// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com * Written by Alex Tomas */ /* * mballoc.c contains the multiblocks allocation routines */ #include "ext4_jbd2.h" #include "mballoc.h" #include #include #include #include #include #include #include #include /* * MUSTDO: * - test ext4_ext_search_left() and ext4_ext_search_right() * - search for metadata in few groups * * TODO v4: * - normalization should take into account whether file is still open * - discard preallocations if no free space left (policy?) * - don't normalize tails * - quota * - reservation for superuser * * TODO v3: * - bitmap read-ahead (proposed by Oleg Drokin aka green) * - track min/max extents in each group for better group selection * - mb_mark_used() may allocate chunk right after splitting buddy * - tree of groups sorted by number of free blocks * - error handling */ /* * The allocation request involve request for multiple number of blocks * near to the goal(block) value specified. * * During initialization phase of the allocator we decide to use the * group preallocation or inode preallocation depending on the size of * the file. The size of the file could be the resulting file size we * would have after allocation, or the current file size, which ever * is larger. If the size is less than sbi->s_mb_stream_request we * select to use the group preallocation. The default value of * s_mb_stream_request is 16 blocks. This can also be tuned via * /sys/fs/ext4//mb_stream_req. The value is represented in * terms of number of blocks. * * The main motivation for having small file use group preallocation is to * ensure that we have small files closer together on the disk. * * First stage the allocator looks at the inode prealloc list, * ext4_inode_info->i_prealloc_list, which contains list of prealloc * spaces for this particular inode. The inode prealloc space is * represented as: * * pa_lstart -> the logical start block for this prealloc space * pa_pstart -> the physical start block for this prealloc space * pa_len -> length for this prealloc space (in clusters) * pa_free -> free space available in this prealloc space (in clusters) * * The inode preallocation space is used looking at the _logical_ start * block. If only the logical file block falls within the range of prealloc * space we will consume the particular prealloc space. This makes sure that * we have contiguous physical blocks representing the file blocks * * The important thing to be noted in case of inode prealloc space is that * we don't modify the values associated to inode prealloc space except * pa_free. * * If we are not able to find blocks in the inode prealloc space and if we * have the group allocation flag set then we look at the locality group * prealloc space. These are per CPU prealloc list represented as * * ext4_sb_info.s_locality_groups[smp_processor_id()] * * The reason for having a per cpu locality group is to reduce the contention * between CPUs. It is possible to get scheduled at this point. * * The locality group prealloc space is used looking at whether we have * enough free space (pa_free) within the prealloc space. * * If we can't allocate blocks via inode prealloc or/and locality group * prealloc then we look at the buddy cache. The buddy cache is represented * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets * mapped to the buddy and bitmap information regarding different * groups. The buddy information is attached to buddy cache inode so that * we can access them through the page cache. The information regarding * each group is loaded via ext4_mb_load_buddy. The information involve * block bitmap and buddy information. The information are stored in the * inode as: * * { page } * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... * * * one block each for bitmap and buddy information. So for each group we * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE / * blocksize) blocks. So it can have information regarding groups_per_page * which is blocks_per_page/2 * * The buddy cache inode is not stored on disk. The inode is thrown * away when the filesystem is unmounted. * * We look for count number of blocks in the buddy cache. If we were able * to locate that many free blocks we return with additional information * regarding rest of the contiguous physical block available * * Before allocating blocks via buddy cache we normalize the request * blocks. This ensure we ask for more blocks that we needed. The extra * blocks that we get after allocation is added to the respective prealloc * list. In case of inode preallocation we follow a list of heuristics * based on file size. This can be found in ext4_mb_normalize_request. If * we are doing a group prealloc we try to normalize the request to * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is * dependent on the cluster size; for non-bigalloc file systems, it is * 512 blocks. This can be tuned via * /sys/fs/ext4//mb_group_prealloc. The value is represented in * terms of number of blocks. If we have mounted the file system with -O * stripe= option the group prealloc request is normalized to the * smallest multiple of the stripe value (sbi->s_stripe) which is * greater than the default mb_group_prealloc. * * If "mb_optimize_scan" mount option is set, we maintain in memory group info * structures in two data structures: * * 1) Array of largest free order lists (sbi->s_mb_largest_free_orders) * * Locking: sbi->s_mb_largest_free_orders_locks(array of rw locks) * * This is an array of lists where the index in the array represents the * largest free order in the buddy bitmap of the participating group infos of * that list. So, there are exactly MB_NUM_ORDERS(sb) (which means total * number of buddy bitmap orders possible) number of lists. Group-infos are * placed in appropriate lists. * * 2) Average fragment size lists (sbi->s_mb_avg_fragment_size) * * Locking: sbi->s_mb_avg_fragment_size_locks(array of rw locks) * * This is an array of lists where in the i-th list there are groups with * average fragment size >= 2^i and < 2^(i+1). The average fragment size * is computed as ext4_group_info->bb_free / ext4_group_info->bb_fragments. * Note that we don't bother with a special list for completely empty groups * so we only have MB_NUM_ORDERS(sb) lists. * * When "mb_optimize_scan" mount option is set, mballoc consults the above data * structures to decide the order in which groups are to be traversed for * fulfilling an allocation request. * * At CR_POWER2_ALIGNED , we look for groups which have the largest_free_order * >= the order of the request. We directly look at the largest free order list * in the data structure (1) above where largest_free_order = order of the * request. If that list is empty, we look at remaining list in the increasing * order of largest_free_order. This allows us to perform CR_POWER2_ALIGNED * lookup in O(1) time. * * At CR_GOAL_LEN_FAST, we only consider groups where * average fragment size > request size. So, we lookup a group which has average * fragment size just above or equal to request size using our average fragment * size group lists (data structure 2) in O(1) time. * * At CR_BEST_AVAIL_LEN, we aim to optimize allocations which can't be satisfied * in CR_GOAL_LEN_FAST. The fact that we couldn't find a group in * CR_GOAL_LEN_FAST suggests that there is no BG that has avg * fragment size > goal length. So before falling to the slower * CR_GOAL_LEN_SLOW, in CR_BEST_AVAIL_LEN we proactively trim goal length and * then use the same fragment lists as CR_GOAL_LEN_FAST to find a BG with a big * enough average fragment size. This increases the chances of finding a * suitable block group in O(1) time and results in faster allocation at the * cost of reduced size of allocation. * * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in * linear order which requires O(N) search time for each CR_POWER2_ALIGNED and * CR_GOAL_LEN_FAST phase. * * The regular allocator (using the buddy cache) supports a few tunables. * * /sys/fs/ext4//mb_min_to_scan * /sys/fs/ext4//mb_max_to_scan * /sys/fs/ext4//mb_order2_req * /sys/fs/ext4//mb_linear_limit * * The regular allocator uses buddy scan only if the request len is power of * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The * value of s_mb_order2_reqs can be tuned via * /sys/fs/ext4//mb_order2_req. If the request len is equal to * stripe size (sbi->s_stripe), we try to search for contiguous block in * stripe size. This should result in better allocation on RAID setups. If * not, we search in the specific group using bitmap for best extents. The * tunable min_to_scan and max_to_scan control the behaviour here. * min_to_scan indicate how long the mballoc __must__ look for a best * extent and max_to_scan indicates how long the mballoc __can__ look for a * best extent in the found extents. Searching for the blocks starts with * the group specified as the goal value in allocation context via * ac_g_ex. Each group is first checked based on the criteria whether it * can be used for allocation. ext4_mb_good_group explains how the groups are * checked. * * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not * get traversed linearly. That may result in subsequent allocations being not * close to each other. And so, the underlying device may get filled up in a * non-linear fashion. While that may not matter on non-rotational devices, for * rotational devices that may result in higher seek times. "mb_linear_limit" * tells mballoc how many groups mballoc should search linearly before * performing consulting above data structures for more efficient lookups. For * non rotational devices, this value defaults to 0 and for rotational devices * this is set to MB_DEFAULT_LINEAR_LIMIT. * * Both the prealloc space are getting populated as above. So for the first * request we will hit the buddy cache which will result in this prealloc * space getting filled. The prealloc space is then later used for the * subsequent request. */ /* * mballoc operates on the following data: * - on-disk bitmap * - in-core buddy (actually includes buddy and bitmap) * - preallocation descriptors (PAs) * * there are two types of preallocations: * - inode * assiged to specific inode and can be used for this inode only. * it describes part of inode's space preallocated to specific * physical blocks. any block from that preallocated can be used * independent. the descriptor just tracks number of blocks left * unused. so, before taking some block from descriptor, one must * make sure corresponded logical block isn't allocated yet. this * also means that freeing any block within descriptor's range * must discard all preallocated blocks. * - locality group * assigned to specific locality group which does not translate to * permanent set of inodes: inode can join and leave group. space * from this type of preallocation can be used for any inode. thus * it's consumed from the beginning to the end. * * relation between them can be expressed as: * in-core buddy = on-disk bitmap + preallocation descriptors * * this mean blocks mballoc considers used are: * - allocated blocks (persistent) * - preallocated blocks (non-persistent) * * consistency in mballoc world means that at any time a block is either * free or used in ALL structures. notice: "any time" should not be read * literally -- time is discrete and delimited by locks. * * to keep it simple, we don't use block numbers, instead we count number of * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA. * * all operations can be expressed as: * - init buddy: buddy = on-disk + PAs * - new PA: buddy += N; PA = N * - use inode PA: on-disk += N; PA -= N * - discard inode PA buddy -= on-disk - PA; PA = 0 * - use locality group PA on-disk += N; PA -= N * - discard locality group PA buddy -= PA; PA = 0 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap * is used in real operation because we can't know actual used * bits from PA, only from on-disk bitmap * * if we follow this strict logic, then all operations above should be atomic. * given some of them can block, we'd have to use something like semaphores * killing performance on high-end SMP hardware. let's try to relax it using * the following knowledge: * 1) if buddy is referenced, it's already initialized * 2) while block is used in buddy and the buddy is referenced, * nobody can re-allocate that block * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has * bit set and PA claims same block, it's OK. IOW, one can set bit in * on-disk bitmap if buddy has same bit set or/and PA covers corresponded * block * * so, now we're building a concurrency table: * - init buddy vs. * - new PA * blocks for PA are allocated in the buddy, buddy must be referenced * until PA is linked to allocation group to avoid concurrent buddy init * - use inode PA * we need to make sure that either on-disk bitmap or PA has uptodate data * given (3) we care that PA-=N operation doesn't interfere with init * - discard inode PA * the simplest way would be to have buddy initialized by the discard * - use locality group PA * again PA-=N must be serialized with init * - discard locality group PA * the simplest way would be to have buddy initialized by the discard * - new PA vs. * - use inode PA * i_data_sem serializes them * - discard inode PA * discard process must wait until PA isn't used by another process * - use locality group PA * some mutex should serialize them * - discard locality group PA * discard process must wait until PA isn't used by another process * - use inode PA * - use inode PA * i_data_sem or another mutex should serializes them * - discard inode PA * discard process must wait until PA isn't used by another process * - use locality group PA * nothing wrong here -- they're different PAs covering different blocks * - discard locality group PA * discard process must wait until PA isn't used by another process * * now we're ready to make few consequences: * - PA is referenced and while it is no discard is possible * - PA is referenced until block isn't marked in on-disk bitmap * - PA changes only after on-disk bitmap * - discard must not compete with init. either init is done before * any discard or they're serialized somehow * - buddy init as sum of on-disk bitmap and PAs is done atomically * * a special case when we've used PA to emptiness. no need to modify buddy * in this case, but we should care about concurrent init * */ /* * Logic in few words: * * - allocation: * load group * find blocks * mark bits in on-disk bitmap * release group * * - use preallocation: * find proper PA (per-inode or group) * load group * mark bits in on-disk bitmap * release group * release PA * * - free: * load group * mark bits in on-disk bitmap * release group * * - discard preallocations in group: * mark PAs deleted * move them onto local list * load on-disk bitmap * load group * remove PA from object (inode or locality group) * mark free blocks in-core * * - discard inode's preallocations: */ /* * Locking rules * * Locks: * - bitlock on a group (group) * - object (inode/locality) (object) * - per-pa lock (pa) * - cr_power2_aligned lists lock (cr_power2_aligned) * - cr_goal_len_fast lists lock (cr_goal_len_fast) * * Paths: * - new pa * object * group * * - find and use pa: * pa * * - release consumed pa: * pa * group * object * * - generate in-core bitmap: * group * pa * * - discard all for given object (inode, locality group): * object * pa * group * * - discard all for given group: * group * pa * group * object * * - allocation path (ext4_mb_regular_allocator) * group * cr_power2_aligned/cr_goal_len_fast */ static struct kmem_cache *ext4_pspace_cachep; static struct kmem_cache *ext4_ac_cachep; static struct kmem_cache *ext4_free_data_cachep; /* We create slab caches for groupinfo data structures based on the * superblock block size. There will be one per mounted filesystem for * each unique s_blocksize_bits */ #define NR_GRPINFO_CACHES 8 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES]; static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = { "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k", "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k", "ext4_groupinfo_64k", "ext4_groupinfo_128k" }; static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, ext4_group_t group); static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac); static bool ext4_mb_good_group(struct ext4_allocation_context *ac, ext4_group_t group, enum criteria cr); static int ext4_try_to_trim_range(struct super_block *sb, struct ext4_buddy *e4b, ext4_grpblk_t start, ext4_grpblk_t max, ext4_grpblk_t minblocks); /* * The algorithm using this percpu seq counter goes below: * 1. We sample the percpu discard_pa_seq counter before trying for block * allocation in ext4_mb_new_blocks(). * 2. We increment this percpu discard_pa_seq counter when we either allocate * or free these blocks i.e. while marking those blocks as used/free in * mb_mark_used()/mb_free_blocks(). * 3. We also increment this percpu seq counter when we successfully identify * that the bb_prealloc_list is not empty and hence proceed for discarding * of those PAs inside ext4_mb_discard_group_preallocations(). * * Now to make sure that the regular fast path of block allocation is not * affected, as a small optimization we only sample the percpu seq counter * on that cpu. Only when the block allocation fails and when freed blocks * found were 0, that is when we sample percpu seq counter for all cpus using * below function ext4_get_discard_pa_seq_sum(). This happens after making * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty. */ static DEFINE_PER_CPU(u64, discard_pa_seq); static inline u64 ext4_get_discard_pa_seq_sum(void) { int __cpu; u64 __seq = 0; for_each_possible_cpu(__cpu) __seq += per_cpu(discard_pa_seq, __cpu); return __seq; } static inline void *mb_correct_addr_and_bit(int *bit, void *addr) { #if BITS_PER_LONG == 64 *bit += ((unsigned long) addr & 7UL) << 3; addr = (void *) ((unsigned long) addr & ~7UL); #elif BITS_PER_LONG == 32 *bit += ((unsigned long) addr & 3UL) << 3; addr = (void *) ((unsigned long) addr & ~3UL); #else #error "how many bits you are?!" #endif return addr; } static inline int mb_test_bit(int bit, void *addr) { /* * ext4_test_bit on architecture like powerpc * needs unsigned long aligned address */ addr = mb_correct_addr_and_bit(&bit, addr); return ext4_test_bit(bit, addr); } static inline void mb_set_bit(int bit, void *addr) { addr = mb_correct_addr_and_bit(&bit, addr); ext4_set_bit(bit, addr); } static inline void mb_clear_bit(int bit, void *addr) { addr = mb_correct_addr_and_bit(&bit, addr); ext4_clear_bit(bit, addr); } static inline int mb_test_and_clear_bit(int bit, void *addr) { addr = mb_correct_addr_and_bit(&bit, addr); return ext4_test_and_clear_bit(bit, addr); } static inline int mb_find_next_zero_bit(void *addr, int max, int start) { int fix = 0, ret, tmpmax; addr = mb_correct_addr_and_bit(&fix, addr); tmpmax = max + fix; start += fix; ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix; if (ret > max) return max; return ret; } static inline int mb_find_next_bit(void *addr, int max, int start) { int fix = 0, ret, tmpmax; addr = mb_correct_addr_and_bit(&fix, addr); tmpmax = max + fix; start += fix; ret = ext4_find_next_bit(addr, tmpmax, start) - fix; if (ret > max) return max; return ret; } static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max) { char *bb; BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); BUG_ON(max == NULL); if (order > e4b->bd_blkbits + 1) { *max = 0; return NULL; } /* at order 0 we see each particular block */ if (order == 0) { *max = 1 << (e4b->bd_blkbits + 3); return e4b->bd_bitmap; } bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order]; *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order]; return bb; } #ifdef DOUBLE_CHECK static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b, int first, int count) { int i; struct super_block *sb = e4b->bd_sb; if (unlikely(e4b->bd_info->bb_bitmap == NULL)) return; assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); for (i = 0; i < count; i++) { if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) { ext4_fsblk_t blocknr; blocknr = ext4_group_first_block_no(sb, e4b->bd_group); blocknr += EXT4_C2B(EXT4_SB(sb), first + i); ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, EXT4_GROUP_INFO_BBITMAP_CORRUPT); ext4_grp_locked_error(sb, e4b->bd_group, inode ? inode->i_ino : 0, blocknr, "freeing block already freed " "(bit %u)", first + i); } mb_clear_bit(first + i, e4b->bd_info->bb_bitmap); } } static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count) { int i; if (unlikely(e4b->bd_info->bb_bitmap == NULL)) return; assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); for (i = 0; i < count; i++) { BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap)); mb_set_bit(first + i, e4b->bd_info->bb_bitmap); } } static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) { if (unlikely(e4b->bd_info->bb_bitmap == NULL)) return; if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) { unsigned char *b1, *b2; int i; b1 = (unsigned char *) e4b->bd_info->bb_bitmap; b2 = (unsigned char *) bitmap; for (i = 0; i < e4b->bd_sb->s_blocksize; i++) { if (b1[i] != b2[i]) { ext4_msg(e4b->bd_sb, KERN_ERR, "corruption in group %u " "at byte %u(%u): %x in copy != %x " "on disk/prealloc", e4b->bd_group, i, i * 8, b1[i], b2[i]); BUG(); } } } } static void mb_group_bb_bitmap_alloc(struct super_block *sb, struct ext4_group_info *grp, ext4_group_t group) { struct buffer_head *bh; grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS); if (!grp->bb_bitmap) return; bh = ext4_read_block_bitmap(sb, group); if (IS_ERR_OR_NULL(bh)) { kfree(grp->bb_bitmap); grp->bb_bitmap = NULL; return; } memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize); put_bh(bh); } static void mb_group_bb_bitmap_free(struct ext4_group_info *grp) { kfree(grp->bb_bitmap); } #else static inline void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b, int first, int count) { return; } static inline void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count) { return; } static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) { return; } static inline void mb_group_bb_bitmap_alloc(struct super_block *sb, struct ext4_group_info *grp, ext4_group_t group) { return; } static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp) { return; } #endif #ifdef AGGRESSIVE_CHECK #define MB_CHECK_ASSERT(assert) \ do { \ if (!