/* * Host communication command constants for ChromeOS EC * * Copyright (C) 2012 Google, Inc * * This software is licensed under the terms of the GNU General Public * License version 2, as published by the Free Software Foundation, and * may be copied, distributed, and modified under those terms. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * The ChromeOS EC multi function device is used to mux all the requests * to the EC device for its multiple features: keyboard controller, * battery charging and regulator control, firmware update. * * NOTE: This file is copied verbatim from the ChromeOS EC Open Source * project in an attempt to make future updates easy to make. */ #ifndef __CROS_EC_COMMANDS_H #define __CROS_EC_COMMANDS_H /* * Current version of this protocol * * TODO(crosbug.com/p/11223): This is effectively useless; protocol is * determined in other ways. Remove this once the kernel code no longer * depends on it. */ #define EC_PROTO_VERSION 0x00000002 /* Command version mask */ #define EC_VER_MASK(version) (1UL << (version)) /* I/O addresses for ACPI commands */ #define EC_LPC_ADDR_ACPI_DATA 0x62 #define EC_LPC_ADDR_ACPI_CMD 0x66 /* I/O addresses for host command */ #define EC_LPC_ADDR_HOST_DATA 0x200 #define EC_LPC_ADDR_HOST_CMD 0x204 /* I/O addresses for host command args and params */ /* Protocol version 2 */ #define EC_LPC_ADDR_HOST_ARGS 0x800 /* And 0x801, 0x802, 0x803 */ #define EC_LPC_ADDR_HOST_PARAM 0x804 /* For version 2 params; size is * EC_PROTO2_MAX_PARAM_SIZE */ /* Protocol version 3 */ #define EC_LPC_ADDR_HOST_PACKET 0x800 /* Offset of version 3 packet */ #define EC_LPC_HOST_PACKET_SIZE 0x100 /* Max size of version 3 packet */ /* The actual block is 0x800-0x8ff, but some BIOSes think it's 0x880-0x8ff * and they tell the kernel that so we have to think of it as two parts. */ #define EC_HOST_CMD_REGION0 0x800 #define EC_HOST_CMD_REGION1 0x880 #define EC_HOST_CMD_REGION_SIZE 0x80 /* EC command register bit functions */ #define EC_LPC_CMDR_DATA (1 << 0) /* Data ready for host to read */ #define EC_LPC_CMDR_PENDING (1 << 1) /* Write pending to EC */ #define EC_LPC_CMDR_BUSY (1 << 2) /* EC is busy processing a command */ #define EC_LPC_CMDR_CMD (1 << 3) /* Last host write was a command */ #define EC_LPC_CMDR_ACPI_BRST (1 << 4) /* Burst mode (not used) */ #define EC_LPC_CMDR_SCI (1 << 5) /* SCI event is pending */ #define EC_LPC_CMDR_SMI (1 << 6) /* SMI event is pending */ #define EC_LPC_ADDR_MEMMAP 0x900 #define EC_MEMMAP_SIZE 255 /* ACPI IO buffer max is 255 bytes */ #define EC_MEMMAP_TEXT_MAX 8 /* Size of a string in the memory map */ /* The offset address of each type of data in mapped memory. */ #define EC_MEMMAP_TEMP_SENSOR 0x00 /* Temp sensors 0x00 - 0x0f */ #define EC_MEMMAP_FAN 0x10 /* Fan speeds 0x10 - 0x17 */ #define EC_MEMMAP_TEMP_SENSOR_B 0x18 /* More temp sensors 0x18 - 0x1f */ #define EC_MEMMAP_ID 0x20 /* 0x20 == 'E', 0x21 == 'C' */ #define EC_MEMMAP_ID_VERSION 0x22 /* Version of data in 0x20 - 0x2f */ #define EC_MEMMAP_THERMAL_VERSION 0x23 /* Version of data in 0x00 - 0x1f */ #define EC_MEMMAP_BATTERY_VERSION 0x24 /* Version of data in 0x40 - 0x7f */ #define EC_MEMMAP_SWITCHES_VERSION 0x25 /* Version of data in 0x30 - 0x33 */ #define EC_MEMMAP_EVENTS_VERSION 0x26 /* Version of data in 0x34 - 0x3f */ #define EC_MEMMAP_HOST_CMD_FLAGS 0x27 /* Host cmd interface flags (8 bits) */ /* Unused 0x28 - 0x2f */ #define EC_MEMMAP_SWITCHES 0x30 /* 8 bits */ /* Unused 0x31 - 0x33 */ #define EC_MEMMAP_HOST_EVENTS 0x34 /* 32 bits */ /* Reserve 0x38 - 0x3f for additional host event-related stuff */ /* Battery values are all 32 bits */ #define EC_MEMMAP_BATT_VOLT 0x40 /* Battery Present Voltage */ #define EC_MEMMAP_BATT_RATE 0x44 /* Battery Present Rate */ #define EC_MEMMAP_BATT_CAP 0x48 /* Battery Remaining Capacity */ #define EC_MEMMAP_BATT_FLAG 0x4c /* Battery State, defined below */ #define EC_MEMMAP_BATT_DCAP 0x50 /* Battery Design Capacity */ #define EC_MEMMAP_BATT_DVLT 0x54 /* Battery Design Voltage */ #define EC_MEMMAP_BATT_LFCC 0x58 /* Battery Last Full Charge Capacity */ #define EC_MEMMAP_BATT_CCNT 0x5c /* Battery Cycle Count */ /* Strings are all 8 bytes (EC_MEMMAP_TEXT_MAX) */ #define EC_MEMMAP_BATT_MFGR 0x60 /* Battery Manufacturer String */ #define EC_MEMMAP_BATT_MODEL 0x68 /* Battery Model Number String */ #define EC_MEMMAP_BATT_SERIAL 0x70 /* Battery Serial Number String */ #define EC_MEMMAP_BATT_TYPE 0x78 /* Battery Type String */ #define EC_MEMMAP_ALS 0x80 /* ALS readings in lux (2 X 16 bits) */ /* Unused 0x84 - 0x8f */ #define EC_MEMMAP_ACC_STATUS 0x90 /* Accelerometer status (8 bits )*/ /* Unused 0x91 */ #define EC_MEMMAP_ACC_DATA 0x92 /* Accelerometer data 0x92 - 0x9f */ #define EC_MEMMAP_GYRO_DATA 0xa0 /* Gyroscope data 0xa0 - 0xa5 */ /* Unused 0xa6 - 0xfe (remember, 0xff is NOT part of the memmap region) */ /* Define the format of the accelerometer mapped memory status byte. */ #define EC_MEMMAP_ACC_STATUS_SAMPLE_ID_MASK 0x0f #define EC_MEMMAP_ACC_STATUS_BUSY_BIT (1 << 4) #define EC_MEMMAP_ACC_STATUS_PRESENCE_BIT (1 << 7) /* Number of temp sensors at EC_MEMMAP_TEMP_SENSOR */ #define EC_TEMP_SENSOR_ENTRIES 16 /* * Number of temp sensors at EC_MEMMAP_TEMP_SENSOR_B. * * Valid only if EC_MEMMAP_THERMAL_VERSION returns >= 2. */ #define EC_TEMP_SENSOR_B_ENTRIES 8 /* Special values for mapped temperature sensors */ #define EC_TEMP_SENSOR_NOT_PRESENT 0xff #define EC_TEMP_SENSOR_ERROR 0xfe #define EC_TEMP_SENSOR_NOT_POWERED 0xfd #define EC_TEMP_SENSOR_NOT_CALIBRATED 0xfc /* * The offset of temperature value stored in mapped memory. This allows * reporting a temperature range of 200K to 454K = -73C to 181C. */ #define EC_TEMP_SENSOR_OFFSET 200 /* * Number of ALS readings at EC_MEMMAP_ALS */ #define EC_ALS_ENTRIES 2 /* * The default value a temperature sensor will return when it is present but * has not been read this boot. This is a reasonable number to avoid * triggering alarms on the host. */ #define EC_TEMP_SENSOR_DEFAULT (296 - EC_TEMP_SENSOR_OFFSET) #define EC_FAN_SPEED_ENTRIES 4 /* Number of fans at EC_MEMMAP_FAN */ #define EC_FAN_SPEED_NOT_PRESENT 0xffff /* Entry not present */ #define EC_FAN_SPEED_STALLED 0xfffe /* Fan stalled */ /* Battery bit flags at EC_MEMMAP_BATT_FLAG. */ #define EC_BATT_FLAG_AC_PRESENT 0x01 #define EC_BATT_FLAG_BATT_PRESENT 0x02 #define EC_BATT_FLAG_DISCHARGING 0x04 #define EC_BATT_FLAG_CHARGING 0x08 #define EC_BATT_FLAG_LEVEL_CRITICAL 0x10 /* Switch flags at EC_MEMMAP_SWITCHES */ #define EC_SWITCH_LID_OPEN 0x01 #define EC_SWITCH_POWER_BUTTON_PRESSED 0x02 #define EC_SWITCH_WRITE_PROTECT_DISABLED 0x04 /* Was recovery requested via keyboard; now unused. */ #define EC_SWITCH_IGNORE1 0x08 /* Recovery requested via dedicated signal (from servo board) */ #define EC_SWITCH_DEDICATED_RECOVERY 0x10 /* Was fake developer mode switch; now unused. Remove in next refactor. */ #define EC_SWITCH_IGNORE0 0x20 /* Host command interface flags */ /* Host command interface supports LPC args (LPC interface only) */ #define EC_HOST_CMD_FLAG_LPC_ARGS_SUPPORTED 0x01 /* Host command interface supports version 3 protocol */ #define EC_HOST_CMD_FLAG_VERSION_3 0x02 /* Wireless switch flags */ #define EC_WIRELESS_SWITCH_ALL ~0x00 /* All flags */ #define EC_WIRELESS_SWITCH_WLAN 0x01 /* WLAN radio */ #define EC_WIRELESS_SWITCH_BLUETOOTH 0x02 /* Bluetooth radio */ #define EC_WIRELESS_SWITCH_WWAN 0x04 /* WWAN power */ #define EC_WIRELESS_SWITCH_WLAN_POWER 0x08 /* WLAN power */ /* * This header file is used in coreboot both in C and ACPI code. The ACPI code * is pre-processed to handle constants but the ASL compiler is unable to * handle actual C code so keep it separate. */ #ifndef __ACPI__ /* * Define __packed if someone hasn't beat us to it. Linux kernel style * checking prefers __packed over __attribute__((packed)). */ #ifndef __packed #define __packed __attribute__((packed)) #endif /* LPC command status byte masks */ /* EC has written a byte in the data register and host hasn't read it yet */ #define EC_LPC_STATUS_TO_HOST 0x01 /* Host has written a command/data byte and the EC hasn't read it yet */ #define EC_LPC_STATUS_FROM_HOST 0x02 /* EC is processing a command */ #define EC_LPC_STATUS_PROCESSING 0x04 /* Last write to EC was a command, not data */ #define EC_LPC_STATUS_LAST_CMD 0x08 /* EC is in burst mode. Unsupported by Chrome EC, so this bit is never set */ #define EC_LPC_STATUS_BURST_MODE 0x10 /* SCI event is pending (requesting SCI query) */ #define EC_LPC_STATUS_SCI_PENDING 0x20 /* SMI event is pending (requesting SMI query) */ #define EC_LPC_STATUS_SMI_PENDING 0x40 /* (reserved) */ #define EC_LPC_STATUS_RESERVED 0x80 /* * EC is busy. This covers both the EC processing a command, and the host has * written a new command but the EC hasn't picked it up yet. */ #define EC_LPC_STATUS_BUSY_MASK \ (EC_LPC_STATUS_FROM_HOST | EC_LPC_STATUS_PROCESSING) /* Host command response codes */ enum ec_status { EC_RES_SUCCESS = 0, EC_RES_INVALID_COMMAND = 1, EC_RES_ERROR = 2, EC_RES_INVALID_PARAM = 3, EC_RES_ACCESS_DENIED = 4, EC_RES_INVALID_RESPONSE = 5, EC_RES_INVALID_VERSION = 6, EC_RES_INVALID_CHECKSUM = 7, EC_RES_IN_PROGRESS = 8, /* Accepted, command in progress */ EC_RES_UNAVAILABLE = 9, /* No response available */ EC_RES_TIMEOUT = 10, /* We got a timeout */ EC_RES_OVERFLOW = 11, /* Table / data overflow */ EC_RES_INVALID_HEADER = 12, /* Header contains invalid data */ EC_RES_REQUEST_TRUNCATED = 13, /* Didn't get the entire request */ EC_RES_RESPONSE_TOO_BIG = 14 /* Response was too big to handle */ }; /* * Host event codes. Note these are 1-based, not 0-based, because ACPI query * EC command uses code 0 to mean "no event pending". We explicitly specify * each value in the enum listing so they won't change if we delete/insert an * item or rearrange the list (it needs to be stable across platforms, not * just within a single compiled instance). */ enum host_event_code { EC_HOST_EVENT_LID_CLOSED = 1, EC_HOST_EVENT_LID_OPEN = 2, EC_HOST_EVENT_POWER_BUTTON = 3, EC_HOST_EVENT_AC_CONNECTED = 4, EC_HOST_EVENT_AC_DISCONNECTED = 5, EC_HOST_EVENT_BATTERY_LOW = 6, EC_HOST_EVENT_BATTERY_CRITICAL = 7, EC_HOST_EVENT_BATTERY = 8, EC_HOST_EVENT_THERMAL_THRESHOLD = 9, EC_HOST_EVENT_THERMAL_OVERLOAD = 10, EC_HOST_EVENT_THERMAL = 11, EC_HOST_EVENT_USB_CHARGER = 12, EC_HOST_EVENT_KEY_PRESSED = 13, /* * EC has finished initializing the host interface. The host can check * for this event following sending a EC_CMD_REBOOT_EC command to * determine when the EC is ready to accept subsequent commands. */ EC_HOST_EVENT_INTERFACE_READY = 14, /* Keyboard recovery combo has been pressed */ EC_HOST_EVENT_KEYBOARD_RECOVERY = 15, /* Shutdown due to thermal overload */ EC_HOST_EVENT_THERMAL_SHUTDOWN = 16, /* Shutdown due to battery level too low */ EC_HOST_EVENT_BATTERY_SHUTDOWN = 17, /* Suggest that the AP throttle itself */ EC_HOST_EVENT_THROTTLE_START = 18, /* Suggest that the AP resume normal speed */ EC_HOST_EVENT_THROTTLE_STOP = 19, /* Hang detect logic detected a hang and host event timeout expired */ EC_HOST_EVENT_HANG_DETECT = 20, /* Hang detect logic detected a hang and warm rebooted the AP */ EC_HOST_EVENT_HANG_REBOOT = 21, /* PD MCU triggering host event */ EC_HOST_EVENT_PD_MCU = 22, /* EC