/* * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the BSD-type * license below: * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of the Network Appliance, Inc. nor the names of * its contributors may be used to endorse or promote products * derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * transport.c * * This file contains the top-level implementation of an RPC RDMA * transport. * * Naming convention: functions beginning with xprt_ are part of the * transport switch. All others are RPC RDMA internal. */ #include #include #include #include #include "xprt_rdma.h" #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) # define RPCDBG_FACILITY RPCDBG_TRANS #endif /* * tunables */ static unsigned int xprt_rdma_slot_table_entries = RPCRDMA_DEF_SLOT_TABLE; static unsigned int xprt_rdma_max_inline_read = RPCRDMA_DEF_INLINE; static unsigned int xprt_rdma_max_inline_write = RPCRDMA_DEF_INLINE; static unsigned int xprt_rdma_inline_write_padding; static unsigned int xprt_rdma_memreg_strategy = RPCRDMA_FRMR; int xprt_rdma_pad_optimize = 1; #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) static unsigned int min_slot_table_size = RPCRDMA_MIN_SLOT_TABLE; static unsigned int max_slot_table_size = RPCRDMA_MAX_SLOT_TABLE; static unsigned int zero; static unsigned int max_padding = PAGE_SIZE; static unsigned int min_memreg = RPCRDMA_BOUNCEBUFFERS; static unsigned int max_memreg = RPCRDMA_LAST - 1; static struct ctl_table_header *sunrpc_table_header; static struct ctl_table xr_tunables_table[] = { { .procname = "rdma_slot_table_entries", .data = &xprt_rdma_slot_table_entries, .maxlen = sizeof(unsigned int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = &min_slot_table_size, .extra2 = &max_slot_table_size }, { .procname = "rdma_max_inline_read", .data = &xprt_rdma_max_inline_read, .maxlen = sizeof(unsigned int), .mode = 0644, .proc_handler = proc_dointvec, }, { .procname = "rdma_max_inline_write", .data = &xprt_rdma_max_inline_write, .maxlen = sizeof(unsigned int), .mode = 0644, .proc_handler = proc_dointvec, }, { .procname = "rdma_inline_write_padding", .data = &xprt_rdma_inline_write_padding, .maxlen = sizeof(unsigned int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = &zero, .extra2 = &max_padding, }, { .procname = "rdma_memreg_strategy", .data = &xprt_rdma_memreg_strategy, .maxlen = sizeof(unsigned int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = &min_memreg, .extra2 = &max_memreg, }, { .procname = "rdma_pad_optimize", .data = &xprt_rdma_pad_optimize, .maxlen = sizeof(unsigned int), .mode = 0644, .proc_handler = proc_dointvec, }, { }, }; static struct ctl_table sunrpc_table[] = { { .procname = "sunrpc", .mode = 0555, .child = xr_tunables_table }, { }, }; #endif #define RPCRDMA_BIND_TO (60U * HZ) #define RPCRDMA_INIT_REEST_TO (5U * HZ) #define RPCRDMA_MAX_REEST_TO (30U * HZ) #define RPCRDMA_IDLE_DISC_TO (5U * 60 * HZ) static struct rpc_xprt_ops xprt_rdma_procs; /* forward reference */ static void xprt_rdma_format_addresses4(struct rpc_xprt *xprt, struct sockaddr *sap) { struct sockaddr_in *sin = (struct sockaddr_in *)sap; char buf[20]; snprintf(buf, sizeof(buf), "%08x", ntohl(sin->sin_addr.s_addr)); xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = kstrdup(buf, GFP_KERNEL); xprt->address_strings[RPC_DISPLAY_NETID] = RPCBIND_NETID_RDMA; } static void xprt_rdma_format_addresses6(struct rpc_xprt *xprt, struct sockaddr *sap) { struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sap; char buf[40]; snprintf(buf, sizeof(buf), "%pi6", &sin6->sin6_addr); xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = kstrdup(buf, GFP_KERNEL); xprt->address_strings[RPC_DISPLAY_NETID] = RPCBIND_NETID_RDMA6; } static void xprt_rdma_format_addresses(struct rpc_xprt *xprt, struct sockaddr *sap) { char buf[128]; switch (sap->sa_family) { case AF_INET: xprt_rdma_format_addresses4(xprt, sap); break; case AF_INET6: xprt_rdma_format_addresses6(xprt, sap); break; default: pr_err("rpcrdma: Unrecognized address family\n"); return; } (void)rpc_ntop(sap, buf, sizeof(buf)); xprt->address_strings[RPC_DISPLAY_ADDR] = kstrdup(buf, GFP_KERNEL); snprintf(buf, sizeof(buf), "%u", rpc_get_port(sap)); xprt->address_strings[RPC_DISPLAY_PORT] = kstrdup(buf, GFP_KERNEL); snprintf(buf, sizeof(buf), "%4hx", rpc_get_port(sap)); xprt->address_strings[RPC_DISPLAY_HEX_PORT] = kstrdup(buf, GFP_KERNEL); xprt->address_strings[RPC_DISPLAY_PROTO] = "rdma"; } static void xprt_rdma_free_addresses(struct rpc_xprt *xprt) { unsigned int i; for (i = 0; i < RPC_DISPLAY_MAX; i++) switch (i) { case RPC_DISPLAY_PROTO: case RPC_DISPLAY_NETID: continue; default: kfree(xprt->address_strings[i]); } } static void xprt_rdma_connect_worker(struct work_struct *work) { struct rpcrdma_xprt *r_xprt = container_of(work, struct rpcrdma_xprt, rx_connect_worker.work); struct rpc_xprt *xprt = &r_xprt->rx_xprt; int rc = 0; xprt_clear_connected(xprt); dprintk("RPC: %s: %sconnect\n", __func__, r_xprt->rx_ep.rep_connected != 0 ? "re" : ""); rc = rpcrdma_ep_connect(&r_xprt->rx_ep, &r_xprt->rx_ia); if (rc) xprt_wake_pending_tasks(xprt, rc); dprintk("RPC: %s: exit\n", __func__); xprt_clear_connecting(xprt); } static void xprt_rdma_inject_disconnect(struct rpc_xprt *xprt) { struct rpcrdma_xprt *r_xprt = container_of(xprt, struct rpcrdma_xprt, rx_xprt); pr_info("rpcrdma: injecting transport disconnect on xprt=%p\n", xprt); rdma_disconnect(r_xprt->rx_ia.ri_id); } /* * xprt_rdma_destroy * * Destroy the xprt. * Free all memory associated with the object, including its own. * NOTE: none of the *destroy methods free memory for their top-level * objects, even though they may have allocated it (they do free * private memory). It's up to the caller to handle it. In this * case (RDMA transport), all structure memory is inlined with the * struct rpcrdma_xprt. */ static void xprt_rdma_destroy(struct rpc_xprt *xprt) { struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); dprintk("RPC: %s: called\n", __func__); cancel_delayed_work_sync(&r_xprt->rx_connect_worker); xprt_clear_connected(xprt); rpcrdma_buffer_destroy(&r_xprt->rx_buf); rpcrdma_ep_destroy(&r_xprt->rx_ep, &r_xprt->rx_ia); rpcrdma_ia_close(&r_xprt->rx_ia); xprt_rdma_free_addresses(xprt); xprt_free(xprt); dprintk("RPC: %s: returning\n", __func__); module_put(THIS_MODULE); } static const struct rpc_timeout xprt_rdma_default_timeout = { .to_initval = 60 * HZ, .to_maxval = 60 * HZ, }; /** * xprt_setup_rdma - Set up transport to use RDMA * * @args: rpc transport arguments */ static struct rpc_xprt * xprt_setup_rdma(struct xprt_create *args) { struct rpcrdma_create_data_internal cdata; struct rpc_xprt *xprt; struct rpcrdma_xprt *new_xprt; struct rpcrdma_ep *new_ep; struct sockaddr *sap; int rc; if (args->addrlen > sizeof(xprt->addr)) { dprintk("RPC: %s: address too large\n", __func__); return ERR_PTR(-EBADF); } xprt = xprt_alloc(args->net, sizeof(struct rpcrdma_xprt), xprt_rdma_slot_table_entries, xprt_rdma_slot_table_entries); if (xprt == NULL) { dprintk("RPC: %s: couldn't allocate rpcrdma_xprt\n", __func__); return ERR_PTR(-ENOMEM); } /* 60 second timeout, no retries */ xprt->timeout = &xprt_rdma_default_timeout; xprt->bind_timeout = RPCRDMA_BIND_TO; xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO; xprt->idle_timeout = RPCRDMA_IDLE_DISC_TO; xprt->resvport = 0; /* privileged port not needed */ xprt->tsh_size = 0; /* RPC-RDMA handles framing */ xprt->ops = &xprt_rdma_procs; /* * Set up RDMA-specific connect data. */ sap = (struct sockaddr *)&cdata.addr; memcpy(sap, args->dstaddr, args->addrlen); /* Ensure