// SPDX-License-Identifier: GPL-2.0 /* Copyright (C) 2023. Huawei Technologies Co., Ltd */ #include #include #include #include "bpf_experimental.h" #include "bpf_misc.h" #ifndef ARRAY_SIZE #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0])) #endif struct generic_map_value { void *data; }; char _license[] SEC("license") = "GPL"; const unsigned int data_sizes[] = {16, 32, 64, 96, 128, 192, 256, 512, 1024, 2048, 4096}; const volatile unsigned int data_btf_ids[ARRAY_SIZE(data_sizes)] = {}; const unsigned int percpu_data_sizes[] = {8, 16, 32, 64, 96, 128, 192, 256, 512}; const volatile unsigned int percpu_data_btf_ids[ARRAY_SIZE(data_sizes)] = {}; int err = 0; u32 pid = 0; #define DEFINE_ARRAY_WITH_KPTR(_size) \ struct bin_data_##_size { \ char data[_size - sizeof(void *)]; \ }; \ /* See Commit 5d8d6634ccc, force btf generation for type bin_data_##_size */ \ struct bin_data_##_size *__bin_data_##_size; \ struct map_value_##_size { \ struct bin_data_##_size __kptr * data; \ }; \ struct { \ __uint(type, BPF_MAP_TYPE_ARRAY); \ __type(key, int); \ __type(value, struct map_value_##_size); \ __uint(max_entries, 128); \ } array_##_size SEC(".maps") #define DEFINE_ARRAY_WITH_PERCPU_KPTR(_size) \ struct percpu_bin_data_##_size { \ char data[_size]; \ }; \ struct percpu_bin_data_##_size *__percpu_bin_data_##_size; \ struct map_value_percpu_##_size { \ struct percpu_bin_data_##_size __percpu_kptr * data; \ }; \ struct { \ __uint(type, BPF_MAP_TYPE_ARRAY); \ __type(key, int); \ __type(value, struct map_value_percpu_##_size); \ __uint(max_entries, 128); \ } array_percpu_##_size SEC(".maps") static __always_inline void batch_alloc(struct bpf_map *map, unsigned int batch, unsigned int idx) { struct generic_map_value *value; unsigned int i, key; void *old, *new; for (i = 0; i < batch; i++) { key = i; value = bpf_map_lookup_elem(map, &key); if (!value) { err = 1; return; } new = bpf_obj_new_impl(data_btf_ids[idx], NULL); if (!new) { err = 2; return; } old = bpf_kptr_xchg(&value->data, new); if (old) { bpf_obj_drop(old); err = 3; return; } } } static __always_inline void batch_free(struct bpf_map *map, unsigned int batch, unsigned int idx) { struct generic_map_value *value; unsigned int i, key; void *old; for (i = 0; i < batch; i++) { key = i; value = bpf_map_lookup_elem(map, &key); if (!value) { err = 4; return; } old = bpf_kptr_xchg(&value->data, NULL); if (!old) { err = 5; return; } bpf_obj_drop(old); } } static __always_inline void batch_percpu_alloc(struct bpf_map *map, unsigned int batch, unsigned int idx) { struct generic_map_value *value; unsigned int i, key; void *old, *new; for (i = 0; i < batch; i++) { key = i; value = bpf_map_lookup_elem(map, &key); if (!value) { err = 1; return; } /* per-cpu allocator may not be able to refill in time */ new = bpf_percpu_obj_new_impl(percpu_data_btf_ids[idx], NULL); if (!new) continue; old = bpf_kptr_xchg(&value->data, new); if (old) { bpf_percpu_obj_drop(old); err = 2; return; } } } static __always_inline void batch_percpu_free(struct bpf_map *map, unsigned int batch, unsigned int idx) { struct generic_map_value *value; unsigned int i, key; void *old; for (i = 0; i < batch; i++) { key = i; value = bpf_map_lookup_elem(map, &key); if (!value) { err = 3; return; } old = bpf_kptr_xchg(&value->data, NULL); if (!old) continue; bpf_percpu_obj_drop(old); } } #define CALL_BATCH_ALLOC(size, batch, idx) \ batch_alloc((struct bpf_map *)(&array_##size), batch, idx) #define CALL_BATCH_ALLOC_FREE(size, batch, idx) \ do { \ batch_alloc((struct bpf_map *)(&array_##size), batch, idx); \ batch_free((struct bpf_map *)(&array_##size), batch, idx); \ } while (0) #define CALL_BATCH_PERCPU_ALLOC(size, batch, idx) \ batch_percpu_alloc((struct bpf_map *)(&array_percpu_##size), batch, idx) #define CALL_BATCH_PERCPU_ALLOC_FREE(size, batch, idx) \ do { \ batch_percpu_alloc((struct bpf_map *)(&array_percpu_##size), batch, idx); \ batch_percpu_free((struct bpf_map *)(&array_percpu_##size), batch, idx); \ } while (0) /* kptr doesn't support bin_data_8 which is a zero-sized array */ DEFINE_ARRAY_WITH_KPTR(16); DEFINE_ARRAY_WITH_KPTR(32); DEFINE_ARRAY_WITH_KPTR(64); DEFINE_ARRAY_WITH_KPTR(96); DEFINE_ARRAY_WITH_KPTR(128); DEFINE_ARRAY_WITH_KPTR(192); DEFINE_ARRAY_WITH_KPTR(256); DEFINE_ARRAY_WITH_KPTR(512); DEFINE_ARRAY_WITH_KPTR(1024); DEFINE_ARRAY_WITH_KPTR(2048); DEFINE_ARRAY_WITH_KPTR(4096); DEFINE_ARRAY_WITH_PERCPU_KPTR(8); DEFINE_ARRAY_WITH_PERCPU_KPTR(16); DEFINE_ARRAY_WITH_PERCPU_KPTR(32); DEFINE_ARRAY_WITH_PERCPU_KPTR(64); DEFINE_ARRAY_WITH_PERCPU_KPTR(96); DEFINE_ARRAY_WITH_PERCPU_KPTR(128); DEFINE_ARRAY_WITH_PERCPU_KPTR(192); DEFINE_ARRAY_WITH_PERCPU_KPTR(256); DEFINE_ARRAY_WITH_PERCPU_KPTR(512); SEC("?fentry/" SYS_PREFIX "sys_nanosleep") int test_batch_alloc_free(void *ctx) { if ((u32)bpf_get_current_pid_tgid() != pid) return 0; /* Alloc 128 16-bytes objects in batch to trigger refilling, * then free 128 16-bytes objects in batch to trigger freeing. */ CALL_BATCH_ALLOC_FREE(16, 128, 0); CALL_BATCH_ALLOC_FREE(32, 128, 1); CALL_BATCH_ALLOC_FREE(64, 128, 2); CALL_BATCH_ALLOC_FREE(96, 128, 3); CALL_BATCH_ALLOC_FREE(128, 128, 4); CALL_BATCH_ALLOC_FREE(192, 128, 5); CALL_BATCH_ALLOC_FREE(256, 128, 6); CALL_BATCH_ALLOC_FREE(512, 64, 7); CALL_BATCH_ALLOC_FREE(1024, 32, 8); CALL_BATCH_ALLOC_FREE(2048, 16, 9); CALL_BATCH_ALLOC_FREE(4096, 8, 10); return 0; } SEC("?fentry/" SYS_PREFIX "sys_nanosleep") int test_free_through_map_free(void *ctx) { if ((u32)bpf_get_current_pid_tgid() != pid) return 0; /* Alloc 128 16-bytes objects in batch to trigger refilling, * then free these objects through map free. */ CALL_BATCH_ALLOC(16, 128, 0); CALL_BATCH_ALLOC(32, 128, 1); CALL_BATCH_ALLOC(64, 128, 2); CALL_BATCH_ALLOC(96, 128, 3); CALL_BATCH_ALLOC(128, 128, 4); CALL_BATCH_ALLOC(192, 128, 5); CALL_BATCH_ALLOC(256, 128, 6); CALL_BATCH_ALLOC(512, 64, 7); CALL_BATCH_ALLOC(1024, 32, 8); CALL_BATCH_ALLOC(2048, 16, 9); CALL_BATCH_ALLOC(4096, 8, 10); return 0; } SEC("?fentry/" SYS_PREFIX "sys_nanosleep") int test_batch_percpu_alloc_free(void *ctx) { if ((u32)bpf_get_current_pid_tgid() != pid) return 0; /* Alloc 128 8-bytes per-cpu objects in batch to trigger refilling, * then free 128 8-bytes per-cpu objects in batch to trigger freeing. */ CALL_BATCH_PERCPU_ALLOC_FREE(8, 128, 0); CALL_BATCH_PERCPU_ALLOC_FREE(16, 128, 1); CALL_BATCH_PERCPU_ALLOC_FREE(32, 128, 2); CALL_BATCH_PERCPU_ALLOC_FREE(64, 128, 3); CALL_BATCH_PERCPU_ALLOC_FREE(96, 128, 4); CALL_BATCH_PERCPU_ALLOC_FREE(128, 128, 5); CALL_BATCH_PERCPU_ALLOC_FREE(192, 128, 6); CALL_BATCH_PERCPU_ALLOC_FREE(256, 128, 7); CALL_BATCH_PERCPU_ALLOC_FREE(512, 64, 8); return 0; } SEC("?fentry/" SYS_PREFIX "sys_nanosleep") int test_percpu_free_through_map_free(void *ctx) { if ((u32)bpf_get_current_pid_tgid() != pid) return 0; /* Alloc 128 8-bytes per-cpu objects in batch to trigger refilling, * then free these object through map free. */ CALL_BATCH_PERCPU_ALLOC(8, 128, 0); CALL_BATCH_PERCPU_ALLOC(16, 128, 1); CALL_BATCH_PERCPU_ALLOC(32, 128, 2); CALL_BATCH_PERCPU_ALLOC(64, 128, 3); CALL_BATCH_PERCPU_ALLOC(96, 128, 4); CALL_BATCH_PERCPU_ALLOC(128, 128, 5); CALL_BATCH_PERCPU_ALLOC(192, 128, 6); CALL_BATCH_PERCPU_ALLOC(256, 128, 7); CALL_BATCH_PERCPU_ALLOC(512, 64, 8); return 0; }