// SPDX-License-Identifier: GPL-2.0-or-later /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Implementation of the Transmission Control Protocol(TCP). * * Authors: Ross Biro * Fred N. van Kempen, * Mark Evans, * Corey Minyard * Florian La Roche, * Charles Hedrick, * Linus Torvalds, * Alan Cox, * Matthew Dillon, * Arnt Gulbrandsen, * Jorge Cwik, * * Fixes: * Alan Cox : Numerous verify_area() calls * Alan Cox : Set the ACK bit on a reset * Alan Cox : Stopped it crashing if it closed while * sk->inuse=1 and was trying to connect * (tcp_err()). * Alan Cox : All icmp error handling was broken * pointers passed where wrong and the * socket was looked up backwards. Nobody * tested any icmp error code obviously. * Alan Cox : tcp_err() now handled properly. It * wakes people on errors. poll * behaves and the icmp error race * has gone by moving it into sock.c * Alan Cox : tcp_send_reset() fixed to work for * everything not just packets for * unknown sockets. * Alan Cox : tcp option processing. * Alan Cox : Reset tweaked (still not 100%) [Had * syn rule wrong] * Herp Rosmanith : More reset fixes * Alan Cox : No longer acks invalid rst frames. * Acking any kind of RST is right out. * Alan Cox : Sets an ignore me flag on an rst * receive otherwise odd bits of prattle * escape still * Alan Cox : Fixed another acking RST frame bug. * Should stop LAN workplace lockups. * Alan Cox : Some tidyups using the new skb list * facilities * Alan Cox : sk->keepopen now seems to work * Alan Cox : Pulls options out correctly on accepts * Alan Cox : Fixed assorted sk->rqueue->next errors * Alan Cox : PSH doesn't end a TCP read. Switched a * bit to skb ops. * Alan Cox : Tidied tcp_data to avoid a potential * nasty. * Alan Cox : Added some better commenting, as the * tcp is hard to follow * Alan Cox : Removed incorrect check for 20 * psh * Michael O'Reilly : ack < copied bug fix. * Johannes Stille : Misc tcp fixes (not all in yet). * Alan Cox : FIN with no memory -> CRASH * Alan Cox : Added socket option proto entries. * Also added awareness of them to accept. * Alan Cox : Added TCP options (SOL_TCP) * Alan Cox : Switched wakeup calls to callbacks, * so the kernel can layer network * sockets. * Alan Cox : Use ip_tos/ip_ttl settings. * Alan Cox : Handle FIN (more) properly (we hope). * Alan Cox : RST frames sent on unsynchronised * state ack error. * Alan Cox : Put in missing check for SYN bit. * Alan Cox : Added tcp_select_window() aka NET2E * window non shrink trick. * Alan Cox : Added a couple of small NET2E timer * fixes * Charles Hedrick : TCP fixes * Toomas Tamm : TCP window fixes * Alan Cox : Small URG fix to rlogin ^C ack fight * Charles Hedrick : Rewrote most of it to actually work * Linus : Rewrote tcp_read() and URG handling * completely * Gerhard Koerting: Fixed some missing timer handling * Matthew Dillon : Reworked TCP machine states as per RFC * Gerhard Koerting: PC/TCP workarounds * Adam Caldwell : Assorted timer/timing errors * Matthew Dillon : Fixed another RST bug * Alan Cox : Move to kernel side addressing changes. * Alan Cox : Beginning work on TCP fastpathing * (not yet usable) * Arnt Gulbrandsen: Turbocharged tcp_check() routine. * Alan Cox : TCP fast path debugging * Alan Cox : Window clamping * Michael Riepe : Bug in tcp_check() * Matt Dillon : More TCP improvements and RST bug fixes * Matt Dillon : Yet more small nasties remove from the * TCP code (Be very nice to this man if * tcp finally works 100%) 8) * Alan Cox : BSD accept semantics. * Alan Cox : Reset on closedown bug. * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). * Michael Pall : Handle poll() after URG properly in * all cases. * Michael Pall : Undo the last fix in tcp_read_urg() * (multi URG PUSH broke rlogin). * Michael Pall : Fix the multi URG PUSH problem in * tcp_readable(), poll() after URG * works now. * Michael Pall : recv(...,MSG_OOB) never blocks in the * BSD api. * Alan Cox : Changed the semantics of sk->socket to * fix a race and a signal problem with * accept() and async I/O. * Alan Cox : Relaxed the rules on tcp_sendto(). * Yury Shevchuk : Really fixed accept() blocking problem. * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for * clients/servers which listen in on * fixed ports. * Alan Cox : Cleaned the above up and shrank it to * a sensible code size. * Alan Cox : Self connect lockup fix. * Alan Cox : No connect to multicast. * Ross Biro : Close unaccepted children on master * socket close. * Alan Cox : Reset tracing code. * Alan Cox : Spurious resets on shutdown. * Alan Cox : Giant 15 minute/60 second timer error * Alan Cox : Small whoops in polling before an * accept. * Alan Cox : Kept the state trace facility since * it's handy for debugging. * Alan Cox : More reset handler fixes. * Alan Cox : Started rewriting the code based on * the RFC's for other useful protocol * references see: Comer, KA9Q NOS, and * for a reference on the difference * between specifications and how BSD * works see the 4.4lite source. * A.N.Kuznetsov : Don't time wait on completion of tidy * close. * Linus Torvalds : Fin/Shutdown & copied_seq changes. * Linus Torvalds : Fixed BSD port reuse to work first syn * Alan Cox : Reimplemented timers as per the RFC * and using multiple timers for sanity. * Alan Cox : Small bug fixes, and a lot of new * comments. * Alan Cox : Fixed dual reader crash by locking * the buffers (much like datagram.c) * Alan Cox : Fixed stuck sockets in probe. A probe * now gets fed up of retrying without * (even a no space) answer. * Alan Cox : Extracted closing code better * Alan Cox : Fixed the closing state machine to * resemble the RFC. * Alan Cox : More 'per spec' fixes. * Jorge Cwik : Even faster checksumming. * Alan Cox : tcp_data() doesn't ack illegal PSH * only frames. At least one pc tcp stack * generates them. * Alan Cox : Cache last socket. * Alan Cox : Per route irtt. * Matt Day : poll()->select() match BSD precisely on error * Alan Cox : New buffers * Marc Tamsky : Various sk->prot->retransmits and * sk->retransmits misupdating fixed. * Fixed tcp_write_timeout: stuck close, * and TCP syn retries gets used now. * Mark Yarvis : In tcp_read_wakeup(), don't send an * ack if state is TCP_CLOSED. * Alan Cox : Look up device on a retransmit - routes may * change. Doesn't yet cope with MSS shrink right * but it's a start! * Marc Tamsky : Closing in closing fixes. * Mike Shaver : RFC1122 verifications. * Alan Cox : rcv_saddr errors. * Alan Cox : Block double connect(). * Alan Cox : Small hooks for enSKIP. * Alexey Kuznetsov: Path MTU discovery. * Alan Cox : Support soft errors. * Alan Cox : Fix MTU discovery pathological case * when the remote claims no mtu! * Marc Tamsky : TCP_CLOSE fix. * Colin (G3TNE) : Send a reset on syn ack replies in * window but wrong (fixes NT lpd problems) * Pedro Roque : Better TCP window handling, delayed ack. * Joerg Reuter : No modification of locked buffers in * tcp_do_retransmit() * Eric Schenk : Changed receiver side silly window * avoidance algorithm to BSD style * algorithm. This doubles throughput * against machines running Solaris, * and seems to result in general * improvement. * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD * Willy Konynenberg : Transparent proxying support. * Mike McLagan : Routing by source * Keith Owens : Do proper merging with partial SKB's in * tcp_do_sendmsg to avoid burstiness. * Eric Schenk : Fix fast close down bug with * shutdown() followed by close(). * Andi Kleen : Make poll agree with SIGIO * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and * lingertime == 0 (RFC 793 ABORT Call) * Hirokazu Takahashi : Use copy_from_user() instead of * csum_and_copy_from_user() if possible. * * Description of States: * * TCP_SYN_SENT sent a connection request, waiting for ack * * TCP_SYN_RECV received a connection request, sent ack, * waiting for final ack in three-way handshake. * * TCP_ESTABLISHED connection established * * TCP_FIN_WAIT1 our side has shutdown, waiting to complete * transmission of remaining buffered data * * TCP_FIN_WAIT2 all buffered data sent, waiting for remote * to shutdown * * TCP_CLOSING both sides have shutdown but we still have * data we have to finish sending * * TCP_TIME_WAIT timeout to catch resent junk before entering * closed, can only be entered from FIN_WAIT2 * or CLOSING. Required because the other end * may not have gotten our last ACK causing it * to retransmit the data packet (which we ignore) * * TCP_CLOSE_WAIT remote side has shutdown and is waiting for * us to finish writing our data and to shutdown * (we have to close() to move on to LAST_ACK) * * TCP_LAST_ACK out side has shutdown after remote has * shutdown. There may still be data in our * buffer that we have to finish sending * * TCP_CLOSE socket is finished */ #define pr_fmt(fmt) "TCP: " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Track pending CMSGs. */ enum { TCP_CMSG_INQ = 1, TCP_CMSG_TS = 2 }; DEFINE_PER_CPU(unsigned int, tcp_orphan_count); EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); long sysctl_tcp_mem[3] __read_mostly; EXPORT_SYMBOL(sysctl_tcp_mem); atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */ EXPORT_SYMBOL(tcp_memory_allocated); DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc); #if IS_ENABLED(CONFIG_SMC) DEFINE_STATIC_KEY_FALSE(tcp_have_smc); EXPORT_SYMBOL(tcp_have_smc); #endif /* * Current number of TCP sockets. */ struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp; EXPORT_SYMBOL(tcp_sockets_allocated); /* * TCP splice context */ struct tcp_splice_state { struct pipe_inode_info *pipe; size_t len; unsigned int flags; }; /* * Pressure flag: try to collapse. * Technical note: it is used by multiple contexts non atomically. * All the __sk_mem_schedule() is of this nature: accounting * is strict, actions are advisory and have some latency. */ unsigned long tcp_memory_pressure __read_mostly; EXPORT_SYMBOL_GPL(tcp_memory_pressure); void tcp_enter_memory_pressure(struct sock *sk) { unsigned long val; if (READ_ONCE(tcp_memory_pressure)) return; val = jiffies; if (!val) val--; if (!cmpxchg(&tcp_memory_pressure, 0, val)) NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); } EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); void tcp_leave_memory_pressure(struct sock *sk) { unsigned long val; if (!READ_ONCE(tcp_memory_pressure)) return; val = xchg(&tcp_memory_pressure, 0); if (val) NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, jiffies_to_msecs(jiffies - val)); } EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); /* Convert seconds to retransmits based on initial and max timeout */ static u8 secs_to_retrans(int seconds, int timeout, int rto_max) { u8 res = 0; if (seconds > 0) { int period = timeout; res = 1; while (seconds > period && res < 255) { res++; timeout <<= 1; if (timeout > rto_max) timeout = rto_max; period += timeout; } } return res; } /* Convert retransmits to seconds based on initial and max timeout */ static int retrans_to_secs(u8 retrans, int timeout, int rto_max) { int period = 0; if (retrans > 0) { period = timeout; while (--retrans) { timeout <<= 1; if (timeout > rto_max) timeout = rto_max; period += timeout; } } return period; } static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) { u32 rate = READ_ONCE(tp->rate_delivered); u32 intv = READ_ONCE(tp->rate_interval_us); u64 rate64 = 0; if (rate && intv) { rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; do_div(rate64, intv); } return rate64; } /* Address-family independent initialization for a tcp_sock. * * NOTE: A lot of things set to zero explicitly by call to * sk_alloc() so need not be done here. */ void tcp_init_sock(struct sock *sk) { struct inet_connection_sock *icsk = inet_csk(sk); struct tcp_sock *tp = tcp_sk(sk); tp->out_of_order_queue = RB_ROOT; sk->tcp_rtx_queue = RB_ROOT; tcp_init_xmit_timers(sk); INIT_LIST_HEAD(&tp->tsq_node); INIT_LIST_HEAD(&tp->tsorted_sent_queue); icsk->icsk_rto = TCP_TIMEOUT_INIT; icsk->icsk_rto_min = TCP_RTO_MIN; icsk->icsk_delack_max = TCP_DELACK_MAX; tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); /* So many TCP implementations out there (incorrectly) count the * initial SYN frame in their delayed-ACK and congestion control * algorithms that we must have the following bandaid to talk * efficiently to them. -DaveM */ tcp_snd_cwnd_set(tp, TCP_INIT_CWND); /* There's a bubble in the pipe until at least the first ACK. */ tp->app_limited = ~0U; tp->rate_app_limited = 1; /* See draft-stevens-tcpca-spec-01 for discussion of the * initialization of these values. */ tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; tp->snd_cwnd_clamp = ~0; tp->mss_cache = TCP_MSS_DEFAULT; tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering); tcp_assign_congestion_control(sk); tp->tsoffset = 0; tp->rack.reo_wnd_steps = 1; sk->sk_write_space = sk_stream_write_space; sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); icsk->icsk_sync_mss = tcp_sync_mss; WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1])); WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1])); tcp_scaling_ratio_init(sk); set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); sk_sockets_allocated_inc(sk); } EXPORT_SYMBOL(tcp_init_sock); static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) { struct sk_buff *skb = tcp_write_queue_tail(sk); if (tsflags && skb) { struct skb_shared_info *shinfo = skb_shinfo(skb); struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); if (tsflags & SOF_TIMESTAMPING_TX_ACK) tcb->txstamp_ack = 1; if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; } } static bool tcp_stream_is_readable(struct sock *sk, int target) { if (tcp_epollin_ready(sk, target)) return true; return sk_is_readable(sk); } /* * Wait for a TCP event. * * Note that we don't need to lock the socket, as the upper poll layers * take care of normal races (between the test and the event) and we don't * go look at any of the socket buffers directly. */ __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) { __poll_t mask; struct sock *sk = sock->sk; const struct tcp_sock *tp = tcp_sk(sk); u8 shutdown; int state; sock_poll_wait(file, sock, wait); state = inet_sk_state_load(sk); if (state == TCP_LISTEN) return inet_csk_listen_poll(sk); /* Socket is not locked. We are protected from async events * by poll logic and correct handling of state changes * made by other threads is impossible in any case. */ mask = 0; /* * EPOLLHUP is certainly not done right. But poll() doesn't * have a notion of HUP in just one direction, and for a * socket the read side is more interesting. * * Some poll() documentation says that EPOLLHUP is incompatible * with the EPOLLOUT/POLLWR flags, so somebody should check this * all. But careful, it tends to be safer to return too many * bits than too few, and you can easily break real applications * if you don't tell them that something has hung up! * * Check-me. * * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and * our fs/select.c). It means that after we received EOF, * poll always returns immediately, making impossible poll() on write() * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP * if and only if shutdown has been made in both directions. * Actually, it is interesting to look how Solaris and DUX * solve this dilemma. I would prefer, if EPOLLHUP were maskable, * then we could set it on SND_SHUTDOWN. BTW examples given * in Stevens' books assume exactly this behaviour, it explains * why EPOLLHUP is incompatible with EPOLLOUT. --ANK * * NOTE. Check for TCP_CLOSE is added. The goal is to prevent * blocking on fresh not-connected or disconnected socket. --ANK */ shutdown = READ_ONCE(sk->sk_shutdown); if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) mask |= EPOLLHUP; if (shutdown & RCV_SHUTDOWN) mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; /* Connected or passive Fast Open socket? */ if (state != TCP_SYN_SENT && (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { int target = sock_rcvlowat(sk, 0, INT_MAX); u16 urg_data = READ_ONCE(tp->urg_data); if (unlikely(urg_data) && READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && !sock_flag(sk, SOCK_URGINLINE)) target++; if (tcp_stream_is_readable(sk, target)) mask |= EPOLLIN | EPOLLRDNORM; if (!