(assert)) { \ printk(KERN_EMERG \ "Assertion failure in %s() at %s:%d: \"%s\"\n", \ function, file, line, # assert); \ BUG(); \ } \ } while (0) static void __mb_check_buddy(struct ext4_buddy *e4b, char *file, const char *function, int line) { struct super_block *sb = e4b->bd_sb; int order = e4b->bd_blkbits + 1; int max; int max2; int i; int j; int k; int count; struct ext4_group_info *grp; int fragments = 0; int fstart; struct list_head *cur; void *buddy; void *buddy2; if (e4b->bd_info->bb_check_counter++ % 10) return; while (order > 1) { buddy = mb_find_buddy(e4b, order, &max); MB_CHECK_ASSERT(buddy); buddy2 = mb_find_buddy(e4b, order - 1, &max2); MB_CHECK_ASSERT(buddy2); MB_CHECK_ASSERT(buddy != buddy2); MB_CHECK_ASSERT(max * 2 == max2); count = 0; for (i = 0; i < max; i++) { if (mb_test_bit(i, buddy)) { /* only single bit in buddy2 may be 0 */ if (!mb_test_bit(i << 1, buddy2)) { MB_CHECK_ASSERT( mb_test_bit((i<<1)+1, buddy2)); } continue; } /* both bits in buddy2 must be 1 */ MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2)); MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2)); for (j = 0; j < (1 << order); j++) { k = (i * (1 << order)) + j; MB_CHECK_ASSERT( !mb_test_bit(k, e4b->bd_bitmap)); } count++; } MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count); order--; } fstart = -1; buddy = mb_find_buddy(e4b, 0, &max); for (i = 0; i < max; i++) { if (!mb_test_bit(i, buddy)) { MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free); if (fstart == -1) { fragments++; fstart = i; } continue; } fstart = -1; /* check used bits only */ for (j = 0; j < e4b->bd_blkbits + 1; j++) { buddy2 = mb_find_buddy(e4b, j, &max2); k = i >> j; MB_CHECK_ASSERT(k < max2); MB_CHECK_ASSERT(mb_test_bit(k, buddy2)); } } MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info)); MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments); grp = ext4_get_group_info(sb, e4b->bd_group); if (!grp) return; list_for_each(cur, &grp->bb_prealloc_list) { ext4_group_t groupnr; struct ext4_prealloc_space *pa; pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k); MB_CHECK_ASSERT(groupnr == e4b->bd_group); for (i = 0; i < pa->pa_len; i++) MB_CHECK_ASSERT(mb_test_bit(k + i, buddy)); } } #undef MB_CHECK_ASSERT #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \ __FILE__, __func__, __LINE__) #else #define mb_check_buddy(e4b) #endif /* * Divide blocks started from @first with length @len into * smaller chunks with power of 2 blocks. * Clear the bits in bitmap which the blocks of the chunk(s) covered, * then increase bb_counters[] for corresponded chunk size. */ static void ext4_mb_mark_free_simple(struct super_block *sb, void *buddy, ext4_grpblk_t first, ext4_grpblk_t len, struct ext4_group_info *grp) { struct ext4_sb_info *sbi = EXT4_SB(sb); ext4_grpblk_t min; ext4_grpblk_t max; ext4_grpblk_t chunk; unsigned int border; BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb)); border = 2 << sb->s_blocksize_bits; while (len > 0) { /* find how many blocks can be covered since this position */ max = ffs(first | border) - 1; /* find how many blocks of power 2 we need to mark */ min = fls(len) - 1; if (max < min) min = max; chunk = 1 << min; /* mark multiblock chunks only */ grp->bb_counters[min]++; if (min > 0) mb_clear_bit(first >> min, buddy + sbi->s_mb_offsets[min]); len -= chunk; first += chunk; } } static int mb_avg_fragment_size_order(struct super_block *sb, ext4_grpblk_t len) { int order; /* * We don't bother with a special lists groups with only 1 block free * extents and for completely empty groups. */ order = fls(len) - 2; if (order < 0) return 0; if (order == MB_NUM_ORDERS(sb)) order--; return order; } /* Move group to appropriate avg_fragment_size list */ static void mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp) { struct ext4_sb_info *sbi = EXT4_SB(sb); int new_order; if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || grp->bb_fragments == 0) return; new_order = mb_avg_fragment_size_order(sb, grp->bb_free / grp->bb_fragments); if (new_order == grp->bb_avg_fragment_size_order) return; if (grp->bb_avg_fragment_size_order != -1) { write_lock(&sbi->s_mb_avg_fragment_size_locks[ grp->bb_avg_fragment_size_order]); list_del(&grp->bb_avg_fragment_size_node); write_unlock(&sbi->s_mb_avg_fragment_size_locks[ grp->bb_avg_fragment_size_order]); } grp->bb_avg_fragment_size_order = new_order; write_lock(&sbi->s_mb_avg_fragment_size_locks[ grp->bb_avg_fragment_size_order]); list_add_tail(&grp->bb_avg_fragment_size_node, &sbi->s_mb_avg_fragment_size[grp->bb_avg_fragment_size_order]); write_unlock(&sbi->s_mb_avg_fragment_size_locks[ grp->bb_avg_fragment_size_order]); } /* * Choose next group by traversing largest_free_order lists. Updates *new_cr if * cr level needs an update. */ static void ext4_mb_choose_next_group_p2_aligned(struct ext4_allocation_context *ac, enum criteria *new_cr, ext4_group_t *group) { struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); struct ext4_group_info *iter; int i; if (ac->ac_status == AC_STATUS_FOUND) return; if (unlikely(sbi->s_mb_stats && ac->ac_flags & EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED)) atomic_inc(&sbi->s_bal_p2_aligned_bad_suggestions); for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) { if (list_empty(&sbi->s_mb_largest_free_orders[i])) continue; read_lock(&sbi->s_mb_largest_free_orders_locks[i]); if (list_empty(&sbi->s_mb_largest_free_orders[i])) { read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); continue; } list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i], bb_largest_free_order_node) { if (sbi->s_mb_stats) atomic64_inc(&sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]); if (likely(ext4_mb_good_group(ac, iter->bb_group, CR_POWER2_ALIGNED))) { *group = iter->bb_group; ac->ac_flags |= EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED; read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); return; } } read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); } /* Increment cr and search again if no group is found */ *new_cr = CR_GOAL_LEN_FAST; } /* * Find a suitable group of given order from the average fragments list. */ static struct ext4_group_info * ext4_mb_find_good_group_avg_frag_lists(struct ext4_allocation_context *ac, int order) { struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); struct list_head *frag_list = &sbi->s_mb_avg_fragment_size[order]; rwlock_t *frag_list_lock = &sbi->s_mb_avg_fragment_size_locks[order]; struct ext4_group_info *grp = NULL, *iter; enum criteria cr = ac->ac_criteria; if (list_empty(frag_list)) return NULL; read_lock(frag_list_lock); if (list_empty(frag_list)) { read_unlock(frag_list_lock); return NULL; } list_for_each_entry(iter, frag_list, bb_avg_fragment_size_node) { if (sbi->s_mb_stats) atomic64_inc(&sbi->s_bal_cX_groups_considered[cr]); if (likely(ext4_mb_good_group(ac, iter->bb_group, cr))) { grp = iter; break; } } read_unlock(frag_list_lock); return grp; } /* * Choose next group by traversing average fragment size list of suitable * order. Updates *new_cr if cr level needs an update. */ static void ext4_mb_choose_next_group_goal_fast(struct ext4_allocation_context *ac, enum criteria *new_cr, ext4_group_t *group) { struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); struct ext4_group_info *grp = NULL; int i; if (unlikely(ac->ac_flags & EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED)) { if (sbi->s_mb_stats) atomic_inc(&sbi->s_bal_goal_fast_bad_suggestions); } for (i = mb_avg_fragment_size_order(ac->ac_sb, ac->ac_g_ex.fe_len); i < MB_NUM_ORDERS(ac->ac_sb); i++) { grp = ext4_mb_find_good_group_avg_frag_lists(ac, i); if (grp) { *group = grp->bb_group; ac->ac_flags |= EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED; return; } } /* * CR_BEST_AVAIL_LEN works based on the concept that we have * a larger normalized goal len request which can be trimmed to * a smaller goal len such that it can still satisfy original * request len. However, allocation request for non-regular * files never gets normalized. * See function ext4_mb_normalize_request() (EXT4_MB_HINT_DATA). */ if (ac->ac_flags & EXT4_MB_HINT_DATA) *new_cr = CR_BEST_AVAIL_LEN; else *new_cr = CR_GOAL_LEN_SLOW; } /* * We couldn't find a group in CR_GOAL_LEN_FAST so try to find the highest free fragment * order we have and proactively trim the goal request length to that order to * find a suitable group faster. * * This optimizes allocation speed at the cost of slightly reduced * preallocations. However, we make sure that we don't trim the request too * much and fall to CR_GOAL_LEN_SLOW in that case. */ static void ext4_mb_choose_next_group_best_avail(struct ext4_allocation_context *ac, enum criteria *new_cr, ext4_group_t *group) { struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); struct ext4_group_info *grp = NULL; int i, order, min_order; unsigned long num_stripe_clusters = 0; if (unlikely(ac->ac_flags & EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED)) { if (sbi->s_mb_stats) atomic_inc(&sbi->s_bal_best_avail_bad_suggestions); } /* * mb_avg_fragment_size_order() returns order in a way that makes * retrieving back the length using (1 << order) inaccurate. Hence, use * fls() instead since we need to know the actual length while modifying * goal length. */ order = fls(ac->ac_g_ex.fe_len) - 1; min_order = order - sbi->s_mb_best_avail_max_trim_order; if (min_order < 0) min_order = 0; if (sbi->s_stripe > 0) { /* * We are assuming that stripe size is always a multiple of * cluster ratio otherwise __ext4_fill_super exists early. */ num_stripe_clusters = EXT4_NUM_B2C(sbi, sbi->s_stripe); if (1 << min_order < num_stripe_clusters) /* * We consider 1 order less because later we round * up the goal len to num_stripe_clusters */ min_order = fls(num_stripe_clusters) - 1; } if (1 << min_order < ac->ac_o_ex.fe_len) min_order = fls(ac->ac_o_ex.fe_len); for (i = order; i >= min_order; i--) { int frag_order; /* * Scale down goal len to make sure we find something * in the free fragments list. Basically, reduce * preallocations. */ ac->ac_g_ex.fe_len = 1 << i; if (num_stripe_clusters > 0) { /* * Try to round up the adjusted goal length to * stripe size (in cluster units) multiple for * efficiency. */ ac->ac_g_ex.fe_len = roundup(ac->ac_g_ex.fe_len, num_stripe_clusters); } frag_order = mb_avg_fragment_size_order(ac->ac_sb, ac->ac_g_ex.fe_len); grp = ext4_mb_find_good_group_avg_frag_lists(ac, frag_order); if (grp) { *group = grp->bb_group; ac->ac_flags |= EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED; return; } } /* Reset goal length to original goal length before falling into CR_GOAL_LEN_SLOW */ ac->ac_g_ex.fe_len = ac->ac_orig_goal_len; *new_cr = CR_GOAL_LEN_SLOW; } static inline int should_optimize_scan(struct ext4_allocation_context *ac) { if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN))) return 0; if (ac->ac_criteria >= CR_GOAL_LEN_SLOW) return 0; if (!ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) return 0; return 1; } /* * Return next linear group for allocation. If linear traversal should not be * performed, this function just returns the same group */ static ext4_group_t next_linear_group(struct ext4_allocation_context *ac, ext4_group_t group, ext4_group_t ngroups) { if (!should_optimize_scan(ac)) goto inc_and_return; if (ac->ac_groups_linear_remaining) { ac->ac_groups_linear_remaining--; goto inc_and_return; } return group; inc_and_return: /* * Artificially restricted ngroups for non-extent * files makes group > ngroups possible on first loop. */ return group + 1 >= ngroups ? 0 : group + 1; } /* * ext4_mb_choose_next_group: choose next group for allocation. * * @ac Allocation Context * @new_cr This is an output parameter. If the there is no good group * available at current CR level, this field is updated to indicate * the new cr level that should be used. * @group This is an input / output parameter. As an input it indicates the * next group that the allocator intends to use for allocation. As * output, this field indicates the next group that should be used as * determined by the optimization functions. * @ngroups Total number of groups */ static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac, enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups) { *new_cr = ac->ac_criteria; if (!should_optimize_scan(ac) || ac->ac_groups_linear_remaining) { *group = next_linear_group(ac, *group, ngroups); return; } if (*new_cr == CR_POWER2_ALIGNED) { ext4_mb_choose_next_group_p2_aligned(ac, new_cr, group); } else if (*new_cr == CR_GOAL_LEN_FAST) { ext4_mb_choose_next_group_goal_fast(ac, new_cr, group); } else if (*new_cr == CR_BEST_AVAIL_LEN) { ext4_mb_choose_next_group_best_avail(ac, new_cr, group); } else { /* * TODO: For CR=2, we can arrange groups in an rb tree sorted by * bb_free. But until that happens, we should never come here. */ WARN_ON(1); } } /* * Cache the order of the largest free extent we have available in this block * group. */ static void mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp) { struct ext4_sb_info *sbi = EXT4_SB(sb); int i; for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--) if (grp->bb_counters[i] > 0) break; /* No need to move between order lists? */ if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || i == grp->bb_largest_free_order) { grp->bb_largest_free_order = i; return; } if (grp->bb_largest_free_order >= 0) { write_lock(&sbi->s_mb_largest_free_orders_locks[ grp->bb_largest_free_order]); list_del_init(&grp->bb_largest_free_order_node); write_unlock(&sbi->s_mb_largest_free_orders_locks[ grp->bb_largest_free_order]); } grp->bb_largest_free_order = i; if (grp->bb_largest_free_order >= 0 && grp->bb_free) { write_lock(&sbi->s_mb_largest_free_orders_locks[ grp->bb_largest_free_order]); list_add_tail(&grp->bb_largest_free_order_node, &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]); write_unlock(&sbi->s_mb_largest_free_orders_locks[ grp->bb_largest_free_order]); } } static noinline_for_stack void ext4_mb_generate_buddy(struct super_block *sb, void *buddy, void *bitmap, ext4_group_t group, struct ext4_group_info *grp) { struct ext4_sb_info *sbi = EXT4_SB(sb); ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); ext4_grpblk_t i = 0; ext4_grpblk_t first; ext4_grpblk_t len; unsigned free = 0; unsigned fragments = 0; unsigned long long period = get_cycles(); /* initialize buddy from bitmap which is aggregation * of on-disk bitmap and preallocations */ i = mb_find_next_zero_bit(bitmap, max, 0); grp->bb_first_free = i; while (i < max) { fragments++; first = i; i = mb_find_next_bit(bitmap, max, i); len = i - first; free += len; if (len > 1) ext4_mb_mark_free_simple(sb, buddy, first, len, grp); else grp->bb_counters[0]++; if (i < max) i = mb_find_next_zero_bit(bitmap, max, i); } grp->bb_fragments = fragments; if (free != grp->bb_free) { ext4_grp_locked_error(sb, group, 0, 0, "block bitmap and bg descriptor " "inconsistent: %u vs %u free clusters", free, grp->bb_free); /* * If we intend to continue, we consider group descriptor * corrupt and update bb_free using bitmap value */ grp->bb_free = free; ext4_mark_group_bitmap_corrupted(sb, group, EXT4_GROUP_INFO_BBITMAP_CORRUPT); } mb_set_largest_free_order(sb, grp); mb_update_avg_fragment_size(sb, grp); clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state)); period = get_cycles() - period; atomic_inc(&sbi->s_mb_buddies_generated); atomic64_add(period, &sbi->s_mb_generation_time); } static void mb_regenerate_buddy(struct ext4_buddy *e4b) { int count; int order = 1; void *buddy; while ((buddy = mb_find_buddy(e4b, order++, &count))) mb_set_bits(buddy, 0, count); e4b->bd_info->bb_fragments = 0; memset(e4b->bd_info->bb_counters, 0, sizeof(*e4b->bd_info->bb_counters) * (e4b->bd_sb->s_blocksize_bits + 2)); ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy, e4b->bd_bitmap, e4b->bd_group, e4b->bd_info); } /* The buddy information is attached the buddy cache inode * for convenience. The information regarding each group * is loaded via ext4_mb_load_buddy. The information involve * block bitmap and buddy information. The information are * stored in the inode as * * { page } * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... * * * one block each for bitmap and buddy information. * So for each group we take up 2 blocks. A page can * contain blocks_per_page (PAGE_SIZE / blocksize) blocks. * So it can have information regarding groups_per_page which * is blocks_per_page/2 * * Locking note: This routine takes the block group lock of all groups * for this page; do not hold this lock when calling this routine! */ static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp) { ext4_group_t