xprt->addr holds valid server TCP (not RDMA) * address, for any side protocols which peek at it */ xprt->prot = IPPROTO_TCP; xprt->addrlen = args->addrlen; memcpy(&xprt->addr, sap, xprt->addrlen); if (rpc_get_port(sap)) xprt_set_bound(xprt); cdata.max_requests = xprt->max_reqs; cdata.rsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA write max */ cdata.wsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA read max */ cdata.inline_wsize = xprt_rdma_max_inline_write; if (cdata.inline_wsize > cdata.wsize) cdata.inline_wsize = cdata.wsize; cdata.inline_rsize = xprt_rdma_max_inline_read; if (cdata.inline_rsize > cdata.rsize) cdata.inline_rsize = cdata.rsize; cdata.padding = xprt_rdma_inline_write_padding; /* * Create new transport instance, which includes initialized * o ia * o endpoint * o buffers */ new_xprt = rpcx_to_rdmax(xprt); rc = rpcrdma_ia_open(new_xprt, sap, xprt_rdma_memreg_strategy); if (rc) goto out1; /* * initialize and create ep */ new_xprt->rx_data = cdata; new_ep = &new_xprt->rx_ep; new_ep->rep_remote_addr = cdata.addr; rc = rpcrdma_ep_create(&new_xprt->rx_ep, &new_xprt->rx_ia, &new_xprt->rx_data); if (rc) goto out2; /* * Allocate pre-registered send and receive buffers for headers and * any inline data. Also specify any padding which will be provided * from a preregistered zero buffer. */ rc = rpcrdma_buffer_create(new_xprt); if (rc) goto out3; /* * Register a callback for connection events. This is necessary because * connection loss notification is async. We also catch connection loss * when reaping receives. */ INIT_DELAYED_WORK(&new_xprt->rx_connect_worker, xprt_rdma_connect_worker); xprt_rdma_format_addresses(xprt, sap); xprt->max_payload = new_xprt->rx_ia.ri_ops->ro_maxpages(new_xprt); if (xprt->max_payload == 0) goto out4; xprt->max_payload <<= PAGE_SHIFT; dprintk("RPC: %s: transport data payload maximum: %zu bytes\n", __func__, xprt->max_payload); if (!try_module_get(THIS_MODULE)) goto out4; dprintk("RPC: %s: %s:%s\n", __func__, xprt->address_strings[RPC_DISPLAY_ADDR], xprt->address_strings[RPC_DISPLAY_PORT]); return xprt; out4: xprt_rdma_free_addresses(xprt); rc = -EINVAL; out3: rpcrdma_ep_destroy(new_ep, &new_xprt->rx_ia); out2: rpcrdma_ia_close(&new_xprt->rx_ia); out1: xprt_free(xprt); return ERR_PTR(rc); } /* * Close a connection, during shutdown or timeout/reconnect */ static void xprt_rdma_close(struct rpc_xprt *xprt) { struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); dprintk("RPC: %s: closing\n", __func__); if (r_xprt->rx_ep.rep_connected > 0) xprt->reestablish_timeout = 0; xprt_disconnect_done(xprt); rpcrdma_ep_disconnect(&r_xprt->rx_ep, &r_xprt->rx_ia); } static void xprt_rdma_set_port(struct rpc_xprt *xprt, u16 port) { struct sockaddr_in *sap; sap = (struct sockaddr_in *)&xprt->addr; sap->sin_port = htons(port); sap = (struct sockaddr_in *)&rpcx_to_rdmad(xprt).addr; sap->sin_port = htons(port); dprintk("RPC: %s: %u\n", __func__, port); } static void xprt_rdma_connect(struct rpc_xprt *xprt, struct rpc_task *task) { struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); if (r_xprt->rx_ep.rep_connected != 0) { /* Reconnect */ schedule_delayed_work(&r_xprt->rx_connect_worker, xprt->reestablish_timeout); xprt->reestablish_timeout <<= 1; if (xprt->reestablish_timeout > RPCRDMA_MAX_REEST_TO) xprt->reestablish_timeout = RPCRDMA_MAX_REEST_TO; else if (xprt->reestablish_timeout < RPCRDMA_INIT_REEST_TO) xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO; } else { schedule_delayed_work(&r_xprt->rx_connect_worker, 0); if (!RPC_IS_ASYNC(task)) flush_delayed_work(&r_xprt->rx_connect_worker); } } /* * The RDMA allocate/free functions need the task structure as a place * to hide the struct rpcrdma_req, which is necessary for the actual send/recv * sequence. * * The RPC