desires to change state of host-controlled USB mux */ EC_HOST_EVENT_USB_MUX = 28, /* EC RTC event occurred */ EC_HOST_EVENT_RTC = 26, /* * The high bit of the event mask is not used as a host event code. If * it reads back as set, then the entire event mask should be * considered invalid by the host. This can happen when reading the * raw event status via EC_MEMMAP_HOST_EVENTS but the LPC interface is * not initialized on the EC, or improperly configured on the host. */ EC_HOST_EVENT_INVALID = 32 }; /* Host event mask */ #define EC_HOST_EVENT_MASK(event_code) (1UL << ((event_code) - 1)) /* Arguments at EC_LPC_ADDR_HOST_ARGS */ struct ec_lpc_host_args { uint8_t flags; uint8_t command_version; uint8_t data_size; /* * Checksum; sum of command + flags + command_version + data_size + * all params/response data bytes. */ uint8_t checksum; } __packed; /* Flags for ec_lpc_host_args.flags */ /* * Args are from host. Data area at EC_LPC_ADDR_HOST_PARAM contains command * params. * * If EC gets a command and this flag is not set, this is an old-style command. * Command version is 0 and params from host are at EC_LPC_ADDR_OLD_PARAM with * unknown length. EC must respond with an old-style response (that is, * withouth setting EC_HOST_ARGS_FLAG_TO_HOST). */ #define EC_HOST_ARGS_FLAG_FROM_HOST 0x01 /* * Args are from EC. Data area at EC_LPC_ADDR_HOST_PARAM contains response. * * If EC responds to a command and this flag is not set, this is an old-style * response. Command version is 0 and response data from EC is at * EC_LPC_ADDR_OLD_PARAM with unknown length. */ #define EC_HOST_ARGS_FLAG_TO_HOST 0x02 /*****************************************************************************/ /* * Byte codes returned by EC over SPI interface. * * These can be used by the AP to debug the EC interface, and to determine * when the EC is not in a state where it will ever get around to responding * to the AP. * * Example of sequence of bytes read from EC for a current good transfer: * 1. - - AP asserts chip select (CS#) * 2. EC_SPI_OLD_READY - AP sends first byte(s) of request * 3. - - EC starts handling CS# interrupt * 4. EC_SPI_RECEIVING - AP sends remaining byte(s) of request * 5. EC_SPI_PROCESSING - EC starts processing request; AP is clocking in * bytes looking for EC_SPI_FRAME_START * 6. - - EC finishes processing and sets up response * 7. EC_SPI_FRAME_START - AP reads frame byte * 8. (response packet) - AP reads response packet * 9. EC_SPI_PAST_END - Any additional bytes read by AP * 10 - - AP deasserts chip select * 11 - - EC processes CS# interrupt and sets up DMA for * next request * * If the AP is waiting for EC_SPI_FRAME_START and sees any value other than * the following byte values: * EC_SPI_OLD_READY * EC_SPI_RX_READY * EC_SPI_RECEIVING * EC_SPI_PROCESSING * * Then the EC found an error in the request, or was not ready for the request * and lost data. The AP should give up waiting for EC_SPI_FRAME_START, * because the EC is unable to tell when the AP is done sending its request. */ /* * Framing byte which precedes a response packet from the EC. After sending a * request, the AP will clock in bytes until it sees the framing byte, then * clock in the response packet. */ #define EC_SPI_FRAME_START 0xec /* * Padding bytes which are clocked out after the end of a response packet. */ #define EC_SPI_PAST_END 0xed /* * EC is ready to receive, and has ignored the byte sent by the AP. EC expects * that the AP will send a valid packet header (starting with * EC_COMMAND_PROTOCOL_3) in the next 32 bytes. */ #define EC_SPI_RX_READY 0xf8 /* * EC has started receiving the request from the AP, but hasn't started * processing it yet. */ #define EC_SPI_RECEIVING 0xf9 /* EC has received the entire request from the AP and is processing it. */ #define EC_SPI_PROCESSING 0xfa /* * EC received bad data from the AP, such as a packet header with an invalid * length. EC will ignore all data until chip select deasserts. */ #define EC_SPI_RX_BAD_DATA 0xfb /* * EC received data from the AP before it was ready. That is, the AP asserted * chip select and started clocking data before the EC was ready to receive it. * EC will ignore all data until chip select deasserts. */ #define EC_SPI_NOT_READY 0xfc /* * EC was ready to receive a request from the AP. EC has treated the byte sent * by the AP as part of a request packet, or (for old-style ECs) is processing * a fully received packet but is not ready to respond yet. */ #define EC_SPI_OLD_READY 0xfd /*****************************************************************************/ /* * Protocol version 2 for I2C and SPI send a request this way: * * 0 EC_CMD_VERSION0 + (command version) * 1 Command number * 2 Length of params = N * 3..N+2 Params, if any * N+3 8-bit checksum of bytes 0..N+2 * * The corresponding response is: * * 0 Result code (EC_RES_*) * 1 Length of params = M * 2..M+1 Params, if any * M+2 8-bit checksum of bytes 0..M+1 */ #define EC_PROTO2_REQUEST_HEADER_BYTES 3 #define EC_PROTO2_REQUEST_TRAILER_BYTES 1 #define EC_PROTO2_REQUEST_OVERHEAD (EC_PROTO2_REQUEST_HEADER_BYTES + \ EC_PROTO2_REQUEST_TRAILER_BYTES) #define EC_PROTO2_RESPONSE_HEADER_BYTES 2 #define EC_PROTO2_RESPONSE_TRAILER_BYTES 1 #define EC_PROTO2_RESPONSE_OVERHEAD (EC_PROTO2_RESPONSE_HEADER_BYTES + \ EC_PROTO2_RESPONSE_TRAILER_BYTES) /* Parameter length was limited by the LPC interface */ #define EC_PROTO2_MAX_PARAM_SIZE 0xfc /* Maximum request and response packet sizes for protocol version 2 */ #define EC_PROTO2_MAX_REQUEST_SIZE (EC_PROTO2_REQUEST_OVERHEAD + \ EC_PROTO2_MAX_PARAM_SIZE) #define EC_PROTO2_MAX_RESPONSE_SIZE (EC_PROTO2_RESPONSE_OVERHEAD + \ EC_PROTO2_MAX_PARAM_SIZE) /*****************************************************************************/ /* * Value written to legacy command port / prefix byte to indicate protocol * 3+ structs are being used. Usage is bus-dependent. */ #define EC_COMMAND_PROTOCOL_3 0xda #define EC_HOST_REQUEST_VERSION 3 /* Version 3 request from host */ struct ec_host_request { /* Struct version (=3) * * EC will return EC_RES_INVALID_HEADER if it receives a header with a * version it doesn't know how to parse. */ uint8_t struct_version; /* * Checksum of request and data; sum of all bytes including checksum * should total to 0. */ uint8_t checksum; /* Command code */ uint16_t command; /* Command version */ uint8_t command_version; /* Unused byte in current protocol version; set to 0 */ uint8_t reserved; /* Length of data which follows this header */ uint16_t data_len; } __packed; #define EC_HOST_RESPONSE_VERSION 3 /* Version 3 response from EC */ struct ec_host_response { /* Struct version (=3) */ uint8_t struct_version; /* * Checksum of response and data; sum of all bytes including checksum * should total to 0. */ uint8_t checksum; /* Result code (EC_RES_*) */ uint16_t result; /* Length of data which follows this header */ uint16_t data_len; /* Unused bytes in current protocol version; set to 0 */ uint16_t reserved; } __packed; /*****************************************************************************/ /* * Notes on commands: * * Each command is an 16-bit command value. Commands which take params or * return response data specify structs for that data. If no struct is * specified, the command does not input or output data, respectively. * Parameter/response length is implicit in the structs. Some underlying * communication protocols (I2C, SPI) may add length or checksum headers, but * those are implementation-dependent and not defined here. */ /*****************************************************************************/ /* General / test commands */ /* * Get protocol version, used to deal with non-backward compatible protocol * changes. */ #define EC_CMD_PROTO_VERSION 0x00 struct ec_response_proto_version { uint32_t version; } __packed; /* * Hello. This is a simple command to test the EC is responsive to * commands. */ #define EC_CMD_HELLO 0x01 struct ec_params_hello { uint32_t in_data; /* Pass anything here */ } __packed; struct ec_response_hello { uint32_t out_data; /* Output will be in_data + 0x01020304 */ } __packed; /* Get version number */ #define EC_CMD_GET_VERSION 0x02 enum ec_current_image { EC_IMAGE_UNKNOWN = 0, EC_IMAGE_RO, EC_IMAGE_RW }; struct ec_response_get_version { /* Null-terminated version strings for RO, RW */ char version_string_ro[32]; char version_string_rw[32]; char reserved[32]; /* Was previously RW-B string */ uint32_t current_image; /* One of ec_current_image */ } __packed; /* Read test */ #define EC_CMD_READ_TEST 0x03 struct ec_params_read_test { uint32_t offset; /* Starting value for read buffer */ uint32_t size; /* Size to read in bytes */ } __packed; struct ec_response_read_test { uint32_t data[32]; } __packed; /* * Get build information * * Response is null-terminated string. */ #define EC_CMD_GET_BUILD_INFO 0x04 /* Get chip info */ #define EC_CMD_GET_CHIP_INFO 0x05 struct ec_response_get_chip_info { /* Null-terminated strings */ char vendor[32]; char name[32]; char revision[32]; /* Mask version */ } __packed; /* Get board HW version */ #define EC_CMD_GET_BOARD_VERSION 0x06 struct ec_response_board_version { uint16_t board_version; /* A monotonously incrementing number. */ } __packed; /* * Read memory-mapped data. * * This is an alternate interface to memory-mapped data for bus protocols * which don't support direct-mapped memory - I2C, SPI, etc. * * Response is params.size bytes of data. */ #define EC_CMD_READ_MEMMAP 0x07 struct ec_params_read_memmap { uint8_t offset; /* Offset in memmap (EC_MEMMAP_*) */ uint8_t size; /* Size to read in bytes */ } __packed; /* Read versions supported for a command */ #define EC_CMD_GET_CMD_VERSIONS 0x08 struct ec_params_get_cmd_versions { uint8_t cmd; /* Command to check */ } __packed; struct ec_params_get_cmd_versions_v1 { uint16_t cmd; /* Command to check */ } __packed; struct ec_response_get_cmd_versions { /* * Mask of supported versions; use EC_VER_MASK() to compare with a * desired version. */ uint32_t version_mask; } __packed; /* * Check EC communcations status (busy). This is needed on i2c/spi but not * on lpc since it has its own out-of-band busy indicator. * * lpc must read the status from the command register. Attempting this on * lpc will overwrite the args/parameter space and corrupt its data. */ #define EC_CMD_GET_COMMS_STATUS 0x09 /* Avoid using ec_status which is for return values */ enum ec_comms_status { EC_COMMS_STATUS_PROCESSING = 1 << 0, /* Processing cmd */ }; struct ec_response_get_comms_status { uint32_t flags; /* Mask of enum ec_comms_status */ } __packed; /* Fake a variety of responses, purely for testing purposes. */ #define EC_CMD_TEST_PROTOCOL 0x0a /* Tell the EC what to send back to us. */ struct ec_params_test_protocol { uint32_t ec_result; uint32_t ret_len; uint8_t buf[32]; } __packed; /* Here it comes... */ struct ec_response_test_protocol { uint8_t buf[32]; } __packed; /* Get prococol information */ #define EC_CMD_GET_PROTOCOL_INFO 0x0b /* Flags for ec_response_get_protocol_info.flags */ /* EC_RES_IN_PROGRESS may be returned if a command is slow */ #define EC_PROTOCOL_INFO_IN_PROGRESS_SUPPORTED (1 << 0) struct ec_response_get_protocol_info { /* Fields which exist if at least protocol