(shutdown & SEND_SHUTDOWN)) { if (__sk_stream_is_writeable(sk, 1)) { mask |= EPOLLOUT | EPOLLWRNORM; } else { /* send SIGIO later */ sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); /* Race breaker. If space is freed after * wspace test but before the flags are set, * IO signal will be lost. Memory barrier * pairs with the input side. */ smp_mb__after_atomic(); if (__sk_stream_is_writeable(sk, 1)) mask |= EPOLLOUT | EPOLLWRNORM; } } else mask |= EPOLLOUT | EPOLLWRNORM; if (urg_data & TCP_URG_VALID) mask |= EPOLLPRI; } else if (state == TCP_SYN_SENT && inet_test_bit(DEFER_CONNECT, sk)) { /* Active TCP fastopen socket with defer_connect * Return EPOLLOUT so application can call write() * in order for kernel to generate SYN+data */ mask |= EPOLLOUT | EPOLLWRNORM; } /* This barrier is coupled with smp_wmb() in tcp_reset() */ smp_rmb(); if (READ_ONCE(sk->sk_err) || !skb_queue_empty_lockless(&sk->sk_error_queue)) mask |= EPOLLERR; return mask; } EXPORT_SYMBOL(tcp_poll); int tcp_ioctl(struct sock *sk, int cmd, int *karg) { struct tcp_sock *tp = tcp_sk(sk); int answ; bool slow; switch (cmd) { case SIOCINQ: if (sk->sk_state == TCP_LISTEN) return -EINVAL; slow = lock_sock_fast(sk); answ = tcp_inq(sk); unlock_sock_fast(sk, slow); break; case SIOCATMARK: answ = READ_ONCE(tp->urg_data) && READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); break; case SIOCOUTQ: if (sk->sk_state == TCP_LISTEN) return -EINVAL; if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) answ = 0; else answ = READ_ONCE(tp->write_seq) - tp->snd_una; break; case SIOCOUTQNSD: if (sk->sk_state == TCP_LISTEN) return -EINVAL; if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) answ = 0; else answ = READ_ONCE(tp->write_seq) - READ_ONCE(tp->snd_nxt); break; default: return -ENOIOCTLCMD; } *karg = answ; return 0; } EXPORT_SYMBOL(tcp_ioctl); void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) { TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; tp->pushed_seq = tp->write_seq; } static inline bool forced_push(const struct tcp_sock *tp) { return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); } void tcp_skb_entail(struct sock *sk, struct sk_buff *skb) { struct tcp_sock *tp = tcp_sk(sk); struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); tcb->seq = tcb->end_seq = tp->write_seq; tcb->tcp_flags = TCPHDR_ACK; __skb_header_release(skb); tcp_add_write_queue_tail(sk, skb); sk_wmem_queued_add(sk, skb->truesize); sk_mem_charge(sk, skb->truesize); if (tp->nonagle & TCP_NAGLE_PUSH) tp->nonagle &= ~TCP_NAGLE_PUSH; tcp_slow_start_after_idle_check(sk); } static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) { if (flags & MSG_OOB) tp->snd_up = tp->write_seq; } /* If a not yet filled skb is pushed, do not send it if * we have data packets in Qdisc or NIC queues : * Because TX completion will happen shortly, it gives a chance * to coalesce future sendmsg() payload into this skb, without * need for a timer, and with no latency trade off. * As packets containing data payload have a bigger truesize * than pure acks (dataless) packets, the last checks prevent * autocorking if we only have an ACK in Qdisc/NIC queues, * or if TX completion was delayed after we processed ACK packet. */ static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, int size_goal) { return skb->len < size_goal && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) && !tcp_rtx_queue_empty(sk) && refcount_read(&sk->sk_wmem_alloc) > skb->truesize && tcp_skb_can_collapse_to(skb); } void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle, int size_goal) { struct tcp_sock *tp = tcp_sk(sk); struct sk_buff *skb; skb = tcp_write_queue_tail(sk); if (!skb) return; if (!(flags & MSG_MORE) || forced_push(tp)) tcp_mark_push(tp, skb); tcp_mark_urg(tp, flags); if (tcp_should_autocork(sk, skb, size_goal)) { /* avoid atomic op if TSQ_THROTTLED bit is already set */ if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); smp_mb__after_atomic(); } /* It is possible TX completion already happened * before we set TSQ_THROTTLED. */ if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) return; } if (flags & MSG_MORE) nonagle = TCP_NAGLE_CORK; __tcp_push_pending_frames(sk, mss_now, nonagle); } static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, unsigned int offset, size_t len) { struct tcp_splice_state *tss = rd_desc->arg.data; int ret; ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, min(rd_desc->count, len), tss->flags); if (ret > 0) rd_desc->count -= ret; return ret; } static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) { /* Store TCP splice context information in read_descriptor_t. */ read_descriptor_t rd_desc = { .arg.data = tss, .count = tss->len, }; return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); } /** * tcp_splice_read - splice data from TCP socket to a pipe * @sock: socket to splice from * @ppos: position (not valid) * @pipe: pipe to splice to * @len: number of bytes to splice * @flags: splice modifier flags * * Description: * Will read pages from given socket and fill them into a pipe. * **/ ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, struct pipe_inode_info *pipe, size_t len, unsigned int flags) { struct sock *sk = sock->sk; struct tcp_splice_state tss = { .pipe = pipe, .len = len, .flags = flags, }; long timeo; ssize_t spliced; int ret; sock_rps_record_flow(sk); /* * We can't seek on a socket input */ if (unlikely(*ppos)) return -ESPIPE; ret = spliced = 0; lock_sock(sk); timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); while (tss.len) { ret = __tcp_splice_read(sk, &tss); if (ret < 0) break; else if (!ret) { if (spliced) break; if (sock_flag(sk, SOCK_DONE)) break; if (sk->sk_err) { ret = sock_error(sk); break; } if (sk->sk_shutdown & RCV_SHUTDOWN) break; if (sk->sk_state == TCP_CLOSE) { /* * This occurs when user tries to read * from never connected socket. */ ret = -ENOTCONN; break; } if (!timeo) { ret = -EAGAIN; break; } /* if __tcp_splice_read() got nothing while we have * an skb in receive queue, we do not want to loop. * This might happen with URG data. */ if (!skb_queue_empty(&sk->sk_receive_queue)) break; ret = sk_wait_data(sk, &timeo, NULL); if (ret < 0) break; if (signal_pending(current)) { ret = sock_intr_errno(timeo); break; } continue; } tss.len -= ret; spliced += ret; if (!tss.len || !timeo) break; release_sock(sk); lock_sock(sk); if (sk->sk_err || sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN) || signal_pending(current)) break; } release_sock(sk); if (spliced) return spliced; return ret; } EXPORT_SYMBOL(tcp_splice_read); struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp, bool force_schedule) { struct sk_buff *skb; skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); if (likely(skb)) { bool mem_scheduled; skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); if (force_schedule) { mem_scheduled = true; sk_forced_mem_schedule(sk, skb->truesize); } else { mem_scheduled = sk_wmem_schedule(sk, skb->truesize); } if (likely(mem_scheduled)) { skb_reserve(skb, MAX_TCP_HEADER); skb->ip_summed = CHECKSUM_PARTIAL; INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); return skb; } __kfree_skb(skb); } else { sk->sk_prot->enter_memory_pressure(sk); sk_stream_moderate_sndbuf(sk); } return NULL; } static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, int large_allowed) { struct tcp_sock *tp = tcp_sk(sk); u32 new_size_goal, size_goal; if (!large_allowed) return mss_now; /* Note : tcp_tso_autosize() will eventually split this later */ new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size); /* We try hard to avoid divides here */ size_goal = tp->gso_segs * mss_now; if (unlikely(new_size_goal < size_goal || new_size_goal >= size_goal + mss_now)) { tp->gso_segs = min_t(u16, new_size_goal / mss_now, sk->sk_gso_max_segs); size_goal = tp->gso_segs * mss_now; } return max(size_goal, mss_now); } int tcp_send_mss(struct sock *sk, int *size_goal, int flags) { int mss_now; mss_now = tcp_current_mss(sk); *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); return mss_now; } /* In some cases, sendmsg() could have added an skb to the write queue, * but failed adding payload on it. We need to remove it to consume less * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger * epoll() users. Another reason is that tcp_write_xmit() does not like * finding an empty skb in the write queue. */ void tcp_remove_empty_skb(struct sock *sk) { struct sk_buff *skb = tcp_write_queue_tail(sk); if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { tcp_unlink_write_queue(skb, sk); if (tcp_write_queue_empty(sk)) tcp_chrono_stop(sk, TCP_CHRONO_BUSY); tcp_wmem_free_skb(sk, skb); } } /* skb changing from pure zc to mixed, must charge zc */ static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb) { if (unlikely(skb_zcopy_pure(skb))) { u32 extra = skb->truesize - SKB_TRUESIZE(skb_end_offset(skb)); if (!sk_wmem_schedule(sk, extra)) return -ENOMEM; sk_mem_charge(sk, extra); skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY; } return 0; } int tcp_wmem_schedule(struct sock *sk, int copy) { int left; if (likely(sk_wmem_schedule(sk, copy))) return copy; /* We could be in trouble if we have nothing queued. * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0] * to guarantee some progress. */ left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued; if (left > 0) sk_forced_mem_schedule(sk, min(left, copy)); return min(copy, sk->sk_forward_alloc); } void tcp_free_fastopen_req(struct tcp_sock *tp) { if (tp->fastopen_req) { kfree(tp->fastopen_req); tp->fastopen_req = NULL; } } int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied, size_t size, struct ubuf_info *uarg) { struct tcp_sock *tp = tcp_sk(sk); struct inet_sock *inet = inet_sk(sk); struct sockaddr *uaddr = msg->msg_name; int err, flags; if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) & TFO_CLIENT_ENABLE) || (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && uaddr->sa_family == AF_UNSPEC)) return -EOPNOTSUPP; if (tp->fastopen_req) return -EALREADY; /* Another Fast Open is in progress */ tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), sk->sk_allocation); if (unlikely(!tp->fastopen_req)) return -ENOBUFS; tp->fastopen_req->data = msg; tp->fastopen_req->size = size; tp->fastopen_req->uarg = uarg; if (inet_test_bit(DEFER_CONNECT, sk)) { err = tcp_connect(sk); /* Same failure procedure as in tcp_v4/6_connect */ if (err) { tcp_set_state(sk, TCP_CLOSE); inet->inet_dport = 0; sk->sk_route_caps = 0; } } flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; err = __inet_stream_connect(sk->sk_socket, uaddr, msg->msg_namelen, flags, 1); /* fastopen_req could already be freed in __inet_stream_connect * if the connection times out or gets rst */ if (tp->fastopen_req) { *copied = tp->fastopen_req->copied; tcp_free_fastopen_req(tp); inet_clear_bit(DEFER_CONNECT, sk); } return err; } int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) { struct tcp_sock *tp = tcp_sk(sk); struct ubuf_info *uarg = NULL; struct sk_buff *skb; struct sockcm_cookie sockc; int flags, err, copied = 0; int mss_now = 0, size_goal, copied_syn = 0; int process_backlog = 0; int zc = 0; long timeo; flags = msg->msg_flags; if ((flags & MSG_ZEROCOPY) && size) { if (msg->msg_ubuf) { uarg = msg->msg_ubuf; if (sk->sk_route_caps & NETIF_F_SG) zc = MSG_ZEROCOPY; } else if (sock_flag(sk, SOCK_ZEROCOPY)) { skb = tcp_write_queue_tail(sk); uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb)); if (!uarg) { err = -ENOBUFS; goto out_err; } if (sk->sk_route_caps & NETIF_F_SG) zc = MSG_ZEROCOPY; else uarg_to_msgzc(uarg)->zerocopy = 0; } } else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) { if (sk->sk_route_caps & NETIF_F_SG) zc = MSG_SPLICE_PAGES; } if (unlikely(flags & MSG_FASTOPEN || inet_test_bit(DEFER_CONNECT, sk)) && !tp->repair) { err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); if (err == -EINPROGRESS && copied_syn > 0) goto out; else if (err) goto out_err; } timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); tcp_rate_check_app_limited(sk); /* is sending application-limited? */ /* Wait for a connection to finish. One exception is TCP Fast Open * (passive side) where data is allowed to be sent before a connection * is fully established. */ if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && !tcp_passive_fastopen(sk)) { err = sk_stream_wait_connect(sk, &timeo); if (err != 0) goto do_error; } if (unlikely(tp->repair)) { if (tp->repair_queue == TCP_RECV_QUEUE) { copied = tcp_send_rcvq(sk, msg, size); goto out_nopush; } err = -EINVAL; if (tp->repair_queue == TCP_NO_QUEUE) goto out_err; /* 'common' sending to sendq */ } sockcm_init(&sockc, sk); if (msg->msg_controllen) { err = sock_cmsg_send(sk, msg, &sockc); if (unlikely(err)) { err = -EINVAL; goto out_err; } } /* This should be in poll */ sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); /* Ok commence sending. */ copied = 0; restart: mss_now = tcp_send_mss(sk, &size_goal, flags); err = -EPIPE; if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) goto