ngroups; unsigned int blocksize; int blocks_per_page; int groups_per_page; int err = 0; int i; ext4_group_t first_group, group; int first_block; struct super_block *sb; struct buffer_head *bhs; struct buffer_head **bh = NULL; struct inode *inode; char *data; char *bitmap; struct ext4_group_info *grinfo; inode = page->mapping->host; sb = inode->i_sb; ngroups = ext4_get_groups_count(sb); blocksize = i_blocksize(inode); blocks_per_page = PAGE_SIZE / blocksize; mb_debug(sb, "init page %lu\n", page->index); groups_per_page = blocks_per_page >> 1; if (groups_per_page == 0) groups_per_page = 1; /* allocate buffer_heads to read bitmaps */ if (groups_per_page > 1) { i = sizeof(struct buffer_head *) * groups_per_page; bh = kzalloc(i, gfp); if (bh == NULL) return -ENOMEM; } else bh = &bhs; first_group = page->index * blocks_per_page / 2; /* read all groups the page covers into the cache */ for (i = 0, group = first_group; i < groups_per_page; i++, group++) { if (group >= ngroups) break; grinfo = ext4_get_group_info(sb, group); if (!grinfo) continue; /* * If page is uptodate then we came here after online resize * which added some new uninitialized group info structs, so * we must skip all initialized uptodate buddies on the page, * which may be currently in use by an allocating task. */ if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) { bh[i] = NULL; continue; } bh[i] = ext4_read_block_bitmap_nowait(sb, group, false); if (IS_ERR(bh[i])) { err = PTR_ERR(bh[i]); bh[i] = NULL; goto out; } mb_debug(sb, "read bitmap for group %u\n", group); } /* wait for I/O completion */ for (i = 0, group = first_group; i < groups_per_page; i++, group++) { int err2; if (!bh[i]) continue; err2 = ext4_wait_block_bitmap(sb, group, bh[i]); if (!err) err = err2; } first_block = page->index * blocks_per_page; for (i = 0; i < blocks_per_page; i++) { group = (first_block + i) >> 1; if (group >= ngroups) break; if (!bh[group - first_group]) /* skip initialized uptodate buddy */ continue; if (!buffer_verified(bh[group - first_group])) /* Skip faulty bitmaps */ continue; err = 0; /* * data carry information regarding this * particular group in the format specified * above * */ data = page_address(page) + (i * blocksize); bitmap = bh[group - first_group]->b_data; /* * We place the buddy block and bitmap block * close together */ grinfo = ext4_get_group_info(sb, group); if (!grinfo) { err = -EFSCORRUPTED; goto out; } if ((first_block + i) & 1) { /* this is block of buddy */ BUG_ON(incore == NULL); mb_debug(sb, "put buddy for group %u in page %lu/%x\n", group, page->index, i * blocksize); trace_ext4_mb_buddy_bitmap_load(sb, group); grinfo->bb_fragments = 0; memset(grinfo->bb_counters, 0, sizeof(*grinfo->bb_counters) * (MB_NUM_ORDERS(sb))); /* * incore got set to the group block bitmap below */ ext4_lock_group(sb, group); /* init the buddy */ memset(data, 0xff, blocksize); ext4_mb_generate_buddy(sb, data, incore, group, grinfo); ext4_unlock_group(sb, group); incore = NULL; } else { /* this is block of bitmap */ BUG_ON(incore != NULL); mb_debug(sb, "put bitmap for group %u in page %lu/%x\n", group, page->index, i * blocksize); trace_ext4_mb_bitmap_load(sb, group); /* see comments in ext4_mb_put_pa() */ ext4_lock_group(sb, group); memcpy(data, bitmap, blocksize); /* mark all preallocated blks used in in-core bitmap */ ext4_mb_generate_from_pa(sb, data, group); WARN_ON_ONCE(!RB_EMPTY_ROOT(&grinfo->bb_free_root)); ext4_unlock_group(sb, group); /* set incore so that the buddy information can be * generated using this */ incore = data; } } SetPageUptodate(page); out: if (bh) { for (i = 0; i < groups_per_page; i++) brelse(bh[i]); if (bh != &bhs) kfree(bh); } return err; } /* * Lock the buddy and bitmap pages. This make sure other parallel init_group * on the same buddy page doesn't happen whild holding the buddy page lock. * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap * are on the same page e4b->bd_buddy_page is NULL and return value is 0. */ static int ext4_mb_get_buddy_page_lock(struct super_block *sb, ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp) { struct inode *inode = EXT4_SB(sb)->s_buddy_cache; int block, pnum, poff; int blocks_per_page; struct page *page; e4b->bd_buddy_page = NULL; e4b->bd_bitmap_page = NULL; blocks_per_page = PAGE_SIZE / sb->s_blocksize; /* * the buddy cache inode stores the block bitmap * and buddy information in consecutive blocks. * So for each group we need two blocks. */ block = group * 2; pnum = block / blocks_per_page; poff = block % blocks_per_page; page = find_or_create_page(inode->i_mapping, pnum, gfp); if (!page) return -ENOMEM; BUG_ON(page->mapping != inode->i_mapping); e4b->bd_bitmap_page = page; e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); if (blocks_per_page >= 2) { /* buddy and bitmap are on the same page */ return 0; } /* blocks_per_page == 1, hence we need another page for the buddy */ page = find_or_create_page(inode->i_mapping, block + 1, gfp); if (!page) return -ENOMEM; BUG_ON(page->mapping != inode->i_mapping); e4b->bd_buddy_page = page; return 0; } static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b) { if (e4b->bd_bitmap_page) { unlock_page(e4b->bd_bitmap_page); put_page(e4b->bd_bitmap_page); } if (e4b->bd_buddy_page) { unlock_page(e4b->bd_buddy_page); put_page(e4b->bd_buddy_page); } } /* * Locking note: This routine calls ext4_mb_init_cache(), which takes the * block group lock of all groups for this page; do not hold the BG lock when * calling this routine! */ static noinline_for_stack int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp) { struct ext4_group_info *this_grp; struct ext4_buddy e4b; struct page *page; int ret = 0; might_sleep(); mb_debug(sb, "init group %u\n", group); this_grp = ext4_get_group_info(sb, group); if (!this_grp) return -EFSCORRUPTED; /* * This ensures that we don't reinit the buddy cache * page which map to the group from which we are already * allocating. If we are looking at the buddy cache we would * have taken a reference using ext4_mb_load_buddy and that * would have pinned buddy page to page cache. * The call to ext4_mb_get_buddy_page_lock will mark the * page accessed. */ ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp); if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) { /* * somebody initialized the group * return without doing anything */ goto err; } page = e4b.bd_bitmap_page; ret = ext4_mb_init_cache(page, NULL, gfp); if (ret) goto err; if (!PageUptodate(page)) { ret = -EIO; goto err; } if (e4b.bd_buddy_page == NULL) { /* * If both the bitmap and buddy are in * the same page we don't need to force * init the buddy */ ret = 0; goto err; } /* init buddy cache */ page = e4b.bd_buddy_page; ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp); if (ret) goto err; if (!PageUptodate(page)) { ret = -EIO; goto err; } err: ext4_mb_put_buddy_page_lock(&e4b); return ret; } /* * Locking note: This routine calls ext4_mb_init_cache(), which takes the * block group lock of all groups for this page; do not hold the BG lock when * calling this routine! */ static noinline_for_stack int ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp) { int blocks_per_page; int block; int pnum; int poff; struct page *page; int ret; struct ext4_group_info *grp; struct ext4_sb_info *sbi = EXT4_SB(sb); struct inode *inode = sbi->s_buddy_cache; might_sleep(); mb_debug(sb, "load group %u\n", group); blocks_per_page = PAGE_SIZE / sb->s_blocksize; grp = ext4_get_group_info(sb, group); if (!grp) return -EFSCORRUPTED; e4b->bd_blkbits = sb->s_blocksize_bits; e4b->bd_info = grp; e4b->bd_sb = sb; e4b->bd_group = group; e4b->bd_buddy_page = NULL; e4b->bd_bitmap_page = NULL; if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { /* * we need full data about the group * to make a good selection */ ret = ext4_mb_init_group(sb, group, gfp); if (ret) return ret; } /* * the buddy cache inode stores the block bitmap * and buddy information in consecutive blocks. * So for each group we need two blocks. */ block = group * 2; pnum = block / blocks_per_page; poff = block % blocks_per_page; /* we could use find_or_create_page(), but it locks page * what we'd like to avoid in fast path ... */ page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); if (page == NULL || !PageUptodate(page)) { if (page) /* * drop the page reference and try * to get the page with lock. If we * are not uptodate that implies * somebody just created the page but * is yet to initialize the same. So * wait for it to initialize. */ put_page(page); page = find_or_create_page(inode->i_mapping, pnum, gfp); if (page) { if (WARN_RATELIMIT(page->mapping != inode->i_mapping, "ext4: bitmap's paging->mapping != inode->i_mapping\n")) { /* should never happen */ unlock_page(page); ret = -EINVAL; goto err; } if (!PageUptodate(page)) { ret = ext4_mb_init_cache(page, NULL, gfp); if (ret) { unlock_page(page); goto err; } mb_cmp_bitmaps(e4b, page_address(page) + (poff * sb->s_blocksize)); } unlock_page(page); } } if (page == NULL) { ret = -ENOMEM; goto err; } if (!PageUptodate(page)) { ret = -EIO; goto err; } /* Pages marked accessed already */ e4b->bd_bitmap_page = page; e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); block++; pnum = block / blocks_per_page; poff = block % blocks_per_page; page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); if (page == NULL || !PageUptodate(page)) { if (page) put_page(page); page = find_or_create_page(inode->i_mapping, pnum, gfp); if (page) { if (WARN_RATELIMIT(page->mapping != inode->i_mapping, "ext4: buddy bitmap's page->mapping != inode->i_mapping\n")) { /* should never happen */ unlock_page(page); ret = -EINVAL; goto err; } if (!PageUptodate(page)) { ret = ext4_mb_init_cache(page, e4b->bd_bitmap, gfp); if (ret) { unlock_page(page); goto err; } } unlock_page(page); } } if (page == NULL) { ret = -ENOMEM; goto err; } if (!PageUptodate(page)) { ret = -EIO; goto err; } /* Pages marked accessed already */ e4b->bd_buddy_page = page; e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize); return 0; err: if (page) put_page(page); if (e4b->bd_bitmap_page) put_page(e4b->bd_bitmap_page); e4b->bd_buddy = NULL; e4b->bd_bitmap = NULL; return ret; } static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group, struct ext4_buddy *e4b) { return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS); } static void ext4_mb_unload_buddy(struct ext4_buddy *e4b) { if (e4b->bd_bitmap_page) put_page(e4b->bd_bitmap_page); if (e4b->bd_buddy_page) put_page(e4b->bd_buddy_page); } static int mb_find_order_for_block(struct ext4_buddy *e4b, int block) { int order = 1, max; void *bb; BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); BUG_ON(block >= (1 << (e4b->bd_blkbits + 3))); while (order <= e4b->bd_blkbits + 1) { bb = mb_find_buddy(e4b, order, &max); if (!mb_test_bit(block >> order, bb)) { /* this block is part of buddy of order 'order' */ return order; } order++; } return 0; } static void mb_clear_bits(void *bm, int cur, int len) { __u32 *addr; len = cur + len; while (cur < len) { if ((cur & 31) == 0 && (len - cur) >= 32) { /* fast path: clear whole word at once */ addr = bm + (cur >> 3); *addr = 0; cur += 32; continue; } mb_clear_bit(cur, bm); cur++; } } /* clear bits in given range * will return first found zero bit if any, -1 otherwise */ static int mb_test_and_clear_bits(void *bm, int cur, int len) { __u32 *addr; int zero_bit = -1; len = cur + len; while (cur < len) { if ((cur & 31) == 0 && (len - cur) >= 32) { /* fast path: clear whole word at once */ addr = bm + (cur >> 3); if (*addr != (__u32)(-1) && zero_bit == -1) zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0); *addr = 0; cur += 32; continue; } if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1) zero_bit = cur; cur++; } return zero_bit; } void mb_set_bits(void *bm, int cur, int len) { __u32 *addr; len = cur + len; while (cur < len) { if ((cur & 31) == 0 && (len - cur) >= 32) { /* fast path: set whole word at once */ addr = bm + (cur >> 3); *addr = 0xffffffff; cur += 32; continue; } mb_set_bit(cur, bm); cur++; } } static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side) { if (mb_test_bit(*bit + side, bitmap)) { mb_clear_bit(*bit, bitmap); (*bit) -= side; return 1; } else { (*bit) += side; mb_set_bit(*bit, bitmap); return -1; } } static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last) { int max; int order = 1; void *buddy = mb_find_buddy(e4b, order, &max); while (buddy) { void *buddy2; /* Bits in range [first; last] are known to be set since * corresponding blocks were allocated. Bits in range * (first; last) will stay set because they form buddies on * upper layer. We just deal with borders if they don't * align with upper layer and then go up. * Releasing entire group is all about clearing * single bit of highest order buddy. */ /* Example: * --------------------------------- * | 1 | 1 | 1 | 1 | * --------------------------------- * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | * --------------------------------- * 0 1 2 3 4 5 6 7 * \_____________________/ * * Neither [1] nor [6] is aligned to above layer. * Left neighbour [0] is free, so mark it busy, * decrease bb_counters and extend range to * [0; 6] * Right neighbour [7] is busy. It can't be coaleasced with [6], so * mark [6] free, increase bb_counters and shrink range to * [0; 5]. * Then shift range to [0; 2], go up and do the same. */ if (first & 1) e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1); if (!(last & 1)) e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1); if (first > last) break; order++; buddy2 = mb_find_buddy(e4b, order, &max); if (!buddy2) { mb_clear_bits(buddy, first, last - first + 1); e4b->bd_info->bb_counters[order - 1] += last - first + 1; break; } first >>= 1; last >>= 1; buddy = buddy2; } } static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b, int first, int count) { int left_is_free = 0; int right_is_free = 0; int block; int last = first + count - 1; struct super_block *sb = e4b->bd_sb; if (WARN_ON(count == 0)) return; BUG_ON(last >= (sb->s_blocksize << 3)); assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); /* Don't bother if the block group is corrupt. */ if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) return; mb_check_buddy(e4b); mb_free_blocks_double(inode, e4b, first, count); /* access memory sequentially: check left neighbour, * clear range and then check right neighbour */ if (first != 0) left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap); block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count); if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0]) right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap); if (unlikely(block != -1)) { struct ext4_sb_info *sbi = EXT4_SB(sb); ext4_fsblk_t blocknr; /* * Fastcommit replay can free already freed blocks which * corrupts allocation info. Regenerate it. */ if (sbi->s_mount_state & EXT4_FC_REPLAY) { mb_regenerate_buddy(e4b); goto check; } blocknr = ext4_group_first_block_no(sb, e4b->bd_group); blocknr += EXT4_C2B(sbi, block); ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, EXT4_GROUP_INFO_BBITMAP_CORRUPT); ext4_grp_locked_error(sb, e4b->bd_group, inode ? inode->i_ino : 0, blocknr, "freeing already freed block (bit %u); block bitmap corrupt.", block); return; } this_cpu_inc(discard_pa_seq); e4b->bd_info->bb_free += count; if (first < e4b->bd_info->bb_first_free) e4b->bd_info->bb_first_free = first; /* let's maintain fragments counter */ if (left_is_free && right_is_free) e4b->bd_info->bb_fragments--; else if (!left_is_free && !right_is_free) e4b->bd_info->bb_fragments++; /* buddy[0] == bd_bitmap is a special case, so handle * it right away and let mb_buddy_mark_free stay free of * zero order checks. * Check if neighbours are to be coaleasced, * adjust bitmap bb_counters and borders appropriately. */ if (first & 1) { first += !left_is_free; e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1; } if (!(last & 1)) { last -= !right_is_free; e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1; } if (first <= last) mb_buddy_mark_free(e4b, first >> 1, last >> 1); mb_set_largest_free_order(sb, e4b->bd_info); mb_update_avg_fragment_size(sb, e4b->bd_info); check: mb_check_buddy(e4b); } static int mb_find_extent(struct ext4_buddy *e4b, int block, int needed, struct ext4_free_extent *ex) { int max, order, next; void *buddy; assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); BUG_ON(ex == NULL); buddy = mb_find_buddy(e4b, 0, &max); BUG_ON(buddy == NULL); BUG_ON(block >= max); if (mb_test_bit(block, buddy)) { ex->fe_len = 0; ex->fe_start = 0; ex->fe_group = 0; return 0; } /* find actual order */ order = mb_find_order_for_block(e4b, block); ex->fe_len = (1 << order) - (block & ((1 << order) - 1)); ex->fe_start = block; ex->fe_group = e4b->bd_group; block = block >> order; while (needed > ex->fe_len && mb_find_buddy(e4b, order, &max)) { if (block + 1 >= max) break; next = (block + 1) * (1 << order); if (mb_test_bit(next, e4b->bd_bitmap)) break; order = mb_find_order_for_block(e4b, next); block = next >> order; ex->fe_len += 1 << order; } if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) { /* Should never happen! (but apparently sometimes does?!?) */ WARN_ON(1); ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0, "corruption or bug in mb_find_extent " "block=%d, order=%d needed=%d ex=%u/%d/%d@%u", block, order, needed, ex->fe_group, ex->fe_start, ex->fe_len, ex->fe_logical); ex->fe_len = 0; ex->fe_start = 0; ex->fe_group = 0; } return ex->fe_len; } static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex) { int ord; int mlen = 0; int max = 0; int cur; int start = ex->fe_start; int len = ex->fe_len; unsigned ret = 0; int len0 = len; void *buddy; bool split = false; BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3)); BUG_ON(e4b->bd_group != ex->fe_group); assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); mb_check_buddy(e4b); mb_mark_used_double(e4b, start, len); this_cpu_inc(discard_pa_seq); e4b->bd_info->bb_free -= len; if (e4b->bd_info->bb_first_free == start) e4b->bd_info->bb_first_free += len; /* let's maintain fragments counter */ if (start != 0) mlen = !mb_test_bit(start - 1, e4b->bd_bitmap); if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0]) max = !mb_test_bit(start + len, e4b->bd_bitmap); if (mlen && max) e4b->bd_info->bb_fragments++; else if (!mlen && !max) e4b->bd_info->bb_fragments--; /* let's maintain buddy itself */ while (len) { if (!split) ord = mb_find_order_for_block(e4b, start); if (((start >> ord) << ord) == start && len >= (1 << ord)) { /* the whole chunk may be allocated at once! */ mlen = 1 << ord; if (!split) buddy = mb_find_buddy(e4b, ord, &max); else split = false; BUG_ON((start >> ord) >= max); mb_set_bit(start >> ord, buddy); e4b->bd_info->bb_counters[ord]--; start += mlen; len -= mlen; BUG_ON(len < 0); continue; } /* store for history */ if (ret == 0) ret = len | (ord << 16); /* we have to split large buddy */ BUG_ON(ord <= 0); buddy = mb_find_buddy(e4b, ord, &max); mb_set_bit(start >> ord, buddy); e4b->bd_info->bb_counters[ord]--; ord--; cur = (start >> ord) & ~1U; buddy = mb_find_buddy(e4b, ord, &max); mb_clear_bit(cur, buddy); mb_clear_bit(cur + 1, buddy); e4b->bd_info->bb_counters[ord]++; e4b->bd_info->bb_counters[ord]++; split = true; } mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info); mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info); mb_set_bits(e4b->bd_bitmap, ex->fe_start, len0); mb_check_buddy(e4b); return ret; } /* * Must be called under group lock! */ static void ext4_mb_use_best_found(struct ext4_allocation_context *ac, struct ext4_buddy *e4b) { struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); int ret; BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group); BUG_ON(ac->ac_status == AC_STATUS_FOUND); ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len); ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical; ret = mb_mark_used(e4b, &ac->ac_b_ex); /* preallocation can change ac_b_ex, thus we store actually * allocated blocks for history */ ac->ac_f_ex = ac->ac_b_ex; ac->ac_status = AC_STATUS_FOUND; ac->ac_tail = ret & 0xffff; ac->ac_buddy = ret >> 16; /* * take the page reference. We want the page to be pinned * so that we don't get a ext4_mb_init_cache_call for this * group until we update the bitmap. That would mean we * double allocate blocks. The reference is dropped * in ext4_mb_release_context */ ac->ac_bitmap_page = e4b->bd_bitmap_page; get_page(ac->ac_bitmap_page); ac->ac_buddy_page = e4b->bd_buddy_page; get_page(ac->ac_buddy_page); /* store last allocated for subsequent stream allocation */ if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { spin_lock(&sbi->s_md_lock); sbi->s_mb_last_group = ac->ac_f_ex.fe_group; sbi->s_mb_last_start = ac->ac_f_ex.fe_start; spin_unlock(&sbi->s_md_lock); } /* * As we've just preallocated more space than * user requested originally, we store allocated * space in a special descriptor. */ if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len) ext4_mb_new_preallocation(ac); } static void ext4_mb_check_limits(struct ext4_allocation_context *ac, struct ext4_buddy *e4b, int finish_group) { struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); struct ext4_free_extent *bex = &ac->ac_b_ex; struct ext4_free_extent *gex = &ac->ac_g_ex; if (ac->ac_status == AC_STATUS_FOUND) return; /* * We don't want to scan for a whole year */ if (ac->ac_found > sbi->s_mb_max_to_scan && !