layer allocates both send and receive buffers in the same call * (rq_send_buf and rq_rcv_buf are both part of a single contiguous buffer). * We may register rq_rcv_buf when using reply chunks. */ static void * xprt_rdma_allocate(struct rpc_task *task, size_t size) { struct rpc_xprt *xprt = task->tk_rqstp->rq_xprt; struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); struct rpcrdma_regbuf *rb; struct rpcrdma_req *req; size_t min_size; gfp_t flags; req = rpcrdma_buffer_get(&r_xprt->rx_buf); if (req == NULL) return NULL; flags = GFP_NOIO | __GFP_NOWARN; if (RPC_IS_SWAPPER(task)) flags = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN; if (req->rl_rdmabuf == NULL) goto out_rdmabuf; if (req->rl_sendbuf == NULL) goto out_sendbuf; if (size > req->rl_sendbuf->rg_size) goto out_sendbuf; out: dprintk("RPC: %s: size %zd, request 0x%p\n", __func__, size, req); req->rl_connect_cookie = 0; /* our reserved value */ return req->rl_sendbuf->rg_base; out_rdmabuf: min_size = RPCRDMA_INLINE_WRITE_THRESHOLD(task->tk_rqstp); rb = rpcrdma_alloc_regbuf(&r_xprt->rx_ia, min_size, flags); if (IS_ERR(rb)) goto out_fail; req->rl_rdmabuf = rb; out_sendbuf: /* XDR encoding and RPC/RDMA marshaling of this request has not * yet occurred. Thus a lower bound is needed to prevent buffer * overrun during marshaling. * * RPC/RDMA marshaling may choose to send payload bearing ops * inline, if the result is smaller than the inline threshold. * The value of the "size" argument accounts for header * requirements but not for the payload in these cases. * * Likewise, allocate enough space to receive a reply up to the * size of the inline threshold. * * It's unlikely that both the send header and the received * reply will be large, but slush is provided here to allow * flexibility when marshaling. */ min_size = RPCRDMA_INLINE_READ_THRESHOLD(task->tk_rqstp); min_size += RPCRDMA_INLINE_WRITE_THRESHOLD(task->tk_rqstp); if (size < min_size) size = min_size; rb = rpcrdma_alloc_regbuf(&r_xprt->rx_ia, size, flags); if (IS_ERR(rb)) goto out_fail; rb->rg_owner = req; r_xprt->rx_stats.hardway_register_count += size; rpcrdma_free_regbuf(&r_xprt->rx_ia, req->rl_sendbuf); req->rl_sendbuf = rb; goto out; out_fail: rpcrdma_buffer_put(req); r_xprt->rx_stats.failed_marshal_count++; return NULL; } /* * This function returns all RDMA resources to the pool. */ static void xprt_rdma_free(void *buffer) { struct rpcrdma_req *req; struct rpcrdma_xprt *r_xprt; struct rpcrdma_regbuf *rb; int i; if (buffer == NULL) return; rb = container_of(buffer, struct rpcrdma_regbuf, rg_base[0]); req = rb->rg_owner; r_xprt = container_of(req->rl_buffer, struct rpcrdma_xprt, rx_buf); dprintk("RPC: %s: called on 0x%p\n", __func__, req->rl_reply); for (i = 0; req->rl_nchunks;) { --req->rl_nchunks; i += r_xprt->rx_ia.ri_ops->ro_unmap(r_xprt, &req->rl_segments[i]); } rpcrdma_buffer_put(req); } /* * send_request invokes the meat of RPC RDMA. It must do the following: * 1. Marshal the RPC request into an RPC RDMA request, which means * putting a header in front of data, and creating IOVs for RDMA * from those in the request. * 2. In marshaling, detect opportunities for RDMA, and use them. * 3. Post a recv message to set up asynch completion, then send * the request (rpcrdma_ep_post). * 4. No partial sends are possible in the RPC-RDMA protocol (as in UDP). */ static int xprt_rdma_send_request(struct rpc_task *task) { struct rpc_rqst *rqst = task->tk_rqstp; struct rpc_xprt *xprt = rqst->rq_xprt; struct rpcrdma_req *req = rpcr_to_rdmar(rqst); struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); int rc = 0; rc = rpcrdma_marshal_req(rqst); if (rc < 0) goto failed_marshal; if (req->rl_reply == NULL) /* e.g. reconnection */ rpcrdma_recv_buffer_get(req); /* Must suppress retransmit to