do_error; while (msg_data_left(msg)) { ssize_t copy = 0; skb = tcp_write_queue_tail(sk); if (skb) copy = size_goal - skb->len; if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { bool first_skb; new_segment: if (!sk_stream_memory_free(sk)) goto wait_for_space; if (unlikely(process_backlog >= 16)) { process_backlog = 0; if (sk_flush_backlog(sk)) goto restart; } first_skb = tcp_rtx_and_write_queues_empty(sk); skb = tcp_stream_alloc_skb(sk, sk->sk_allocation, first_skb); if (!skb) goto wait_for_space; process_backlog++; tcp_skb_entail(sk, skb); copy = size_goal; /* All packets are restored as if they have * already been sent. skb_mstamp_ns isn't set to * avoid wrong rtt estimation. */ if (tp->repair) TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; } /* Try to append data to the end of skb. */ if (copy > msg_data_left(msg)) copy = msg_data_left(msg); if (zc == 0) { bool merge = true; int i = skb_shinfo(skb)->nr_frags; struct page_frag *pfrag = sk_page_frag(sk); if (!sk_page_frag_refill(sk, pfrag)) goto wait_for_space; if (!skb_can_coalesce(skb, i, pfrag->page, pfrag->offset)) { if (i >= READ_ONCE(sysctl_max_skb_frags)) { tcp_mark_push(tp, skb); goto new_segment; } merge = false; } copy = min_t(int, copy, pfrag->size - pfrag->offset); if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) { if (tcp_downgrade_zcopy_pure(sk, skb)) goto wait_for_space; skb_zcopy_downgrade_managed(skb); } copy = tcp_wmem_schedule(sk, copy); if (!copy) goto wait_for_space; err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, pfrag->page, pfrag->offset, copy); if (err) goto do_error; /* Update the skb. */ if (merge) { skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); } else { skb_fill_page_desc(skb, i, pfrag->page, pfrag->offset, copy); page_ref_inc(pfrag->page); } pfrag->offset += copy; } else if (zc == MSG_ZEROCOPY) { /* First append to a fragless skb builds initial * pure zerocopy skb */ if (!skb->len) skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY; if (!skb_zcopy_pure(skb)) { copy = tcp_wmem_schedule(sk, copy); if (!copy) goto wait_for_space; } err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); if (err == -EMSGSIZE || err == -EEXIST) { tcp_mark_push(tp, skb); goto new_segment; } if (err < 0) goto do_error; copy = err; } else if (zc == MSG_SPLICE_PAGES) { /* Splice in data if we can; copy if we can't. */ if (tcp_downgrade_zcopy_pure(sk, skb)) goto wait_for_space; copy = tcp_wmem_schedule(sk, copy); if (!copy) goto wait_for_space; err = skb_splice_from_iter(skb, &msg->msg_iter, copy, sk->sk_allocation); if (err < 0) { if (err == -EMSGSIZE) { tcp_mark_push(tp, skb); goto new_segment; } goto do_error; } copy = err; if (!(flags & MSG_NO_SHARED_FRAGS)) skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; sk_wmem_queued_add(sk, copy); sk_mem_charge(sk, copy); } if (!copied) TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; WRITE_ONCE(tp->write_seq, tp->write_seq + copy); TCP_SKB_CB(skb)->end_seq += copy; tcp_skb_pcount_set(skb, 0); copied += copy; if (!msg_data_left(msg)) { if (unlikely(flags & MSG_EOR)) TCP_SKB_CB(skb)->eor = 1; goto out; } if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) continue; if (forced_push(tp)) { tcp_mark_push(tp, skb); __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); } else if (skb == tcp_send_head(sk)) tcp_push_one(sk, mss_now); continue; wait_for_space: set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); tcp_remove_empty_skb(sk); if (copied) tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH, size_goal); err = sk_stream_wait_memory(sk, &timeo); if (err != 0) goto do_error; mss_now = tcp_send_mss(sk, &size_goal, flags); } out: if (copied) { tcp_tx_timestamp(sk, sockc.tsflags); tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); } out_nopush: /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ if (uarg && !msg->msg_ubuf) net_zcopy_put(uarg); return copied + copied_syn; do_error: tcp_remove_empty_skb(sk); if (copied + copied_syn) goto out; out_err: /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ if (uarg && !msg->msg_ubuf) net_zcopy_put_abort(uarg, true); err = sk_stream_error(sk, flags, err); /* make sure we wake any epoll edge trigger waiter */ if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { sk->sk_write_space(sk); tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); } return err; } EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) { int ret; lock_sock(sk); ret = tcp_sendmsg_locked(sk, msg, size); release_sock(sk); return ret; } EXPORT_SYMBOL(tcp_sendmsg); void tcp_splice_eof(struct socket *sock) { struct sock *sk = sock->sk; struct tcp_sock *tp = tcp_sk(sk); int mss_now, size_goal; if (!tcp_write_queue_tail(sk)) return; lock_sock(sk); mss_now = tcp_send_mss(sk, &size_goal, 0); tcp_push(sk, 0, mss_now, tp->nonagle, size_goal); release_sock(sk); } EXPORT_SYMBOL_GPL(tcp_splice_eof); /* * Handle reading urgent data. BSD has very simple semantics for * this, no blocking and very strange errors 8) */ static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) { struct tcp_sock *tp = tcp_sk(sk); /* No URG data to read. */ if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || tp->urg_data == TCP_URG_READ) return -EINVAL; /* Yes this is right ! */ if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) return -ENOTCONN; if (tp->urg_data & TCP_URG_VALID) { int err = 0; char c = tp->urg_data; if (!(flags & MSG_PEEK)) WRITE_ONCE(tp->urg_data, TCP_URG_READ); /* Read urgent data. */ msg->msg_flags |= MSG_OOB; if (len > 0) { if (!(flags & MSG_TRUNC)) err = memcpy_to_msg(msg, &c, 1); len = 1; } else msg->msg_flags |= MSG_TRUNC; return err ? -EFAULT : len; } if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) return 0; /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and * the available implementations agree in this case: * this call should never block, independent of the * blocking state of the socket. * Mike */ return -EAGAIN; } static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) { struct sk_buff *skb; int copied = 0, err = 0; /* XXX -- need to support SO_PEEK_OFF */ skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { err = skb_copy_datagram_msg(skb, 0, msg, skb->len); if (err) return err; copied += skb->len; } skb_queue_walk(&sk->sk_write_queue, skb) { err = skb_copy_datagram_msg(skb, 0, msg, skb->len); if (err) break; copied += skb->len; } return err ?: copied; } /* Clean up the receive buffer for full frames taken by the user, * then send an ACK if necessary. COPIED is the number of bytes * tcp_recvmsg has given to the user so far, it speeds up the * calculation of whether or not we must ACK for the sake of * a window update. */ void __tcp_cleanup_rbuf(struct sock *sk, int copied) { struct tcp_sock *tp = tcp_sk(sk); bool time_to_ack = false; if (inet_csk_ack_scheduled(sk)) { const struct inet_connection_sock *icsk = inet_csk(sk); if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || /* * If this read emptied read buffer, we send ACK, if * connection is not bidirectional, user drained * receive buffer and there was a small segment * in queue. */ (copied > 0 && ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && !inet_csk_in_pingpong_mode(sk))) && !atomic_read(&sk->sk_rmem_alloc))) time_to_ack = true; } /* We send an ACK if we can now advertise a non-zero window * which has been raised "significantly". * * Even if window raised up to infinity, do not send window open ACK * in states, where we will not receive more. It is useless. */ if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { __u32 rcv_window_now = tcp_receive_window(tp); /* Optimize, __tcp_select_window() is not cheap. */ if (2*rcv_window_now <= tp->window_clamp) { __u32 new_window = __tcp_select_window(sk); /* Send ACK now, if this read freed lots of space * in our buffer. Certainly, new_window is new window. * We can advertise it now, if it is not less than current one. * "Lots" means "at least twice" here. */ if (new_window && new_window >= 2 * rcv_window_now) time_to_ack = true; } } if (time_to_ack) tcp_send_ack(sk); } void tcp_cleanup_rbuf(struct sock *sk, int copied) { struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); struct tcp_sock *tp = tcp_sk(sk); WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); __tcp_cleanup_rbuf(sk, copied); } static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb) { __skb_unlink(skb, &sk->sk_receive_queue); if (likely(skb->destructor == sock_rfree)) { sock_rfree(skb); skb->destructor = NULL; skb->sk = NULL; return skb_attempt_defer_free(skb); } __kfree_skb(skb); } struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) { struct sk_buff *skb; u32 offset; while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { offset = seq - TCP_SKB_CB(skb)->seq; if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { pr_err_once("%s: found a SYN, please report !\n", __func__); offset--; } if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { *off = offset; return skb; } /* This looks weird, but this can happen if TCP collapsing * splitted a fat GRO packet, while we released socket lock * in skb_splice_bits() */ tcp_eat_recv_skb(sk, skb); } return NULL; } EXPORT_SYMBOL(tcp_recv_skb); /* * This routine provides an alternative to tcp_recvmsg() for routines * that would like to handle copying from skbuffs directly in 'sendfile' * fashion. * Note: * - It is assumed that the socket was locked by the caller. * - The routine does not block. * - At present, there is no support for reading OOB data * or for 'peeking' the socket using this routine * (although both would be easy to implement). */ int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, sk_read_actor_t recv_actor) { struct sk_buff *skb; struct tcp_sock *tp = tcp_sk(sk); u32 seq = tp->copied_seq; u32 offset; int copied = 0; if (sk->sk_state == TCP_LISTEN) return -ENOTCONN; while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { if (offset < skb->len) { int used; size_t len; len = skb->len - offset; /* Stop reading if we hit a patch of urgent data */ if (unlikely(tp->urg_data)) { u32 urg_offset = tp->urg_seq - seq; if (urg_offset < len) len = urg_offset; if (!len) break; } used = recv_actor(desc, skb, offset, len); if (used <= 0) { if (!copied) copied = used; break; } if (WARN_ON_ONCE(used > len)) used = len; seq += used; copied += used; offset += used; /* If recv_actor drops the lock (e.g. TCP splice * receive) the skb pointer might be invalid when * getting here: tcp_collapse might have deleted it * while aggregating skbs from the socket queue. */ skb = tcp_recv_skb(sk, seq - 1, &offset); if (!skb) break; /* TCP coalescing might have appended data to the skb. * Try to splice more frags */ if (offset + 1 != skb->len) continue; } if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { tcp_eat_recv_skb(sk, skb); ++seq; break; } tcp_eat_recv_skb(sk, skb); if (!desc->count) break; WRITE_ONCE(tp->copied_seq, seq); } WRITE_ONCE(tp->copied_seq, seq); tcp_rcv_space_adjust(sk); /* Clean up data we have read: This will do ACK frames. */ if (copied > 0) { tcp_recv_skb(sk, seq, &offset); tcp_cleanup_rbuf(sk, copied); } return copied; } EXPORT_SYMBOL(tcp_read_sock); int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) { struct sk_buff *skb; int copied = 0; if (sk->sk_state == TCP_LISTEN) return -ENOTCONN; while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { u8 tcp_flags; int used; __skb_unlink(skb, &sk->sk_receive_queue); WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); tcp_flags = TCP_SKB_CB(skb)->tcp_flags; used = recv_actor(sk, skb); if (used < 0) { if (!copied) copied = used; break; } copied += used; if (tcp_flags & TCPHDR_FIN) break; } return copied; } EXPORT_SYMBOL(tcp_read_skb); void tcp_read_done(struct sock *sk, size_t len) { struct tcp_sock *tp = tcp_sk(sk); u32 seq = tp->copied_seq; struct sk_buff *skb; size_t left; u32 offset; if (sk->sk_state == TCP_LISTEN) return; left = len; while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { int used; used = min_t(size_t, skb->len - offset, left); seq += used; left -= used; if (skb->len > offset + used) break; if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { tcp_eat_recv_skb(sk, skb); ++seq; break; } tcp_eat_recv_skb(sk, skb); } WRITE_ONCE(tp->copied_seq, seq); tcp_rcv_space_adjust(sk); /* Clean up data we have read: This will do ACK frames. */ if (left != len) tcp_cleanup_rbuf(sk, len - left); } EXPORT_SYMBOL(tcp_read_done); int tcp_peek_len(struct socket *sock) { return tcp_inq(sock->sk); } EXPORT_SYMBOL(tcp_peek_len); /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ int tcp_set_rcvlowat(struct sock *sk, int val) { int space, cap; if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) cap = sk->sk_rcvbuf >> 1; else cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; val = min(val, cap); WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); /* Check if we need to signal EPOLLIN right now */ tcp_data_ready(sk); if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) return 0; space = tcp_space_from_win(sk, val); if (space > sk->sk_rcvbuf) { WRITE_ONCE(sk->sk_rcvbuf, space); tcp_sk(sk)->window_clamp = val; } return 0; } EXPORT_SYMBOL(tcp_set_rcvlowat); void tcp_update_recv_tstamps(struct sk_buff *skb, struct scm_timestamping_internal *tss) { if (skb->tstamp) tss->ts[0] = ktime_to_timespec64(skb->tstamp); else tss->ts[0] = (struct timespec64) {0}; if (skb_hwtstamps(skb)->hwtstamp) tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); else tss->ts[2] = (struct timespec64) {0}; } #ifdef CONFIG_MMU static const struct vm_operations_struct tcp_vm_ops = { }; int tcp_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) { if (vma->vm_flags & (VM_WRITE | VM_EXEC)) return -EPERM; vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC); /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ vm_flags_set(vma, VM_MIXEDMAP); vma->vm_ops = &tcp_vm_ops; return 0; } EXPORT_SYMBOL(tcp_mmap); static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, u32 *offset_frag) { skb_frag_t *frag; if (unlikely(offset_skb >= skb->len)) return NULL; offset_skb -= skb_headlen(skb); if ((int)offset_skb < 0 || skb_has_frag_list(skb)) return NULL; frag = skb_shinfo(skb)->frags; while (offset_skb) { if (skb_frag_size(frag) > offset_skb) { *offset_frag = offset_skb; return frag; } offset_skb -= skb_frag_size(frag); ++frag; } *offset_frag = 0; return frag; } static bool can_map_frag(const skb_frag_t *frag) { struct page *page; if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag)) return false; page = skb_frag_page(frag); if (PageCompound(page) || page->mapping) return