version 3 supported */ /* Bitmask of protocol versions supported (1 << n means version n)*/ uint32_t protocol_versions; /* Maximum request packet size, in bytes */ uint16_t max_request_packet_size; /* Maximum response packet size, in bytes */ uint16_t max_response_packet_size; /* Flags; see EC_PROTOCOL_INFO_* */ uint32_t flags; } __packed; /*****************************************************************************/ /* Get/Set miscellaneous values */ /* The upper byte of .flags tells what to do (nothing means "get") */ #define EC_GSV_SET 0x80000000 /* The lower three bytes of .flags identifies the parameter, if that has meaning for an individual command. */ #define EC_GSV_PARAM_MASK 0x00ffffff struct ec_params_get_set_value { uint32_t flags; uint32_t value; } __packed; struct ec_response_get_set_value { uint32_t flags; uint32_t value; } __packed; /* More than one command can use these structs to get/set paramters. */ #define EC_CMD_GSV_PAUSE_IN_S5 0x0c /*****************************************************************************/ /* List the features supported by the firmware */ #define EC_CMD_GET_FEATURES 0x0d /* Supported features */ enum ec_feature_code { /* * This image contains a limited set of features. Another image * in RW partition may support more features. */ EC_FEATURE_LIMITED = 0, /* * Commands for probing/reading/writing/erasing the flash in the * EC are present. */ EC_FEATURE_FLASH = 1, /* * Can control the fan speed directly. */ EC_FEATURE_PWM_FAN = 2, /* * Can control the intensity of the keyboard backlight. */ EC_FEATURE_PWM_KEYB = 3, /* * Support Google lightbar, introduced on Pixel. */ EC_FEATURE_LIGHTBAR = 4, /* Control of LEDs */ EC_FEATURE_LED = 5, /* Exposes an interface to control gyro and sensors. * The host goes through the EC to access these sensors. * In addition, the EC may provide composite sensors, like lid angle. */ EC_FEATURE_MOTION_SENSE = 6, /* The keyboard is controlled by the EC */ EC_FEATURE_KEYB = 7, /* The AP can use part of the EC flash as persistent storage. */ EC_FEATURE_PSTORE = 8, /* The EC monitors BIOS port 80h, and can return POST codes. */ EC_FEATURE_PORT80 = 9, /* * Thermal management: include TMP specific commands. * Higher level than direct fan control. */ EC_FEATURE_THERMAL = 10, /* Can switch the screen backlight on/off */ EC_FEATURE_BKLIGHT_SWITCH = 11, /* Can switch the wifi module on/off */ EC_FEATURE_WIFI_SWITCH = 12, /* Monitor host events, through for example SMI or SCI */ EC_FEATURE_HOST_EVENTS = 13, /* The EC exposes GPIO commands to control/monitor connected devices. */ EC_FEATURE_GPIO = 14, /* The EC can send i2c messages to downstream devices. */ EC_FEATURE_I2C = 15, /* Command to control charger are included */ EC_FEATURE_CHARGER = 16, /* Simple battery support. */ EC_FEATURE_BATTERY = 17, /* * Support Smart battery protocol * (Common Smart Battery System Interface Specification) */ EC_FEATURE_SMART_BATTERY = 18, /* EC can dectect when the host hangs. */ EC_FEATURE_HANG_DETECT = 19, /* Report power information, for pit only */ EC_FEATURE_PMU = 20, /* Another Cros EC device is present downstream of this one */ EC_FEATURE_SUB_MCU = 21, /* Support USB Power delivery (PD) commands */ EC_FEATURE_USB_PD = 22, /* Control USB multiplexer, for audio through USB port for instance. */ EC_FEATURE_USB_MUX = 23, /* Motion Sensor code has an internal software FIFO */ EC_FEATURE_MOTION_SENSE_FIFO = 24, /* EC has RTC feature that can be controlled by host commands */ EC_FEATURE_RTC = 27, /* EC supports CEC commands */ EC_FEATURE_CEC = 35, }; #define EC_FEATURE_MASK_0(event_code) (1UL << (event_code % 32)) #define EC_FEATURE_MASK_1(event_code) (1UL << (event_code - 32)) struct ec_response_get_features { uint32_t flags[2]; } __packed; /*****************************************************************************/ /* Flash commands */ /* Get flash info */ #define EC_CMD_FLASH_INFO 0x10 /* Version 0 returns these fields */ struct ec_response_flash_info { /* Usable flash size, in bytes */ uint32_t flash_size; /* * Write block size. Write offset and size must be a multiple * of this. */ uint32_t write_block_size; /* * Erase block size. Erase offset and size must be a multiple * of this. */ uint32_t erase_block_size; /* * Protection block size. Protection offset and size must be a * multiple of this. */ uint32_t protect_block_size; } __packed; /* Flags for version 1+ flash info command */ /* EC flash erases bits to 0 instead of 1 */ #define EC_FLASH_INFO_ERASE_TO_0 (1 << 0) /* * Version 1 returns the same initial fields as version 0, with additional * fields following. * * gcc anonymous structs don't seem to get along with the __packed directive; * if they did we'd define the version 0 struct as a sub-struct of this one. */ struct ec_response_flash_info_1 { /* Version 0 fields; see above for description */ uint32_t flash_size; uint32_t write_block_size; uint32_t erase_block_size; uint32_t protect_block_size; /* Version 1 adds these fields: */ /* * Ideal write size in bytes. Writes will be fastest if size is * exactly this and offset is a multiple of this. For example, an EC * may have a write buffer which can do half-page operations if data is * aligned, and a slower word-at-a-time write mode. */ uint32_t write_ideal_size; /* Flags; see EC_FLASH_INFO_* */ uint32_t flags; } __packed; /* * Read flash * * Response is params.size bytes of data. */ #define EC_CMD_FLASH_READ 0x11 struct ec_params_flash_read { uint32_t offset; /* Byte offset to read */ uint32_t size; /* Size to read in bytes */ } __packed; /* Write flash */ #define EC_CMD_FLASH_WRITE 0x12 #define EC_VER_FLASH_WRITE 1 /* Version 0 of the flash command supported only 64 bytes of data */ #define EC_FLASH_WRITE_VER0_SIZE 64 struct ec_params_flash_write { uint32_t offset; /* Byte offset to write */ uint32_t size; /* Size to write in bytes */ /* Followed by data to write */ } __packed; /* Erase flash */ #define EC_CMD_FLASH_ERASE 0x13 struct ec_params_flash_erase { uint32_t offset; /* Byte offset to erase */ uint32_t size; /* Size to erase in bytes */ } __packed; /* * Get/set flash protection. * * If mask!=0, sets/clear the requested bits of flags. Depending on the * firmware write protect GPIO, not all flags will take effect immediately; * some flags require a subsequent hard reset to take effect. Check the * returned flags bits to see what actually happened. * * If mask=0, simply returns the current flags state. */ #define EC_CMD_FLASH_PROTECT 0x15 #define EC_VER_FLASH_PROTECT 1 /* Command version 1 */ /* Flags for flash protection */ /* RO flash code protected when the EC boots */ #define EC_FLASH_PROTECT_RO_AT_BOOT (1 << 0) /* * RO flash code protected now. If this bit is set, at-boot status cannot * be changed. */ #define EC_FLASH_PROTECT_RO_NOW (1 << 1) /* Entire flash code protected now, until reboot. */ #define EC_FLASH_PROTECT_ALL_NOW (1 << 2) /* Flash write protect GPIO is asserted now */ #define EC_FLASH_PROTECT_GPIO_ASSERTED (1 << 3) /* Error - at least one bank of flash is stuck locked, and cannot be unlocked */ #define EC_FLASH_PROTECT_ERROR_STUCK (1 << 4) /* * Error - flash protection is in inconsistent state. At least one bank of * flash which should be protected is not protected. Usually fixed by * re-requesting the desired flags, or by a hard reset if that fails. */ #define EC_FLASH_PROTECT_ERROR_INCONSISTENT (1 << 5) /* Entile flash code protected when the EC boots */ #define EC_FLASH_PROTECT_ALL_AT_BOOT (1 << 6) struct ec_params_flash_protect { uint32_t mask; /* Bits in flags to apply */ uint32_t flags; /* New flags to apply */ } __packed; struct ec_response_flash_protect { /* Current value of flash protect flags */ uint32_t flags; /* * Flags which are valid on this platform. This allows the caller * to distinguish between flags which aren't set vs. flags which can't * be set on this platform. */ uint32_t valid_flags; /* Flags which can be changed given the current protection state */ uint32_t writable_flags; } __packed; /* * Note: commands 0x14 - 0x19 version 0 were old commands to get/set flash * write protect. These commands may be reused with version > 0. */ /* Get the region offset/size */ #define EC_CMD_FLASH_REGION_INFO 0x16 #define EC_VER_FLASH_REGION_INFO 1 enum ec_flash_region { /* Region which holds read-only EC image */ EC_FLASH_REGION_RO = 0, /* Region which holds rewritable EC image */ EC_FLASH_REGION_RW, /* * Region which should be write-protected in the factory (a superset of * EC_FLASH_REGION_RO) */ EC_FLASH_REGION_WP_RO, /* Number of regions */ EC_FLASH_REGION_COUNT, }; struct ec_params_flash_region_info { uint32_t region; /* enum ec_flash_region */ } __packed; struct ec_response_flash_region_info { uint32_t offset; uint32_t size; } __packed; /* Read/write VbNvContext */ #define EC_CMD_VBNV_CONTEXT 0x17 #define EC_VER_VBNV_CONTEXT 1 #define EC_VBNV_BLOCK_SIZE 16 enum ec_vbnvcontext_op { EC_VBNV_CONTEXT_OP_READ, EC_VBNV_CONTEXT_OP_WRITE, }; struct ec_params_vbnvcontext { uint32_t op; uint8_t block[EC_VBNV_BLOCK_SIZE]; } __packed; struct ec_response_vbnvcontext { uint8_t block[EC_VBNV_BLOCK_SIZE]; } __packed; /*****************************************************************************/ /* PWM commands */ /* Get fan target RPM */ #define EC_CMD_PWM_GET_FAN_TARGET_RPM 0x20 struct ec_response_pwm_get_fan_rpm { uint32_t rpm; } __packed; /* Set target fan RPM */ #define EC_CMD_PWM_SET_FAN_TARGET_RPM 0x21 struct ec_params_pwm_set_fan_target_rpm { uint32_t rpm; } __packed; /* Get keyboard backlight */ #define EC_CMD_PWM_GET_KEYBOARD_BACKLIGHT 0x22 struct ec_response_pwm_get_keyboard_backlight { uint8_t percent; uint8_t enabled; } __packed; /* Set keyboard backlight */ #define EC_CMD_PWM_SET_KEYBOARD_BACKLIGHT 0x23 struct ec_params_pwm_set_keyboard_backlight { uint8_t percent; } __packed; /* Set target fan PWM duty cycle */ #define EC_CMD_PWM_SET_FAN_DUTY 0x24 struct ec_params_pwm_set_fan_duty { uint32_t percent; } __packed; #define EC_CMD_PWM_SET_DUTY 0x25 /* 16 bit duty cycle, 0xffff = 100% */ #define EC_PWM_MAX_DUTY 0xffff enum ec_pwm_type { /* All types, indexed by board-specific enum pwm_channel */ EC_PWM_TYPE_GENERIC = 0, /* Keyboard backlight */ EC_PWM_TYPE_KB_LIGHT, /* Display backlight */ EC_PWM_TYPE_DISPLAY_LIGHT, EC_PWM_TYPE_COUNT, }; struct ec_params_pwm_set_duty { uint16_t duty; /* Duty cycle, EC_PWM_MAX_DUTY = 100% */ uint8_t pwm_type; /* ec_pwm_type */ uint8_t index; /* Type-specific index, or 0 if unique */ } __packed; #define EC_CMD_PWM_GET_DUTY 0x26 struct ec_params_pwm_get_duty { uint8_t pwm_type; /* ec_pwm_type */ uint8_t index; /* Type-specific index, or 0 if unique */ } __packed; struct ec_response_pwm_get_duty { uint16_t duty; /* Duty cycle, EC_PWM_MAX_DUTY = 100% */ } __packed; /*****************************************************************************/ /* * Lightbar commands. This looks worse than it is. Since we only use one HOST * command to say "talk to the lightbar", we put the "and tell it to do X" part * into a subcommand. We'll make separate structs for subcommands with * different input args, so that we know how much to expect. */ #define EC_CMD_LIGHTBAR_CMD 0x28 struct rgb_s { uint8_t r, g, b; }; #define LB_BATTERY_LEVELS 4 /* List