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { ac->ac_status = AC_STATUS_BREAK; return; } /* * Haven't found good chunk so far, let's continue */ if (bex->fe_len < gex->fe_len) return; if (finish_group || ac->ac_found > sbi->s_mb_min_to_scan) ext4_mb_use_best_found(ac, e4b); } /* * The routine checks whether found extent is good enough. If it is, * then the extent gets marked used and flag is set to the context * to stop scanning. Otherwise, the extent is compared with the * previous found extent and if new one is better, then it's stored * in the context. Later, the best found extent will be used, if * mballoc can't find good enough extent. * * The algorithm used is roughly as follows: * * * If free extent found is exactly as big as goal, then * stop the scan and use it immediately * * * If free extent found is smaller than goal, then keep retrying * upto a max of sbi->s_mb_max_to_scan times (default 200). After * that stop scanning and use whatever we have. * * * If free extent found is bigger than goal, then keep retrying * upto a max of sbi->s_mb_min_to_scan times (default 10) before * stopping the scan and using the extent. * * * FIXME: real allocation policy is to be designed yet! */ static void ext4_mb_measure_extent(struct ext4_allocation_context *ac, struct ext4_free_extent *ex, struct ext4_buddy *e4b) { struct ext4_free_extent *bex = &ac->ac_b_ex; struct ext4_free_extent *gex = &ac->ac_g_ex; BUG_ON(ex->fe_len <= 0); BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); BUG_ON(ac->ac_status != AC_STATUS_CONTINUE); ac->ac_found++; ac->ac_cX_found[ac->ac_criteria]++; /* * The special case - take what you catch first */ if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) { *bex = *ex; ext4_mb_use_best_found(ac, e4b); return; } /* * Let's check whether the chuck is good enough */ if (ex->fe_len == gex->fe_len) { *bex = *ex; ext4_mb_use_best_found(ac, e4b); return; } /* * If this is first found extent, just store it in the context */ if (bex->fe_len == 0) { *bex = *ex; return; } /* * If new found extent is better, store it in the context */ if (bex->fe_len < gex->fe_len) { /* if the request isn't satisfied, any found extent * larger than previous best one is better */ if (ex->fe_len > bex->fe_len) *bex = *ex; } else if (ex->fe_len > gex->fe_len) { /* if the request is satisfied, then we try to find * an extent that still satisfy the request, but is * smaller than previous one */ if (ex->fe_len < bex->fe_len) *bex = *ex; } ext4_mb_check_limits(ac, e4b, 0); } static noinline_for_stack void ext4_mb_try_best_found(struct ext4_allocation_context *ac, struct ext4_buddy *e4b) { struct ext4_free_extent ex = ac->ac_b_ex; ext4_group_t group = ex.fe_group; int max; int err; BUG_ON(ex.fe_len <= 0); err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); if (err) return; ext4_lock_group(ac->ac_sb, group); if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) goto out; max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex); if (max > 0) { ac->ac_b_ex = ex; ext4_mb_use_best_found(ac, e4b); } out: ext4_unlock_group(ac->ac_sb, group); ext4_mb_unload_buddy(e4b); } static noinline_for_stack int ext4_mb_find_by_goal(struct ext4_allocation_context *ac, struct ext4_buddy *e4b) { ext4_group_t group = ac->ac_g_ex.fe_group; int max; int err; struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); struct ext4_free_extent ex; if (!grp) return -EFSCORRUPTED; if (!(ac->ac_flags & (EXT4_MB_HINT_TRY_GOAL | EXT4_MB_HINT_GOAL_ONLY))) return 0; if (grp->bb_free == 0) return 0; err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); if (err) return err; ext4_lock_group(ac->ac_sb, group); if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) goto out; max = mb_find_extent(e4b, ac->ac_g_ex.fe_start, ac->ac_g_ex.fe_len, &ex); ex.fe_logical = 0xDEADFA11; /* debug value */ if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == EXT4_B2C(sbi, sbi->s_stripe)) { ext4_fsblk_t start; start = ext4_grp_offs_to_block(ac->ac_sb, &ex); /* use do_div to get remainder (would be 64-bit modulo) */ if (do_div(start, sbi->s_stripe) == 0) { ac->ac_found++; ac->ac_b_ex = ex; ext4_mb_use_best_found(ac, e4b); } } else if (max >= ac->ac_g_ex.fe_len) { BUG_ON(ex.fe_len <= 0); BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); ac->ac_found++; ac->ac_b_ex = ex; ext4_mb_use_best_found(ac, e4b); } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) { /* Sometimes, caller may want to merge even small * number of blocks to an existing extent */ BUG_ON(ex.fe_len <= 0); BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); ac->ac_found++; ac->ac_b_ex = ex; ext4_mb_use_best_found(ac, e4b); } out: ext4_unlock_group(ac->ac_sb, group); ext4_mb_unload_buddy(e4b); return 0; } /* * The routine scans buddy structures (not bitmap!) from given order * to max order and tries to find big enough chunk to satisfy the req */ static noinline_for_stack void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac, struct ext4_buddy *e4b) { struct super_block *sb = ac->ac_sb; struct ext4_group_info *grp = e4b->bd_info; void *buddy; int i; int k; int max; BUG_ON(ac->ac_2order <= 0); for (i = ac->ac_2order; i < MB_NUM_ORDERS(sb); i++) { if (grp->bb_counters[i] == 0) continue; buddy = mb_find_buddy(e4b, i, &max); if (WARN_RATELIMIT(buddy == NULL, "ext4: mb_simple_scan_group: mb_find_buddy failed, (%d)\n", i)) continue; k = mb_find_next_zero_bit(buddy, max, 0); if (k >= max) { ext4_mark_group_bitmap_corrupted(ac->ac_sb, e4b->bd_group, EXT4_GROUP_INFO_BBITMAP_CORRUPT); ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0, "%d free clusters of order %d. But found 0", grp->bb_counters[i], i); break; } ac->ac_found++; ac->ac_cX_found[ac->ac_criteria]++; ac->ac_b_ex.fe_len = 1 << i; ac->ac_b_ex.fe_start = k << i; ac->ac_b_ex.fe_group = e4b->bd_group; ext4_mb_use_best_found(ac, e4b); BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len); if (EXT4_SB(sb)->s_mb_stats) atomic_inc(&EXT4_SB(sb)->s_bal_2orders); break; } } /* * The routine scans the group and measures all found extents. * In order to optimize scanning, caller must pass number of * free blocks in the group, so the routine can know upper limit. */ static noinline_for_stack void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac, struct ext4_buddy *e4b) { struct super_block *sb = ac->ac_sb; void *bitmap = e4b->bd_bitmap; struct ext4_free_extent ex; int i, j, freelen; int free; free = e4b->bd_info->bb_free; if (WARN_ON(free <= 0)) return; i = e4b->bd_info->bb_first_free; while (free && ac->ac_status == AC_STATUS_CONTINUE) { i = mb_find_next_zero_bit(bitmap, EXT4_CLUSTERS_PER_GROUP(sb), i); if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) { /* * IF we have corrupt bitmap, we won't find any * free blocks even though group info says we * have free blocks */ ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, EXT4_GROUP_INFO_BBITMAP_CORRUPT); ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, "%d free clusters as per " "group info. But bitmap says 0", free); break; } if (!ext4_mb_cr_expensive(ac->ac_criteria)) { /* * In CR_GOAL_LEN_FAST and CR_BEST_AVAIL_LEN, we are * sure that this group will have a large enough * continuous free extent, so skip over the smaller free * extents */ j = mb_find_next_bit(bitmap, EXT4_CLUSTERS_PER_GROUP(sb), i); freelen = j - i; if (freelen < ac->ac_g_ex.fe_len) { i = j; free -= freelen; continue; } } mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex); if (WARN_ON(ex.fe_len <= 0)) break; if (free < ex.fe_len) { ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, EXT4_GROUP_INFO_BBITMAP_CORRUPT); ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, "%d free clusters as per " "group info. But got %d blocks", free, ex.fe_len); /* * The number of free blocks differs. This mostly * indicate that the bitmap is corrupt. So exit * without claiming the space. */ break; } ex.fe_logical = 0xDEADC0DE; /* debug value */ ext4_mb_measure_extent(ac, &ex, e4b); i += ex.fe_len; free -= ex.fe_len; } ext4_mb_check_limits(ac, e4b, 1); } /* * This is a special case for storages like raid5 * we try to find stripe-aligned chunks for stripe-size-multiple requests */ static noinline_for_stack void ext4_mb_scan_aligned(struct ext4_allocation_context *ac, struct ext4_buddy *e4b) { struct super_block *sb = ac->ac_sb; struct ext4_sb_info *sbi = EXT4_SB(sb); void *bitmap = e4b->bd_bitmap; struct ext4_free_extent ex; ext4_fsblk_t first_group_block; ext4_fsblk_t a; ext4_grpblk_t i, stripe; int max; BUG_ON(sbi->s_stripe == 0); /* find first stripe-aligned block in group */ first_group_block = ext4_group_first_block_no(sb, e4b->bd_group); a = first_group_block + sbi->s_stripe - 1; do_div(a, sbi->s_stripe); i = (a * sbi->s_stripe) - first_group_block; stripe = EXT4_B2C(sbi, sbi->s_stripe); i = EXT4_B2C(sbi, i); while (i < EXT4_CLUSTERS_PER_GROUP(sb)) { if (!mb_test_bit(i, bitmap)) { max = mb_find_extent(e4b, i, stripe, &ex); if (max >= stripe) { ac->ac_found++; ac->ac_cX_found[ac->ac_criteria]++; ex.fe_logical = 0xDEADF00D; /* debug value */ ac->ac_b_ex = ex; ext4_mb_use_best_found(ac, e4b); break; } } i += stripe; } } /* * This is also called BEFORE we load the buddy bitmap. * Returns either 1 or 0 indicating that the group is either suitable * for the allocation or not. */ static bool ext4_mb_good_group(struct ext4_allocation_context *ac, ext4_group_t group, enum criteria cr) { ext4_grpblk_t free, fragments; int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb)); struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); BUG_ON(cr < CR_POWER2_ALIGNED || cr >= EXT4_MB_NUM_CRS); if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) return false; free = grp->bb_free; if (free == 0) return false; fragments = grp->bb_fragments; if (fragments == 0) return false; switch (cr) { case CR_POWER2_ALIGNED: BUG_ON(ac->ac_2order == 0); /* Avoid using the first bg of a flexgroup for data files */ if ((ac->ac_flags & EXT4_MB_HINT_DATA) && (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) && ((group % flex_size) == 0)) return false; if (free < ac->ac_g_ex.fe_len) return false; if (ac->ac_2order >= MB_NUM_ORDERS(ac->ac_sb)) return true; if (grp->bb_largest_free_order < ac->ac_2order) return false; return true; case CR_GOAL_LEN_FAST: case CR_BEST_AVAIL_LEN: if ((free / fragments) >= ac->ac_g_ex.fe_len) return true; break; case CR_GOAL_LEN_SLOW: if (free >= ac->ac_g_ex.fe_len) return true; break; case CR_ANY_FREE: return true; default: BUG(); } return false; } /* * This could return negative error code if something goes wrong * during ext4_mb_init_group(). This should not be called with * ext4_lock_group() held. * * Note: because we are conditionally operating with the group lock in * the EXT4_MB_STRICT_CHECK case, we need to fake out sparse in this * function using __acquire and __release. This means we need to be * super careful before messing with the error path handling via "goto * out"! */ static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac, ext4_group_t group, enum criteria cr) { struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); struct super_block *sb = ac->ac_sb; struct ext4_sb_info *sbi = EXT4_SB(sb); bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK; ext4_grpblk_t free; int ret = 0; if (!grp) return -EFSCORRUPTED; if (sbi->s_mb_stats) atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]); if (should_lock) { ext4_lock_group(sb, group); __release(ext4_group_lock_ptr(sb, group)); } free = grp->bb_free; if (free == 0) goto out; /* * In all criterias except CR_ANY_FREE we try to avoid groups that * can't possibly satisfy the full goal request due to insufficient * free blocks. */ if (cr < CR_ANY_FREE && free < ac->ac_g_ex.fe_len) goto out; if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) goto out; if (should_lock) { __acquire(ext4_group_lock_ptr(sb, group)); ext4_unlock_group(sb, group); } /* We only do this if the grp has never been initialized */ if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL); int ret; /* * cr=CR_POWER2_ALIGNED/CR_GOAL_LEN_FAST is a very optimistic * search to find large good chunks almost for free. If buddy * data is not ready, then this optimization makes no sense. But * we never skip the first block group in a flex_bg, since this * gets used for metadata block allocation, and we want to make * sure we locate metadata blocks in the first block group in * the flex_bg if possible. */ if (!ext4_mb_cr_expensive(cr) && (!sbi->s_log_groups_per_flex || ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) && !(ext4_has_group_desc_csum(sb) && (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) return 0; ret = ext4_mb_init_group(sb, group, GFP_NOFS); if (ret) return ret; } if (should_lock) { ext4_lock_group(sb, group); __release(ext4_group_lock_ptr(sb, group)); } ret = ext4_mb_good_group(ac, group, cr); out: if (should_lock) { __acquire(ext4_group_lock_ptr(sb, group)); ext4_unlock_group(sb, group); } return ret; } /* * Start prefetching @nr block bitmaps starting at @group. * Return the next group which needs to be prefetched. */ ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group, unsigned int nr, int *cnt) { ext4_group_t ngroups = ext4_get_groups_count(sb); struct buffer_head *bh; struct blk_plug plug; blk_start_plug(&plug); while (nr-- > 0) { struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL); struct ext4_group_info *grp = ext4_get_group_info(sb, group); /* * Prefetch block groups with free blocks; but don't * bother if it is marked uninitialized on disk, since * it won't require I/O to read. Also only try to * prefetch once, so we avoid getblk() call, which can * be expensive. */ if (gdp && grp && !EXT4_MB_GRP_TEST_AND_SET_READ(grp) && EXT4_MB_GRP_NEED_INIT(grp) && ext4_free_group_clusters(sb, gdp) > 0 ) { bh = ext4_read_block_bitmap_nowait(sb, group, true); if (bh && !IS_ERR(bh)) { if (!buffer_uptodate(bh) && cnt) (*cnt)++; brelse(bh); } } if (++group >= ngroups) group = 0; } blk_finish_plug(&plug); return group; } /* * Prefetching reads the block bitmap into the buffer cache; but we * need to make sure that the buddy bitmap in the page cache has been * initialized. Note that ext4_mb_init_group() will block if the I/O * is not yet completed, or indeed if it was not initiated by * ext4_mb_prefetch did not start the I/O. * * TODO: We should actually kick off the buddy bitmap setup in a work * queue when the buffer I/O is completed, so that we don't block * waiting for the block allocation bitmap read to finish when * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator(). */ void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group, unsigned int nr) { struct ext4_group_desc *gdp; struct ext4_group_info *grp; while (nr-- > 0) { if (!group) group = ext4_get_groups_count(sb); group--; gdp = ext4_get_group_desc(sb, group, NULL); grp = ext4_get_group_info(sb, group); if (grp && gdp && EXT4_MB_GRP_NEED_INIT(grp) && ext4_free_group_clusters(sb, gdp) > 0) { if (ext4_mb_init_group(sb, group, GFP_NOFS)) break; } } } static noinline_for_stack int ext4_mb_regular_allocator(struct ext4_allocation_context *ac) { ext4_group_t prefetch_grp = 0, ngroups, group, i; enum criteria new_cr, cr = CR_GOAL_LEN_FAST; int err = 0, first_err = 0; unsigned int nr = 0, prefetch_ios = 0; struct ext4_sb_info *sbi; struct super_block *sb; struct ext4_buddy e4b; int lost; sb = ac->ac_sb; sbi = EXT4_SB(sb); ngroups = ext4_get_groups_count(sb); /* non-extent files are limited to low blocks/groups */ if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))) ngroups = sbi->s_blockfile_groups; BUG_ON(ac->ac_status == AC_STATUS_FOUND); /* first, try the goal */ err = ext4_mb_find_by_goal(ac, &e4b); if (err || ac->ac_status == AC_STATUS_FOUND) goto out; if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) goto out; /* * ac->ac_2order is set only if the fe_len is a power of 2 * if ac->ac_2order is set we also set criteria to CR_POWER2_ALIGNED * so that we try exact allocation using buddy. */ i = fls(ac->ac_g_ex.fe_len); ac->ac_2order = 0; /* * We search using buddy data only if the order of the request * is greater than equal to the sbi_s_mb_order2_reqs * You can tune it via /sys/fs/ext4//mb_order2_req * We also support searching for power-of-two requests only for * requests upto maximum buddy size we have constructed. */ if (i >= sbi->s_mb_order2_reqs && i <= MB_NUM_ORDERS(sb)) { if (is_power_of_2(ac->ac_g_ex.fe_len)) ac->ac_2order = array_index_nospec(i - 1, MB_NUM_ORDERS(sb)); } /* if stream allocation is enabled, use global goal */ if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { /* TBD: may be hot point */ spin_lock(&sbi->s_md_lock); ac->ac_g_ex.fe_group = sbi->s_mb_last_group; ac->ac_g_ex.fe_start = sbi->s_mb_last_start; spin_unlock(&sbi->s_md_lock); } /* * Let's just scan groups to find more-less suitable blocks We * start with CR_GOAL_LEN_FAST, unless it is power of 2 * aligned, in which case let's do that faster approach first. */ if (ac->ac_2order) cr = CR_POWER2_ALIGNED; repeat: for (; cr < EXT4_MB_NUM_CRS && ac->ac_status == AC_STATUS_CONTINUE; cr++) { ac->ac_criteria = cr; /* * searching for the right group start * from the goal value specified */ group = ac->ac_g_ex.fe_group; ac->ac_groups_linear_remaining = sbi->s_mb_max_linear_groups; prefetch_grp = group; for (i = 0, new_cr = cr; i < ngroups; i++, ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups)) { int ret = 0; cond_resched(); if (new_cr != cr) { cr = new_cr; goto repeat; } /* * Batch reads of the block allocation bitmaps * to get multiple READs in flight; limit * prefetching at inexpensive CR, otherwise mballoc * can spend a lot of time loading imperfect groups */ if ((prefetch_grp == group) && (ext4_mb_cr_expensive(cr) || prefetch_ios < sbi->s_mb_prefetch_limit)) { nr = sbi->s_mb_prefetch; if (ext4_has_feature_flex_bg(sb)) { nr = 1 << sbi->s_log_groups_per_flex; nr -= group & (nr - 1); nr = min(nr, sbi->s_mb_prefetch); } prefetch_grp = ext4_mb_prefetch(sb, group, nr, &prefetch_ios); } /* This now checks without needing the buddy page */ ret = ext4_mb_good_group_nolock(ac, group, cr); if (ret <= 0) { if (!first_err) first_err = ret; continue; } err = ext4_mb_load_buddy(sb, group, &e4b); if (err) goto out; ext4_lock_group(sb, group); /* * We need to check again after locking the * block group */ ret = ext4_mb_good_group(ac, group, cr); if (ret == 0) { ext4_unlock_group(sb, group); ext4_mb_unload_buddy(&e4b); continue; } ac->ac_groups_scanned++; if (cr == CR_POWER2_ALIGNED) ext4_mb_simple_scan_group(ac, &e4b); else { bool is_stripe_aligned = sbi->s_stripe && !