false; return true; } static int find_next_mappable_frag(const skb_frag_t *frag, int remaining_in_skb) { int offset = 0; if (likely(can_map_frag(frag))) return 0; while (offset < remaining_in_skb && !can_map_frag(frag)) { offset += skb_frag_size(frag); ++frag; } return offset; } static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, struct tcp_zerocopy_receive *zc, struct sk_buff *skb, u32 offset) { u32 frag_offset, partial_frag_remainder = 0; int mappable_offset; skb_frag_t *frag; /* worst case: skip to next skb. try to improve on this case below */ zc->recv_skip_hint = skb->len - offset; /* Find the frag containing this offset (and how far into that frag) */ frag = skb_advance_to_frag(skb, offset, &frag_offset); if (!frag) return; if (frag_offset) { struct skb_shared_info *info = skb_shinfo(skb); /* We read part of the last frag, must recvmsg() rest of skb. */ if (frag == &info->frags[info->nr_frags - 1]) return; /* Else, we must at least read the remainder in this frag. */ partial_frag_remainder = skb_frag_size(frag) - frag_offset; zc->recv_skip_hint -= partial_frag_remainder; ++frag; } /* partial_frag_remainder: If part way through a frag, must read rest. * mappable_offset: Bytes till next mappable frag, *not* counting bytes * in partial_frag_remainder. */ mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint); zc->recv_skip_hint = mappable_offset + partial_frag_remainder; } static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, int flags, struct scm_timestamping_internal *tss, int *cmsg_flags); static int receive_fallback_to_copy(struct sock *sk, struct tcp_zerocopy_receive *zc, int inq, struct scm_timestamping_internal *tss) { unsigned long copy_address = (unsigned long)zc->copybuf_address; struct msghdr msg = {}; int err; zc->length = 0; zc->recv_skip_hint = 0; if (copy_address != zc->copybuf_address) return -EINVAL; err = import_ubuf(ITER_DEST, (void __user *)copy_address, inq, &msg.msg_iter); if (err) return err; err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT, tss, &zc->msg_flags); if (err < 0) return err; zc->copybuf_len = err; if (likely(zc->copybuf_len)) { struct sk_buff *skb; u32 offset; skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); if (skb) tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); } return 0; } static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, struct sk_buff *skb, u32 copylen, u32 *offset, u32 *seq) { unsigned long copy_address = (unsigned long)zc->copybuf_address; struct msghdr msg = {}; int err; if (copy_address != zc->copybuf_address) return -EINVAL; err = import_ubuf(ITER_DEST, (void __user *)copy_address, copylen, &msg.msg_iter); if (err) return err; err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); if (err) return err; zc->recv_skip_hint -= copylen; *offset += copylen; *seq += copylen; return (__s32)copylen; } static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, struct sock *sk, struct sk_buff *skb, u32 *seq, s32 copybuf_len, struct scm_timestamping_internal *tss) { u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); if (!copylen) return 0; /* skb is null if inq < PAGE_SIZE. */ if (skb) { offset = *seq - TCP_SKB_CB(skb)->seq; } else { skb = tcp_recv_skb(sk, *seq, &offset); if (TCP_SKB_CB(skb)->has_rxtstamp) { tcp_update_recv_tstamps(skb, tss); zc->msg_flags |= TCP_CMSG_TS; } } zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, seq); return zc->copybuf_len < 0 ? 0 : copylen; } static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, struct page **pending_pages, unsigned long pages_remaining, unsigned long *address, u32 *length, u32 *seq, struct tcp_zerocopy_receive *zc, u32 total_bytes_to_map, int err) { /* At least one page did not map. Try zapping if we skipped earlier. */ if (err == -EBUSY && zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { u32 maybe_zap_len; maybe_zap_len = total_bytes_to_map - /* All bytes to map */ *length + /* Mapped or pending */ (pages_remaining * PAGE_SIZE); /* Failed map. */ zap_page_range_single(vma, *address, maybe_zap_len, NULL); err = 0; } if (!err) { unsigned long leftover_pages = pages_remaining; int bytes_mapped; /* We called zap_page_range_single, try to reinsert. */ err = vm_insert_pages(vma, *address, pending_pages, &pages_remaining); bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); *seq += bytes_mapped; *address += bytes_mapped; } if (err) { /* Either we were unable to zap, OR we zapped, retried an * insert, and still had an issue. Either ways, pages_remaining * is the number of pages we were unable to map, and we unroll * some state we speculatively touched before. */ const int bytes_not_mapped = PAGE_SIZE * pages_remaining; *length -= bytes_not_mapped; zc->recv_skip_hint += bytes_not_mapped; } return err; } static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, struct page **pages, unsigned int pages_to_map, unsigned long *address, u32 *length, u32 *seq, struct tcp_zerocopy_receive *zc, u32 total_bytes_to_map) { unsigned long pages_remaining = pages_to_map; unsigned int pages_mapped; unsigned int bytes_mapped; int err; err = vm_insert_pages(vma, *address, pages, &pages_remaining); pages_mapped = pages_to_map - (unsigned int)pages_remaining; bytes_mapped = PAGE_SIZE * pages_mapped; /* Even if vm_insert_pages fails, it may have partially succeeded in * mapping (some but not all of the pages). */ *seq += bytes_mapped; *address += bytes_mapped; if (likely(!err)) return 0; /* Error: maybe zap and retry + rollback state for failed inserts. */ return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped, pages_remaining, address, length, seq, zc, total_bytes_to_map, err); } #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) static void tcp_zc_finalize_rx_tstamp(struct sock *sk, struct tcp_zerocopy_receive *zc, struct scm_timestamping_internal *tss) { unsigned long msg_control_addr; struct msghdr cmsg_dummy; msg_control_addr = (unsigned long)zc->msg_control; cmsg_dummy.msg_control_user = (void __user *)msg_control_addr; cmsg_dummy.msg_controllen = (__kernel_size_t)zc->msg_controllen; cmsg_dummy.msg_flags = in_compat_syscall() ? MSG_CMSG_COMPAT : 0; cmsg_dummy.msg_control_is_user = true; zc->msg_flags = 0; if (zc->msg_control == msg_control_addr && zc->msg_controllen == cmsg_dummy.msg_controllen) { tcp_recv_timestamp(&cmsg_dummy, sk, tss); zc->msg_control = (__u64) ((uintptr_t)cmsg_dummy.msg_control_user); zc->msg_controllen = (__u64)cmsg_dummy.msg_controllen; zc->msg_flags = (__u32)cmsg_dummy.msg_flags; } } static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm, unsigned long address, bool *mmap_locked) { struct vm_area_struct *vma = lock_vma_under_rcu(mm, address); if (vma) { if (vma->vm_ops != &tcp_vm_ops) { vma_end_read(vma); return NULL; } *mmap_locked = false; return vma; } mmap_read_lock(mm); vma = vma_lookup(mm, address); if (!vma || vma->vm_ops != &tcp_vm_ops) { mmap_read_unlock(mm); return NULL; } *mmap_locked = true; return vma; } #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 static int tcp_zerocopy_receive(struct sock *sk, struct tcp_zerocopy_receive *zc, struct scm_timestamping_internal *tss) { u32 length = 0, offset, vma_len, avail_len, copylen = 0; unsigned long address = (unsigned long)zc->address; struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; s32 copybuf_len = zc->copybuf_len; struct tcp_sock *tp = tcp_sk(sk); const skb_frag_t *frags = NULL; unsigned int pages_to_map = 0; struct vm_area_struct *vma; struct sk_buff *skb = NULL; u32 seq = tp->copied_seq; u32 total_bytes_to_map; int inq = tcp_inq(sk); bool mmap_locked; int ret; zc->copybuf_len = 0; zc->msg_flags = 0; if (address & (PAGE_SIZE - 1) || address != zc->address) return -EINVAL; if (sk->sk_state == TCP_LISTEN) return -ENOTCONN; sock_rps_record_flow(sk); if (inq && inq <= copybuf_len) return receive_fallback_to_copy(sk, zc, inq, tss); if (inq < PAGE_SIZE) { zc->length = 0; zc->recv_skip_hint = inq; if (!inq && sock_flag(sk, SOCK_DONE)) return -EIO; return 0; } vma = find_tcp_vma(current->mm, address, &mmap_locked); if (!vma) return -EINVAL; vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); avail_len = min_t(u32, vma_len, inq); total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); if (total_bytes_to_map) { if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) zap_page_range_single(vma, address, total_bytes_to_map, NULL); zc->length = total_bytes_to_map; zc->recv_skip_hint = 0; } else { zc->length = avail_len; zc->recv_skip_hint = avail_len; } ret = 0; while (length + PAGE_SIZE <= zc->length) { int mappable_offset; struct page *page; if (zc->recv_skip_hint < PAGE_SIZE) { u32 offset_frag; if (skb) { if (zc->recv_skip_hint > 0) break; skb = skb->next; offset = seq - TCP_SKB_CB(skb)->seq; } else { skb = tcp_recv_skb(sk, seq, &offset); } if (TCP_SKB_CB(skb)->has_rxtstamp) { tcp_update_recv_tstamps(skb, tss); zc->msg_flags |= TCP_CMSG_TS; } zc->recv_skip_hint = skb->len - offset; frags = skb_advance_to_frag(skb, offset, &offset_frag); if (!frags || offset_frag) break; } mappable_offset = find_next_mappable_frag(frags, zc->recv_skip_hint); if (mappable_offset) { zc->recv_skip_hint = mappable_offset; break; } page = skb_frag_page(frags); prefetchw(page); pages[pages_to_map++] = page; length += PAGE_SIZE; zc->recv_skip_hint -= PAGE_SIZE; frags++; if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || zc->recv_skip_hint < PAGE_SIZE) { /* Either full batch, or we're about to go to next skb * (and we cannot unroll failed ops across skbs). */ ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, &address, &length, &seq, zc, total_bytes_to_map); if (ret) goto out; pages_to_map = 0; } } if (pages_to_map) { ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, &address, &length, &seq, zc, total_bytes_to_map); } out: if (mmap_locked) mmap_read_unlock(current->mm); else vma_end_read(vma); /* Try to copy straggler data. */ if (!ret) copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss); if (length + copylen) { WRITE_ONCE(tp->copied_seq, seq); tcp_rcv_space_adjust(sk); /* Clean up data we have read: This will do ACK frames. */ tcp_recv_skb(sk, seq, &offset); tcp_cleanup_rbuf(sk, length + copylen); ret = 0; if (length == zc->length) zc->recv_skip_hint = 0; } else { if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) ret = -EIO; } zc->length = length; return ret; } #endif /* Similar to __sock_recv_timestamp, but does not require an skb */ void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, struct scm_timestamping_internal *tss) { int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); bool has_timestamping = false; if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { if (sock_flag(sk, SOCK_RCVTSTAMP)) { if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { if (new_tstamp) { struct __kernel_timespec kts = { .tv_sec = tss->ts[0].tv_sec, .tv_nsec = tss->ts[0].tv_nsec, }; put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, sizeof(kts), &kts); } else { struct __kernel_old_timespec ts_old = { .tv_sec = tss->ts[0].tv_sec, .tv_nsec = tss->ts[0].tv_nsec, }; put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, sizeof(ts_old), &ts_old); } } else { if (new_tstamp) { struct __kernel_sock_timeval stv = { .tv_sec = tss->ts[0].tv_sec, .tv_usec = tss->ts[0].tv_nsec / 1000, }; put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, sizeof(stv), &stv); } else { struct __kernel_old_timeval tv = { .tv_sec = tss->ts[0].tv_sec, .tv_usec = tss->ts[0].tv_nsec / 1000, }; put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, sizeof(tv), &tv); } } } if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_SOFTWARE) has_timestamping = true; else tss->ts[0] = (struct timespec64) {0}; } if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_RAW_HARDWARE) has_timestamping = true; else tss->ts[2] = (struct timespec64) {0}; } if (has_timestamping) { tss->ts[1] = (struct timespec64) {0}; if (sock_flag(sk, SOCK_TSTAMP_NEW)) put_cmsg_scm_timestamping64(msg, tss); else put_cmsg_scm_timestamping(msg, tss); } } static int tcp_inq_hint(struct sock *sk) { const struct tcp_sock *tp = tcp_sk(sk); u32 copied_seq = READ_ONCE(tp->copied_seq); u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); int inq; inq = rcv_nxt - copied_seq; if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { lock_sock(sk); inq = tp->rcv_nxt - tp->copied_seq; release_sock(sk); } /* After receiving a FIN, tell the user-space to continue reading * by returning a non-zero inq. */ if (inq == 0 && sock_flag(sk, SOCK_DONE)) inq = 1; return inq; } /* * This routine copies from a sock struct into the user buffer. * * Technical note: in 2.3 we work on _locked_ socket, so that * tricks with *seq access order and skb->users are not required. * Probably, code can be easily improved even more. */ static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, int flags, struct scm_timestamping_internal *tss, int *cmsg_flags) { struct tcp_sock *tp = tcp_sk(sk); int copied = 0; u32 peek_seq; u32 *seq; unsigned long used; int err; int target; /* Read at least this many bytes */ long timeo; struct sk_buff *skb, *last; u32 urg_hole = 0; err = -ENOTCONN; if (sk->sk_state == TCP_LISTEN) goto out; if (tp->recvmsg_inq) { *cmsg_flags = TCP_CMSG_INQ; msg->msg_get_inq = 1; } timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); /* Urgent data needs to be handled specially. */ if (flags & MSG_OOB) goto recv_urg; if (unlikely(tp->repair)) { err = -EPERM; if (!(flags & MSG_PEEK)) goto out; if (tp->repair_queue == TCP_SEND_QUEUE) goto recv_sndq; err = -EINVAL; if (tp->repair_queue == TCP_NO_QUEUE) goto out; /* 'common' recv queue MSG_PEEK-ing */ } seq = &tp->copied_seq; if (flags & MSG_PEEK) { peek_seq = tp->copied_seq; seq = &peek_seq; } target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); do { u32 offset; /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ if (unlikely(tp->urg_data) && tp->urg_seq == *seq) { if (copied) break; if (signal_pending(current)) { copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; break; } } /* Next get a buffer. */ last = skb_peek_tail(&sk->sk_receive_queue); skb_queue_walk(&sk->sk_receive_queue, skb) { last = skb; /* Now that we have two receive queues this * shouldn't happen. */ if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags)) break; offset = *seq - TCP_SKB_CB(skb)->seq; if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { pr_err_once("%s: found a SYN, please report !\n", __func__); offset--; } if (offset < skb->len) goto found_ok_skb; if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) goto found_fin_ok; WARN(!