of tweakable parameters. NOTE: It's __packed so it can be sent in a * host command, but the alignment is the same regardless. Keep it that way. */ struct lightbar_params_v0 { /* Timing */ int32_t google_ramp_up; int32_t google_ramp_down; int32_t s3s0_ramp_up; int32_t s0_tick_delay[2]; /* AC=0/1 */ int32_t s0a_tick_delay[2]; /* AC=0/1 */ int32_t s0s3_ramp_down; int32_t s3_sleep_for; int32_t s3_ramp_up; int32_t s3_ramp_down; /* Oscillation */ uint8_t new_s0; uint8_t osc_min[2]; /* AC=0/1 */ uint8_t osc_max[2]; /* AC=0/1 */ uint8_t w_ofs[2]; /* AC=0/1 */ /* Brightness limits based on the backlight and AC. */ uint8_t bright_bl_off_fixed[2]; /* AC=0/1 */ uint8_t bright_bl_on_min[2]; /* AC=0/1 */ uint8_t bright_bl_on_max[2]; /* AC=0/1 */ /* Battery level thresholds */ uint8_t battery_threshold[LB_BATTERY_LEVELS - 1]; /* Map [AC][battery_level] to color index */ uint8_t s0_idx[2][LB_BATTERY_LEVELS]; /* AP is running */ uint8_t s3_idx[2][LB_BATTERY_LEVELS]; /* AP is sleeping */ /* Color palette */ struct rgb_s color[8]; /* 0-3 are Google colors */ } __packed; struct lightbar_params_v1 { /* Timing */ int32_t google_ramp_up; int32_t google_ramp_down; int32_t s3s0_ramp_up; int32_t s0_tick_delay[2]; /* AC=0/1 */ int32_t s0a_tick_delay[2]; /* AC=0/1 */ int32_t s0s3_ramp_down; int32_t s3_sleep_for; int32_t s3_ramp_up; int32_t s3_ramp_down; int32_t tap_tick_delay; int32_t tap_display_time; /* Tap-for-battery params */ uint8_t tap_pct_red; uint8_t tap_pct_green; uint8_t tap_seg_min_on; uint8_t tap_seg_max_on; uint8_t tap_seg_osc; uint8_t tap_idx[3]; /* Oscillation */ uint8_t osc_min[2]; /* AC=0/1 */ uint8_t osc_max[2]; /* AC=0/1 */ uint8_t w_ofs[2]; /* AC=0/1 */ /* Brightness limits based on the backlight and AC. */ uint8_t bright_bl_off_fixed[2]; /* AC=0/1 */ uint8_t bright_bl_on_min[2]; /* AC=0/1 */ uint8_t bright_bl_on_max[2]; /* AC=0/1 */ /* Battery level thresholds */ uint8_t battery_threshold[LB_BATTERY_LEVELS - 1]; /* Map [AC][battery_level] to color index */ uint8_t s0_idx[2][LB_BATTERY_LEVELS]; /* AP is running */ uint8_t s3_idx[2][LB_BATTERY_LEVELS]; /* AP is sleeping */ /* Color palette */ struct rgb_s color[8]; /* 0-3 are Google colors */ } __packed; /* Lightbar program */ #define EC_LB_PROG_LEN 192 struct lightbar_program { uint8_t size; uint8_t data[EC_LB_PROG_LEN]; }; struct ec_params_lightbar { uint8_t cmd; /* Command (see enum lightbar_command) */ union { struct { /* no args */ } dump, off, on, init, get_seq, get_params_v0, get_params_v1, version, get_brightness, get_demo, suspend, resume; struct { uint8_t num; } set_brightness, seq, demo; struct { uint8_t ctrl, reg, value; } reg; struct { uint8_t led, red, green, blue; } set_rgb; struct { uint8_t led; } get_rgb; struct { uint8_t enable; } manual_suspend_ctrl; struct lightbar_params_v0 set_params_v0; struct lightbar_params_v1 set_params_v1; struct lightbar_program set_program; }; } __packed; struct ec_response_lightbar { union { struct { struct { uint8_t reg; uint8_t ic0; uint8_t ic1; } vals[23]; } dump; struct { uint8_t num; } get_seq, get_brightness, get_demo; struct lightbar_params_v0 get_params_v0; struct lightbar_params_v1 get_params_v1; struct { uint32_t num; uint32_t flags; } version; struct { uint8_t red, green, blue; } get_rgb; struct { /* no return params */ } off, on, init, set_brightness, seq, reg, set_rgb, demo, set_params_v0, set_params_v1, set_program, manual_suspend_ctrl, suspend, resume; }; } __packed; /* Lightbar commands */ enum lightbar_command { LIGHTBAR_CMD_DUMP = 0, LIGHTBAR_CMD_OFF = 1, LIGHTBAR_CMD_ON = 2, LIGHTBAR_CMD_INIT = 3, LIGHTBAR_CMD_SET_BRIGHTNESS = 4, LIGHTBAR_CMD_SEQ = 5, LIGHTBAR_CMD_REG = 6, LIGHTBAR_CMD_SET_RGB = 7, LIGHTBAR_CMD_GET_SEQ = 8, LIGHTBAR_CMD_DEMO = 9, LIGHTBAR_CMD_GET_PARAMS_V0 = 10, LIGHTBAR_CMD_SET_PARAMS_V0 = 11, LIGHTBAR_CMD_VERSION = 12, LIGHTBAR_CMD_GET_BRIGHTNESS = 13, LIGHTBAR_CMD_GET_RGB = 14, LIGHTBAR_CMD_GET_DEMO = 15, LIGHTBAR_CMD_GET_PARAMS_V1 = 16, LIGHTBAR_CMD_SET_PARAMS_V1 = 17, LIGHTBAR_CMD_SET_PROGRAM = 18, LIGHTBAR_CMD_MANUAL_SUSPEND_CTRL = 19, LIGHTBAR_CMD_SUSPEND = 20, LIGHTBAR_CMD_RESUME = 21, LIGHTBAR_NUM_CMDS }; /*****************************************************************************/ /* LED control commands */ #define EC_CMD_LED_CONTROL 0x29 enum ec_led_id { /* LED to indicate battery state of charge */ EC_LED_ID_BATTERY_LED = 0, /* * LED to indicate system power state (on or in suspend). * May be on power button or on C-panel. */ EC_LED_ID_POWER_LED, /* LED on power adapter or its plug */ EC_LED_ID_ADAPTER_LED, EC_LED_ID_COUNT }; /* LED control flags */ #define EC_LED_FLAGS_QUERY (1 << 0) /* Query LED capability only */ #define EC_LED_FLAGS_AUTO (1 << 1) /* Switch LED back to automatic control */ enum ec_led_colors { EC_LED_COLOR_RED = 0, EC_LED_COLOR_GREEN, EC_LED_COLOR_BLUE, EC_LED_COLOR_YELLOW, EC_LED_COLOR_WHITE, EC_LED_COLOR_COUNT }; struct ec_params_led_control { uint8_t led_id; /* Which LED to control */ uint8_t flags; /* Control flags */ uint8_t brightness[EC_LED_COLOR_COUNT]; } __packed; struct ec_response_led_control { /* * Available brightness value range. * * Range 0 means color channel not present. * Range 1 means on/off control. * Other values means the LED is control by PWM. */ uint8_t brightness_range[EC_LED_COLOR_COUNT]; } __packed; /*****************************************************************************/ /* Verified boot commands */ /* * Note: command code 0x29 version 0 was VBOOT_CMD in Link EVT; it may be * reused for other purposes with version > 0. */ /* Verified boot hash command */ #define EC_CMD_VBOOT_HASH 0x2A struct ec_params_vboot_hash { uint8_t cmd; /* enum ec_vboot_hash_cmd */ uint8_t hash_type; /* enum ec_vboot_hash_type */ uint8_t nonce_size; /* Nonce size; may be 0 */ uint8_t reserved0; /* Reserved; set 0 */ uint32_t offset; /* Offset in flash to hash */ uint32_t size; /* Number of bytes to hash */ uint8_t nonce_data[64]; /* Nonce data; ignored if nonce_size=0 */ } __packed; struct ec_response_vboot_hash { uint8_t status; /* enum ec_vboot_hash_status */ uint8_t hash_type; /* enum ec_vboot_hash_type */ uint8_t digest_size; /* Size of hash digest in bytes */ uint8_t reserved0; /* Ignore; will be 0 */ uint32_t offset; /* Offset in flash which was hashed */ uint32_t size; /* Number of bytes hashed */ uint8_t hash_digest[64]; /* Hash digest data */ } __packed; enum ec_vboot_hash_cmd { EC_VBOOT_HASH_GET = 0, /* Get current hash status */ EC_VBOOT_HASH_ABORT = 1, /* Abort calculating current hash */ EC_VBOOT_HASH_START = 2, /* Start computing a new hash */ EC_VBOOT_HASH_RECALC = 3, /* Synchronously compute a new hash */ }; enum ec_vboot_hash_type { EC_VBOOT_HASH_TYPE_SHA256 = 0, /* SHA-256 */ }; enum ec_vboot_hash_status { EC_VBOOT_HASH_STATUS_NONE = 0, /* No hash (not started, or aborted) */ EC_VBOOT_HASH_STATUS_DONE = 1, /* Finished computing a hash */ EC_VBOOT_HASH_STATUS_BUSY = 2, /* Busy computing a hash */ }; /* * Special values for offset for EC_VBOOT_HASH_START and EC_VBOOT_HASH_RECALC. * If one of these is specified, the EC will automatically update offset and * size to the correct values for the specified image (RO or RW). */ #define EC_VBOOT_HASH_OFFSET_RO 0xfffffffe #define EC_VBOOT_HASH_OFFSET_RW 0xfffffffd /*****************************************************************************/ /* * Motion sense commands. We'll make separate structs for sub-commands with * different input args, so that we know how much to expect. */ #define EC_CMD_MOTION_SENSE_CMD 0x2B /* Motion sense commands */ enum motionsense_command { /* * Dump command returns all motion sensor data including motion sense * module flags and individual sensor flags. */ MOTIONSENSE_CMD_DUMP = 0, /* * Info command returns data describing the details of a given sensor, * including enum motionsensor_type, enum motionsensor_location, and * enum motionsensor_chip. */ MOTIONSENSE_CMD_INFO = 1, /* * EC Rate command is a setter/getter command for the EC sampling rate * of all motion sensors in milliseconds. */ MOTIONSENSE_CMD_EC_RATE = 2, /* * Sensor ODR command is a setter/getter command for the output data * rate of a specific motion sensor in millihertz. */ MOTIONSENSE_CMD_SENSOR_ODR = 3, /* * Sensor range command is a setter/getter command for the range of * a specified motion sensor in +/-G's or +/- deg/s. */ MOTIONSENSE_CMD_SENSOR_RANGE = 4, /* * Setter/getter command for the keyboard wake angle. When the lid * angle is greater than this value, keyboard wake is disabled in S3, * and when the lid angle goes less than this value, keyboard wake is * enabled. Note, the lid angle measurement is an approximate, * un-calibrated value, hence the wake angle isn't exact. */ MOTIONSENSE_CMD_KB_WAKE_ANGLE = 5, /* * Returns a single sensor data. */ MOTIONSENSE_CMD_DATA = 6, /* * Perform low level calibration.. On sensors that support it, ask to * do offset calibration. */ MOTIONSENSE_CMD_PERFORM_CALIB = 10, /* * Sensor Offset command is a setter/getter command for the offset used * for calibration. The offsets can be calculated by the host, or via * PERFORM_CALIB command. */ MOTIONSENSE_CMD_SENSOR_OFFSET = 11, /* Number of motionsense sub-commands. */ MOTIONSENSE_NUM_CMDS }; enum motionsensor_id { EC_MOTION_SENSOR_ACCEL_BASE = 0, EC_MOTION_SENSOR_ACCEL_LID = 1, EC_MOTION_SENSOR_GYRO = 2, /* * Note, if more sensors are added and this count changes, the padding * in ec_response_motion_sense dump command must be modified. */ EC_MOTION_SENSOR_COUNT = 3 }; /* List of motion sensor types. */ enum motionsensor_type { MOTIONSENSE_TYPE_ACCEL = 0, MOTIONSENSE_TYPE_GYRO = 1, MOTIONSENSE_TYPE_MAG = 2, MOTIONSENSE_TYPE_PROX = 3, MOTIONSENSE_TYPE_LIGHT = 4, MOTIONSENSE_TYPE_ACTIVITY = 5, MOTIONSENSE_TYPE_BARO = 6, MOTIONSENSE_TYPE_MAX, }; /* List of motion sensor locations. */ enum motionsensor_location { MOTIONSENSE_LOC_BASE = 0, MOTIONSENSE_LOC_LID = 1, MOTIONSENSE_LOC_MAX, }; /* List of motion sensor chips. */ enum motionsensor_chip { MOTIONSENSE_CHIP_KXCJ9 = 0, }; /* Module flag masks used for the dump sub-command. */ #define MOTIONSENSE_MODULE_FLAG_ACTIVE (1<<0) /* Sensor flag masks used for the dump sub-command. */ #define MOTIONSENSE_SENSOR_FLAG_PRESENT (1<<0) /* * Send this value for the data element to only perform a read. If you * send any other value, the EC will interpret it as data to set and will * return the actual value set. */ #define EC_MOTION_SENSE_NO_VALUE -1 #define EC_MOTION_SENSE_INVALID_CALIB_TEMP 0x8000 /* Set Calibration information */ #define MOTION_SENSE_SET_OFFSET 1 struct ec_response_motion_sensor_data { /* Flags for each sensor. */ uint8_t flags; /* Sensor number the data comes from */ uint8_t sensor_num; /* Each sensor is up to 3-axis. */ union { int16_t data[3]; struct { uint16_t rsvd; uint32_t timestamp; } __packed; struct { uint8_t activity; /* motionsensor_activity */ uint8_t state; int16_t add_info[2]; }; }; } __packed; struct ec_params_motion_sense { uint8_t cmd; union { /* Used for MOTIONSENSE_CMD_DUMP. */ struct { /* no args */ } dump; /* * Used for MOTIONSENSE_CMD_EC_RATE and * MOTIONSENSE_CMD_KB_WAKE_ANGLE. */ struct { /* Data to set or EC_MOTION_SENSE_NO_VALUE to read. */ int16_t data; } ec_rate, kb_wake_angle; /* Used for MOTIONSENSE_CMD_SENSOR_OFFSET */ struct { uint8_t sensor_num; /* * bit 0: If set (MOTION_SENSE_SET_OFFSET), set * the calibration information in the EC. * If unset, just retrieve calibration information. */ uint16_t flags; /* * Temperature at calibration, in units of 0.01 C * 0x8000: invalid / unknown. * 0x0: 0C * 0x7fff: +327.67C */ int16_t temp; /* * Offset for calibration. * Unit: * Accelerometer: 1/1024 g * Gyro: 1/1024 deg/s * Compass: 1/16 uT */ int16_t offset[3]; } __packed sensor_offset; /* Used for MOTIONSENSE_CMD_INFO. */ struct { uint8_t sensor_num; } info; /* * Used for MOTIONSENSE_CMD_SENSOR_ODR and * MOTIONSENSE_CMD_SENSOR_RANGE. */ struct { /* Should be element of enum motionsensor_id. */ uint8_t sensor_num; /* Rounding flag, true for round-up, false for down. */ uint8_t roundup; uint16_t reserved; /* Data to set or EC_MOTION_SENSE_NO_VALUE to read. */ int32_t data; } sensor_odr, sensor_range; }; } __packed; struct ec_response_motion_sense { union { /* Used for MOTIONSENSE_CMD_DUMP. */ struct { /* Flags representing the motion sensor module. */ uint8_t module_flags; /* Number of sensors managed directly by the EC. */ uint8_t sensor_count; /* * Sensor data is truncated if response_max is too small * for holding all the data. */ struct ec_response_motion_sensor_data sensor[0]; } dump; /* Used for MOTIONSENSE_CMD_INFO. */ struct { /* Should be element of enum motionsensor_type. */ uint8_t type; /* Should be element of enum motionsensor_location. */ uint8_t location; /* Should be element of enum motionsensor_chip. */ uint8_t chip; } info; /* Used for MOTIONSENSE_CMD_DATA */ struct ec_response_motion_sensor_data data; /* * Used for MOTIONSENSE_CMD_EC_RATE, MOTIONSENSE_CMD_SENSOR_ODR, * MOTIONSENSE_CMD_SENSOR_RANGE, and * MOTIONSENSE_CMD_KB_WAKE_ANGLE. */ struct { /* Current value of the parameter queried. */ int32_t ret; } ec_rate, sensor_odr, sensor_range, kb_wake_angle; /* Used for MOTIONSENSE_CMD_SENSOR_OFFSET */ struct { int16_t temp; int16_t offset[3]; } sensor_offset, perform_calib; }; } __packed; /*****************************************************************************/ /* USB charging control commands */ /* Set USB port charging mode */ #define EC_CMD_USB_CHARGE_SET_MODE 0x30 struct ec_params_usb_charge_set_mode { uint8_t usb_port_id; uint8_t mode; } __packed; /*****************************************************************************/ /* Persistent storage for host */ /* Maximum bytes that can be read/written in a single command */ #define EC_PSTORE_SIZE_MAX 64 /* Get persistent storage info */ #define EC_CMD_PSTORE_INFO 0x40 struct ec_response_pstore_info { /* Persistent storage size, in bytes */ uint32_t pstore_size; /* Access size; read/write offset and size must be a multiple of this */ uint32_t access_size; } __packed; /* * Read persistent storage * * Response is params.size bytes of data. */ #define EC_CMD_PSTORE_READ 0x41 struct ec_params_pstore_read { uint32_t offset; /* Byte offset to read */ uint32_t size; /* Size to read in bytes */ } __packed; /* Write persistent storage */ #define EC_CMD_PSTORE_WRITE 0x42 struct ec_params_pstore_write { uint32_t offset; /* Byte offset to write */ uint32_t size; /* Size to write in bytes */ uint8_t data[EC_PSTORE_SIZE_MAX]; } __packed; /*****************************************************************************/ /* Real-time clock */ /* RTC params and response structures */ struct ec_params_rtc { uint32_t time; } __packed; struct ec_response_rtc { uint32_t time; } __packed; /* These use ec_response_rtc */ #define EC_CMD_RTC_GET_VALUE 0x44 #define EC_CMD_RTC_GET_ALARM 0x45 /* These all use ec_params_rtc */ #define EC_CMD_RTC_SET_VALUE 0x46 #define EC_CMD_RTC_SET_ALARM 0x47 /* Pass as param to SET_ALARM to clear the current alarm */ #define EC_RTC_ALARM_CLEAR 0 /*****************************************************************************/ /* Port80 log access */ /* Maximum entries that can be read/written in a single command */ #define EC_PORT80_SIZE_MAX 32 /* Get last port80 code from previous boot */ #define EC_CMD_PORT80_LAST_BOOT 0x48 #define EC_CMD_PORT80_READ 0x48 enum ec_port80_subcmd { EC_PORT80_GET_INFO = 0, EC_PORT80_READ_BUFFER, }; struct ec_params_port80_read { uint16_t subcmd; union { struct { uint32_t offset; uint32_t num_entries; } read_buffer; }; } __packed; struct ec_response_port80_read { union { struct { uint32_t writes; uint32_t history_size; uint32_t last_boot; } get_info; struct { uint16_t codes[EC_PORT80_SIZE_MAX]; } data; }; } __packed; struct ec_response_port80_last_boot { uint16_t code; } __packed; /*****************************************************************************/ /* Thermal engine commands. Note that there are two implementations. We'll * reuse the command number, but the data and behavior is incompatible. * Version 0 is what originally shipped on Link. * Version 1 separates the CPU thermal limits from the fan control. */ #define EC_CMD_THERMAL_SET_THRESHOLD 0x50 #define EC_CMD_THERMAL_GET_THRESHOLD 0x51 /* The version 0 structs are opaque. You have to know what they are for * the get/set commands to make any sense. */ /* Version 0 - set */ struct ec_params_thermal_set_threshold { uint8_t sensor_type; uint8_t threshold_id; uint16_t value; } __packed; /* Version 0 - get */ struct ec_params_thermal_get_threshold { uint8_t sensor_type; uint8_t threshold_id; } __packed; struct ec_response_thermal_get_threshold { uint16_t value; } __packed; /* The version 1 structs are visible. */ enum ec_temp_thresholds { EC_TEMP_THRESH_WARN = 0, EC_TEMP_THRESH_HIGH, EC_TEMP_THRESH_HALT, EC_TEMP_THRESH_COUNT }; /* Thermal configuration for one temperature sensor. Temps are in degrees K. * Zero values will be silently ignored by the thermal task. */ struct ec_thermal_config { uint32_t temp_host[EC_TEMP_THRESH_COUNT]; /* levels of hotness */ uint32_t temp_fan_off; /* no active cooling needed */ uint32_t temp_fan_max; /* max active cooling needed */ } __packed; /* Version 1 - get config for one sensor. */ struct ec_params_thermal_get_threshold_v1 { uint32_t sensor_num; } __packed; /* This returns a struct ec_thermal_config */ /* Version 1 - set config for one sensor. * Use read-modify-write for best results! */ struct ec_params_thermal_set_threshold_v1 { uint32_t sensor_num; struct ec_thermal_config cfg; } __packed; /* This returns no data */ /****************************************************************************/ /* Toggle automatic fan control */ #define EC_CMD_THERMAL_AUTO_FAN_CTRL 0x52 /* Get TMP006 calibration data */ #define EC_CMD_TMP006_GET_CALIBRATION 0x53 struct ec_params_tmp006_get_calibration { uint8_t index; } __packed; struct ec_response_tmp006_get_calibration { float s0; float b0; float b1; float b2; } __packed; /* Set TMP006 calibration data */ #define EC_CMD_TMP006_SET_CALIBRATION 0x54 struct ec_params_tmp006_set_calibration { uint8_t index; uint8_t reserved[3]; /* Reserved; set 0 */ float s0; float b0; float b1; float b2; } __packed; /* Read raw TMP006 data */ #define EC_CMD_TMP006_GET_RAW 0x55 struct ec_params_tmp006_get_raw { uint8_t index; } __packed; struct ec_response_tmp006_get_raw { int32_t t; /* In 1/100 K */ int32_t v; /* In nV */ }; /*****************************************************************************/ /* MKBP - Matrix KeyBoard Protocol */ /* * Read key state * * Returns raw data for keyboard cols; see ec_response_mkbp_info.cols for * expected response size. * * NOTE: This has been superseded by EC_CMD_MKBP_GET_NEXT_EVENT. If you wish * to obtain the instantaneous state, use EC_CMD_MKBP_INFO with the type * EC_MKBP_INFO_CURRENT and event EC_MKBP_EVENT_KEY_MATRIX. */ #define EC_CMD_MKBP_STATE 0x60 /* * Provide information about various MKBP things. See enum ec_mkbp_info_type. */ #define EC_CMD_MKBP_INFO 0x61 struct ec_response_mkbp_info { uint32_t rows; uint32_t cols; /* Formerly "switches", which was 0. */ uint8_t reserved; } __packed; struct ec_params_mkbp_info { uint8_t info_type; uint8_t event_type; } __packed; enum ec_mkbp_info_type { /* * Info about the keyboard matrix: number of rows and columns. * * Returns struct ec_response_mkbp_info. */ EC_MKBP_INFO_KBD = 0, /* * For buttons and switches, info about which specifically are * supported. event_type must be set to one of the values in enum * ec_mkbp_event. * * For EC_MKBP_EVENT_BUTTON and EC_MKBP_EVENT_SWITCH, returns a 4 byte * bitmask indicating which buttons or switches are present. See the * bit inidices below. */ EC_MKBP_INFO_SUPPORTED = 1, /* * Instantaneous state of buttons and switches. * * event_type must be set to one of the values in enum ec_mkbp_event. * * For EC_MKBP_EVENT_KEY_MATRIX, returns uint8_t key_matrix[13] * indicating the current state of the keyboard matrix. * * For EC_MKBP_EVENT_HOST_EVENT, return uint32_t host_event, the raw * event state. * * For EC_MKBP_EVENT_BUTTON, returns uint32_t buttons, indicating the * state of supported buttons. * * For EC_MKBP_EVENT_SWITCH, returns uint32_t switches, indicating the * state of supported switches. */ EC_MKBP_INFO_CURRENT = 2, }; /* Simulate key press */ #define EC_CMD_MKBP_SIMULATE_KEY 0x62 struct ec_params_mkbp_simulate_key { uint8_t col; uint8_t row; uint8_t pressed; } __packed; /* Configure keyboard scanning */ #define EC_CMD_MKBP_SET_CONFIG 0x64 #define EC_CMD_MKBP_GET_CONFIG 0x65 /* flags */ enum mkbp_config_flags { EC_MKBP_FLAGS_ENABLE = 1, /* Enable keyboard scanning */ }; enum mkbp_config_valid { EC_MKBP_VALID_SCAN_PERIOD = 1 << 0, EC_MKBP_VALID_POLL_TIMEOUT = 1 << 1, EC_MKBP_VALID_MIN_POST_SCAN_DELAY = 1 << 3, EC_MKBP_VALID_OUTPUT_SETTLE = 1 << 4, EC_MKBP_VALID_DEBOUNCE_DOWN = 1 << 5, EC_MKBP_VALID_DEBOUNCE_UP = 1 << 6, EC_MKBP_VALID_FIFO_MAX_DEPTH = 1 << 7, }; /* Configuration for our key scanning algorithm */ struct ec_mkbp_config { uint32_t valid_mask; /* valid fields */ uint8_t flags; /* some flags (enum mkbp_config_flags) */ uint8_t valid_flags; /* which flags are valid */ uint16_t scan_period_us; /* period between start of scans */ /* revert to interrupt mode after no activity for this long */ uint32_t poll_timeout_us; /* * minimum post-scan relax time. Once we finish a scan we check * the time until we are due to start the next one. If this time is * shorter this field, we use this instead. */ uint16_t min_post_scan_delay_us; /* delay between setting up output and waiting for it to settle */ uint16_t output_settle_us; uint16_t debounce_down_us; /* time for debounce on key down */ uint16_t debounce_up_us; /* time for debounce on key up */ /* maximum depth to allow for fifo (0 = no keyscan output) */ uint8_t fifo_max_depth; } __packed; struct ec_params_mkbp_set_config { struct ec_mkbp_config config; } __packed; struct ec_response_mkbp_get_config { struct ec_mkbp_config config; } __packed; /* Run the key scan emulation */ #define EC_CMD_KEYSCAN_SEQ_CTRL 0x66 enum ec_keyscan_seq_cmd { EC_KEYSCAN_SEQ_STATUS = 0, /* Get status information */ EC_KEYSCAN_SEQ_CLEAR = 1, /* Clear sequence */ EC_KEYSCAN_SEQ_ADD = 2, /* Add item to sequence */ EC_KEYSCAN_SEQ_START = 3, /* Start running sequence */ EC_KEYSCAN_SEQ_COLLECT = 4, /* Collect sequence summary data */ }; enum ec_collect_flags { /* * Indicates this scan was processed by the EC. Due to timing, some * scans may be skipped. */ EC_KEYSCAN_SEQ_FLAG_DONE = 1 << 0, }; struct ec_collect_item { uint8_t flags; /* some flags (enum ec_collect_flags) */ }; struct ec_params_keyscan_seq_ctrl { uint8_t cmd; /* Command to send (enum ec_keyscan_seq_cmd) */ union { struct { uint8_t active; /* still active */ uint8_t num_items; /* number of items */ /* Current item being presented */ uint8_t cur_item; } status; struct { /* * Absolute time for this scan, measured from the * start of the sequence. */ uint32_t time_us; uint8_t scan[0]; /* keyscan data */ } add; struct { uint8_t start_item; /* First item to return */ uint8_t num_items; /* Number of items to return */ } collect; }; } __packed; struct ec_result_keyscan_seq_ctrl { union { struct { uint8_t num_items; /* Number of items */ /* Data for each item */ struct ec_collect_item item[0]; } collect; }; } __packed; /* * Command for retrieving the next pending MKBP event from the EC device * * The device replies with UNAVAILABLE if there aren't any pending events. */ #define EC_CMD_GET_NEXT_EVENT 0x67 enum ec_mkbp_event { /* Keyboard matrix changed. The event data is the new matrix state. */ EC_MKBP_EVENT_KEY_MATRIX = 0, /* New host event. The event data is 4 bytes of host event flags. */ EC_MKBP_EVENT_HOST_EVENT = 1, /* New Sensor FIFO data. The event data is fifo_info structure. */ EC_MKBP_EVENT_SENSOR_FIFO = 2, /* The state of the non-matrixed buttons have changed. */ EC_MKBP_EVENT_BUTTON = 3, /* The state of the switches have changed. */ EC_MKBP_EVENT_SWITCH = 4, /* EC sent a sysrq command */ EC_MKBP_EVENT_SYSRQ = 6, /* Notify the AP that something happened on CEC */ EC_MKBP_EVENT_CEC_EVENT = 8, /* Send an incoming CEC message to the AP */ EC_MKBP_EVENT_CEC_MESSAGE = 9, /* Number of MKBP events */ EC_MKBP_EVENT_COUNT, }; union ec_response_get_next_data { uint8_t key_matrix[13]; /* Unaligned */ uint32_t host_event; uint32_t buttons; uint32_t switches; uint32_t sysrq; } __packed; union ec_response_get_next_data_v1 { uint8_t key_matrix[16]; uint32_t host_event; uint32_t buttons; uint32_t switches; uint32_t sysrq; uint32_t cec_events; uint8_t cec_message[16]; } __packed; struct ec_response_get_next_event { uint8_t event_type; /* Followed by event data if any */ union ec_response_get_next_data data; } __packed; struct ec_response_get_next_event_v1 { uint8_t event_type; /* Followed by event data if any */ union ec_response_get_next_data_v1 data; } __packed; /* Bit indices for buttons and switches.*/ /* Buttons */ #define EC_MKBP_POWER_BUTTON 0 #define EC_MKBP_VOL_UP 1 #define EC_MKBP_VOL_DOWN 2 /* Switches */ #define EC_MKBP_LID_OPEN 0 #define EC_MKBP_TABLET_MODE 1 /*****************************************************************************/ /* Temperature sensor commands */ /* Read temperature sensor info */ #define EC_CMD_TEMP_SENSOR_GET_INFO 0x70 struct ec_params_temp_sensor_get_info { uint8_t id; } __packed; struct ec_response_temp_sensor_get_info { char sensor_name[32]; uint8_t sensor_type; } __packed; /*****************************************************************************/ /* * Note: host commands 0x80 - 0x87 are reserved to avoid conflict with ACPI * commands accidentally sent to the wrong interface. See the ACPI section * below. */ /*****************************************************************************/ /* Host event commands */ /* * Host event mask params and response structures, shared by all of the host * event commands below. */ struct ec_params_host_event_mask { uint32_t mask; } __packed; struct ec_response_host_event_mask { uint32_t mask; } __packed; /* These all use ec_response_host_event_mask */ #define EC_CMD_HOST_EVENT_GET_B 0x87 #define EC_CMD_HOST_EVENT_GET_SMI_MASK 0x88 #define EC_CMD_HOST_EVENT_GET_SCI_MASK 0x89 #define EC_CMD_HOST_EVENT_GET_WAKE_MASK 0x8d /* These all use ec_params_host_event_mask */ #define EC_CMD_HOST_EVENT_SET_SMI_MASK 0x8a #define EC_CMD_HOST_EVENT_SET_SCI_MASK 0x8b #define EC_CMD_HOST_EVENT_CLEAR 0x8c #define EC_CMD_HOST_EVENT_SET_WAKE_MASK 0x8e #define EC_CMD_HOST_EVENT_CLEAR_B 0x8f /*****************************************************************************/ /* Switch commands */ /* Enable/disable LCD backlight */ #define EC_CMD_SWITCH_ENABLE_BKLIGHT 0x90 struct ec_params_switch_enable_backlight { uint8_t enabled; } __packed; /* Enable/disable WLAN/Bluetooth */ #define EC_CMD_SWITCH_ENABLE_WIRELESS 0x91 #define EC_VER_SWITCH_ENABLE_WIRELESS 1 /* Version 0 params; no response */ struct ec_params_switch_enable_wireless_v0 { uint8_t enabled; } __packed; /* Version 1 params */ struct ec_params_switch_enable_wireless_v1 { /* Flags to enable now */ uint8_t now_flags; /* Which flags to copy from now_flags */ uint8_t now_mask; /* * Flags to leave enabled in S3, if they're on at the S0->S3 * transition. (Other flags will be disabled by the S0->S3 * transition.) */ uint8_t suspend_flags; /* Which flags to copy from suspend_flags */ uint8_t suspend_mask; } __packed; /* Version 1 response */ struct ec_response_switch_enable_wireless_v1 { /* Flags to enable now */ uint8_t now_flags; /* Flags to leave enabled in S3 */ uint8_t suspend_flags; } __packed; /*****************************************************************************/ /* GPIO commands. Only available on EC if write protect has been disabled. */ /* Set GPIO output value */ #define EC_CMD_GPIO_SET 0x92 struct ec_params_gpio_set { char name[32]; uint8_t val; } __packed; /* Get GPIO value */ #define EC_CMD_GPIO_GET 0x93 /* Version 0 of input params and response */ struct ec_params_gpio_get { char name[32]; } __packed; struct ec_response_gpio_get { uint8_t val; } __packed; /* Version 1 of input params and response */ struct ec_params_gpio_get_v1 { uint8_t subcmd; union { struct { char name[32]; } get_value_by_name; struct { uint8_t index; } get_info; }; } __packed; struct ec_response_gpio_get_v1 { union { struct { uint8_t val; } get_value_by_name, get_count; struct { uint8_t val; char name[32]; uint32_t flags; } get_info; }; } __packed; enum gpio_get_subcmd { EC_GPIO_GET_BY_NAME = 0, EC_GPIO_GET_COUNT = 1, EC_GPIO_GET_INFO = 2, }; /*****************************************************************************/ /* I2C commands. Only available when flash write protect is unlocked. */ /* * TODO(crosbug.com/p/23570): These commands are deprecated, and will be * removed soon. Use EC_CMD_I2C_XFER instead. */ /* Read I2C bus */ #define EC_CMD_I2C_READ 0x94 struct ec_params_i2c_read { uint16_t addr; /* 8-bit address (7-bit shifted << 1) */ uint8_t read_size; /* Either 8 or 16. */ uint8_t port; uint8_t offset; } __packed; struct ec_response_i2c_read { uint16_t data; } __packed; /* Write I2C bus */ #define EC_CMD_I2C_WRITE 0x95 struct ec_params_i2c_write { uint16_t data; uint16_t addr; /* 8-bit address (7-bit shifted << 1) */ uint8_t write_size; /* Either 8 or 16. */ uint8_t port; uint8_t offset; } __packed; /*****************************************************************************/ /* Charge state commands. Only available when flash write protect unlocked. */ /* Force charge state machine to stop charging the battery or force it to * discharge the battery. */ #define EC_CMD_CHARGE_CONTROL 0x96 #define EC_VER_CHARGE_CONTROL 1 enum ec_charge_control_mode { CHARGE_CONTROL_NORMAL = 0, CHARGE_CONTROL_IDLE, CHARGE_CONTROL_DISCHARGE, }; struct ec_params_charge_control { uint32_t mode; /* enum charge_control_mode */ } __packed; /*****************************************************************************/ /* Console commands. Only available when flash write protect is unlocked. */ /* Snapshot console output buffer for use by EC_CMD_CONSOLE_READ. */ #define EC_CMD_CONSOLE_SNAPSHOT 0x97 /* * Read data from the saved snapshot. If the subcmd parameter is * CONSOLE_READ_NEXT, this will return data starting from the beginning of * the latest snapshot. If it is CONSOLE_READ_RECENT, it will start from the * end of the previous snapshot. * * The params are only looked at in version >= 1 of this command. Prior * versions will just default to CONSOLE_READ_NEXT behavior. * * Response is null-terminated string. Empty string, if there is no more * remaining output. */ #define EC_CMD_CONSOLE_READ 0x98 enum ec_console_read_subcmd { CONSOLE_READ_NEXT = 0, CONSOLE_READ_RECENT }; struct ec_params_console_read_v1 { uint8_t subcmd; /* enum ec_console_read_subcmd */ } __packed; /*****************************************************************************/ /* * Cut off battery power immediately or after the host has shut down. * * return EC_RES_INVALID_COMMAND if unsupported by a board/battery. * EC_RES_SUCCESS if the command was successful. * EC_RES_ERROR if the cut off command failed. */ #define EC_CMD_BATTERY_CUT_OFF 0x99 #define EC_BATTERY_CUTOFF_FLAG_AT_SHUTDOWN (1 << 0) struct ec_params_battery_cutoff { uint8_t flags; } __packed; /*****************************************************************************/ /* USB port mux control. */ /* * Switch USB mux or return to automatic switching. */ #define EC_CMD_USB_MUX 0x9a struct ec_params_usb_mux { uint8_t mux; } __packed; /*****************************************************************************/ /* LDOs / FETs control. */ enum ec_ldo_state { EC_LDO_STATE_OFF = 0, /* the LDO / FET is shut down */ EC_LDO_STATE_ON = 1, /* the LDO / FET is ON / providing power */ }; /* * Switch on/off a LDO. */ #define EC_CMD_LDO_SET 0x9b struct ec_params_ldo_set { uint8_t index; uint8_t state; } __packed; /* * Get LDO state. */ #define EC_CMD_LDO_GET 0x9c struct ec_params_ldo_get { uint8_t index; } __packed; struct ec_response_ldo_get { uint8_t state; } __packed; /*****************************************************************************/ /* Power info. */ /* * Get power info. */ #define EC_CMD_POWER_INFO 0x9d struct ec_response_power_info { uint32_t usb_dev_type; uint16_t voltage_ac; uint16_t voltage_system; uint16_t current_system; uint16_t usb_current_limit; } __packed; /*****************************************************************************/ /* I2C passthru command */ #define EC_CMD_I2C_PASSTHRU 0x9e /* Read data; if not present, message is a write */ #define EC_I2C_FLAG_READ (1 << 15) /* Mask for address */ #define EC_I2C_ADDR_MASK 0x3ff #define EC_I2C_STATUS_NAK (1 << 0) /* Transfer was not acknowledged */ #define EC_I2C_STATUS_TIMEOUT (1 << 1) /* Timeout during transfer */ /* Any error */ #define EC_I2C_STATUS_ERROR (EC_I2C_STATUS_NAK | EC_I2C_STATUS_TIMEOUT) struct ec_params_i2c_passthru_msg { uint16_t addr_flags; /* I2C slave address (7 or 10 bits) and flags */ uint16_t len; /* Number of bytes to read or write */ } __packed; struct ec_params_i2c_passthru { uint8_t port; /* I2C port number */ uint8_t num_msgs; /* Number of messages */ struct ec_params_i2c_passthru_msg msg[]; /* Data to write for all messages is concatenated here */ } __packed; struct ec_response_i2c_passthru { uint8_t i2c_status; /* Status flags (EC_I2C_STATUS_...) */ uint8_t num_msgs; /* Number of messages processed */ uint8_t data[]; /* Data read by messages concatenated here */ } __packed; /*****************************************************************************/ /* Power button hang detect */ #define EC_CMD_HANG_DETECT 0x9f /* Reasons to start hang detection