(ac->ac_g_ex.fe_len % EXT4_B2C(sbi, sbi->s_stripe)); if ((cr == CR_GOAL_LEN_FAST || cr == CR_BEST_AVAIL_LEN) && is_stripe_aligned) ext4_mb_scan_aligned(ac, &e4b); if (ac->ac_status == AC_STATUS_CONTINUE) ext4_mb_complex_scan_group(ac, &e4b); } ext4_unlock_group(sb, group); ext4_mb_unload_buddy(&e4b); if (ac->ac_status != AC_STATUS_CONTINUE) break; } /* Processed all groups and haven't found blocks */ if (sbi->s_mb_stats && i == ngroups) atomic64_inc(&sbi->s_bal_cX_failed[cr]); if (i == ngroups && ac->ac_criteria == CR_BEST_AVAIL_LEN) /* Reset goal length to original goal length before * falling into CR_GOAL_LEN_SLOW */ ac->ac_g_ex.fe_len = ac->ac_orig_goal_len; } if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND && !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { /* * We've been searching too long. Let's try to allocate * the best chunk we've found so far */ ext4_mb_try_best_found(ac, &e4b); if (ac->ac_status != AC_STATUS_FOUND) { /* * Someone more lucky has already allocated it. * The only thing we can do is just take first * found block(s) */ lost = atomic_inc_return(&sbi->s_mb_lost_chunks); mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n", ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start, ac->ac_b_ex.fe_len, lost); ac->ac_b_ex.fe_group = 0; ac->ac_b_ex.fe_start = 0; ac->ac_b_ex.fe_len = 0; ac->ac_status = AC_STATUS_CONTINUE; ac->ac_flags |= EXT4_MB_HINT_FIRST; cr = CR_ANY_FREE; goto repeat; } } if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND) atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]); out: if (!err && ac->ac_status != AC_STATUS_FOUND && first_err) err = first_err; mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n", ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status, ac->ac_flags, cr, err); if (nr) ext4_mb_prefetch_fini(sb, prefetch_grp, nr); return err; } static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos) { struct super_block *sb = pde_data(file_inode(seq->file)); ext4_group_t group; if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) return NULL; group = *pos + 1; return (void *) ((unsigned long) group); } static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos) { struct super_block *sb = pde_data(file_inode(seq->file)); ext4_group_t group; ++*pos; if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) return NULL; group = *pos + 1; return (void *) ((unsigned long) group); } static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v) { struct super_block *sb = pde_data(file_inode(seq->file)); ext4_group_t group = (ext4_group_t) ((unsigned long) v); int i; int err, buddy_loaded = 0; struct ext4_buddy e4b; struct ext4_group_info *grinfo; unsigned char blocksize_bits = min_t(unsigned char, sb->s_blocksize_bits, EXT4_MAX_BLOCK_LOG_SIZE); struct sg { struct ext4_group_info info; ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2]; } sg; group--; if (group == 0) seq_puts(seq, "#group: free frags first [" " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 " " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n"); i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) + sizeof(struct ext4_group_info); grinfo = ext4_get_group_info(sb, group); if (!grinfo) return 0; /* Load the group info in memory only if not already loaded. */ if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) { err = ext4_mb_load_buddy(sb, group, &e4b); if (err) { seq_printf(seq, "#%-5u: I/O error\n", group); return 0; } buddy_loaded = 1; } memcpy(&sg, grinfo, i); if (buddy_loaded) ext4_mb_unload_buddy(&e4b); seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free, sg.info.bb_fragments, sg.info.bb_first_free); for (i = 0; i <= 13; i++) seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ? sg.info.bb_counters[i] : 0); seq_puts(seq, " ]\n"); return 0; } static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v) { } const struct seq_operations ext4_mb_seq_groups_ops = { .start = ext4_mb_seq_groups_start, .next = ext4_mb_seq_groups_next, .stop = ext4_mb_seq_groups_stop, .show = ext4_mb_seq_groups_show, }; int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset) { struct super_block *sb = seq->private; struct ext4_sb_info *sbi = EXT4_SB(sb); seq_puts(seq, "mballoc:\n"); if (!sbi->s_mb_stats) { seq_puts(seq, "\tmb stats collection turned off.\n"); seq_puts( seq, "\tTo enable, please write \"1\" to sysfs file mb_stats.\n"); return 0; } seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs)); seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success)); seq_printf(seq, "\tgroups_scanned: %u\n", atomic_read(&sbi->s_bal_groups_scanned)); /* CR_POWER2_ALIGNED stats */ seq_puts(seq, "\tcr_p2_aligned_stats:\n"); seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[CR_POWER2_ALIGNED])); seq_printf( seq, "\t\tgroups_considered: %llu\n", atomic64_read( &sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED])); seq_printf(seq, "\t\textents_scanned: %u\n", atomic_read(&sbi->s_bal_cX_ex_scanned[CR_POWER2_ALIGNED])); seq_printf(seq, "\t\tuseless_loops: %llu\n", atomic64_read(&sbi->s_bal_cX_failed[CR_POWER2_ALIGNED])); seq_printf(seq, "\t\tbad_suggestions: %u\n", atomic_read(&sbi->s_bal_p2_aligned_bad_suggestions)); /* CR_GOAL_LEN_FAST stats */ seq_puts(seq, "\tcr_goal_fast_stats:\n"); seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_FAST])); seq_printf(seq, "\t\tgroups_considered: %llu\n", atomic64_read( &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_FAST])); seq_printf(seq, "\t\textents_scanned: %u\n", atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_FAST])); seq_printf(seq, "\t\tuseless_loops: %llu\n", atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_FAST])); seq_printf(seq, "\t\tbad_suggestions: %u\n", atomic_read(&sbi->s_bal_goal_fast_bad_suggestions)); /* CR_BEST_AVAIL_LEN stats */ seq_puts(seq, "\tcr_best_avail_stats:\n"); seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[CR_BEST_AVAIL_LEN])); seq_printf( seq, "\t\tgroups_considered: %llu\n", atomic64_read( &sbi->s_bal_cX_groups_considered[CR_BEST_AVAIL_LEN])); seq_printf(seq, "\t\textents_scanned: %u\n", atomic_read(&sbi->s_bal_cX_ex_scanned[CR_BEST_AVAIL_LEN])); seq_printf(seq, "\t\tuseless_loops: %llu\n", atomic64_read(&sbi->s_bal_cX_failed[CR_BEST_AVAIL_LEN])); seq_printf(seq, "\t\tbad_suggestions: %u\n", atomic_read(&sbi->s_bal_best_avail_bad_suggestions)); /* CR_GOAL_LEN_SLOW stats */ seq_puts(seq, "\tcr_goal_slow_stats:\n"); seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_SLOW])); seq_printf(seq, "\t\tgroups_considered: %llu\n", atomic64_read( &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_SLOW])); seq_printf(seq, "\t\textents_scanned: %u\n", atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_SLOW])); seq_printf(seq, "\t\tuseless_loops: %llu\n", atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_SLOW])); /* CR_ANY_FREE stats */ seq_puts(seq, "\tcr_any_free_stats:\n"); seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[CR_ANY_FREE])); seq_printf( seq, "\t\tgroups_considered: %llu\n", atomic64_read(&sbi->s_bal_cX_groups_considered[CR_ANY_FREE])); seq_printf(seq, "\t\textents_scanned: %u\n", atomic_read(&sbi->s_bal_cX_ex_scanned[CR_ANY_FREE])); seq_printf(seq, "\t\tuseless_loops: %llu\n", atomic64_read(&sbi->s_bal_cX_failed[CR_ANY_FREE])); /* Aggregates */ seq_printf(seq, "\textents_scanned: %u\n", atomic_read(&sbi->s_bal_ex_scanned)); seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals)); seq_printf(seq, "\t\tlen_goal_hits: %u\n", atomic_read(&sbi->s_bal_len_goals)); seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders)); seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks)); seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks)); seq_printf(seq, "\tbuddies_generated: %u/%u\n", atomic_read(&sbi->s_mb_buddies_generated), ext4_get_groups_count(sb)); seq_printf(seq, "\tbuddies_time_used: %llu\n", atomic64_read(&sbi->s_mb_generation_time)); seq_printf(seq, "\tpreallocated: %u\n", atomic_read(&sbi->s_mb_preallocated)); seq_printf(seq, "\tdiscarded: %u\n", atomic_read(&sbi->s_mb_discarded)); return 0; } static void *ext4_mb_seq_structs_summary_start(struct seq_file *seq, loff_t *pos) __acquires(&EXT4_SB(sb)->s_mb_rb_lock) { struct super_block *sb = pde_data(file_inode(seq->file)); unsigned long position; if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb)) return NULL; position = *pos + 1; return (void *) ((unsigned long) position); } static void *ext4_mb_seq_structs_summary_next(struct seq_file *seq, void *v, loff_t *pos) { struct super_block *sb = pde_data(file_inode(seq->file)); unsigned long position; ++*pos; if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb)) return NULL; position = *pos + 1; return (void *) ((unsigned long) position); } static int ext4_mb_seq_structs_summary_show(struct seq_file *seq, void *v) { struct super_block *sb = pde_data(file_inode(seq->file)); struct ext4_sb_info *sbi = EXT4_SB(sb); unsigned long position = ((unsigned long) v); struct ext4_group_info *grp; unsigned int count; position--; if (position >= MB_NUM_ORDERS(sb)) { position -= MB_NUM_ORDERS(sb); if (position == 0) seq_puts(seq, "avg_fragment_size_lists:\n"); count = 0; read_lock(&sbi->s_mb_avg_fragment_size_locks[position]); list_for_each_entry(grp, &sbi->s_mb_avg_fragment_size[position], bb_avg_fragment_size_node) count++; read_unlock(&sbi->s_mb_avg_fragment_size_locks[position]); seq_printf(seq, "\tlist_order_%u_groups: %u\n", (unsigned int)position, count); return 0; } if (position == 0) { seq_printf(seq, "optimize_scan: %d\n", test_opt2(sb, MB_OPTIMIZE_SCAN) ? 1 : 0); seq_puts(seq, "max_free_order_lists:\n"); } count = 0; read_lock(&sbi->s_mb_largest_free_orders_locks[position]); list_for_each_entry(grp, &sbi->s_mb_largest_free_orders[position], bb_largest_free_order_node) count++; read_unlock(&sbi->s_mb_largest_free_orders_locks[position]); seq_printf(seq, "\tlist_order_%u_groups: %u\n", (unsigned int)position, count); return 0; } static void ext4_mb_seq_structs_summary_stop(struct seq_file *seq, void *v) { } const struct seq_operations ext4_mb_seq_structs_summary_ops = { .start = ext4_mb_seq_structs_summary_start, .next = ext4_mb_seq_structs_summary_next, .stop = ext4_mb_seq_structs_summary_stop, .show = ext4_mb_seq_structs_summary_show, }; static struct kmem_cache *get_groupinfo_cache(int blocksize_bits) { int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index]; BUG_ON(!cachep); return cachep; } /* * Allocate the top-level s_group_info array for the specified number * of groups */ int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups) { struct ext4_sb_info *sbi = EXT4_SB(sb); unsigned size; struct ext4_group_info ***old_groupinfo, ***new_groupinfo; size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >> EXT4_DESC_PER_BLOCK_BITS(sb); if (size <= sbi->s_group_info_size) return 0; size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size); new_groupinfo = kvzalloc(size, GFP_KERNEL); if (!new_groupinfo) { ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group"); return -ENOMEM; } rcu_read_lock(); old_groupinfo = rcu_dereference(sbi->s_group_info); if (old_groupinfo) memcpy(new_groupinfo, old_groupinfo, sbi->s_group_info_size * sizeof(*sbi->s_group_info)); rcu_read_unlock(); rcu_assign_pointer(sbi->s_group_info, new_groupinfo); sbi->s_group_info_size = size / sizeof(*sbi->s_group_info); if (old_groupinfo) ext4_kvfree_array_rcu(old_groupinfo); ext4_debug("allocated s_groupinfo array for %d meta_bg's\n", sbi->s_group_info_size); return 0; } /* Create and initialize ext4_group_info data for the given group. */ int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group, struct ext4_group_desc *desc) { int i; int metalen = 0; int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb); struct ext4_sb_info *sbi = EXT4_SB(sb); struct ext4_group_info **meta_group_info; struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); /* * First check if this group is the first of a reserved block. * If it's true, we have to allocate a new table of pointers * to ext4_group_info structures */ if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { metalen = sizeof(*meta_group_info) << EXT4_DESC_PER_BLOCK_BITS(sb); meta_group_info = kmalloc(metalen, GFP_NOFS); if (meta_group_info == NULL) { ext4_msg(sb, KERN_ERR, "can't allocate mem " "for a buddy group"); return -ENOMEM; } rcu_read_lock(); rcu_dereference(sbi->s_group_info)[idx] = meta_group_info; rcu_read_unlock(); } meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx); i = group & (EXT4_DESC_PER_BLOCK(sb) - 1); meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS); if (meta_group_info[i] == NULL) { ext4_msg(sb, KERN_ERR, "can't allocate buddy mem"); goto exit_group_info; } set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(meta_group_info[i]->bb_state)); /* * initialize bb_free to be able to skip * empty groups without initialization */ if (ext4_has_group_desc_csum(sb) && (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { meta_group_info[i]->bb_free = ext4_free_clusters_after_init(sb, group, desc); } else { meta_group_info[i]->bb_free = ext4_free_group_clusters(sb, desc); } INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list); init_rwsem(&meta_group_info[i]->alloc_sem); meta_group_info[i]->bb_free_root = RB_ROOT; INIT_LIST_HEAD(&meta_group_info[i]->bb_largest_free_order_node); INIT_LIST_HEAD(&meta_group_info[i]->bb_avg_fragment_size_node); meta_group_info[i]->bb_largest_free_order = -1; /* uninit */ meta_group_info[i]->bb_avg_fragment_size_order = -1; /* uninit */ meta_group_info[i]->bb_group = group; mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group); return 0; exit_group_info: /* If a meta_group_info table has been allocated, release it now */ if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { struct ext4_group_info ***group_info; rcu_read_lock(); group_info = rcu_dereference(sbi->s_group_info); kfree(group_info[idx]); group_info[idx] = NULL; rcu_read_unlock(); } return -ENOMEM; } /* ext4_mb_add_groupinfo */ static int ext4_mb_init_backend(struct super_block *sb) { ext4_group_t ngroups = ext4_get_groups_count(sb); ext4_group_t i; struct ext4_sb_info *sbi = EXT4_SB(sb); int err; struct ext4_group_desc *desc; struct ext4_group_info ***group_info; struct kmem_cache *cachep; err = ext4_mb_alloc_groupinfo(sb, ngroups); if (err) return err; sbi->s_buddy_cache = new_inode(sb); if (sbi->s_buddy_cache == NULL) { ext4_msg(sb, KERN_ERR, "can't get new inode"); goto err_freesgi; } /* To avoid potentially colliding with an valid on-disk inode number, * use EXT4_BAD_INO for the buddy cache inode number. This inode is * not in the inode hash, so it should never be found by iget(), but * this will avoid confusion if it ever shows up during debugging. */ sbi->s_buddy_cache->i_ino = EXT4_BAD_INO; EXT4_I(sbi->s_buddy_cache)->i_disksize = 0; for (i = 0; i < ngroups; i++) { cond_resched(); desc = ext4_get_group_desc(sb, i, NULL); if (desc == NULL) { ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i); goto err_freebuddy; } if (ext4_mb_add_groupinfo(sb, i, desc) != 0) goto err_freebuddy; } if (ext4_has_feature_flex_bg(sb)) { /* a single flex group is supposed to be read by a single IO. * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is * unsigned integer, so the maximum shift is 32. */ if (sbi->s_es->s_log_groups_per_flex >= 32) { ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group"); goto err_freebuddy; } sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex, BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9)); sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */ } else { sbi->s_mb_prefetch = 32; } if (sbi->s_mb_prefetch > ext4_get_groups_count(sb)) sbi->s_mb_prefetch = ext4_get_groups_count(sb); /* now many real IOs to prefetch within a single allocation at cr=0 * given cr=0 is an CPU-related optimization we shouldn't try to * load too many groups, at some point we should start to use what * we've got in memory. * with an average random access time 5ms, it'd take a second to get * 200 groups (* N with flex_bg), so let's make this limit 4 */ sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4; if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb)) sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb); return 0; err_freebuddy: cachep = get_groupinfo_cache(sb->s_blocksize_bits); while (i-- > 0) { struct ext4_group_info *grp = ext4_get_group_info(sb, i); if (grp) kmem_cache_free(cachep, grp); } i = sbi->s_group_info_size; rcu_read_lock(); group_info = rcu_dereference(sbi->s_group_info); while (i-- > 0) kfree(group_info[i]); rcu_read_unlock(); iput(sbi->s_buddy_cache); err_freesgi: rcu_read_lock(); kvfree(rcu_dereference(sbi->s_group_info)); rcu_read_unlock(); return -ENOMEM; } static void ext4_groupinfo_destroy_slabs(void) { int i; for (i = 0; i < NR_GRPINFO_CACHES; i++) { kmem_cache_destroy(ext4_groupinfo_caches[i]); ext4_groupinfo_caches[i] = NULL; } } static int ext4_groupinfo_create_slab(size_t size) { static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex); int slab_size; int blocksize_bits = order_base_2(size); int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; struct kmem_cache *cachep; if (cache_index >= NR_GRPINFO_CACHES) return -EINVAL; if (unlikely(cache_index < 0)) cache_index = 0; mutex_lock(&ext4_grpinfo_slab_create_mutex); if (ext4_groupinfo_caches[cache_index]) { mutex_unlock(&ext4_grpinfo_slab_create_mutex); return 0; /* Already created */ } slab_size = offsetof(struct ext4_group_info, bb_counters[blocksize_bits + 2]); cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index], slab_size, 0, SLAB_RECLAIM_ACCOUNT, NULL); ext4_groupinfo_caches[cache_index] = cachep; mutex_unlock(&ext4_grpinfo_slab_create_mutex); if (!cachep) { printk(KERN_EMERG "EXT4-fs: no memory for groupinfo slab cache\n"); return -ENOMEM; } return 0; } static void ext4_discard_work(struct work_struct *work) { struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info, s_discard_work); struct super_block *sb = sbi->s_sb; struct ext4_free_data *fd, *nfd; struct ext4_buddy e4b; LIST_HEAD(discard_list); ext4_group_t grp, load_grp; int err = 0; spin_lock(&sbi->s_md_lock); list_splice_init(&sbi->s_discard_list, &discard_list); spin_unlock(&sbi->s_md_lock); load_grp = UINT_MAX; list_for_each_entry_safe(fd, nfd, &discard_list, efd_list) { /* * If filesystem is umounting or no memory or suffering * from no space, give up the discard */ if ((sb->s_flags & SB_ACTIVE) && !err && !atomic_read(&sbi->s_retry_alloc_pending)) { grp = fd->efd_group; if (grp != load_grp) { if (load_grp != UINT_MAX) ext4_mb_unload_buddy(&e4b); err = ext4_mb_load_buddy(sb, grp, &e4b); if (err) { kmem_cache_free(ext4_free_data_cachep, fd); load_grp = UINT_MAX; continue; } else { load_grp = grp; } } ext4_lock_group(sb, grp); ext4_try_to_trim_range(sb, &e4b, fd->efd_start_cluster, fd->efd_start_cluster + fd->efd_count - 1, 1); ext4_unlock_group(sb, grp); } kmem_cache_free(ext4_free_data_cachep, fd); } if (load_grp != UINT_MAX) ext4_mb_unload_buddy(&e4b); } int ext4_mb_init(struct super_block *sb) { struct ext4_sb_info *sbi = EXT4_SB(sb); unsigned i, j; unsigned offset, offset_incr; unsigned max; int ret; i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_offsets); sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL); if (sbi->s_mb_offsets == NULL) { ret = -ENOMEM; goto out; } i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_maxs); sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL); if (sbi->s_mb_maxs == NULL) { ret = -ENOMEM; goto out; } ret = ext4_groupinfo_create_slab(sb->s_blocksize); if (ret < 0) goto out; /* order 0 is regular bitmap */ sbi->s_mb_maxs[0] = sb->s_blocksize << 3; sbi->s_mb_offsets[0] = 0; i = 1; offset = 0; offset_incr = 1 << (sb->s_blocksize_bits - 1); max = sb->s_blocksize << 2; do { sbi->s_mb_offsets[i] = offset; sbi->s_mb_maxs[i] = max; offset += offset_incr; offset_incr = offset_incr >> 1; max = max >> 1; i++; } while (i < MB_NUM_ORDERS(sb)); sbi->s_mb_avg_fragment_size = kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head), GFP_KERNEL); if (!sbi->s_mb_avg_fragment_size) { ret = -ENOMEM; goto out; } sbi->s_mb_avg_fragment_size_locks = kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t), GFP_KERNEL); if (!sbi->s_mb_avg_fragment_size_locks) { ret = -ENOMEM; goto out; } for (i = 0; i < MB_NUM_ORDERS(sb); i++) { INIT_LIST_HEAD(&sbi->s_mb_avg_fragment_size[i]); rwlock_init(&sbi->s_mb_avg_fragment_size_locks[i]); } sbi->s_mb_largest_free_orders = kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head), GFP_KERNEL); if (!sbi->s_mb_largest_free_orders) { ret = -ENOMEM; goto out; } sbi->s_mb_largest_free_orders_locks = kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t), GFP_KERNEL); if (!sbi->s_mb_largest_free_orders_locks) { ret = -ENOMEM; goto out; } for (i = 0; i < MB_NUM_ORDERS(sb); i++) { INIT_LIST_HEAD(&sbi->s_mb_largest_free_orders[i]); rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]); } spin_lock_init(&sbi->s_md_lock); sbi->s_mb_free_pending = 0; INIT_LIST_HEAD(&sbi->s_freed_data_list[0]); INIT_LIST_HEAD(&sbi->s_freed_data_list[1]); INIT_LIST_HEAD(&sbi->s_discard_list); INIT_WORK(&sbi->s_discard_work, ext4_discard_work); atomic_set(&sbi->s_retry_alloc_pending, 0); sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN; sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN; sbi->s_mb_stats = MB_DEFAULT_STATS; sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD; sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS; sbi->s_mb_best_avail_max_trim_order = MB_DEFAULT_BEST_AVAIL_TRIM_ORDER; /* * The default group preallocation is 512, which for 4k block * sizes translates to 2 megabytes. However for bigalloc file * systems, this is probably too big (i.e, if the cluster size * is 1 megabyte, then group preallocation size becomes half a * gigabyte!). As a default, we will keep a two megabyte * group pralloc size for cluster sizes up to 64k, and after * that, we will force a minimum group preallocation size of * 32 clusters. This translates to 8 megs when the cluster * size is 256k, and 32 megs when the cluster size is 1 meg, * which seems reasonable as a default. */ sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >> sbi->s_cluster_bits, 32); /* * If there is a s_stripe > 1, then we set the s_mb_group_prealloc * to the lowest multiple of s_stripe which is bigger than * the s_mb_group_prealloc as determined above. We want * the preallocation size to be an exact multiple of the * RAID stripe size so that preallocations don't fragment * the stripes. */ if (sbi->s_stripe > 1) { sbi->s_mb_group_prealloc = roundup( sbi->s_mb_group_prealloc, EXT4_B2C(sbi, sbi->s_stripe)); } sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group); if (sbi->s_locality_groups == NULL) { ret = -ENOMEM; goto out; } for_each_possible_cpu(i) { struct ext4_locality_group *lg; lg = per_cpu_ptr(sbi->s_locality_groups, i); mutex_init(&lg->lg_mutex); for (j = 0; j < PREALLOC_TB_SIZE; j++) INIT_LIST_HEAD(&lg->lg_prealloc_list[j]); spin_lock_init(&lg->lg_prealloc_lock); } if (bdev_nonrot(sb->s_bdev)) sbi->s_mb_max_linear_groups = 0; else sbi->s_mb_max_linear_groups = MB_DEFAULT_LINEAR_LIMIT; /* init file for buddy data */ ret = ext4_mb_init_backend(sb); if (ret != 0) goto out_free_locality_groups; return 0; out_free_locality_groups: free_percpu(sbi->s_locality_groups); sbi->s_locality_groups = NULL; out: kfree(sbi->s_mb_avg_fragment_size); kfree(sbi->s_mb_avg_fragment_size_locks); kfree(sbi->s_mb_largest_free_orders); kfree(sbi->s_mb_largest_free_orders_locks); kfree(sbi->s_mb_offsets); sbi->s_mb_offsets = NULL; kfree(sbi->s_mb_maxs); sbi->s_mb_maxs = NULL; return ret; } /* need to called with the ext4 group lock held */ static int ext4_mb_cleanup_pa(struct ext4_group_info *grp) { struct ext4_prealloc_space *pa; struct list_head *cur, *tmp; int count = 0; list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) { pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); list_del(&pa->pa_group_list); count++; kmem_cache_free(ext4_pspace_cachep, pa); } return count; } void ext4_mb_release(struct super_block *sb) { ext4_group_t ngroups = ext4_get_groups_count(sb); ext4_group_t i; int num_meta_group_infos; struct ext4_group_info *grinfo, ***group_info; struct ext4_sb_info *sbi = EXT4_SB(sb); struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); int count; if (test_opt(sb, DISCARD)) { /* * wait the discard work to drain all of ext4_free_data */ flush_work(&sbi->s_discard_work); WARN_ON_ONCE(!list_empty(&sbi->s_discard_list)); } if (sbi->s_group_info) { for (i = 0; i < ngroups; i++) { cond_resched(); grinfo = ext4_get_group_info(sb, i); if (!grinfo) continue; mb_group_bb_bitmap_free(grinfo); ext4_lock_group(sb, i); count = ext4_mb_cleanup_pa(grinfo); if (count) mb_debug(sb, "mballoc: %d PAs left\n", count); ext4_unlock_group(sb, i); kmem_cache_free(cachep, grinfo); } num_meta_group_infos = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >> EXT4_DESC_PER_BLOCK_BITS(sb); rcu_read_lock(); group_info = rcu_dereference(sbi->s_group_info); for (i = 0; i < num_meta_group_infos; i++) kfree(group_info[i]); kvfree(group_info); rcu_read_unlock(); } kfree(sbi->s_mb_avg_fragment_size); kfree(sbi->s_mb_avg_fragment_size_locks); kfree(sbi->s_mb_largest_free_orders); kfree(sbi->s_mb_largest_free_orders_locks); kfree(sbi->s_mb_offsets); kfree(sbi->s_mb_maxs); iput(sbi->s_buddy_cache); if (sbi->s_mb_stats) { ext4_msg(sb, KERN_INFO, "mballoc: %u blocks %u reqs (%u success)", atomic_read(&sbi->s_bal_allocated), atomic_read(&sbi->s_bal_reqs), atomic_read(&sbi->s_bal_success)); ext4_msg(sb, KERN_INFO, "mballoc: %u extents scanned, %u groups scanned, %u goal hits, " "%u 2^N hits, %u breaks, %u lost", atomic_read(&sbi->s_bal_ex_scanned), atomic_read(&sbi->s_bal_groups_scanned), atomic_read(&sbi->s_bal_goals), atomic_read(&sbi->s_bal_2orders), atomic_read(&sbi->s_bal_breaks), atomic_read(&sbi->s_mb_lost_chunks)); ext4_msg(sb, KERN_INFO, "mballoc: %u generated and it took %llu", atomic_read(&sbi->s_mb_buddies_generated), atomic64_read(&sbi->s_mb_generation_time)); ext4_msg(sb, KERN_INFO, "mballoc: %u preallocated, %u discarded", atomic_read(&sbi->s_mb_preallocated), atomic_read(&sbi->s_mb_discarded)); } free_percpu(sbi->s_locality_groups); } static inline int ext4_issue_discard(struct super_block *sb, ext4_group_t block_group, ext4_grpblk_t cluster, int count, struct bio **biop) { ext4_fsblk_t discard_block; discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) + ext4_group_first_block_no(sb, block_group)); count = EXT4_C2B(EXT4_SB(sb), count); trace_ext4_discard_blocks(sb, (unsigned long long) discard_block, count); if (biop) { return __blkdev_issue_discard(sb->s_bdev, (sector_t)discard_block << (sb->s_blocksize_bits - 9), (sector_t)count << (sb->s_blocksize_bits - 9), GFP_NOFS, biop); } else return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0); } static void ext4_free_data_in_buddy(struct super_block *sb, struct ext4_free_data *entry) { struct ext4_buddy e4b; struct ext4_group_info *db; int err, count = 0; mb_debug(sb, "gonna free %u blocks in group %u (0x%p):", entry->efd_count, entry->efd_group, entry); err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b); /* we expect to find existing buddy because it's pinned */ BUG_ON(err != 0); spin_lock(&EXT4_SB(sb)->s_md_lock); EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count; spin_unlock(&EXT4_SB(sb)->s_md_lock); db = e4b.bd_info; /* there are blocks to put in buddy to make them really free */ count += entry->efd_count; ext4_lock_group(sb, entry->efd_group); /* Take it out of per group rb tree */ rb_erase(&entry->efd_node, &(db->bb_free_root)); mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count); /* * Clear the trimmed flag for the group so that the next * ext4_trim_fs can trim it. * If the volume is mounted with -o discard, online discard * is supported and the free blocks will be trimmed online. */ if (!test_opt(sb, DISCARD)) EXT4_MB_GRP_CLEAR_TRIMMED(db); if (!db->bb_free_root.rb_node) { /* No more items in the per group rb tree * balance refcounts from ext4_mb_free_metadata() */ put_page(e4b.bd_buddy_page); put_page(e4b.bd_bitmap_page); } ext4_unlock_group(sb, entry->efd_group); ext4_mb_unload_buddy(&e4b); mb_debug(sb, "freed %d blocks in 1 structures\n", count); } /* * This function is called by the jbd2 layer once the commit has finished, * so we know we can free the blocks that were released with that commit. */ void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid) { struct ext4_sb_info *sbi = EXT4_SB(sb); struct ext4_free_data *entry, *tmp; LIST_HEAD(freed_data_list); struct list_head *s_freed_head = &sbi->s_freed_data_list[commit_tid & 1]; bool wake; list_replace_init(s_freed_head, &freed_data_list); list_for_each_entry(entry, &freed_data_list, efd_list) ext4_free_data_in_buddy(sb, entry); if (test_opt(sb, DISCARD)) { spin_lock(&sbi->s_md_lock); wake = list_empty(&sbi->s_discard_list); list_splice_tail(&freed_data_list, &sbi->s_discard_list); spin_unlock(&sbi->s_md_lock); if (wake) queue_work(system_unbound_wq, &sbi->s_discard_work); } else { list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list) kmem_cache_free(ext4_free_data_cachep, entry); } } int __init ext4_init_mballoc(void) { ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space, SLAB_RECLAIM_ACCOUNT); if (ext4_pspace_cachep == NULL) goto out; ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context, SLAB_RECLAIM_ACCOUNT); if (ext4_ac_cachep == NULL) goto out_pa_free; ext4_free_data_cachep = KMEM_CACHE(ext4_free_data, SLAB_RECLAIM_ACCOUNT); if (ext4_free_data_cachep == NULL) goto out_ac_free; return 0; out_ac_free: kmem_cache_destroy(ext4_ac_cachep); out_pa_free: kmem_cache_destroy(ext4_pspace_cachep); out: return -ENOMEM; } void ext4_exit_mballoc(void) { /* * Wait for completion of call_rcu()'s on ext4_pspace_cachep * before destroying the slab cache. */ rcu_barrier(); kmem_cache_destroy(ext4_pspace_cachep); kmem_cache_destroy(ext4_ac_cachep); kmem_cache_destroy(ext4_free_data_cachep); ext4_groupinfo_destroy_slabs(); } #define EXT4_MB_BITMAP_MARKED_CHECK 0x0001 #define EXT4_MB_SYNC_UPDATE 0x0002 static int ext4_mb_mark_context(handle_t *handle, struct super_block *sb, bool state, ext4_group_t group, ext4_grpblk_t blkoff, ext4_grpblk_t len, int flags, ext4_grpblk_t *ret_changed) { struct ext4_sb_info *sbi = EXT4_SB(sb); struct buffer_head *bitmap_bh = NULL; struct ext4_group_desc *gdp; struct buffer_head *gdp_bh; int err; unsigned int i, already, changed = len; KUNIT_STATIC_STUB_REDIRECT(ext4_mb_mark_context, handle, sb, state, group, blkoff, len, flags, ret_changed); if (ret_changed) *ret_changed = 0; bitmap_bh = ext4_read_block_bitmap(sb, group); if (IS_ERR(bitmap_bh)) return PTR_ERR(bitmap_bh); if (handle) { BUFFER_TRACE(bitmap_bh, "getting write access"); err = ext4_journal_get_write_access(handle, sb, bitmap_bh, EXT4_JTR_NONE); if (err) goto out_err; } err = -EIO; gdp = ext4_get_group_desc(sb, group, &gdp_bh); if (!gdp) goto out_err; if (handle) { BUFFER_TRACE(gdp_bh, "get_write_access"); err = ext4_journal_get_write_access(handle, sb, gdp_bh, EXT4_JTR_NONE); if (err) goto out_err; } ext4_lock_group(sb, group); if (ext4_has_group_desc_csum(sb) && (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); ext4_free_group_clusters_set(sb, gdp, ext4_free_clusters_after_init(sb, group, gdp)); } if (flags & EXT4_MB_BITMAP_MARKED_CHECK) { already = 0; for (i = 0; i < len; i++) if (mb_test_bit(blkoff + i, bitmap_bh->b_data) == state) already++; changed = len - already; } if (state) { mb_set_bits(bitmap_bh->b_data, blkoff, len); ext4_free_group_clusters_set(sb, gdp, ext4_free_group_clusters(sb, gdp) - changed); } else { mb_clear_bits(bitmap_bh->b_data, blkoff, len); ext4_free_group_clusters_set(sb, gdp, ext4_free_group_clusters(sb, gdp) + changed); } ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh); ext4_group_desc_csum_set(sb, group, gdp); ext4_unlock_group(sb, group); if (ret_changed) *ret_changed = changed; if (sbi->s_log_groups_per_flex) { ext4_group_t flex_group = ext4_flex_group(sbi, group); struct flex_groups *fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group); if (state) atomic64_sub(changed, &fg->free_clusters); else atomic64_add(changed, &fg->free_clusters); } err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); if (err) goto out_err; err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh); if (err) goto out_err; if (flags & EXT4_MB_SYNC_UPDATE) { sync_dirty_buffer(bitmap_bh); sync_dirty_buffer(gdp_bh); } out_err: brelse(bitmap_bh); return err; } /* * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps * Returns 0 if success or error code */ static noinline_for_stack int ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac, handle_t *handle, unsigned int reserv_clstrs) { struct ext4_group_desc *gdp; struct ext4_sb_info *sbi; struct super_block *sb; ext4_fsblk_t block; int err, len; int flags = 0; ext4_grpblk_t changed; BUG_ON(ac->ac_status != AC_STATUS_FOUND); BUG_ON(ac->ac_b_ex.fe_len <= 0); sb = ac->ac_sb; sbi = EXT4_SB(sb); gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, NULL); if (!gdp) return -EIO; ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group, ext4_free_group_clusters(sb, gdp)); block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len); if (!ext4_inode_block_valid(ac->ac_inode, block, len)) { ext4_error(sb, "Allocating blocks %llu-%llu which overlap " "fs metadata", block, block+len); /* File system mounted not to panic on error * Fix the bitmap and return EFSCORRUPTED * We leak some of the blocks here. */ err = ext4_mb_mark_context(handle, sb, true, ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start, ac->ac_b_ex.fe_len, 0, NULL); if (!err) err = -EFSCORRUPTED; return err; } #ifdef AGGRESSIVE_CHECK flags |= EXT4_MB_BITMAP_MARKED_CHECK; #endif err = ext4_mb_mark_context(handle, sb, true, ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start, ac->ac_b_ex.fe_len, flags, &changed); if (err && changed == 0) return err; #ifdef AGGRESSIVE_CHECK BUG_ON(changed != ac->ac_b_ex.fe_len); #endif percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len); /* * Now reduce the dirty block count also. Should not go negative */ if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED)) /* release all the reserved blocks if non delalloc */ percpu_counter_sub(&sbi->s_dirtyclusters_counter, reserv_clstrs); return err; } /* * Idempotent helper for Ext4 fast commit replay path to set the state of * blocks in bitmaps and update counters. */ void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block, int len, bool state) { struct ext4_sb_info *sbi = EXT4_SB(sb); ext4_group_t group; ext4_grpblk_t blkoff; int err = 0; unsigned int clen, thisgrp_len; while (len > 0) { ext4_get_group_no_and_offset(sb, block, &group, &blkoff); /* * Check to see if we are freeing blocks across a group * boundary. * In case of flex_bg, this can happen that (block, len) may * span across more than one group. In that case we need to * get the corresponding group metadata to work with. * For this we have goto again loop. */ thisgrp_len = min_t(unsigned int, (unsigned int)len, EXT4_BLOCKS_PER_GROUP(sb) - EXT4_C2B(sbi, blkoff)); clen = EXT4_NUM_B2C(sbi, thisgrp_len); if (!ext4_sb_block_valid(sb, NULL, block, thisgrp_len)) { ext4_error(sb, "Marking blocks in system zone - " "Block = %llu, len = %u", block, thisgrp_len); break; } err = ext4_mb_mark_context(NULL, sb, state, group, blkoff, clen, EXT4_MB_BITMAP_MARKED_CHECK | EXT4_MB_SYNC_UPDATE, NULL); if (err) break; block += thisgrp_len; len -= thisgrp_len; BUG_ON(len < 0); } } /* * here we normalize request for locality group * Group request are normalized to s_mb_group_prealloc, which goes to * s_strip if we set the same via mount option. * s_mb_group_prealloc can be configured via * /sys/fs/ext4//mb_group_prealloc * * XXX: should we try to preallocate more than the group has now? */ static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac) { struct super_block *sb = ac->ac_sb; struct ext4_locality_group *lg = ac->ac_lg; BUG_ON(lg == NULL); ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc; mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len); } /* * This function returns the next element to look at during inode * PA rbtree walk. We assume that we have held the inode PA rbtree lock * (ei->i_prealloc_lock) * * new_start The start of the range we want to compare * cur_start The existing start that we are comparing against * node The node of the rb_tree */ static inline struct rb_node* ext4_mb_pa_rb_next_iter(ext4_lblk_t new_start, ext4_lblk_t cur_start, struct rb_node *node) { if (new_start < cur_start) return node->rb_left; else return node->rb_right; } static inline void ext4_mb_pa_assert_overlap(struct ext4_allocation_context *ac, ext4_lblk_t start, loff_t end) { struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); struct ext4_prealloc_space *tmp_pa; ext4_lblk_t tmp_pa_start; loff_t tmp_pa_end; struct rb_node *iter; read_lock(&ei->i_prealloc_lock); for (iter = ei->i_prealloc_node.rb_node; iter; iter = ext4_mb_pa_rb_next_iter(start, tmp_pa_start, iter)) { tmp_pa = rb_entry(iter, struct ext4_prealloc_space, pa_node.inode_node); tmp_pa_start = tmp_pa->pa_lstart; tmp_pa_end = pa_logical_end(sbi, tmp_pa); spin_lock(&tmp_pa->pa_lock); if (tmp_pa->pa_deleted == 0) BUG_ON(!(start >= tmp_pa_end || end <= tmp_pa_start)); spin_unlock(&tmp_pa->pa_lock); } read_unlock(&ei->i_prealloc_lock); } /* * Given an allocation context "ac" and a range "start", "end", check * and adjust boundaries if the range overlaps with any of the existing * preallocatoins stored in the corresponding inode of the allocation context. * * Parameters: * ac allocation context * start start of the new range * end end of the new range */ static inline void ext4_mb_pa_adjust_overlap(struct ext4_allocation_context *ac, ext4_lblk_t *start, loff_t *end) { struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); struct ext4_prealloc_space *tmp_pa = NULL, *left_pa = NULL, *right_pa = NULL; struct rb_node *iter; ext4_lblk_t new_start, tmp_pa_start, right_pa_start = -1; loff_t new_end, tmp_pa_end, left_pa_end = -1; new_start = *start; new_end = *end; /* * Adjust the normalized range so that it doesn't overlap with any * existing preallocated blocks(PAs). Make sure to hold the rbtree lock * so it doesn't change underneath us. */ read_lock(&ei->i_prealloc_lock); /* Step 1: find any one immediate neighboring PA of the normalized range */ for (iter = ei->i_prealloc_node.rb_node; iter; iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical, tmp_pa_start, iter)) { tmp_pa = rb_entry(iter, struct ext4_prealloc_space, pa_node.inode_node); tmp_pa_start = tmp_pa->pa_lstart; tmp_pa_end = pa_logical_end(sbi, tmp_pa); /* PA must not overlap original request */ spin_lock(&tmp_pa->pa_lock); if (tmp_pa->pa_deleted == 0) BUG_ON(!