(flags & MSG_PEEK), "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); } /* Well, if we have backlog, try to process it now yet. */ if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) break; if (copied) { if (!timeo || sk->sk_err || sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN) || signal_pending(current)) break; } else { if (sock_flag(sk, SOCK_DONE)) break; if (sk->sk_err) { copied = sock_error(sk); break; } if (sk->sk_shutdown & RCV_SHUTDOWN) break; if (sk->sk_state == TCP_CLOSE) { /* This occurs when user tries to read * from never connected socket. */ copied = -ENOTCONN; break; } if (!timeo) { copied = -EAGAIN; break; } if (signal_pending(current)) { copied = sock_intr_errno(timeo); break; } } if (copied >= target) { /* Do not sleep, just process backlog. */ __sk_flush_backlog(sk); } else { tcp_cleanup_rbuf(sk, copied); err = sk_wait_data(sk, &timeo, last); if (err < 0) { err = copied ? : err; goto out; } } if ((flags & MSG_PEEK) && (peek_seq - copied - urg_hole != tp->copied_seq)) { net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", current->comm, task_pid_nr(current)); peek_seq = tp->copied_seq; } continue; found_ok_skb: /* Ok so how much can we use? */ used = skb->len - offset; if (len < used) used = len; /* Do we have urgent data here? */ if (unlikely(tp->urg_data)) { u32 urg_offset = tp->urg_seq - *seq; if (urg_offset < used) { if (!urg_offset) { if (!sock_flag(sk, SOCK_URGINLINE)) { WRITE_ONCE(*seq, *seq + 1); urg_hole++; offset++; used--; if (!used) goto skip_copy; } } else used = urg_offset; } } if (!(flags & MSG_TRUNC)) { err = skb_copy_datagram_msg(skb, offset, msg, used); if (err) { /* Exception. Bailout! */ if (!copied) copied = -EFAULT; break; } } WRITE_ONCE(*seq, *seq + used); copied += used; len -= used; tcp_rcv_space_adjust(sk); skip_copy: if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) { WRITE_ONCE(tp->urg_data, 0); tcp_fast_path_check(sk); } if (TCP_SKB_CB(skb)->has_rxtstamp) { tcp_update_recv_tstamps(skb, tss); *cmsg_flags |= TCP_CMSG_TS; } if (used + offset < skb->len) continue; if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) goto found_fin_ok; if (!(flags & MSG_PEEK)) tcp_eat_recv_skb(sk, skb); continue; found_fin_ok: /* Process the FIN. */ WRITE_ONCE(*seq, *seq + 1); if (!(flags & MSG_PEEK)) tcp_eat_recv_skb(sk, skb); break; } while (len > 0); /* According to UNIX98, msg_name/msg_namelen are ignored * on connected socket. I was just happy when found this 8) --ANK */ /* Clean up data we have read: This will do ACK frames. */ tcp_cleanup_rbuf(sk, copied); return copied; out: return err; recv_urg: err = tcp_recv_urg(sk, msg, len, flags); goto out; recv_sndq: err = tcp_peek_sndq(sk, msg, len); goto out; } int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, int *addr_len) { int cmsg_flags = 0, ret; struct scm_timestamping_internal tss; if (unlikely(flags & MSG_ERRQUEUE)) return inet_recv_error(sk, msg, len, addr_len); if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue) && sk->sk_state == TCP_ESTABLISHED) sk_busy_loop(sk, flags & MSG_DONTWAIT); lock_sock(sk); ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags); release_sock(sk); if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) { if (cmsg_flags & TCP_CMSG_TS) tcp_recv_timestamp(msg, sk, &tss); if (msg->msg_get_inq) { msg->msg_inq = tcp_inq_hint(sk); if (cmsg_flags & TCP_CMSG_INQ) put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(msg->msg_inq), &msg->msg_inq); } } return ret; } EXPORT_SYMBOL(tcp_recvmsg); void tcp_set_state(struct sock *sk, int state) { int oldstate = sk->sk_state; /* We defined a new enum for TCP states that are exported in BPF * so as not force the internal TCP states to be frozen. The * following checks will detect if an internal state value ever * differs from the BPF value. If this ever happens, then we will * need to remap the internal value to the BPF value before calling * tcp_call_bpf_2arg. */ BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); BUILD_BUG_ON((int)BPF_TCP_BOUND_INACTIVE != (int)TCP_BOUND_INACTIVE); BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); /* bpf uapi header bpf.h defines an anonymous enum with values * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux * is able to emit this enum in DWARF due to the above BUILD_BUG_ON. * But clang built vmlinux does not have this enum in DWARF * since clang removes the above code before generating IR/debuginfo. * Let us explicitly emit the type debuginfo to ensure the * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF * regardless of which compiler is used. */ BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED); if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); switch (state) { case TCP_ESTABLISHED: if (oldstate != TCP_ESTABLISHED) TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); break; case TCP_CLOSE: if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); sk->sk_prot->unhash(sk); if (inet_csk(sk)->icsk_bind_hash && !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) inet_put_port(sk); fallthrough; default: if (oldstate == TCP_ESTABLISHED) TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); } /* Change state AFTER socket is unhashed to avoid closed * socket sitting in hash tables. */ inet_sk_state_store(sk, state); } EXPORT_SYMBOL_GPL(tcp_set_state); /* * State processing on a close. This implements the state shift for * sending our FIN frame. Note that we only send a FIN for some * states. A shutdown() may have already sent the FIN, or we may be * closed. */ static const unsigned char new_state[16] = { /* current state: new state: action: */ [0 /* (Invalid) */] = TCP_CLOSE, [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, [TCP_SYN_SENT] = TCP_CLOSE, [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, [TCP_TIME_WAIT] = TCP_CLOSE, [TCP_CLOSE] = TCP_CLOSE, [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, [TCP_LAST_ACK] = TCP_LAST_ACK, [TCP_LISTEN] = TCP_CLOSE, [TCP_CLOSING] = TCP_CLOSING, [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ }; static int tcp_close_state(struct sock *sk) { int next = (int)new_state[sk->sk_state]; int ns = next & TCP_STATE_MASK; tcp_set_state(sk, ns); return next & TCP_ACTION_FIN; } /* * Shutdown the sending side of a connection. Much like close except * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). */ void tcp_shutdown(struct sock *sk, int how) { /* We need to grab some memory, and put together a FIN, * and then put it into the queue to be sent. * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. */ if (!(how & SEND_SHUTDOWN)) return; /* If we've already sent a FIN, or it's a closed state, skip this. */ if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { /* Clear out any half completed packets. FIN if needed. */ if (tcp_close_state(sk)) tcp_send_fin(sk); } } EXPORT_SYMBOL(tcp_shutdown); int tcp_orphan_count_sum(void) { int i, total = 0; for_each_possible_cpu(i) total += per_cpu(tcp_orphan_count, i); return max(total, 0); } static int tcp_orphan_cache; static struct timer_list tcp_orphan_timer; #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) static void tcp_orphan_update(struct timer_list *unused) { WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); } static bool tcp_too_many_orphans(int shift) { return READ_ONCE(tcp_orphan_cache) << shift > READ_ONCE(sysctl_tcp_max_orphans); } bool tcp_check_oom(struct sock *sk, int shift) { bool too_many_orphans, out_of_socket_memory; too_many_orphans = tcp_too_many_orphans(shift); out_of_socket_memory = tcp_out_of_memory(sk); if (too_many_orphans) net_info_ratelimited("too many orphaned sockets\n"); if (out_of_socket_memory) net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); return too_many_orphans || out_of_socket_memory; } void __tcp_close(struct sock *sk, long timeout) { struct sk_buff *skb; int data_was_unread = 0; int state; WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); if (sk->sk_state == TCP_LISTEN) { tcp_set_state(sk, TCP_CLOSE); /* Special case. */ inet_csk_listen_stop(sk); goto adjudge_to_death; } /* We need to flush the recv. buffs. We do this only on the * descriptor close, not protocol-sourced closes, because the * reader process may not have drained the data yet! */ while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) len--; data_was_unread += len; __kfree_skb(skb); } /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ if (sk->sk_state == TCP_CLOSE) goto adjudge_to_death; /* As outlined in RFC 2525, section 2.17, we send a RST here because * data was lost. To witness the awful effects of the old behavior of * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk * GET in an FTP client, suspend the process, wait for the client to * advertise a zero window, then kill -9 the FTP client, wheee... * Note: timeout is always zero in such a case. */ if (unlikely(tcp_sk(sk)->repair)) { sk->sk_prot->disconnect(sk, 0); } else if (data_was_unread) { /* Unread data was tossed, zap the connection. */ NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); tcp_set_state(sk, TCP_CLOSE); tcp_send_active_reset(sk, sk->sk_allocation); } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { /* Check zero linger _after_ checking for unread data. */ sk->sk_prot->disconnect(sk, 0); NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); } else if (tcp_close_state(sk)) { /* We FIN if the application ate all the data before * zapping the connection. */ /* RED-PEN. Formally speaking, we have broken TCP state * machine. State transitions: * * TCP_ESTABLISHED -> TCP_FIN_WAIT1 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) * TCP_CLOSE_WAIT -> TCP_LAST_ACK * * are legal only when FIN has been sent (i.e. in window), * rather than queued out of window. Purists blame. * * F.e. "RFC state" is ESTABLISHED, * if Linux state is FIN-WAIT-1, but FIN is still not sent. * * The visible declinations are that sometimes * we enter time-wait state, when it is not required really * (harmless), do not send active resets, when they are * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when * they look as CLOSING or LAST_ACK for Linux) * Probably, I missed some more holelets. * --ANK * XXX (TFO) - To start off we don't support SYN+ACK+FIN * in a single packet! (May consider it later but will * probably need API support or TCP_CORK SYN-ACK until * data is written and socket is closed.) */ tcp_send_fin(sk); } sk_stream_wait_close(sk, timeout); adjudge_to_death: state = sk->sk_state; sock_hold(sk); sock_orphan(sk); local_bh_disable(); bh_lock_sock(sk); /* remove backlog if any, without releasing ownership. */ __release_sock(sk); this_cpu_inc(tcp_orphan_count); /* Have we already been destroyed by a softirq or backlog? */ if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) goto out; /* This is a (useful) BSD violating of the RFC. There is a * problem with TCP as specified in that the other end could * keep a socket open forever with no application left this end. * We use a 1 minute timeout (about the same as BSD) then kill * our end. If they send after that then tough - BUT: long enough * that we won't make the old 4*rto = almost no time - whoops * reset mistake. * * Nope, it was not mistake. It is really desired behaviour * f.e. on http servers, when such sockets are useless, but * consume significant resources. Let's do it with special * linger2 option. --ANK */ if (sk->sk_state == TCP_FIN_WAIT2) { struct tcp_sock *tp = tcp_sk(sk); if (READ_ONCE(tp->linger2) < 0) { tcp_set_state(sk, TCP_CLOSE); tcp_send_active_reset(sk, GFP_ATOMIC); __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONLINGER); } else { const int tmo = tcp_fin_time(sk); if (tmo > TCP_TIMEWAIT_LEN) { inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); } else { tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); goto out; } } } if (sk->sk_state != TCP_CLOSE) { if (tcp_check_oom(sk, 0)) { tcp_set_state(sk, TCP_CLOSE); tcp_send_active_reset(sk, GFP_ATOMIC); __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONMEMORY); } else if (!check_net(sock_net(sk))) { /* Not possible to send reset; just close */ tcp_set_state(sk, TCP_CLOSE); } } if (sk->sk_state == TCP_CLOSE) { struct request_sock *req; req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, lockdep_sock_is_held(sk)); /* We could get here with a non-NULL req if the socket is * aborted (e.g., closed with unread data) before 3WHS * finishes. */ if (req) reqsk_fastopen_remove(sk, req, false); inet_csk_destroy_sock(sk); } /* Otherwise, socket is reprieved until protocol close. */ out: bh_unlock_sock(sk); local_bh_enable(); } void tcp_close(struct sock *sk, long timeout) { lock_sock(sk); __tcp_close(sk, timeout); release_sock(sk); sock_put(sk); } EXPORT_SYMBOL(tcp_close); /* These states need RST on ABORT according to RFC793 */ static inline bool tcp_need_reset(int state) { return (1 << state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_SYN_RECV); } static void tcp_rtx_queue_purge(struct sock *sk) { struct rb_node *p = rb_first(&sk->tcp_rtx_queue); tcp_sk(sk)->highest_sack = NULL; while (p) { struct sk_buff *skb = rb_to_skb(p); p = rb_next(p); /* Since we are deleting whole queue, no need to * list_del(&skb->tcp_tsorted_anchor) */ tcp_rtx_queue_unlink(skb, sk); tcp_wmem_free_skb(sk, skb); } } void tcp_write_queue_purge(struct sock *sk) { struct sk_buff *skb; tcp_chrono_stop(sk, TCP_CHRONO_BUSY); while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { tcp_skb_tsorted_anchor_cleanup(skb); tcp_wmem_free_skb(sk, skb); } tcp_rtx_queue_purge(sk); INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); tcp_clear_all_retrans_hints(tcp_sk(sk)); tcp_sk(sk)->packets_out = 0; inet_csk(sk)->icsk_backoff = 0; } int tcp_disconnect(struct sock *sk, int flags) { struct inet_sock *inet = inet_sk(sk); struct inet_connection_sock *icsk = inet_csk(sk); struct tcp_sock *tp = tcp_sk(sk); int old_state = sk->sk_state; u32 seq; if (old_state != TCP_CLOSE) tcp_set_state(sk, TCP_CLOSE); /* ABORT function of RFC793 */ if (old_state == TCP_LISTEN) { inet_csk_listen_stop(sk); } else if (unlikely(tp->repair)) { WRITE_ONCE(sk->sk_err, ECONNABORTED); } else if (tcp_need_reset(old_state) || (tp->snd_nxt != tp->write_seq && (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { /* The last check adjusts for discrepancy of Linux wrt. RFC * states */ tcp_send_active_reset(sk, gfp_any()); WRITE_ONCE(sk->sk_err, ECONNRESET); } else if (old_state == TCP_SYN_SENT) WRITE_ONCE(sk->sk_err, ECONNRESET); tcp_clear_xmit_timers(sk); __skb_queue_purge(&sk->sk_receive_queue); WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); WRITE_ONCE(tp->urg_data, 