timer */ /* Power button pressed */ #define EC_HANG_START_ON_POWER_PRESS (1 << 0) /* Lid closed */ #define EC_HANG_START_ON_LID_CLOSE (1 << 1) /* Lid opened */ #define EC_HANG_START_ON_LID_OPEN (1 << 2) /* Start of AP S3->S0 transition (booting or resuming from suspend) */ #define EC_HANG_START_ON_RESUME (1 << 3) /* Reasons to cancel hang detection */ /* Power button released */ #define EC_HANG_STOP_ON_POWER_RELEASE (1 << 8) /* Any host command from AP received */ #define EC_HANG_STOP_ON_HOST_COMMAND (1 << 9) /* Stop on end of AP S0->S3 transition (suspending or shutting down) */ #define EC_HANG_STOP_ON_SUSPEND (1 << 10) /* * If this flag is set, all the other fields are ignored, and the hang detect * timer is started. This provides the AP a way to start the hang timer * without reconfiguring any of the other hang detect settings. Note that * you must previously have configured the timeouts. */ #define EC_HANG_START_NOW (1 << 30) /* * If this flag is set, all the other fields are ignored (including * EC_HANG_START_NOW). This provides the AP a way to stop the hang timer * without reconfiguring any of the other hang detect settings. */ #define EC_HANG_STOP_NOW (1 << 31) struct ec_params_hang_detect { /* Flags; see EC_HANG_* */ uint32_t flags; /* Timeout in msec before generating host event, if enabled */ uint16_t host_event_timeout_msec; /* Timeout in msec before generating warm reboot, if enabled */ uint16_t warm_reboot_timeout_msec; } __packed; /*****************************************************************************/ /* Commands for battery charging */ /* * This is the single catch-all host command to exchange data regarding the * charge state machine (v2 and up). */ #define EC_CMD_CHARGE_STATE 0xa0 /* Subcommands for this host command */ enum charge_state_command { CHARGE_STATE_CMD_GET_STATE, CHARGE_STATE_CMD_GET_PARAM, CHARGE_STATE_CMD_SET_PARAM, CHARGE_STATE_NUM_CMDS }; /* * Known param numbers are defined here. Ranges are reserved for board-specific * params, which are handled by the particular implementations. */ enum charge_state_params { CS_PARAM_CHG_VOLTAGE, /* charger voltage limit */ CS_PARAM_CHG_CURRENT, /* charger current limit */ CS_PARAM_CHG_INPUT_CURRENT, /* charger input current limit */ CS_PARAM_CHG_STATUS, /* charger-specific status */ CS_PARAM_CHG_OPTION, /* charger-specific options */ /* How many so far? */ CS_NUM_BASE_PARAMS, /* Range for CONFIG_CHARGER_PROFILE_OVERRIDE params */ CS_PARAM_CUSTOM_PROFILE_MIN = 0x10000, CS_PARAM_CUSTOM_PROFILE_MAX = 0x1ffff, /* Other custom param ranges go here... */ }; struct ec_params_charge_state { uint8_t cmd; /* enum charge_state_command */ union { struct { /* no args */ } get_state; struct { uint32_t param; /* enum charge_state_param */ } get_param; struct { uint32_t param; /* param to set */ uint32_t value; /* value to set */ } set_param; }; } __packed; struct ec_response_charge_state { union { struct { int ac; int chg_voltage; int chg_current; int chg_input_current; int batt_state_of_charge; } get_state; struct { uint32_t value; } get_param; struct { /* no return values */ } set_param; }; } __packed; /* * Set maximum battery charging current. */ #define EC_CMD_CHARGE_CURRENT_LIMIT 0xa1 struct ec_params_current_limit { uint32_t limit; /* in mA */ } __packed; /* * Set maximum external voltage / current. */ #define EC_CMD_EXTERNAL_POWER_LIMIT 0x00A2 /* Command v0 is used only on Spring and is obsolete + unsupported */ struct ec_params_external_power_limit_v1 { uint16_t current_lim; /* in mA, or EC_POWER_LIMIT_NONE to clear limit */ uint16_t voltage_lim; /* in mV, or EC_POWER_LIMIT_NONE to clear limit */ } __packed; #define EC_POWER_LIMIT_NONE 0xffff /* Inform the EC when entering a sleep state */ #define EC_CMD_HOST_SLEEP_EVENT 0xa9 enum host_sleep_event { HOST_SLEEP_EVENT_S3_SUSPEND = 1, HOST_SLEEP_EVENT_S3_RESUME = 2, HOST_SLEEP_EVENT_S0IX_SUSPEND = 3, HOST_SLEEP_EVENT_S0IX_RESUME = 4 }; struct ec_params_host_sleep_event { uint8_t sleep_event; } __packed; /*****************************************************************************/ /* Smart battery pass-through */ /* Get / Set 16-bit smart battery registers */ #define EC_CMD_SB_READ_WORD 0xb0 #define EC_CMD_SB_WRITE_WORD 0xb1 /* Get / Set string smart battery parameters * formatted as SMBUS "block". */ #define EC_CMD_SB_READ_BLOCK 0xb2 #define EC_CMD_SB_WRITE_BLOCK 0xb3 struct ec_params_sb_rd { uint8_t reg; } __packed; struct ec_response_sb_rd_word { uint16_t value; } __packed; struct ec_params_sb_wr_word { uint8_t reg; uint16_t value; } __packed; struct ec_response_sb_rd_block { uint8_t data[32]; } __packed; struct ec_params_sb_wr_block { uint8_t reg; uint16_t data[32]; } __packed; /*****************************************************************************/ /* Battery vendor parameters * * Get or set vendor-specific parameters in the battery. Implementations may * differ between boards or batteries. On a set operation, the response * contains the actual value set, which may be rounded or clipped from the * requested value. */ #define EC_CMD_BATTERY_VENDOR_PARAM 0xb4 enum ec_battery_vendor_param_mode { BATTERY_VENDOR_PARAM_MODE_GET = 0, BATTERY_VENDOR_PARAM_MODE_SET, }; struct ec_params_battery_vendor_param { uint32_t param; uint32_t value; uint8_t mode; } __packed; struct ec_response_battery_vendor_param { uint32_t value; } __packed; /*****************************************************************************/ /* System commands */ /* * TODO(crosbug.com/p/23747): This is a confusing name, since it doesn't * necessarily reboot the EC. Rename to "image" or something similar? */ #define EC_CMD_REBOOT_EC 0xd2 /* Command */ enum ec_reboot_cmd { EC_REBOOT_CANCEL = 0, /* Cancel a pending reboot */ EC_REBOOT_JUMP_RO = 1, /* Jump to RO without rebooting */ EC_REBOOT_JUMP_RW = 2, /* Jump to RW without rebooting */ /* (command 3 was jump to RW-B) */ EC_REBOOT_COLD = 4, /* Cold-reboot */ EC_REBOOT_DISABLE_JUMP = 5, /* Disable jump until next reboot */ EC_REBOOT_HIBERNATE = 6 /* Hibernate EC */ }; /* Flags for ec_params_reboot_ec.reboot_flags */ #define EC_REBOOT_FLAG_RESERVED0 (1 << 0) /* Was recovery request */ #define EC_REBOOT_FLAG_ON_AP_SHUTDOWN (1 << 1) /* Reboot after AP shutdown */ struct ec_params_reboot_ec { uint8_t cmd; /* enum ec_reboot_cmd */ uint8_t flags; /* See EC_REBOOT_FLAG_* */ } __packed; /* * Get information on last EC panic. * * Returns variable-length platform-dependent panic information. See panic.h * for details. */ #define EC_CMD_GET_PANIC_INFO 0xd3 /*****************************************************************************/ /* * ACPI commands * * These are valid ONLY on the ACPI command/data port. */ /* * ACPI Read Embedded Controller * * This reads from ACPI memory space on the EC (EC_ACPI_MEM_*). * * Use the following sequence: * * - Write EC_CMD_ACPI_READ to EC_LPC_ADDR_ACPI_CMD * - Wait for EC_LPC_CMDR_PENDING bit to clear * - Write address to EC_LPC_ADDR_ACPI_DATA * - Wait for EC_LPC_CMDR_DATA bit to set * - Read value from EC_LPC_ADDR_ACPI_DATA */ #define EC_CMD_ACPI_READ 0x80 /* * ACPI Write Embedded Controller * * This reads from ACPI memory space on the EC (EC_ACPI_MEM_*). * * Use the following sequence: * * - Write EC_CMD_ACPI_WRITE to EC_LPC_ADDR_ACPI_CMD * - Wait for EC_LPC_CMDR_PENDING bit to clear * - Write address to EC_LPC_ADDR_ACPI_DATA * - Wait for EC_LPC_CMDR_PENDING bit to clear * - Write value to EC_LPC_ADDR_ACPI_DATA */ #define EC_CMD_ACPI_WRITE 0x81 /* * ACPI Query Embedded Controller * * This clears the lowest-order bit in the currently pending host events, and * sets the result code to the 1-based index of the bit (event 0x00000001 = 1, * event 0x80000000 = 32), or 0 if no event was pending. */ #define EC_CMD_ACPI_QUERY_EVENT 0x84 /* Valid addresses in ACPI memory space, for read/write commands */ /* Memory space version; set to EC_ACPI_MEM_VERSION_CURRENT */ #define EC_ACPI_MEM_VERSION 0x00 /* * Test location; writing value here updates test compliment byte to (0xff - * value). */ #define EC_ACPI_MEM_TEST 0x01 /* Test compliment; writes here are ignored. */ #define EC_ACPI_MEM_TEST_COMPLIMENT 0x02 /* Keyboard backlight brightness percent (0 - 100) */ #define EC_ACPI_MEM_KEYBOARD_BACKLIGHT 0x03 /* DPTF Target Fan Duty (0-100, 0xff for auto/none) */ #define EC_ACPI_MEM_FAN_DUTY 0x04 /* * DPTF temp thresholds. Any of the EC's temp sensors can have up to two * independent thresholds attached to them. The current value of the ID * register determines which sensor is affected by the THRESHOLD and COMMIT * registers. The THRESHOLD register uses the same EC_TEMP_SENSOR_OFFSET scheme * as the memory-mapped sensors. The COMMIT register applies those settings. * * The spec does not mandate any way to read back the threshold settings * themselves, but when a threshold is crossed the AP needs a way to determine * which sensor(s) are responsible. Each reading of the ID register clears and * returns one sensor ID that has crossed one of its threshold (in either * direction) since the last read. A value of 0xFF means "no new thresholds * have tripped". Setting or enabling the thresholds for a sensor will clear * the unread event count for that sensor. */ #define EC_ACPI_MEM_TEMP_ID 0x05 #define EC_ACPI_MEM_TEMP_THRESHOLD 0x06 #define EC_ACPI_MEM_TEMP_COMMIT 0x07 /* * Here are the bits for the COMMIT register: * bit 0 selects the threshold index for the chosen sensor (0/1) * bit 1 enables/disables the selected threshold (0 = off, 1 = on) * Each write to the commit register affects one threshold. */ #define EC_ACPI_MEM_TEMP_COMMIT_SELECT_MASK (1 << 0) #define EC_ACPI_MEM_TEMP_COMMIT_ENABLE_MASK (1 << 1) /* * Example: * * Set the thresholds for sensor 2 to 50 C and 60 C: * write 2 to [0x05] -- select temp sensor 2 * write 0x7b to [0x06] -- C_TO_K(50) - EC_TEMP_SENSOR_OFFSET * write 0x2 to [0x07] -- enable threshold 0 with this value * write 0x85 to [0x06] -- C_TO_K(60) - EC_TEMP_SENSOR_OFFSET * write 0x3 to [0x07] -- enable threshold 1 with this value * * Disable the 60 C threshold, leaving the 50 C threshold unchanged: * write 2 to [0x05] -- select temp sensor 2 * write 0x1 to [0x07] -- disable threshold 1 */ /* DPTF battery charging current limit */ #define EC_ACPI_MEM_CHARGING_LIMIT 0x08 /* Charging limit is specified in 64 mA steps */ #define EC_ACPI_MEM_CHARGING_LIMIT_STEP_MA 64 /* Value to disable DPTF battery charging limit */ #define EC_ACPI_MEM_CHARGING_LIMIT_DISABLED 0xff /* Current version of ACPI memory address space */ #define EC_ACPI_MEM_VERSION_CURRENT 1 /*****************************************************************************/ /* * HDMI CEC commands * * These commands are for sending and receiving message via HDMI CEC */ #define EC_MAX_CEC_MSG_LEN 16 /* CEC message from the AP to be written on the CEC bus */ #define EC_CMD_CEC_WRITE_MSG 0x00B8 /** * struct ec_params_cec_write - Message to write to the CEC bus * @msg: message content to write to the CEC bus */ struct ec_params_cec_write { uint8_t msg[EC_MAX_CEC_MSG_LEN]; } __packed; /* Set various CEC parameters */ #define EC_CMD_CEC_SET 0x00BA /** * struct ec_params_cec_set - CEC parameters set * @cmd: parameter type, can be CEC_CMD_ENABLE or CEC_CMD_LOGICAL_ADDRESS * @val: in case