(ac->ac_o_ex.fe_logical >= tmp_pa_end || ac->ac_o_ex.fe_logical < tmp_pa_start)); spin_unlock(&tmp_pa->pa_lock); } /* * Step 2: check if the found PA is left or right neighbor and * get the other neighbor */ if (tmp_pa) { if (tmp_pa->pa_lstart < ac->ac_o_ex.fe_logical) { struct rb_node *tmp; left_pa = tmp_pa; tmp = rb_next(&left_pa->pa_node.inode_node); if (tmp) { right_pa = rb_entry(tmp, struct ext4_prealloc_space, pa_node.inode_node); } } else { struct rb_node *tmp; right_pa = tmp_pa; tmp = rb_prev(&right_pa->pa_node.inode_node); if (tmp) { left_pa = rb_entry(tmp, struct ext4_prealloc_space, pa_node.inode_node); } } } /* Step 3: get the non deleted neighbors */ if (left_pa) { for (iter = &left_pa->pa_node.inode_node;; iter = rb_prev(iter)) { if (!iter) { left_pa = NULL; break; } tmp_pa = rb_entry(iter, struct ext4_prealloc_space, pa_node.inode_node); left_pa = tmp_pa; spin_lock(&tmp_pa->pa_lock); if (tmp_pa->pa_deleted == 0) { spin_unlock(&tmp_pa->pa_lock); break; } spin_unlock(&tmp_pa->pa_lock); } } if (right_pa) { for (iter = &right_pa->pa_node.inode_node;; iter = rb_next(iter)) { if (!iter) { right_pa = NULL; break; } tmp_pa = rb_entry(iter, struct ext4_prealloc_space, pa_node.inode_node); right_pa = tmp_pa; spin_lock(&tmp_pa->pa_lock); if (tmp_pa->pa_deleted == 0) { spin_unlock(&tmp_pa->pa_lock); break; } spin_unlock(&tmp_pa->pa_lock); } } if (left_pa) { left_pa_end = pa_logical_end(sbi, left_pa); BUG_ON(left_pa_end > ac->ac_o_ex.fe_logical); } if (right_pa) { right_pa_start = right_pa->pa_lstart; BUG_ON(right_pa_start <= ac->ac_o_ex.fe_logical); } /* Step 4: trim our normalized range to not overlap with the neighbors */ if (left_pa) { if (left_pa_end > new_start) new_start = left_pa_end; } if (right_pa) { if (right_pa_start < new_end) new_end = right_pa_start; } read_unlock(&ei->i_prealloc_lock); /* XXX: extra loop to check we really don't overlap preallocations */ ext4_mb_pa_assert_overlap(ac, new_start, new_end); *start = new_start; *end = new_end; } /* * Normalization means making request better in terms of * size and alignment */ static noinline_for_stack void ext4_mb_normalize_request(struct ext4_allocation_context *ac, struct ext4_allocation_request *ar) { struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); struct ext4_super_block *es = sbi->s_es; int bsbits, max; loff_t size, start_off, end; loff_t orig_size __maybe_unused; ext4_lblk_t start; /* do normalize only data requests, metadata requests do not need preallocation */ if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) return; /* sometime caller may want exact blocks */ if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) return; /* caller may indicate that preallocation isn't * required (it's a tail, for example) */ if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC) return; if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) { ext4_mb_normalize_group_request(ac); return ; } bsbits = ac->ac_sb->s_blocksize_bits; /* first, let's learn actual file size * given current request is allocated */ size = extent_logical_end(sbi, &ac->ac_o_ex); size = size << bsbits; if (size < i_size_read(ac->ac_inode)) size = i_size_read(ac->ac_inode); orig_size = size; /* max size of free chunks */ max = 2 << bsbits; #define NRL_CHECK_SIZE(req, size, max, chunk_size) \ (req <= (size) || max <= (chunk_size)) /* first, try to predict filesize */ /* XXX: should this table be tunable? */ start_off = 0; if (size <= 16 * 1024) { size = 16 * 1024; } else if (size <= 32 * 1024) { size = 32 * 1024; } else if (size <= 64 * 1024) { size = 64 * 1024; } else if (size <= 128 * 1024) { size = 128 * 1024; } else if (size <= 256 * 1024) { size = 256 * 1024; } else if (size <= 512 * 1024) { size = 512 * 1024; } else if (size <= 1024 * 1024) { size = 1024 * 1024; } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) { start_off = ((loff_t)ac->ac_o_ex.fe_logical >> (21 - bsbits)) << 21; size = 2 * 1024 * 1024; } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) { start_off = ((loff_t)ac->ac_o_ex.fe_logical >> (22 - bsbits)) << 22; size = 4 * 1024 * 1024; } else if (NRL_CHECK_SIZE(EXT4_C2B(sbi, ac->ac_o_ex.fe_len), (8<<20)>>bsbits, max, 8 * 1024)) { start_off = ((loff_t)ac->ac_o_ex.fe_logical >> (23 - bsbits)) << 23; size = 8 * 1024 * 1024; } else { start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits; size = (loff_t) EXT4_C2B(sbi, ac->ac_o_ex.fe_len) << bsbits; } size = size >> bsbits; start = start_off >> bsbits; /* * For tiny groups (smaller than 8MB) the chosen allocation * alignment may be larger than group size. Make sure the * alignment does not move allocation to a different group which * makes mballoc fail assertions later. */ start = max(start, rounddown(ac->ac_o_ex.fe_logical, (ext4_lblk_t)EXT4_BLOCKS_PER_GROUP(ac->ac_sb))); /* avoid unnecessary preallocation that may trigger assertions */ if (start + size > EXT_MAX_BLOCKS) size = EXT_MAX_BLOCKS - start; /* don't cover already allocated blocks in selected range */ if (ar->pleft && start <= ar->lleft) { size -= ar->lleft + 1 - start; start = ar->lleft + 1; } if (ar->pright && start + size - 1 >= ar->lright) size -= start + size - ar->lright; /* * Trim allocation request for filesystems with artificially small * groups. */ if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb); end = start + size; ext4_mb_pa_adjust_overlap(ac, &start, &end); size = end - start; /* * In this function "start" and "size" are normalized for better * alignment and length such that we could preallocate more blocks. * This normalization is done such that original request of * ac->ac_o_ex.fe_logical & fe_len should always lie within "start" and * "size" boundaries. * (Note fe_len can be relaxed since FS block allocation API does not * provide gurantee on number of contiguous blocks allocation since that * depends upon free space left, etc). * In case of inode pa, later we use the allocated blocks * [pa_pstart + fe_logical - pa_lstart, fe_len/size] from the preallocated * range of goal/best blocks [start, size] to put it at the * ac_o_ex.fe_logical extent of this inode. * (See ext4_mb_use_inode_pa() for more details) */ if (start + size <= ac->ac_o_ex.fe_logical || start > ac->ac_o_ex.fe_logical) { ext4_msg(ac->ac_sb, KERN_ERR, "start %lu, size %lu, fe_logical %lu", (unsigned long) start, (unsigned long) size, (unsigned long) ac->ac_o_ex.fe_logical); BUG(); } BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)); /* now prepare goal request */ /* XXX: is it better to align blocks WRT to logical * placement or satisfy big request as is */ ac->ac_g_ex.fe_logical = start; ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size); ac->ac_orig_goal_len = ac->ac_g_ex.fe_len; /* define goal start in order to merge */ if (ar->pright && (ar->lright == (start + size)) && ar->pright >= size && ar->pright - size >= le32_to_cpu(es->s_first_data_block)) { /* merge to the right */ ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size, &ac->ac_g_ex.fe_group, &ac->ac_g_ex.fe_start); ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; } if (ar->pleft && (ar->lleft + 1 == start) && ar->pleft + 1 < ext4_blocks_count(es)) { /* merge to the left */ ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1, &ac->ac_g_ex.fe_group, &ac->ac_g_ex.fe_start); ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; } mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size, orig_size, start); } static void ext4_mb_collect_stats(struct ext4_allocation_context *ac) { struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) { atomic_inc(&sbi->s_bal_reqs); atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated); if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len) atomic_inc(&sbi->s_bal_success); atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned); for (int i=0; iac_cX_found[i], &sbi->s_bal_cX_ex_scanned[i]); } atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned); if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start && ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group) atomic_inc(&sbi->s_bal_goals); /* did we allocate as much as normalizer originally wanted? */ if (ac->ac_f_ex.fe_len == ac->ac_orig_goal_len) atomic_inc(&sbi->s_bal_len_goals); if (ac->ac_found > sbi->s_mb_max_to_scan) atomic_inc(&sbi->s_bal_breaks); } if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) trace_ext4_mballoc_alloc(ac); else trace_ext4_mballoc_prealloc(ac); } /* * Called on failure; free up any blocks from the inode PA for this * context. We don't need this for MB_GROUP_PA because we only change * pa_free in ext4_mb_release_context(), but on failure, we've already * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed. */ static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac) { struct ext4_prealloc_space *pa = ac->ac_pa; struct ext4_buddy e4b; int err; if (pa == NULL) { if (ac->ac_f_ex.fe_len == 0) return; err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b); if (WARN_RATELIMIT(err, "ext4: mb_load_buddy failed (%d)", err)) /* * This should never happen since we pin the * pages in the ext4_allocation_context so * ext4_mb_load_buddy() should never fail. */ return; ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group); mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start, ac->ac_f_ex.fe_len); ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group); ext4_mb_unload_buddy(&e4b); return; } if (pa->pa_type == MB_INODE_PA) { spin_lock(&pa->pa_lock); pa->pa_free += ac->ac_b_ex.fe_len; spin_unlock(&pa->pa_lock); } } /* * use blocks preallocated to inode */ static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac, struct ext4_prealloc_space *pa) { struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); ext4_fsblk_t start; ext4_fsblk_t end; int len; /* found preallocated blocks, use them */ start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart); end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len), start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len)); len = EXT4_NUM_B2C(sbi, end - start); ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group, &ac->ac_b_ex.fe_start); ac->ac_b_ex.fe_len = len; ac->ac_status = AC_STATUS_FOUND; ac->ac_pa = pa; BUG_ON(start < pa->pa_pstart); BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len)); BUG_ON(pa->pa_free < len); BUG_ON(ac->ac_b_ex.fe_len <= 0); pa->pa_free -= len; mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa); } /* * use blocks preallocated to locality group */ static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac, struct ext4_prealloc_space *pa) { unsigned int len = ac->ac_o_ex.fe_len; ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart, &ac->ac_b_ex.fe_group, &ac->ac_b_ex.fe_start); ac->ac_b_ex.fe_len = len; ac->ac_status = AC_STATUS_FOUND; ac->ac_pa = pa; /* we don't correct pa_pstart or pa_len here to avoid * possible race when the group is being loaded concurrently * instead we correct pa later, after blocks are marked * in on-disk bitmap -- see ext4_mb_release_context() * Other CPUs are prevented from allocating from this pa by lg_mutex */ mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n", pa->pa_lstart, len, pa); } /* * Return the prealloc space that have minimal distance * from the goal block. @cpa is the prealloc * space that is having currently known minimal distance * from the goal block. */ static struct ext4_prealloc_space * ext4_mb_check_group_pa(ext4_fsblk_t goal_block, struct ext4_prealloc_space *pa, struct ext4_prealloc_space *cpa) { ext4_fsblk_t cur_distance, new_distance; if (cpa == NULL) { atomic_inc(&pa->pa_count); return pa; } cur_distance = abs(goal_block - cpa->pa_pstart); new_distance = abs(goal_block - pa->pa_pstart); if (cur_distance <= new_distance) return cpa; /* drop the previous reference */ atomic_dec(&cpa->pa_count); atomic_inc(&pa->pa_count); return pa; } /* * check if found pa meets EXT4_MB_HINT_GOAL_ONLY */ static bool ext4_mb_pa_goal_check(struct ext4_allocation_context *ac, struct ext4_prealloc_space *pa) { struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); ext4_fsblk_t start; if (likely(!(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))) return true; /* * If EXT4_MB_HINT_GOAL_ONLY is set, ac_g_ex will not be adjusted * in ext4_mb_normalize_request and will keep same with ac_o_ex * from ext4_mb_initialize_context. Choose ac_g_ex here to keep * consistent with ext4_mb_find_by_goal. */ start = pa->pa_pstart + (ac->ac_g_ex.fe_logical - pa->pa_lstart); if (ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex) != start) return false; if (ac->ac_g_ex.fe_len > pa->pa_len - EXT4_B2C(sbi, ac->ac_g_ex.fe_logical - pa->pa_lstart)) return false; return true; } /* * search goal blocks in preallocated space */ static noinline_for_stack bool ext4_mb_use_preallocated(struct ext4_allocation_context *ac) { struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); int order, i; struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); struct ext4_locality_group *lg; struct ext4_prealloc_space *tmp_pa = NULL, *cpa = NULL; struct rb_node *iter; ext4_fsblk_t goal_block; /* only data can be preallocated */ if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) return false; /* * first, try per-file preallocation by searching the inode pa rbtree. * * Here, we can't do a direct traversal of the tree because * ext4_mb_discard_group_preallocation() can paralelly mark the pa * deleted and that can cause direct traversal to skip some entries. */ read_lock(&ei->i_prealloc_lock); if (RB_EMPTY_ROOT(&ei->i_prealloc_node)) { goto try_group_pa; } /* * Step 1: Find a pa with logical start immediately adjacent to the * original logical start. This could be on the left or right. * * (tmp_pa->pa_lstart never changes so we can skip locking for it). */ for (iter = ei->i_prealloc_node.rb_node; iter; iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical, tmp_pa->pa_lstart, iter)) { tmp_pa = rb_entry(iter, struct ext4_prealloc_space, pa_node.inode_node); } /* * Step 2: The adjacent pa might be to the right of logical start, find * the left adjacent pa. After this step we'd have a valid tmp_pa whose * logical start is towards the left of original request's logical start */ if (tmp_pa->pa_lstart > ac->ac_o_ex.fe_logical) { struct rb_node *tmp; tmp = rb_prev(&tmp_pa->pa_node.inode_node); if (tmp) { tmp_pa = rb_entry(tmp, struct ext4_prealloc_space, pa_node.inode_node); } else { /* * If there is no adjacent pa to the left then finding * an overlapping pa is not possible hence stop searching * inode pa tree */ goto try_group_pa; } } BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical)); /* * Step 3: If the left adjacent pa is deleted, keep moving left to find * the first non deleted adjacent pa. After this step we should have a * valid tmp_pa which is guaranteed to be non deleted. */ for (iter = &tmp_pa->pa_node.inode_node;; iter = rb_prev(iter)) { if (!iter) { /* * no non deleted left adjacent pa, so stop searching * inode pa tree */ goto try_group_pa; } tmp_pa = rb_entry(iter, struct ext4_prealloc_space, pa_node.inode_node); spin_lock(&tmp_pa->pa_lock); if (tmp_pa->pa_deleted == 0) { /* * We will keep holding the pa_lock from * this point on because we don't want group discard * to delete this pa underneath us. Since group * discard is anyways an ENOSPC operation it * should be okay for it to wait a few more cycles. */ break; } else { spin_unlock(&tmp_pa->pa_lock); } } BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical)); BUG_ON(tmp_pa->pa_deleted == 1); /* * Step 4: We now have the non deleted left adjacent pa. Only this * pa can possibly satisfy the request hence check if it overlaps * original logical start and stop searching if it doesn't. */ if (ac->ac_o_ex.fe_logical >= pa_logical_end(sbi, tmp_pa)) { spin_unlock(&tmp_pa->pa_lock); goto try_group_pa; } /* non-extent files can't have physical blocks past 2^32 */ if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) && (tmp_pa->pa_pstart + EXT4_C2B(sbi, tmp_pa->pa_len) > EXT4_MAX_BLOCK_FILE_PHYS)) { /* * Since PAs don't overlap, we won't find any other PA to * satisfy this. */ spin_unlock(&tmp_pa->pa_lock); goto try_group_pa; } if (tmp_pa->pa_free && likely(ext4_mb_pa_goal_check(ac, tmp_pa))) { atomic_inc(&tmp_pa->pa_count); ext4_mb_use_inode_pa(ac, tmp_pa); spin_unlock(&tmp_pa->pa_lock); read_unlock(&ei->i_prealloc_lock); return true; } else { /* * We found a valid overlapping pa but couldn't use it because * it had no free blocks. This should ideally never happen * because: * * 1. When a new inode pa is added to rbtree it must have * pa_free > 0 since otherwise we won't actually need * preallocation. * * 2. An inode pa that is in the rbtree can only have it's * pa_free become zero when another thread calls: * ext4_mb_new_blocks * ext4_mb_use_preallocated * ext4_mb_use_inode_pa * * 3. Further, after the above calls make pa_free == 0, we will * immediately remove it from the rbtree in: * ext4_mb_new_blocks * ext4_mb_release_context * ext4_mb_put_pa * * 4. Since the pa_free becoming 0 and pa_free getting removed * from tree both happen in ext4_mb_new_blocks, which is always * called with i_data_sem held for data allocations, we can be * sure that another process will never see a pa in rbtree with * pa_free == 0. */ WARN_ON_ONCE(tmp_pa->pa_free == 0); } spin_unlock(&tmp_pa->pa_lock); try_group_pa: read_unlock(&ei->i_prealloc_lock); /* can we use group allocation? */ if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)) return false; /* inode may have no locality group for some reason */ lg = ac->ac_lg; if (lg == NULL) return false; order = fls(ac->ac_o_ex.fe_len) - 1; if (order > PREALLOC_TB_SIZE - 1) /* The max size of hash table is PREALLOC_TB_SIZE */ order = PREALLOC_TB_SIZE - 1; goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex); /* * search for the prealloc space that is having * minimal distance from the goal block. */ for (i = order; i < PREALLOC_TB_SIZE; i++) { rcu_read_lock(); list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[i], pa_node.lg_list) { spin_lock(&tmp_pa->pa_lock); if (tmp_pa->pa_deleted == 0 && tmp_pa->pa_free >= ac->ac_o_ex.fe_len) { cpa = ext4_mb_check_group_pa(goal_block, tmp_pa, cpa); } spin_unlock(&tmp_pa->pa_lock); } rcu_read_unlock(); } if (cpa) { ext4_mb_use_group_pa(ac, cpa); return true; } return false; } /* * the function goes through all preallocation in this group and marks them * used in in-core bitmap. buddy must be generated from this bitmap * Need to be called with ext4 group lock held */ static noinline_for_stack void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, ext4_group_t group) { struct ext4_group_info *grp = ext4_get_group_info(sb, group); struct ext4_prealloc_space *pa; struct list_head *cur; ext4_group_t groupnr; ext4_grpblk_t start; int preallocated = 0; int len; if (!grp) return; /* all form of preallocation