0); tcp_write_queue_purge(sk); tcp_fastopen_active_disable_ofo_check(sk); skb_rbtree_purge(&tp->out_of_order_queue); inet->inet_dport = 0; inet_bhash2_reset_saddr(sk); WRITE_ONCE(sk->sk_shutdown, 0); sock_reset_flag(sk, SOCK_DONE); tp->srtt_us = 0; tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); tp->rcv_rtt_last_tsecr = 0; seq = tp->write_seq + tp->max_window + 2; if (!seq) seq = 1; WRITE_ONCE(tp->write_seq, seq); icsk->icsk_backoff = 0; icsk->icsk_probes_out = 0; icsk->icsk_probes_tstamp = 0; icsk->icsk_rto = TCP_TIMEOUT_INIT; icsk->icsk_rto_min = TCP_RTO_MIN; icsk->icsk_delack_max = TCP_DELACK_MAX; tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; tcp_snd_cwnd_set(tp, TCP_INIT_CWND); tp->snd_cwnd_cnt = 0; tp->is_cwnd_limited = 0; tp->max_packets_out = 0; tp->window_clamp = 0; tp->delivered = 0; tp->delivered_ce = 0; if (icsk->icsk_ca_ops->release) icsk->icsk_ca_ops->release(sk); memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); icsk->icsk_ca_initialized = 0; tcp_set_ca_state(sk, TCP_CA_Open); tp->is_sack_reneg = 0; tcp_clear_retrans(tp); tp->total_retrans = 0; inet_csk_delack_init(sk); /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 * issue in __tcp_select_window() */ icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); __sk_dst_reset(sk); dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL)); tcp_saved_syn_free(tp); tp->compressed_ack = 0; tp->segs_in = 0; tp->segs_out = 0; tp->bytes_sent = 0; tp->bytes_acked = 0; tp->bytes_received = 0; tp->bytes_retrans = 0; tp->data_segs_in = 0; tp->data_segs_out = 0; tp->duplicate_sack[0].start_seq = 0; tp->duplicate_sack[0].end_seq = 0; tp->dsack_dups = 0; tp->reord_seen = 0; tp->retrans_out = 0; tp->sacked_out = 0; tp->tlp_high_seq = 0; tp->last_oow_ack_time = 0; tp->plb_rehash = 0; /* There's a bubble in the pipe until at least the first ACK. */ tp->app_limited = ~0U; tp->rate_app_limited = 1; tp->rack.mstamp = 0; tp->rack.advanced = 0; tp->rack.reo_wnd_steps = 1; tp->rack.last_delivered = 0; tp->rack.reo_wnd_persist = 0; tp->rack.dsack_seen = 0; tp->syn_data_acked = 0; tp->rx_opt.saw_tstamp = 0; tp->rx_opt.dsack = 0; tp->rx_opt.num_sacks = 0; tp->rcv_ooopack = 0; /* Clean up fastopen related fields */ tcp_free_fastopen_req(tp); inet_clear_bit(DEFER_CONNECT, sk); tp->fastopen_client_fail = 0; WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); if (sk->sk_frag.page) { put_page(sk->sk_frag.page); sk->sk_frag.page = NULL; sk->sk_frag.offset = 0; } sk_error_report(sk); return 0; } EXPORT_SYMBOL(tcp_disconnect); static inline bool tcp_can_repair_sock(const struct sock *sk) { return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && (sk->sk_state != TCP_LISTEN); } static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) { struct tcp_repair_window opt; if (!tp->repair) return -EPERM; if (len != sizeof(opt)) return -EINVAL; if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) return -EFAULT; if (opt.max_window < opt.snd_wnd) return -EINVAL; if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) return -EINVAL; if (after(opt.rcv_wup, tp->rcv_nxt)) return -EINVAL; tp->snd_wl1 = opt.snd_wl1; tp->snd_wnd = opt.snd_wnd; tp->max_window = opt.max_window; tp->rcv_wnd = opt.rcv_wnd; tp->rcv_wup = opt.rcv_wup; return 0; } static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, unsigned int len) { struct tcp_sock *tp = tcp_sk(sk); struct tcp_repair_opt opt; size_t offset = 0; while (len >= sizeof(opt)) { if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) return -EFAULT; offset += sizeof(opt); len -= sizeof(opt); switch (opt.opt_code) { case TCPOPT_MSS: tp->rx_opt.mss_clamp = opt.opt_val; tcp_mtup_init(sk); break; case TCPOPT_WINDOW: { u16 snd_wscale = opt.opt_val & 0xFFFF; u16 rcv_wscale = opt.opt_val >> 16; if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) return -EFBIG; tp->rx_opt.snd_wscale = snd_wscale; tp->rx_opt.rcv_wscale = rcv_wscale; tp->rx_opt.wscale_ok = 1; } break; case TCPOPT_SACK_PERM: if (opt.opt_val != 0) return -EINVAL; tp->rx_opt.sack_ok |= TCP_SACK_SEEN; break; case TCPOPT_TIMESTAMP: if (opt.opt_val != 0) return -EINVAL; tp->rx_opt.tstamp_ok = 1; break; } } return 0; } DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); EXPORT_SYMBOL(tcp_tx_delay_enabled); static void tcp_enable_tx_delay(void) { if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { static int __tcp_tx_delay_enabled = 0; if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { static_branch_enable(&tcp_tx_delay_enabled); pr_info("TCP_TX_DELAY enabled\n"); } } } /* When set indicates to always queue non-full frames. Later the user clears * this option and we transmit any pending partial frames in the queue. This is * meant to be used alongside sendfile() to get properly filled frames when the * user (for example) must write out headers with a write() call first and then * use sendfile to send out the data parts. * * TCP_CORK can be set together with TCP_NODELAY and it is stronger than * TCP_NODELAY. */ void __tcp_sock_set_cork(struct sock *sk, bool on) { struct tcp_sock *tp = tcp_sk(sk); if (on) { tp->nonagle |= TCP_NAGLE_CORK; } else { tp->nonagle &= ~TCP_NAGLE_CORK; if (tp->nonagle & TCP_NAGLE_OFF) tp->nonagle |= TCP_NAGLE_PUSH; tcp_push_pending_frames(sk); } } void tcp_sock_set_cork(struct sock *sk, bool on) { lock_sock(sk); __tcp_sock_set_cork(sk, on); release_sock(sk); } EXPORT_SYMBOL(tcp_sock_set_cork); /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is * remembered, but it is not activated until cork is cleared. * * However, when TCP_NODELAY is set we make an explicit push, which overrides * even TCP_CORK for currently queued segments. */ void __tcp_sock_set_nodelay(struct sock *sk, bool on) { if (on) { tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; tcp_push_pending_frames(sk); } else { tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; } } void tcp_sock_set_nodelay(struct sock *sk) { lock_sock(sk); __tcp_sock_set_nodelay(sk, true); release_sock(sk); } EXPORT_SYMBOL(tcp_sock_set_nodelay); static void __tcp_sock_set_quickack(struct sock *sk, int val) { if (!val) { inet_csk_enter_pingpong_mode(sk); return; } inet_csk_exit_pingpong_mode(sk); if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && inet_csk_ack_scheduled(sk)) { inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; tcp_cleanup_rbuf(sk, 1); if (!(val & 1)) inet_csk_enter_pingpong_mode(sk); } } void tcp_sock_set_quickack(struct sock *sk, int val) { lock_sock(sk); __tcp_sock_set_quickack(sk, val); release_sock(sk); } EXPORT_SYMBOL(tcp_sock_set_quickack); int tcp_sock_set_syncnt(struct sock *sk, int val) { if (val < 1 || val > MAX_TCP_SYNCNT) return -EINVAL; WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val); return 0; } EXPORT_SYMBOL(tcp_sock_set_syncnt); int tcp_sock_set_user_timeout(struct sock *sk, int val) { /* Cap the max time in ms TCP will retry or probe the window * before giving up and aborting (ETIMEDOUT) a connection. */ if (val < 0) return -EINVAL; WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val); return 0; } EXPORT_SYMBOL(tcp_sock_set_user_timeout); int tcp_sock_set_keepidle_locked(struct sock *sk, int val) { struct tcp_sock *tp = tcp_sk(sk); if (val < 1 || val > MAX_TCP_KEEPIDLE) return -EINVAL; /* Paired with WRITE_ONCE() in keepalive_time_when() */ WRITE_ONCE(tp->keepalive_time, val * HZ); if (sock_flag(sk, SOCK_KEEPOPEN) && !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { u32 elapsed = keepalive_time_elapsed(tp); if (tp->keepalive_time > elapsed) elapsed = tp->keepalive_time - elapsed; else elapsed = 0; inet_csk_reset_keepalive_timer(sk, elapsed); } return 0; } int tcp_sock_set_keepidle(struct sock *sk, int val) { int err; lock_sock(sk); err = tcp_sock_set_keepidle_locked(sk, val); release_sock(sk); return err; } EXPORT_SYMBOL(tcp_sock_set_keepidle); int tcp_sock_set_keepintvl(struct sock *sk, int val) { if (val < 1 || val > MAX_TCP_KEEPINTVL) return -EINVAL; WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ); return 0; } EXPORT_SYMBOL(tcp_sock_set_keepintvl); int tcp_sock_set_keepcnt(struct sock *sk, int val) { if (val < 1 || val > MAX_TCP_KEEPCNT) return -EINVAL; /* Paired with READ_ONCE() in keepalive_probes() */ WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val); return 0; } EXPORT_SYMBOL(tcp_sock_set_keepcnt); int tcp_set_window_clamp(struct sock *sk, int val) { struct tcp_sock *tp = tcp_sk(sk); if (!val) { if (sk->sk_state != TCP_CLOSE) return -EINVAL; tp->window_clamp = 0; } else { u32 new_rcv_ssthresh, old_window_clamp = tp->window_clamp; u32 new_window_clamp = val < SOCK_MIN_RCVBUF / 2 ? SOCK_MIN_RCVBUF / 2 : val; if (new_window_clamp == old_window_clamp) return 0; tp->window_clamp = new_window_clamp; if (new_window_clamp < old_window_clamp) { /* need to apply the reserved mem provisioning only * when shrinking the window clamp */ __tcp_adjust_rcv_ssthresh(sk, tp->window_clamp); } else { new_rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp); tp->rcv_ssthresh = max(new_rcv_ssthresh, tp->rcv_ssthresh); } } return 0; } /* * Socket option code for TCP. */ int do_tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, unsigned int optlen) { struct tcp_sock *tp = tcp_sk(sk); struct inet_connection_sock *icsk = inet_csk(sk); struct net *net = sock_net(sk); int val; int err = 0; /* These are data/string values, all the others are ints */ switch (optname) { case TCP_CONGESTION: { char name[TCP_CA_NAME_MAX]; if (optlen < 1) return -EINVAL; val = strncpy_from_sockptr(name, optval, min_t(long, TCP_CA_NAME_MAX-1, optlen)); if (val < 0) return -EFAULT; name[val] = 0; sockopt_lock_sock(sk); err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(), sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)); sockopt_release_sock(sk); return err; } case TCP_ULP: { char name[TCP_ULP_NAME_MAX]; if (optlen < 1) return -EINVAL; val = strncpy_from_sockptr(name, optval, min_t(long, TCP_ULP_NAME_MAX - 1, optlen)); if (val < 0) return -EFAULT; name[val] = 0; sockopt_lock_sock(sk); err = tcp_set_ulp(sk, name); sockopt_release_sock(sk); return err; } case TCP_FASTOPEN_KEY: { __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; __u8 *backup_key = NULL; /* Allow a backup key as well to facilitate key rotation * First key is the active one. */ if (optlen != TCP_FASTOPEN_KEY_LENGTH && optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) return -EINVAL; if (copy_from_sockptr(key, optval, optlen)) return -EFAULT; if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) backup_key = key + TCP_FASTOPEN_KEY_LENGTH; return tcp_fastopen_reset_cipher(net, sk, key, backup_key); } default: /* fallthru */ break; } if (optlen < sizeof(int)) return -EINVAL; if (copy_from_sockptr(&val, optval, sizeof(val))) return -EFAULT; /* Handle options that can be set without locking the socket. */ switch (optname) { case TCP_SYNCNT: return tcp_sock_set_syncnt(sk, val); case TCP_USER_TIMEOUT: return tcp_sock_set_user_timeout(sk, val); case TCP_KEEPINTVL: return tcp_sock_set_keepintvl(sk, val); case TCP_KEEPCNT: return tcp_sock_set_keepcnt(sk, val); case TCP_LINGER2: if (val < 0) WRITE_ONCE(tp->linger2, -1); else if (val > TCP_FIN_TIMEOUT_MAX / HZ) WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX); else WRITE_ONCE(tp->linger2, val * HZ); return 0; case TCP_DEFER_ACCEPT: /* Translate value in seconds to number of retransmits */ WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept, secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ)); return 0; } sockopt_lock_sock(sk); switch (optname) { case TCP_MAXSEG: /* Values greater than interface MTU won't take effect. However * at the point when this call is done we typically don't yet * know which interface is going to be used */ if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { err = -EINVAL; break; } tp->rx_opt.user_mss = val; break; case TCP_NODELAY: __tcp_sock_set_nodelay(sk, val); break; case TCP_THIN_LINEAR_TIMEOUTS: if (val < 0 || val > 1) err = -EINVAL; else tp->thin_lto = val; break; case TCP_THIN_DUPACK: if (val < 0 || val > 1) err = -EINVAL; break; case TCP_REPAIR: if (!tcp_can_repair_sock(sk)) err = -EPERM; else if (val == TCP_REPAIR_ON) { tp->repair = 1; sk->sk_reuse = SK_FORCE_REUSE; tp->repair_queue = TCP_NO_QUEUE; } else if (val == TCP_REPAIR_OFF) { tp->repair = 0; sk->sk_reuse = SK_NO_REUSE; tcp_send_window_probe(sk); } else if (val == TCP_REPAIR_OFF_NO_WP) { tp->repair = 0; sk->sk_reuse = SK_NO_REUSE; } else err = -EINVAL; break; case TCP_REPAIR_QUEUE: if (!tp->repair) err = -EPERM; else if ((unsigned int)val < TCP_QUEUES_NR) tp->repair_queue = val; else err = -EINVAL; break; case TCP_QUEUE_SEQ: if (sk->sk_state != TCP_CLOSE) { err = -EPERM; } else if (tp->repair_queue == TCP_SEND_QUEUE) { if (!tcp_rtx_queue_empty(sk)) err = -EPERM; else WRITE_ONCE(tp->write_seq, val); } else if (tp->repair_queue == TCP_RECV_QUEUE) { if (tp->rcv_nxt != tp->copied_seq) { err = -EPERM; } else { WRITE_ONCE(tp->rcv_nxt, val); WRITE_ONCE(tp->copied_seq, val); } } else { err = -EINVAL; } break; case TCP_REPAIR_OPTIONS: if (!tp->repair) err = -EINVAL; else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent) err = tcp_repair_options_est(sk, optval, optlen); else err = -EPERM; break; case TCP_CORK: __tcp_sock_set_cork(sk, val); break; case TCP_KEEPIDLE: err = tcp_sock_set_keepidle_locked(sk, val); break; case TCP_SAVE_SYN: /* 0: disable, 1: enable, 2: start from ether_header */ if (val < 0 || val > 2) err = -EINVAL; else tp->save_syn = val; break; case TCP_WINDOW_CLAMP: err = tcp_set_window_clamp(sk, val); break; case TCP_QUICKACK: __tcp_sock_set_quickack(sk, val); break; case TCP_AO_REPAIR: if (!tcp_can_repair_sock(sk)) { err = -EPERM; break; } err = tcp_ao_set_repair(sk, optval, optlen); break; #ifdef CONFIG_TCP_AO case TCP_AO_ADD_KEY: case TCP_AO_DEL_KEY: case TCP_AO_INFO: { /* If this is the first TCP-AO setsockopt() on the socket, * sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR * in any state. */ if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) goto ao_parse; if (rcu_dereference_protected(tcp_sk(sk)->ao_info, lockdep_sock_is_held(sk))) goto ao_parse; if (tp->repair) goto ao_parse; err = -EISCONN; break; ao_parse: err = tp->af_specific->ao_parse(sk, optname, optval, optlen); break; } #endif #ifdef CONFIG_TCP_MD5SIG case TCP_MD5SIG: case TCP_MD5SIG_EXT: err = tp->af_specific->md5_parse(sk, optname, optval, optlen); break; #endif case TCP_FASTOPEN: if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { tcp_fastopen_init_key_once(net); fastopen_queue_tune(sk, val); } else { err = -EINVAL; } break; case TCP_FASTOPEN_CONNECT: if (val > 1 || val < 0) { err = -EINVAL; } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) & TFO_CLIENT_ENABLE) { if (sk->sk_state == TCP_CLOSE) tp->fastopen_connect = val; else err = -EINVAL; } else { err = -EOPNOTSUPP; } break; case TCP_FASTOPEN_NO_COOKIE: if (val > 1 || val < 0) err = -EINVAL; else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) err = -EINVAL; else tp->fastopen_no_cookie = val; break; case TCP_TIMESTAMP: if (!tp->repair) { err = -EPERM; break; } /* val is an opaque field, * and low order bit contains usec_ts enable bit. * Its a best effort, and we do not care if user makes an error. */ tp->tcp_usec_ts = val & 1; WRITE_ONCE(tp->tsoffset, val - tcp_clock_ts(tp->tcp_usec_ts)); break; case TCP_REPAIR_WINDOW: err = tcp_repair_set_window(tp, optval, optlen); break; case TCP_NOTSENT_LOWAT: WRITE_ONCE(tp->notsent_lowat, val); sk->sk_write_space(sk); break; case TCP_INQ: if (val > 1 || val < 0) err = -EINVAL; else tp->recvmsg_inq = val; break; case TCP_TX_DELAY: if (val) tcp_enable_tx_delay(); WRITE_ONCE(tp->tcp_tx_delay, val); break; default: err = -ENOPROTOOPT; break; } sockopt_release_sock(sk); return err; } int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, unsigned int optlen) { const struct inet_connection_sock *icsk = inet_csk(sk); if (level != SOL_TCP) /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname, optval, optlen); return do_tcp_setsockopt(sk, level, optname, optval, optlen); } EXPORT_SYMBOL(tcp_setsockopt); static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, struct tcp_info *info) { u64 stats[__TCP_CHRONO_MAX], total = 0; enum tcp_chrono i; for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { stats[i] = tp->chrono_stat[i - 1]; if (i == tp->chrono_type) stats[i] += tcp_jiffies32 - tp->chrono_start; stats[i] *= USEC_PER_SEC / HZ; total += stats[i]; } info->tcpi_busy_time = total; info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; } /* Return information about state of tcp endpoint in API format. */ void tcp_get_info(struct sock *sk, struct tcp_info *info) { const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ const struct inet_connection_sock *icsk = inet_csk(sk); unsigned long rate; u32 now; u64 rate64; bool slow; memset(info, 0, sizeof(*info)); if (sk->sk_type != SOCK_STREAM) return; info->tcpi_state = inet_sk_state_load(sk); /* Report meaningful fields for all TCP states, including listeners */ rate = READ_ONCE(sk->sk_pacing_rate); rate64 = (rate != ~0UL) ? rate : ~0ULL; info->tcpi_pacing_rate = rate64; rate = READ_ONCE(sk->sk_max_pacing_rate); rate64 = (rate != ~0UL) ? rate : ~0ULL; info->tcpi_max_pacing_rate = rate64; info->tcpi_reordering = tp->reordering; info->tcpi_snd_cwnd = tcp_snd_cwnd(tp); if (info->tcpi_state == TCP_LISTEN) { /* listeners aliased fields : * tcpi_unacked -> Number of children ready for accept() * tcpi_sacked -> max backlog */ info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); return; } slow = lock_sock_fast(sk); info->tcpi_ca_state = icsk->icsk_ca_state; info->tcpi_retransmits = icsk->icsk_retransmits; info->tcpi_probes = icsk->icsk_probes_out; info->tcpi_backoff = icsk->icsk_backoff; if (tp->rx_opt.tstamp_ok) info->tcpi_options |= TCPI_OPT_TIMESTAMPS; if (tcp_is_sack(tp)) info->tcpi_options |= TCPI_OPT_SACK; if (tp->rx_opt.wscale_ok) { info->tcpi_options |= TCPI_OPT_WSCALE; info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; } if (tp->ecn_flags & TCP_ECN_OK) info->tcpi_options |= TCPI_OPT_ECN; if (tp->ecn_flags & TCP_ECN_SEEN) info->tcpi_options |= TCPI_OPT_ECN_SEEN; if (tp->syn_data_acked) info->tcpi_options |= TCPI_OPT_SYN_DATA; if (tp->tcp_usec_ts) info->tcpi_options |= TCPI_OPT_USEC_TS; info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); info->tcpi_ato = jiffies_to_usecs(min_t(u32, icsk->icsk_ack.ato, tcp_delack_max(sk))); info->tcpi_snd_mss = tp->mss_cache; info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; info->tcpi_unacked = tp->packets_out; info->tcpi_sacked = tp->sacked_out; info->tcpi_lost = tp->lost_out; info->tcpi_retrans = tp->retrans_out; now = tcp_jiffies32; info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); info->tcpi_pmtu = icsk->icsk_pmtu_cookie; info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; info->tcpi_rtt = tp->srtt_us >> 3; info->tcpi_rttvar = tp->mdev_us >> 2; info->tcpi_snd_ssthresh = tp->snd_ssthresh; info->tcpi_advmss = tp->advmss; info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; info->tcpi_rcv_space = tp->rcvq_space.space; info->tcpi_total_retrans = tp->total_retrans; info->tcpi_bytes_acked = tp->bytes_acked; info->tcpi_bytes_received = tp->bytes_received; info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); tcp_get_info_chrono_stats(tp, info); info->tcpi_segs_out = tp->segs_out; /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */ info->tcpi_segs_in = READ_ONCE(tp->segs_in); info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in); info->tcpi_min_rtt = tcp_min_rtt(tp); info->tcpi_data_segs_out = tp->data_segs_out; info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; rate64 = tcp_compute_delivery_rate(tp); if (rate64) info->tcpi_delivery_rate = rate64; info->tcpi_delivered = tp->delivered; info->tcpi_delivered_ce = tp->delivered_ce; info->tcpi_bytes_sent = tp->bytes_sent; info->tcpi_bytes_retrans = tp->bytes_retrans; info->tcpi_dsack_dups = tp->dsack_dups; info->tcpi_reord_seen = tp->reord_seen; info->tcpi_rcv_ooopack = tp->rcv_ooopack; info->tcpi_snd_wnd = tp->snd_wnd; info->tcpi_rcv_wnd = tp->rcv_wnd; info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash; info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; info->tcpi_total_rto = tp->total_rto; info->tcpi_total_rto_recoveries = tp->total_rto_recoveries; info->tcpi_total_rto_time = tp->total_rto_time; if (tp->rto_stamp) info->tcpi_total_rto_time += tcp_clock_ms() - tp->rto_stamp; unlock_sock_fast(sk, slow); } EXPORT_SYMBOL_GPL(tcp_get_info); static size_t tcp_opt_stats_get_size(void) { return nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */ nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */ 0; } /* Returns TTL or hop limit of an incoming packet from skb. */ static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) { if (skb->protocol == htons(ETH_P_IP)) return ip_hdr(skb)->ttl; else if (skb->protocol == htons(ETH_P_IPV6)) return ipv6_hdr(skb)->hop_limit; else return 0; } struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, const struct sk_buff *orig_skb, const struct sk_buff *ack_skb) { const struct tcp_sock *tp = tcp_sk(sk); struct sk_buff *stats; struct tcp_info info; unsigned long rate; u64 rate64; stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); if (!stats) return NULL; tcp_get_info_chrono_stats(tp, &info); nla_put_u64_64bit(stats, TCP_NLA_BUSY, info.tcpi_busy_time, TCP_NLA_PAD); nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, info.tcpi_rwnd_limited, TCP_NLA_PAD); nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, info.tcpi_sndbuf_limited, TCP_NLA_PAD); nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, tp->data_segs_out, TCP_NLA_PAD); nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, tp->total_retrans, TCP_NLA_PAD); rate = READ_ONCE(sk->sk_pacing_rate); rate64 = (rate != ~0UL) ? rate : ~0ULL; nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); rate64 = tcp_compute_delivery_rate(tp); nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp)); nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, TCP_NLA_PAD); nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, TCP_NLA_PAD); nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, max_t(int, 0, tp->write_seq - tp->snd_nxt)); nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, TCP_NLA_PAD); if (ack_skb) nla_put_u8(stats, TCP_NLA_TTL, tcp_skb_ttl_or_hop_limit(ack_skb)); nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash); return stats; } int do_tcp_getsockopt(struct sock *sk, int level, int optname, sockptr_t optval, sockptr_t optlen) { struct inet_connection_sock *icsk = inet_csk(sk); struct tcp_sock *tp = tcp_sk(sk); struct net *net = sock_net(sk); int val, len; if (copy_from_sockptr(&len, optlen, sizeof(int))) return -EFAULT; len = min_t(unsigned int, len, sizeof(int)); if (len < 0) return -EINVAL; switch (optname) { case TCP_MAXSEG: val = tp->mss_cache; if (tp->rx_opt.user_mss && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) val = tp->rx_opt.user_mss; if (tp->repair) val = tp->rx_opt.mss_clamp; break; case TCP_NODELAY: val = !!(tp->nonagle&TCP_NAGLE_OFF); break; case TCP_CORK: val = !!(tp->nonagle&TCP_NAGLE_CORK); break; case TCP_KEEPIDLE: val = keepalive_time_when(tp) / HZ; break; case TCP_KEEPINTVL: val = keepalive_intvl_when(tp) / HZ; break; case TCP_KEEPCNT: val = keepalive_probes(tp); break; case TCP_SYNCNT: val = READ_ONCE(icsk->icsk_syn_retries) ? : READ_ONCE(net->ipv4.sysctl_tcp_syn_retries); break; case TCP_LINGER2: val = READ_ONCE(tp->linger2); if (val >= 0) val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ; break; case TCP_DEFER_ACCEPT: val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept); val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); break; case TCP_WINDOW_CLAMP: val = tp->window_clamp; break; case TCP_INFO: { struct tcp_info info; if (copy_from_sockptr(&len, optlen, sizeof(int))) return -EFAULT; tcp_get_info(sk, &info); len = min_t(unsigned int, len, sizeof(info)); if (copy_to_sockptr(optlen, &len, sizeof(int))) return -EFAULT; if (copy_to_sockptr(optval, &info, len)) return -EFAULT; return 0; } case TCP_CC_INFO: { const struct tcp_congestion_ops *ca_ops; union tcp_cc_info info; size_t sz = 0; int attr; if (copy_from_sockptr(&len, optlen, sizeof(int))) return -EFAULT; ca_ops = icsk->icsk_ca_ops; if (ca_ops && ca_ops->get_info) sz = ca_ops->get_info(sk, ~0U, &attr, &info); len = min_t(unsigned int, len, sz); if (copy_to_sockptr(optlen, &len, sizeof(int))) return -EFAULT; if (copy_to_sockptr(optval, &info, len)) return -EFAULT; return 0; } case TCP_QUICKACK: val = !inet_csk_in_pingpong_mode(sk); break; case TCP_CONGESTION: if (copy_from_sockptr(&len, optlen, sizeof(int))) return -EFAULT; len = min_t(unsigned int, len, TCP_CA_NAME_MAX); if (copy_to_sockptr(optlen, &len, sizeof(int))) return -EFAULT; if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len)) return -EFAULT; return 0; case TCP_ULP: if (copy_from_sockptr(&len, optlen, sizeof(int))) return -EFAULT; len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); if (!icsk->icsk_ulp_ops) { len = 0; if (copy_to_sockptr(optlen, &len, sizeof(int))) return -EFAULT; return 0; } if (copy_to_sockptr(optlen, &len, sizeof(int))) return -EFAULT; if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len)) return -EFAULT; return 0; case TCP_FASTOPEN_KEY: { u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; unsigned int key_len; if (copy_from_sockptr(&len, optlen, sizeof(int))) return -EFAULT; key_len = tcp_fastopen_get_cipher(net, icsk, key) * TCP_FASTOPEN_KEY_LENGTH; len = min_t(unsigned int, len, key_len); if (copy_to_sockptr(optlen, &len, sizeof(int))) return -EFAULT; if (copy_to_sockptr(optval, key, len)) return -EFAULT; return 0; } case TCP_THIN_LINEAR_TIMEOUTS: val = tp->thin_lto; break; case TCP_THIN_DUPACK: val = 0; break; case TCP_REPAIR: val = tp->repair; break; case TCP_REPAIR_QUEUE: if (tp->repair) val = tp->repair_queue; else return -EINVAL; break; case TCP_REPAIR_WINDOW: { struct tcp_repair_window opt; if (copy_from_sockptr(&len, optlen, sizeof(int))) return -EFAULT; if (len != sizeof(opt)) return -EINVAL; if (!tp->repair) return -EPERM; opt.snd_wl1 = tp->snd_wl1; opt.snd_wnd = tp->snd_wnd; opt.max_window = tp->max_window; opt.rcv_wnd = tp->rcv_wnd; opt.rcv_wup = tp->rcv_wup; if (copy_to_sockptr(optval, &opt, len)) return -EFAULT; return 0; } case TCP_QUEUE_SEQ: if (tp->repair_queue == TCP_SEND_QUEUE) val = tp->write_seq; else if (tp->repair_queue == TCP_RECV_QUEUE) val = tp->rcv_nxt; else return -EINVAL; break; case TCP_USER_TIMEOUT: val = READ_ONCE(icsk->icsk_user_timeout); break; case TCP_FASTOPEN: val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen); break; case TCP_FASTOPEN_CONNECT: val = tp->fastopen_connect; break; case TCP_FASTOPEN_NO_COOKIE: val = tp->fastopen_no_cookie; break; case TCP_TX_DELAY: val = READ_ONCE(tp->tcp_tx_delay); break; case TCP_TIMESTAMP: val = tcp_clock_ts(tp->tcp_usec_ts) + READ_ONCE(tp->tsoffset); if (tp->tcp_usec_ts) val |= 1; else val &= ~1; break; case TCP_NOTSENT_LOWAT: val = READ_ONCE(tp->notsent_lowat); break; case TCP_INQ: val = tp->recvmsg_inq; break; case TCP_SAVE_SYN: val = tp->save_syn; break; case TCP_SAVED_SYN: { if (copy_from_sockptr(&len, optlen, sizeof(int))) return -EFAULT; sockopt_lock_sock(sk); if (tp->saved_syn) { if (len < tcp_saved_syn_len(tp->saved_syn)) { len = tcp_saved_syn_len(tp->saved_syn); if (copy_to_sockptr(optlen, &len, sizeof(int))) { sockopt_release_sock(sk); return -EFAULT; } sockopt_release_sock(sk); return -EINVAL; } len = tcp_saved_syn_len(tp->saved_syn); if (copy_to_sockptr(optlen, &len, sizeof(int))) { sockopt_release_sock(sk); return -EFAULT; } if (copy_to_sockptr(optval, tp->saved_syn->data, len)) { sockopt_release_sock(sk); return -EFAULT; } tcp_saved_syn_free(tp); sockopt_release_sock(sk); } else { sockopt_release_sock(sk); len = 0; if (copy_to_sockptr(optlen, &len, sizeof(int))) return -EFAULT; } return 0; } #ifdef CONFIG_MMU case TCP_ZEROCOPY_RECEIVE: { struct scm_timestamping_internal tss; struct tcp_zerocopy_receive zc = {}; int err; if (copy_from_sockptr(&len, optlen, sizeof(int))) return -EFAULT; if (len < 0 || len < offsetofend(struct tcp_zerocopy_receive, length)) return -EINVAL; if (unlikely(len > sizeof(zc))) { err = check_zeroed_sockptr(optval, sizeof(zc), len - sizeof(zc)); if (err < 1) return err == 0 ? -EINVAL : err; len = sizeof(zc); if (copy_to_sockptr(optlen, &len, sizeof(int))) return -EFAULT; } if (copy_from_sockptr(&zc, optval, len)) return -EFAULT; if (zc.reserved) return -EINVAL; if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) return -EINVAL; sockopt_lock_sock(sk); err = tcp_zerocopy_receive(sk, &zc, &tss); err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, &zc, &len, err); sockopt_release_sock(sk); if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) goto zerocopy_rcv_cmsg; switch (len) { case offsetofend(struct tcp_zerocopy_receive, msg_flags): goto zerocopy_rcv_cmsg; case offsetofend(struct tcp_zerocopy_receive, msg_controllen): case offsetofend(struct tcp_zerocopy_receive, msg_control): case offsetofend(struct tcp_zerocopy_receive, flags): case offsetofend(struct tcp_zerocopy_receive, copybuf_len): case offsetofend(struct tcp_zerocopy_receive, copybuf_address): case offsetofend(struct tcp_zerocopy_receive, err): goto