cmd is CEC_CMD_ENABLE, this field can be 0 to disable CEC * or 1 to enable CEC functionality, in case cmd is CEC_CMD_LOGICAL_ADDRESS, * this field encodes the requested logical address between 0 and 15 * or 0xff to unregister */ struct ec_params_cec_set { uint8_t cmd; /* enum cec_command */ uint8_t val; } __packed; /* Read various CEC parameters */ #define EC_CMD_CEC_GET 0x00BB /** * struct ec_params_cec_get - CEC parameters get * @cmd: parameter type, can be CEC_CMD_ENABLE or CEC_CMD_LOGICAL_ADDRESS */ struct ec_params_cec_get { uint8_t cmd; /* enum cec_command */ } __packed; /** * struct ec_response_cec_get - CEC parameters get response * @val: in case cmd was CEC_CMD_ENABLE, this field will 0 if CEC is * disabled or 1 if CEC functionality is enabled, * in case cmd was CEC_CMD_LOGICAL_ADDRESS, this will encode the * configured logical address between 0 and 15 or 0xff if unregistered */ struct ec_response_cec_get { uint8_t val; } __packed; /* CEC parameters command */ enum ec_cec_command { /* CEC reading, writing and events enable */ CEC_CMD_ENABLE, /* CEC logical address */ CEC_CMD_LOGICAL_ADDRESS, }; /* Events from CEC to AP */ enum mkbp_cec_event { /* Outgoing message was acknowledged by a follower */ EC_MKBP_CEC_SEND_OK = BIT(0), /* Outgoing message was not acknowledged */ EC_MKBP_CEC_SEND_FAILED = BIT(1), }; /*****************************************************************************/ /* * Special commands * * These do not follow the normal rules for commands. See each command for * details. */ /* * Reboot NOW * * This command will work even when the EC LPC interface is busy, because the * reboot command is processed at interrupt level. Note that when the EC * reboots, the host will reboot too, so there is no response to this command. * * Use EC_CMD_REBOOT_EC to reboot the EC more politely. */ #define EC_CMD_REBOOT 0xd1 /* Think "die" */ /* * Resend last response (not supported on LPC). * * Returns EC_RES_UNAVAILABLE if there is no response available - for example, * there was no previous command, or the previous command's response was too * big to save. */ #define EC_CMD_RESEND_RESPONSE 0xdb /* * This header byte on a command indicate version 0. Any header byte less * than this means that we are talking to an old EC which doesn't support * versioning. In that case, we assume version 0. * * Header bytes greater than this indicate a later version. For example, * EC_CMD_VERSION0 + 1 means we are using version 1. * * The old EC interface must not use commands 0xdc or higher. */ #define EC_CMD_VERSION0 0xdc #endif /* !__ACPI__ */ /*****************************************************************************/ /* * PD commands * * These commands are for PD MCU communication. */ /* EC to PD MCU exchange status command */ #define EC_CMD_PD_EXCHANGE_STATUS 0x100 /* Status of EC being sent to PD */ struct ec_params_pd_status { int8_t batt_soc; /* battery state of charge */ } __packed; /* Status of PD being sent back to EC */ struct ec_response_pd_status { int8_t status; /* PD MCU status */ uint32_t curr_lim_ma; /* input current limit */ } __packed; /* Set USB type-C port role and muxes */ #define EC_CMD_USB_PD_CONTROL 0x101 enum usb_pd_control_role { USB_PD_CTRL_ROLE_NO_CHANGE = 0, USB_PD_CTRL_ROLE_TOGGLE_ON = 1, /* == AUTO */ USB_PD_CTRL_ROLE_TOGGLE_OFF = 2, USB_PD_CTRL_ROLE_FORCE_SINK = 3, USB_PD_CTRL_ROLE_FORCE_SOURCE = 4, }; enum usb_pd_control_mux { USB_PD_CTRL_MUX_NO_CHANGE = 0, USB_PD_CTRL_MUX_NONE = 1, USB_PD_CTRL_MUX_USB = 2, USB_PD_CTRL_MUX_DP = 3, USB_PD_CTRL_MUX_DOCK = 4, USB_PD_CTRL_MUX_AUTO = 5, }; enum usb_pd_control_swap { USB_PD_CTRL_SWAP_NONE = 0, USB_PD_CTRL_SWAP_DATA = 1, USB_PD_CTRL_SWAP_POWER = 2, USB_PD_CTRL_SWAP_VCONN = 3, USB_PD_CTRL_SWAP_COUNT }; struct ec_params_usb_pd_control { uint8_t port; uint8_t role; uint8_t mux; uint8_t swap; } __packed; #define PD_CTRL_RESP_ENABLED_COMMS (1 << 0) /* Communication enabled */ #define PD_CTRL_RESP_ENABLED_CONNECTED (1 << 1) /* Device connected */ #define PD_CTRL_RESP_ENABLED_PD_CAPABLE (1 << 2) /* Partner is PD capable */ #define PD_CTRL_RESP_ROLE_POWER BIT(0) /* 0=SNK/1=SRC */ #define PD_CTRL_RESP_ROLE_DATA BIT(1) /* 0=UFP/1=DFP */ #define PD_CTRL_RESP_ROLE_VCONN BIT(2) /* Vconn status */ #define PD_CTRL_RESP_ROLE_DR_POWER BIT(3) /* Partner is dualrole power */ #define PD_CTRL_RESP_ROLE_DR_DATA BIT(4) /* Partner is dualrole data */ #define PD_CTRL_RESP_ROLE_USB_COMM BIT(5) /* Partner USB comm capable */ #define PD_CTRL_RESP_ROLE_EXT_POWERED BIT(6) /* Partner externally powerd */ struct ec_response_usb_pd_control_v1 { uint8_t enabled; uint8_t role; uint8_t polarity; char state[32]; } __packed; #define EC_CMD_USB_PD_PORTS 0x102 /* Maximum number of PD ports on a device, num_ports will be <= this */ #define EC_USB_PD_MAX_PORTS 8 struct ec_response_usb_pd_ports { uint8_t num_ports; } __packed; #define EC_CMD_USB_PD_POWER_INFO 0x103 #define PD_POWER_CHARGING_PORT 0xff struct ec_params_usb_pd_power_info { uint8_t port; } __packed; enum usb_chg_type { USB_CHG_TYPE_NONE, USB_CHG_TYPE_PD, USB_CHG_TYPE_C, USB_CHG_TYPE_PROPRIETARY, USB_CHG_TYPE_BC12_DCP, USB_CHG_TYPE_BC12_CDP, USB_CHG_TYPE_BC12_SDP, USB_CHG_TYPE_OTHER, USB_CHG_TYPE_VBUS, USB_CHG_TYPE_UNKNOWN, }; enum usb_power_roles { USB_PD_PORT_POWER_DISCONNECTED, USB_PD_PORT_POWER_SOURCE, USB_PD_PORT_POWER_SINK, USB_PD_PORT_POWER_SINK_NOT_CHARGING, }; struct usb_chg_measures { uint16_t voltage_max; uint16_t voltage_now; uint16_t current_max; uint16_t current_lim; } __packed; struct ec_response_usb_pd_power_info { uint8_t role; uint8_t type; uint8_t dualrole; uint8_t reserved1; struct usb_chg_measures meas; uint32_t max_power; } __packed; struct ec_params_usb_pd_info_request { uint8_t port; } __packed; /* Read USB-PD Device discovery info */ #define EC_CMD_USB_PD_DISCOVERY 0x0113 struct ec_params_usb_pd_discovery_entry { uint16_t vid; /* USB-IF VID */ uint16_t pid; /* USB-IF PID */ uint8_t ptype; /* product type (hub,periph,cable,ama) */ } __packed; /* Override default charge behavior */ #define EC_CMD_PD_CHARGE_PORT_OVERRIDE 0x0114 /* Negative port parameters have special meaning */ enum usb_pd_override_ports { OVERRIDE_DONT_CHARGE = -2, OVERRIDE_OFF = -1, /* [0, CONFIG_USB_PD_PORT_COUNT): Port# */ }; struct ec_params_charge_port_override { int16_t override_port; /* Override port# */ } __packed; /* Read (and delete) one entry of PD event log */ #define EC_CMD_PD_GET_LOG_ENTRY 0x0115 struct ec_response_pd_log { uint32_t timestamp; /* relative timestamp in milliseconds */ uint8_t type; /* event type : see PD_EVENT_xx below */ uint8_t size_port; /* [7:5] port number [4:0] payload size in bytes */ uint16_t data; /* type-defined data payload */ uint8_t payload[0]; /* optional additional data payload: 0..16 bytes */ } __packed; /* The timestamp is the microsecond counter shifted to get about a ms. */ #define PD_LOG_TIMESTAMP_SHIFT 10 /* 1 LSB = 1024us */ #define PD_LOG_SIZE_MASK 0x1f #define PD_LOG_PORT_MASK 0xe0 #define PD_LOG_PORT_SHIFT 5 #define PD_LOG_PORT_SIZE(port, size) (((port) << PD_LOG_PORT_SHIFT) | \ ((size) & PD_LOG_SIZE_MASK)) #define PD_LOG_PORT(size_port) ((size_port) >> PD_LOG_PORT_SHIFT) #define PD_LOG_SIZE(size_port) ((size_port) & PD_LOG_SIZE_MASK) /* PD event log : entry types */ /* PD MCU events */ #define PD_EVENT_MCU_BASE 0x00 #define PD_EVENT_MCU_CHARGE (PD_EVENT_MCU_BASE+0) #define PD_EVENT_MCU_CONNECT (PD_EVENT_MCU_BASE+1) /* Reserved for custom board event */ #define PD_EVENT_MCU_BOARD_CUSTOM (PD_EVENT_MCU_BASE+2) /* PD generic accessory events */ #define PD_EVENT_ACC_BASE 0x20 #define PD_EVENT_ACC_RW_FAIL (PD_EVENT_ACC_BASE+0) #define PD_EVENT_ACC_RW_ERASE (PD_EVENT_ACC_BASE+1) /* PD power supply events */ #define PD_EVENT_PS_BASE 0x40 #define PD_EVENT_PS_FAULT (PD_EVENT_PS_BASE+0) /* PD video dongles events */ #define PD_EVENT_VIDEO_BASE 0x60 #define PD_EVENT_VIDEO_DP_MODE (PD_EVENT_VIDEO_BASE+0) #define PD_EVENT_VIDEO_CODEC (PD_EVENT_VIDEO_BASE+1) /* Returned in the "type" field, when there is no entry available */ #define PD_EVENT_NO_ENTRY 0xff /* * PD_EVENT_MCU_CHARGE event definition : * the payload is "struct usb_chg_measures" * the data field contains the port state flags as defined below : */ /* Port partner is a dual role device */ #define CHARGE_FLAGS_DUAL_ROLE BIT(15) /* Port is the pending override port */ #define CHARGE_FLAGS_DELAYED_OVERRIDE BIT(14) /* Port is the override port */ #define CHARGE_FLAGS_OVERRIDE BIT(13) /* Charger type */ #define CHARGE_FLAGS_TYPE_SHIFT 3 #define CHARGE_FLAGS_TYPE_MASK (0xf << CHARGE_FLAGS_TYPE_SHIFT) /* Power delivery role */ #define CHARGE_FLAGS_ROLE_MASK (7 << 0) /* * PD_EVENT_PS_FAULT data field flags definition : */ #define PS_FAULT_OCP 1 #define PS_FAULT_FAST_OCP 2 #define PS_FAULT_OVP 3 #define PS_FAULT_DISCH 4 /* * PD_EVENT_VIDEO_CODEC payload is "struct mcdp_info". */ struct mcdp_version { uint8_t major; uint8_t minor; uint16_t build; } __packed; struct mcdp_info { uint8_t family[2]; uint8_t chipid[2]; struct mcdp_version irom; struct mcdp_version fw; } __packed; /* struct mcdp_info field decoding */ #define MCDP_CHIPID(chipid) ((chipid[0] << 8) | chipid[1]) #define MCDP_FAMILY(family) ((family[0] << 8) | family[1]) /* Get info about USB-C SS muxes */ #define EC_CMD_USB_PD_MUX_INFO 0x11a struct ec_params_usb_pd_mux_info { uint8_t port; /* USB-C port number */ } __packed; /* Flags representing mux state */ #define USB_PD_MUX_USB_ENABLED (1 << 0) #define USB_PD_MUX_DP_ENABLED (1 << 1) #define USB_PD_MUX_POLARITY_INVERTED (1 << 2) #define USB_PD_MUX_HPD_IRQ (1 << 3) struct ec_response_usb_pd_mux_info { uint8_t flags; /* USB_PD_MUX_*-encoded USB mux state */ } __packed; /*****************************************************************************/ /* * Passthru commands * * Some platforms have sub-processors chained to each other. For example. * * AP <--> EC <--> PD MCU * * The top 2 bits of the command number are used to indicate which device the * command is intended for. Device 0 is always the device receiving the * command; other device mapping is board-specific. * * When a device receives a command to be passed to a sub-processor, it passes * it on with the device number set back to 0. This allows the sub-processor * to remain blissfully unaware of whether the command originated on the next * device up the chain, or was passed through from the AP. * * In the above example, if the AP wants to send command 0x0002 to the PD MCU, * AP sends command 0x4002 to the EC * EC sends command 0x0002 to the PD MCU * EC forwards PD MCU response back to the AP */ /* Offset and max command number for sub-device n */ #define EC_CMD_PASSTHRU_OFFSET(n) (0x4000 * (n)) #define EC_CMD_PASSTHRU_MAX(n) (EC_CMD_PASSTHRU_OFFSET(n) + 0x3fff) /*****************************************************************************/ /* * Deprecated constants. These constants have been renamed for clarity. The * meaning and size has not changed. Programs that use the old names should * switch to the new names soon, as the old names may not be carried forward * forever. */ #define EC_HOST_PARAM_SIZE EC_PROTO2_MAX_PARAM_SIZE #define EC_LPC_ADDR_OLD_PARAM EC_HOST_CMD_REGION1 #define EC_OLD_PARAM_SIZE EC_HOST_CMD_REGION_SIZE #endif /* __CROS_EC_COMMANDS_H */