof(Elf64_Rela);
		Elf64_Shdr *dstsec = sechdrs + sechdrs[i].sh_info;

		if (sechdrs[i].sh_type != SHT_RELA)
			continue;

		/* ignore relocations that operate on non-exec sections */
		if (!(dstsec->sh_flags & SHF_EXECINSTR))
			continue;

		/* sort by type, symbol index and addend */
		sort(rels, numrels, sizeof(Elf64_Rela), cmp_rela, NULL);

		plt_max_entries += count_plts(syms, rels, numrels);
	}

	mod->arch.plt->sh_type = SHT_NOBITS;
	mod->arch.plt->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
	mod->arch.plt->sh_addralign = L1_CACHE_BYTES;
	mod->arch.plt->sh_size = plt_max_entries * sizeof(struct plt_entry);
	mod->arch.plt_num_entries = 0;
	mod->arch.plt_max_entries = plt_max_entries;
	return 0;
}