zerocopy_rcv_sk_err; case offsetofend(struct tcp_zerocopy_receive, inq): goto zerocopy_rcv_inq; case offsetofend(struct tcp_zerocopy_receive, length): default: goto zerocopy_rcv_out; } zerocopy_rcv_cmsg: if (zc.msg_flags & TCP_CMSG_TS) tcp_zc_finalize_rx_tstamp(sk, &zc, &tss); else zc.msg_flags = 0; zerocopy_rcv_sk_err: if (!err) zc.err = sock_error(sk); zerocopy_rcv_inq: zc.inq = tcp_inq_hint(sk); zerocopy_rcv_out: if (!err && copy_to_sockptr(optval, &zc, len)) err = -EFAULT; return err; } #endif case TCP_AO_REPAIR: if (!tcp_can_repair_sock(sk)) return -EPERM; return tcp_ao_get_repair(sk, optval, optlen); case TCP_AO_GET_KEYS: case TCP_AO_INFO: { int err; sockopt_lock_sock(sk); if (optname == TCP_AO_GET_KEYS) err = tcp_ao_get_mkts(sk, optval, optlen); else err = tcp_ao_get_sock_info(sk, optval, optlen); sockopt_release_sock(sk); return err; } default: return -ENOPROTOOPT; } if (copy_to_sockptr(optlen, &len, sizeof(int))) return -EFAULT; if (copy_to_sockptr(optval, &val, len)) return -EFAULT; return 0; } bool tcp_bpf_bypass_getsockopt(int level, int optname) { /* TCP do_tcp_getsockopt has optimized getsockopt implementation * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. */ if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) return true; return false; } EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt); int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, int __user *optlen) { struct inet_connection_sock *icsk = inet_csk(sk); if (level != SOL_TCP) /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname, optval, optlen); return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval), USER_SOCKPTR(optlen)); } EXPORT_SYMBOL(tcp_getsockopt); #ifdef CONFIG_TCP_MD5SIG int tcp_md5_sigpool_id = -1; EXPORT_SYMBOL_GPL(tcp_md5_sigpool_id); int tcp_md5_alloc_sigpool(void) { size_t scratch_size; int ret; scratch_size = sizeof(union tcp_md5sum_block) + sizeof(struct tcphdr); ret = tcp_sigpool_alloc_ahash("md5", scratch_size); if (ret >= 0) { /* As long as any md5 sigpool was allocated, the return * id would stay the same. Re-write the id only for the case * when previously all MD5 keys were deleted and this call * allocates the first MD5 key, which may return a different * sigpool id than was used previously. */ WRITE_ONCE(tcp_md5_sigpool_id, ret); /* Avoids the compiler potentially being smart here */ return 0; } return ret; } void tcp_md5_release_sigpool(void) { tcp_sigpool_release(READ_ONCE(tcp_md5_sigpool_id)); } void tcp_md5_add_sigpool(void) { tcp_sigpool_get(READ_ONCE(tcp_md5_sigpool_id)); } int tcp_md5_hash_key(struct tcp_sigpool *hp, const struct tcp_md5sig_key *key) { u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ struct scatterlist sg; sg_init_one(&sg, key->key, keylen); ahash_request_set_crypt(hp->req, &sg, NULL, keylen); /* We use data_race() because tcp_md5_do_add() might change * key->key under us */ return data_race(crypto_ahash_update(hp->req)); } EXPORT_SYMBOL(tcp_md5_hash_key); /* Called with rcu_read_lock() */ enum skb_drop_reason tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, const void *saddr, const void *daddr, int family, int l3index, const __u8 *hash_location) { /* This gets called for each TCP segment that has TCP-MD5 option. * We have 3 drop cases: * o No MD5 hash and one expected. * o MD5 hash and we're not expecting one. * o MD5 hash and its wrong. */ const struct tcp_sock *tp = tcp_sk(sk); struct tcp_md5sig_key *key; u8 newhash[16]; int genhash; key = tcp_md5_do_lookup(sk, l3index, saddr, family); if (!key && hash_location) { NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); tcp_hash_fail("Unexpected MD5 Hash found", family, skb, ""); return SKB_DROP_REASON_TCP_MD5UNEXPECTED; } /* Check the signature. * To support dual stack listeners, we need to handle * IPv4-mapped case. */ if (family == AF_INET) genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb); else genhash = tp->af_specific->calc_md5_hash(newhash, key, NULL, skb); if (genhash || memcmp(hash_location, newhash, 16) != 0) { NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE); if (family == AF_INET) { tcp_hash_fail("MD5 Hash failed", AF_INET, skb, "%s L3 index %d", genhash ? "tcp_v4_calc_md5_hash failed" : "", l3index); } else { if (genhash) { tcp_hash_fail("MD5 Hash failed", AF_INET6, skb, "L3 index %d", l3index); } else { tcp_hash_fail("MD5 Hash mismatch", AF_INET6, skb, "L3 index %d", l3index); } } return SKB_DROP_REASON_TCP_MD5FAILURE; } return SKB_NOT_DROPPED_YET; } EXPORT_SYMBOL(tcp_inbound_md5_hash); #endif void tcp_done(struct sock *sk) { struct request_sock *req; /* We might be called with a new socket, after * inet_csk_prepare_forced_close() has been called * so we can not use lockdep_sock_is_held(sk) */ req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); tcp_set_state(sk, TCP_CLOSE); tcp_clear_xmit_timers(sk); if (req) reqsk_fastopen_remove(sk, req, false); WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); if (!sock_flag(sk, SOCK_DEAD)) sk->sk_state_change(sk); else inet_csk_destroy_sock(sk); } EXPORT_SYMBOL_GPL(tcp_done); int tcp_abort(struct sock *sk, int err) { int state = inet_sk_state_load(sk); if (state == TCP_NEW_SYN_RECV) { struct request_sock *req = inet_reqsk(sk); local_bh_disable(); inet_csk_reqsk_queue_drop(req->rsk_listener, req); local_bh_enable(); return 0; } if (state == TCP_TIME_WAIT) { struct inet_timewait_sock *tw = inet_twsk(sk); refcount_inc(&tw->tw_refcnt); local_bh_disable(); inet_twsk_deschedule_put(tw); local_bh_enable(); return 0; } /* BPF context ensures sock locking. */ if (!has_current_bpf_ctx()) /* Don't race with userspace socket closes such as tcp_close. */ lock_sock(sk); if (sk->sk_state == TCP_LISTEN) { tcp_set_state(sk, TCP_CLOSE); inet_csk_listen_stop(sk); } /* Don't race with BH socket closes such as inet_csk_listen_stop. */ local_bh_disable(); bh_lock_sock(sk); if (!sock_flag(sk, SOCK_DEAD)) { WRITE_ONCE(sk->sk_err, err); /* This barrier is coupled with smp_rmb() in tcp_poll() */ smp_wmb(); sk_error_report(sk); if (tcp_need_reset(sk->sk_state)) tcp_send_active_reset(sk, GFP_ATOMIC); tcp_done(sk); } bh_unlock_sock(sk); local_bh_enable(); tcp_write_queue_purge(sk); if (!has_current_bpf_ctx()) release_sock(sk); return 0; } EXPORT_SYMBOL_GPL(tcp_abort); extern struct tcp_congestion_ops tcp_reno; static __initdata unsigned long thash_entries; static int __init set_thash_entries(char *str) { ssize_t ret; if (!str) return 0; ret = kstrtoul(str, 0, &thash_entries); if (ret) return 0; return 1; } __setup("thash_entries=", set_thash_entries); static void __init tcp_init_mem(void) { unsigned long limit = nr_free_buffer_pages() / 16; limit = max(limit, 128UL); sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ sysctl_tcp_mem[1] = limit; /* 6.25 % */ sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ } static void __init tcp_struct_check(void) { /* TX read-mostly hotpath cache lines */ CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, max_window); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, rcv_ssthresh); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, reordering); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, notsent_lowat); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, gso_segs); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, lost_skb_hint); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, retransmit_skb_hint); CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_tx, 40); /* TXRX read-mostly hotpath cache lines */ CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, tsoffset); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_wnd); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, mss_cache); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_cwnd); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, prr_out); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, lost_out); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, sacked_out); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, scaling_ratio); CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_txrx, 32); /* RX read-mostly hotpath cache lines */ CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, copied_seq); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rcv_tstamp); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_wl1); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tlp_high_seq); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rttvar_us); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, retrans_out); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, advmss); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, urg_data); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, lost); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rtt_min); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, out_of_order_queue); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_ssthresh); CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 69); /* TX read-write hotpath cache lines */ CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, segs_out); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, data_segs_out); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, bytes_sent); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, snd_sml); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_start); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_stat); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, write_seq); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, pushed_seq); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, lsndtime); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, mdev_us); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_wstamp_ns); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_clock_cache); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_mstamp); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, rtt_seq); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tsorted_sent_queue); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, highest_sack); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, ecn_flags); CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_tx, 113); /* TXRX read-write hotpath cache lines */ CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, pred_flags); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_nxt); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_nxt); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_una); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, window_clamp); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, srtt_us); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, packets_out); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_up); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered_ce); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, app_limited); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_wnd); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rx_opt); CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_txrx, 76); /* RX read-write hotpath cache lines */ CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_received); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, segs_in); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, data_segs_in); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_wup); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, max_packets_out); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, cwnd_usage_seq); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_delivered); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_interval_us); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_last_tsecr); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, first_tx_mstamp); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_mstamp); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_acked); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_est); CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcvq_space); CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_rx, 99); } void __init tcp_init(void) { int max_rshare, max_wshare, cnt; unsigned long limit; unsigned int i; BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof_field(struct sk_buff, cb)); tcp_struct_check(); percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE); mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", thash_entries, 21, /* one slot per 2 MB*/ 0, 64 * 1024); tcp_hashinfo.bind_bucket_cachep = kmem_cache_create("tcp_bind_bucket", sizeof(struct inet_bind_bucket), 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT, NULL); tcp_hashinfo.bind2_bucket_cachep = kmem_cache_create("tcp_bind2_bucket", sizeof(struct inet_bind2_bucket), 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT, NULL); /* Size and allocate the main established and bind bucket * hash tables. * * The methodology is similar to that of the buffer cache. */ tcp_hashinfo.ehash = alloc_large_system_hash("TCP established", sizeof(struct inet_ehash_bucket), thash_entries, 17, /* one slot per 128 KB of memory */ 0, NULL, &tcp_hashinfo.ehash_mask, 0, thash_entries ? 0 : 512 * 1024); for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); if (inet_ehash_locks_alloc(&tcp_hashinfo)) panic("TCP: failed to alloc ehash_locks"); tcp_hashinfo.bhash = alloc_large_system_hash("TCP bind", 2 * sizeof(struct inet_bind_hashbucket), tcp_hashinfo.ehash_mask + 1, 17, /* one slot per 128 KB of memory */ 0, &tcp_hashinfo.bhash_size, NULL, 0, 64 * 1024); tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size; for (i = 0; i < tcp_hashinfo.bhash_size; i++) { spin_lock_init(&tcp_hashinfo.bhash[i].lock); INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); spin_lock_init(&tcp_hashinfo.bhash2[i].lock); INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain); } tcp_hashinfo.pernet = false; cnt = tcp_hashinfo.ehash_mask + 1; sysctl_tcp_max_orphans = cnt / 2; tcp_init_mem(); /* Set per-socket limits to no more than 1/128 the pressure threshold */ limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); max_wshare = min(4UL*1024*1024, limit); max_rshare = min(6UL*1024*1024, limit); init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE; init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE; init_net.ipv4.sysctl_tcp_rmem[1] = 131072; init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); pr_info("Hash tables configured (established %u bind %u)\n", tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); tcp_v4_init(); tcp_metrics_init(); BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); tcp_tasklet_init(); mptcp_init(); }