maintain credits */ if (req->rl_connect_cookie == xprt->connect_cookie) goto drop_connection; req->rl_connect_cookie = xprt->connect_cookie; if (rpcrdma_ep_post(&r_xprt->rx_ia, &r_xprt->rx_ep, req)) goto drop_connection; rqst->rq_xmit_bytes_sent += rqst->rq_snd_buf.len; rqst->rq_bytes_sent = 0; return 0; failed_marshal: r_xprt->rx_stats.failed_marshal_count++; dprintk("RPC: %s: rpcrdma_marshal_req failed, status %i\n", __func__, rc); if (rc == -EIO) return -EIO; drop_connection: xprt_disconnect_done(xprt); return -ENOTCONN; /* implies disconnect */ } static void xprt_rdma_print_stats(struct rpc_xprt *xprt, struct seq_file *seq) { struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); long idle_time = 0; if (xprt_connected(xprt)) idle_time = (long)(jiffies - xprt->last_used) / HZ; seq_puts(seq, "\txprt:\trdma "); seq_printf(seq, "%u %lu %lu %lu %ld %lu %lu %lu %llu %llu ", 0, /* need a local port? */ xprt->stat.bind_count, xprt->stat.connect_count, xprt->stat.connect_time, idle_time, xprt->stat.sends, xprt->stat.recvs, xprt->stat.bad_xids, xprt->stat.req_u, xprt->stat.bklog_u); seq_printf(seq, "%lu %lu %lu %llu %llu %llu %llu %lu %lu %lu %lu\n", r_xprt->rx_stats.read_chunk_count, r_xprt->rx_stats.write_chunk_count, r_xprt->rx_stats.reply_chunk_count, r_xprt->rx_stats.total_rdma_request, r_xprt->rx_stats.total_rdma_reply, r_xprt->rx_stats.pullup_copy_count, r_xprt->rx_stats.fixup_copy_count, r_xprt->rx_stats.hardway_register_count, r_xprt->rx_stats.failed_marshal_count, r_xprt->rx_stats.bad_reply_count, r_xprt->rx_stats.nomsg_call_count); } static int xprt_rdma_enable_swap(struct rpc_xprt *xprt) { return -EINVAL; } static void xprt_rdma_disable_swap(struct rpc_xprt *xprt) { } /* * Plumbing for rpc transport switch and kernel module */ static struct rpc_xprt_ops xprt_rdma_procs = { .reserve_xprt = xprt_reserve_xprt_cong, .release_xprt = xprt_release_xprt_cong, /* sunrpc/xprt.c */ .alloc_slot = xprt_alloc_slot, .release_request = xprt_release_rqst_cong, /* ditto */ .set_retrans_timeout = xprt_set_retrans_timeout_def, /* ditto */ .rpcbind = rpcb_getport_async, /* sunrpc/rpcb_clnt.c */ .set_port = xprt_rdma_set_port, .connect = xprt_rdma_connect, .buf_alloc = xprt_rdma_allocate, .buf_free = xprt_rdma_free, .send_request = xprt_rdma_send_request, .close = xprt_rdma_close, .destroy = xprt_rdma_destroy, .print_stats = xprt_rdma_print_stats, .enable_swap = xprt_rdma_enable_swap, .disable_swap = xprt_rdma_disable_swap, .inject_disconnect = xprt_rdma_inject_disconnect }; static struct xprt_class xprt_rdma = { .list = LIST_HEAD_INIT(xprt_rdma.list), .name = "rdma", .owner = THIS_MODULE, .ident = XPRT_TRANSPORT_RDMA, .setup = xprt_setup_rdma, }; void xprt_rdma_cleanup(void) { int rc; dprintk("RPCRDMA Module Removed, deregister RPC RDMA transport\n"); #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) if (sunrpc_table_header) { unregister_sysctl_table(sunrpc_table_header); sunrpc_table_header = NULL; } #endif rc = xprt_unregister_transport(&xprt_rdma); if (rc) dprintk("RPC: %s: xprt_unregister returned %i\n", __func__, rc); frwr_destroy_recovery_wq(); } int xprt_rdma_init(void) { int rc; rc = frwr_alloc_recovery_wq(); if (rc) return rc; rc = xprt_register_transport(&xprt_rdma); if (rc) { frwr_destroy_recovery_wq(); return rc; } dprintk("RPCRDMA Module Init, register RPC RDMA transport\n"); dprintk("Defaults:\n"); dprintk("\tSlots %d\n" "\tMaxInlineRead %d\n\tMaxInlineWrite %d\n", xprt_rdma_slot_table_entries, xprt_rdma_max_inline_read, xprt_rdma_max_inline_write); dprintk("\tPadding %d\n\tMemreg %d\n", xprt_rdma_inline_write_padding, xprt_rdma_memreg_strategy); #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) if (!sunrpc_table_header) sunrpc_table_header = register_sysctl_table(sunrpc_table); #endif return 0; }