discards first load group, * so the only competing code is preallocation use. * we don't need any locking here * notice we do NOT ignore preallocations with pa_deleted * otherwise we could leave used blocks available for * allocation in buddy when concurrent ext4_mb_put_pa() * is dropping preallocation */ list_for_each(cur, &grp->bb_prealloc_list) { pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); spin_lock(&pa->pa_lock); ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &start); len = pa->pa_len; spin_unlock(&pa->pa_lock); if (unlikely(len == 0)) continue; BUG_ON(groupnr != group); mb_set_bits(bitmap, start, len); preallocated += len; } mb_debug(sb, "preallocated %d for group %u\n", preallocated, group); } static void ext4_mb_mark_pa_deleted(struct super_block *sb, struct ext4_prealloc_space *pa) { struct ext4_inode_info *ei; if (pa->pa_deleted) { ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n", pa->pa_type, pa->pa_pstart, pa->pa_lstart, pa->pa_len); return; } pa->pa_deleted = 1; if (pa->pa_type == MB_INODE_PA) { ei = EXT4_I(pa->pa_inode); atomic_dec(&ei->i_prealloc_active); } } static inline void ext4_mb_pa_free(struct ext4_prealloc_space *pa) { BUG_ON(!pa); BUG_ON(atomic_read(&pa->pa_count)); BUG_ON(pa->pa_deleted == 0); kmem_cache_free(ext4_pspace_cachep, pa); } static void ext4_mb_pa_callback(struct rcu_head *head) { struct ext4_prealloc_space *pa; pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu); ext4_mb_pa_free(pa); } /* * drops a reference to preallocated space descriptor * if this was the last reference and the space is consumed */ static void ext4_mb_put_pa(struct ext4_allocation_context *ac, struct super_block *sb, struct ext4_prealloc_space *pa) { ext4_group_t grp; ext4_fsblk_t grp_blk; struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); /* in this short window concurrent discard can set pa_deleted */ spin_lock(&pa->pa_lock); if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) { spin_unlock(&pa->pa_lock); return; } if (pa->pa_deleted == 1) { spin_unlock(&pa->pa_lock); return; } ext4_mb_mark_pa_deleted(sb, pa); spin_unlock(&pa->pa_lock); grp_blk = pa->pa_pstart; /* * If doing group-based preallocation, pa_pstart may be in the * next group when pa is used up */ if (pa->pa_type == MB_GROUP_PA) grp_blk--; grp = ext4_get_group_number(sb, grp_blk); /* * possible race: * * P1 (buddy init) P2 (regular allocation) * find block B in PA * copy on-disk bitmap to buddy * mark B in on-disk bitmap * drop PA from group * mark all PAs in buddy * * thus, P1 initializes buddy with B available. to prevent this * we make "copy" and "mark all PAs" atomic and serialize "drop PA" * against that pair */ ext4_lock_group(sb, grp); list_del(&pa->pa_group_list); ext4_unlock_group(sb, grp); if (pa->pa_type == MB_INODE_PA) { write_lock(pa->pa_node_lock.inode_lock); rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node); write_unlock(pa->pa_node_lock.inode_lock); ext4_mb_pa_free(pa); } else { spin_lock(pa->pa_node_lock.lg_lock); list_del_rcu(&pa->pa_node.lg_list); spin_unlock(pa->pa_node_lock.lg_lock); call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); } } static void ext4_mb_pa_rb_insert(struct rb_root *root, struct rb_node *new) { struct rb_node **iter = &root->rb_node, *parent = NULL; struct ext4_prealloc_space *iter_pa, *new_pa; ext4_lblk_t iter_start, new_start; while (*iter) { iter_pa = rb_entry(*iter, struct ext4_prealloc_space, pa_node.inode_node); new_pa = rb_entry(new, struct ext4_prealloc_space, pa_node.inode_node); iter_start = iter_pa->pa_lstart; new_start = new_pa->pa_lstart; parent = *iter; if (new_start < iter_start) iter = &((*iter)->rb_left); else iter = &((*iter)->rb_right); } rb_link_node(new, parent, iter); rb_insert_color(new, root); } /* * creates new preallocated space for given inode */ static noinline_for_stack void ext4_mb_new_inode_pa(struct ext4_allocation_context *ac) { struct super_block *sb = ac->ac_sb; struct ext4_sb_info *sbi = EXT4_SB(sb); struct ext4_prealloc_space *pa; struct ext4_group_info *grp; struct ext4_inode_info *ei; /* preallocate only when found space is larger then requested */ BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); BUG_ON(ac->ac_status != AC_STATUS_FOUND); BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); BUG_ON(ac->ac_pa == NULL); pa = ac->ac_pa; if (ac->ac_b_ex.fe_len < ac->ac_orig_goal_len) { struct ext4_free_extent ex = { .fe_logical = ac->ac_g_ex.fe_logical, .fe_len = ac->ac_orig_goal_len, }; loff_t orig_goal_end = extent_logical_end(sbi, &ex); /* we can't allocate as much as normalizer wants. * so, found space must get proper lstart * to cover original request */ BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical); BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len); /* * Use the below logic for adjusting best extent as it keeps * fragmentation in check while ensuring logical range of best * extent doesn't overflow out of goal extent: * * 1. Check if best ex can be kept at end of goal (before * cr_best_avail trimmed it) and still cover original start * 2. Else, check if best ex can be kept at start of goal and * still cover original start * 3. Else, keep the best ex at start of original request. */ ex.fe_len = ac->ac_b_ex.fe_len; ex.fe_logical = orig_goal_end - EXT4_C2B(sbi, ex.fe_len); if (ac->ac_o_ex.fe_logical >= ex.fe_logical) goto adjust_bex; ex.fe_logical = ac->ac_g_ex.fe_logical; if (ac->ac_o_ex.fe_logical < extent_logical_end(sbi, &ex)) goto adjust_bex; ex.fe_logical = ac->ac_o_ex.fe_logical; adjust_bex: ac->ac_b_ex.fe_logical = ex.fe_logical; BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical); BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len); BUG_ON(extent_logical_end(sbi, &ex) > orig_goal_end); } pa->pa_lstart = ac->ac_b_ex.fe_logical; pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); pa->pa_len = ac->ac_b_ex.fe_len; pa->pa_free = pa->pa_len; spin_lock_init(&pa->pa_lock); INIT_LIST_HEAD(&pa->pa_group_list); pa->pa_deleted = 0; pa->pa_type = MB_INODE_PA; mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart, pa->pa_len, pa->pa_lstart); trace_ext4_mb_new_inode_pa(ac, pa); atomic_add(pa->pa_free, &sbi->s_mb_preallocated); ext4_mb_use_inode_pa(ac, pa); ei = EXT4_I(ac->ac_inode); grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); if (!grp) return; pa->pa_node_lock.inode_lock = &ei->i_prealloc_lock; pa->pa_inode = ac->ac_inode; list_add(&pa->pa_group_list, &grp->bb_prealloc_list); write_lock(pa->pa_node_lock.inode_lock); ext4_mb_pa_rb_insert(&ei->i_prealloc_node, &pa->pa_node.inode_node); write_unlock(pa->pa_node_lock.inode_lock); atomic_inc(&ei->i_prealloc_active); } /* * creates new preallocated space for locality group inodes belongs to */ static noinline_for_stack void ext4_mb_new_group_pa(struct ext4_allocation_context *ac) { struct super_block *sb = ac->ac_sb; struct ext4_locality_group *lg; struct ext4_prealloc_space *pa; struct ext4_group_info *grp; /* preallocate only when found space is larger then requested */ BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); BUG_ON(ac->ac_status != AC_STATUS_FOUND); BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); BUG_ON(ac->ac_pa == NULL); pa = ac->ac_pa; pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); pa->pa_lstart = pa->pa_pstart; pa->pa_len = ac->ac_b_ex.fe_len; pa->pa_free = pa->pa_len; spin_lock_init(&pa->pa_lock); INIT_LIST_HEAD(&pa->pa_node.lg_list); INIT_LIST_HEAD(&pa->pa_group_list); pa->pa_deleted = 0; pa->pa_type = MB_GROUP_PA; mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart, pa->pa_len, pa->pa_lstart); trace_ext4_mb_new_group_pa(ac, pa); ext4_mb_use_group_pa(ac, pa); atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated); grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); if (!grp) return; lg = ac->ac_lg; BUG_ON(lg == NULL); pa->pa_node_lock.lg_lock = &lg->lg_prealloc_lock; pa->pa_inode = NULL; list_add(&pa->pa_group_list, &grp->bb_prealloc_list); /* * We will later add the new pa to the right bucket * after updating the pa_free in ext4_mb_release_context */ } static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac) { if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) ext4_mb_new_group_pa(ac); else ext4_mb_new_inode_pa(ac); } /* * finds all unused blocks in on-disk bitmap, frees them in * in-core bitmap and buddy. * @pa must be unlinked from inode and group lists, so that * nobody else can find/use it. * the caller MUST hold group/inode locks. * TODO: optimize the case when there are no in-core structures yet */ static noinline_for_stack void ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh, struct ext4_prealloc_space *pa) { struct super_block *sb = e4b->bd_sb; struct ext4_sb_info *sbi = EXT4_SB(sb); unsigned int end; unsigned int next; ext4_group_t group; ext4_grpblk_t bit; unsigned long long grp_blk_start; int free = 0; BUG_ON(pa->pa_deleted == 0); ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit); BUG_ON(group != e4b->bd_group && pa->pa_len != 0); end = bit + pa->pa_len; while (bit < end) { bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit); if (bit >= end) break; next = mb_find_next_bit(bitmap_bh->b_data, end, bit); mb_debug(sb, "free preallocated %u/%u in group %u\n", (unsigned) ext4_group_first_block_no(sb, group) + bit, (unsigned) next - bit, (unsigned) group); free += next - bit; trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit); trace_ext4_mb_release_inode_pa(pa, (grp_blk_start + EXT4_C2B(sbi, bit)), next - bit); mb_free_blocks(pa->pa_inode, e4b, bit, next - bit); bit = next + 1; } if (free != pa->pa_free) { ext4_msg(e4b->bd_sb, KERN_CRIT, "pa %p: logic %lu, phys. %lu, len %d", pa, (unsigned long) pa->pa_lstart, (unsigned long) pa->pa_pstart, pa->pa_len); ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u", free, pa->pa_free); /* * pa is already deleted so we use the value obtained * from the bitmap and continue. */ } atomic_add(free, &sbi->s_mb_discarded); } static noinline_for_stack void ext4_mb_release_group_pa(struct ext4_buddy *e4b, struct ext4_prealloc_space *pa) { struct super_block *sb = e4b->bd_sb; ext4_group_t group; ext4_grpblk_t bit; trace_ext4_mb_release_group_pa(sb, pa); BUG_ON(pa->pa_deleted == 0); ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); if (unlikely(group != e4b->bd_group && pa->pa_len != 0)) { ext4_warning(sb, "bad group: expected %u, group %u, pa_start %llu", e4b->bd_group, group, pa->pa_pstart); return; } mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len); atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded); trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len); } /* * releases all preallocations in given group * * first, we need to decide discard policy: * - when do we discard * 1) ENOSPC * - how many do we discard * 1) how many requested */ static noinline_for_stack int ext4_mb_discard_group_preallocations(struct super_block *sb, ext4_group_t group, int *busy) { struct ext4_group_info *grp = ext4_get_group_info(sb, group); struct buffer_head *bitmap_bh = NULL; struct ext4_prealloc_space *pa, *tmp; LIST_HEAD(list); struct ext4_buddy e4b; struct ext4_inode_info *ei; int err; int free = 0; if (!grp) return 0; mb_debug(sb, "discard preallocation for group %u\n", group); if (list_empty(&grp->bb_prealloc_list)) goto out_dbg; bitmap_bh = ext4_read_block_bitmap(sb, group); if (IS_ERR(bitmap_bh)) { err = PTR_ERR(bitmap_bh); ext4_error_err(sb, -err, "Error %d reading block bitmap for %u", err, group); goto out_dbg; } err = ext4_mb_load_buddy(sb, group, &e4b); if (err) { ext4_warning(sb, "Error %d loading buddy information for %u", err, group); put_bh(bitmap_bh); goto out_dbg; } ext4_lock_group(sb, group); list_for_each_entry_safe(pa, tmp, &grp->bb_prealloc_list, pa_group_list) { spin_lock(&pa->pa_lock); if (atomic_read(&pa->pa_count)) { spin_unlock(&pa->pa_lock); *busy = 1; continue; } if (pa->pa_deleted) { spin_unlock(&pa->pa_lock); continue; } /* seems this one can be freed ... */ ext4_mb_mark_pa_deleted(sb, pa); if (!free) this_cpu_inc(discard_pa_seq); /* we can trust pa_free ... */ free += pa->pa_free; spin_unlock(&pa->pa_lock); list_del(&pa->pa_group_list); list_add(&pa->u.pa_tmp_list, &list); } /* now free all selected PAs */ list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { /* remove from object (inode or locality group) */ if (pa->pa_type == MB_GROUP_PA) { spin_lock(pa->pa_node_lock.lg_lock); list_del_rcu(&pa->pa_node.lg_list); spin_unlock(pa->pa_node_lock.lg_lock); } else { write_lock(pa->pa_node_lock.inode_lock); ei = EXT4_I(pa->pa_inode); rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node); write_unlock(pa->pa_node_lock.inode_lock); } list_del(&pa->u.pa_tmp_list); if (pa->pa_type == MB_GROUP_PA) { ext4_mb_release_group_pa(&e4b, pa); call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); } else { ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); ext4_mb_pa_free(pa); } } ext4_unlock_group(sb, group); ext4_mb_unload_buddy(&e4b); put_bh(bitmap_bh); out_dbg: mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n", free, group, grp->bb_free); return free; } /* * releases all non-used preallocated blocks for given inode * * It's important to discard preallocations under i_data_sem * We don't want another block to be served from the prealloc * space when we are discarding the inode prealloc space. * * FIXME!! Make sure it is valid at all the call sites */ void ext4_discard_preallocations(struct inode *inode) { struct ext4_inode_info *ei = EXT4_I(inode); struct super_block *sb = inode->i_sb; struct buffer_head *bitmap_bh = NULL; struct ext4_prealloc_space *pa, *tmp; ext4_group_t group = 0; LIST_HEAD(list); struct ext4_buddy e4b; struct rb_node *iter; int err; if (!S_ISREG(inode->i_mode)) return; if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) return; mb_debug(sb, "discard preallocation for inode %lu\n", inode->i_ino); trace_ext4_discard_preallocations(inode, atomic_read(&ei->i_prealloc_active)); repeat: /* first, collect all pa's in the inode */ write_lock(&ei->i_prealloc_lock); for (iter = rb_first(&ei->i_prealloc_node); iter; iter = rb_next(iter)) { pa = rb_entry(iter, struct ext4_prealloc_space, pa_node.inode_node); BUG_ON(pa->pa_node_lock.inode_lock != &ei->i_prealloc_lock); spin_lock(&pa->pa_lock); if (atomic_read(&pa->pa_count)) { /* this shouldn't happen often - nobody should * use preallocation while we're discarding it */ spin_unlock(&pa->pa_lock); write_unlock(&ei->i_prealloc_lock); ext4_msg(sb, KERN_ERR, "uh-oh! used pa while discarding"); WARN_ON(1); schedule_timeout_uninterruptible(HZ); goto repeat; } if (pa->pa_deleted == 0) { ext4_mb_mark_pa_deleted(sb, pa); spin_unlock(&pa->pa_lock); rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node); list_add(&pa->u.pa_tmp_list, &list); continue; } /* someone is deleting pa right now */ spin_unlock(&pa->pa_lock); write_unlock(&ei->i_prealloc_lock); /* we have to wait here because pa_deleted * doesn't mean pa is already unlinked from * the list. as we might be called from * ->clear_inode() the inode will get freed * and concurrent thread which is unlinking * pa from inode's list may access already * freed memory, bad-bad-bad */ /* XXX: if this happens too often, we can * add a flag to force wait only in case * of ->clear_inode(), but not in case of * regular truncate */ schedule_timeout_uninterruptible(HZ); goto repeat; } write_unlock(&ei->i_prealloc_lock); list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { BUG_ON(pa->pa_type != MB_INODE_PA); group = ext4_get_group_number(sb, pa->pa_pstart); err = ext4_mb_load_buddy_gfp(sb, group, &e4b, GFP_NOFS|__GFP_NOFAIL); if (err) { ext4_error_err(sb, -err, "Error %d loading buddy information for %u", err, group); continue; } bitmap_bh = ext4_read_block_bitmap(sb, group); if (IS_ERR(bitmap_bh)) { err = PTR_ERR(bitmap_bh); ext4_error_err(sb, -err, "Error %d reading block bitmap for %u", err, group); ext4_mb_unload_buddy(&e4b); continue; } ext4_lock_group(sb, group); list_del(&pa->pa_group_list); ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); ext4_unlock_group(sb, group); ext4_mb_unload_buddy(&e4b); put_bh(bitmap_bh); list_del(&pa->u.pa_tmp_list); ext4_mb_pa_free(pa); } } static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac) { struct ext4_prealloc_space *pa; BUG_ON(ext4_pspace_cachep == NULL); pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS); if (!pa) return -ENOMEM; atomic_set(&pa->pa_count, 1); ac->ac_pa = pa; return 0; } static void ext4_mb_pa_put_free(struct ext4_allocation_context *ac) { struct ext4_prealloc_space *pa = ac->ac_pa; BUG_ON(!pa); ac->ac_pa = NULL; WARN_ON(!atomic_dec_and_test(&pa->pa_count)); /* * current function is only called due to an error or due to * len of found blocks < len of requested blocks hence the PA has not * been added to grp->bb_prealloc_list. So we don't need to lock it */ pa->pa_deleted = 1; ext4_mb_pa_free(pa); } #ifdef CONFIG_EXT4_DEBUG static inline void ext4_mb_show_pa(struct super_block *sb) { ext4_group_t i, ngroups; if (ext4_forced_shutdown(sb)) return; ngroups = ext4_get_groups_count(sb); mb_debug(sb, "groups: "); for (i = 0; i < ngroups; i++) { struct ext4_group_info *grp = ext4_get_group_info(sb, i); struct ext4_prealloc_space *pa; ext4_grpblk_t start; struct list_head *cur; if (!grp) continue; ext4_lock_group(sb, i); list_for_each(cur, &grp->bb_prealloc_list) { pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); spin_lock(&pa->pa_lock); ext4_get_group_no_and_offset(sb, pa->pa_pstart, NULL, &start); spin_unlock(&pa->pa_lock); mb_debug(sb, "PA:%u:%d:%d\n", i, start, pa->pa_len); } ext4_unlock_group(sb, i); mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free, grp->bb_fragments); } } static void ext4_mb_show_ac(struct ext4_allocation_context *ac) { struct super_block *sb = ac->ac_sb; if (ext4_forced_shutdown(sb)) return; mb_debug(sb, "Can't allocate:" " Allocation context details:"); mb_debug(sb, "status %u flags 0x%x", ac->ac_status, ac->ac_flags); mb_debug(sb, "orig %lu/%lu/%lu@%lu, " "goal %lu/%lu/%lu@%lu, " "best %lu/%lu/%lu@%lu cr %d", (unsigned long)ac->ac_o_ex.fe_group, (unsigned long)ac->ac_o_ex.fe_start, (unsigned long)ac->ac_o_ex.fe_len, (unsigned long)ac->ac_o_ex.fe_logical, (unsigned long)ac->ac_g_ex.fe_group, (unsigned long)ac->ac_g_ex.fe_start, (unsigned long)ac->ac_g_ex.fe_len, (unsigned long)ac->ac_g_ex.fe_logical, (unsigned long)ac->ac_b_ex.fe_group, (unsigned long)ac->ac_b_ex.fe_start, (unsigned long)ac->ac_b_ex.fe_len, (unsigned long)ac->ac_b_ex.fe_logical, (int)ac->ac_criteria); mb_debug(sb, "%u found", ac->ac_found); mb_debug(sb, "used pa: %s, ", ac->ac_pa ? "yes" : "no"); if (ac->ac_pa) mb_debug(sb, "pa_type %s\n", ac->ac_pa->pa_type == MB_GROUP_PA ? "group pa" : "inode pa"); ext4_mb_show_pa(sb); } #else static inline void ext4_mb_show_pa(struct super_block *sb) { } static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac) { ext4_mb_show_pa(ac->ac_sb); } #endif /* * We use locality group preallocation for small size file. The size of the * file is determined by the current size or the resulting size after * allocation which ever is larger * * One can tune this size via /sys/fs/ext4//mb_stream_req */ static void ext4_mb_group_or_file(struct ext4_allocation_context *ac) { struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); int bsbits = ac->ac_sb->s_blocksize_bits; loff_t size, isize; bool inode_pa_eligible, group_pa_eligible; if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) return; if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) return; group_pa_eligible = sbi->s_mb_group_prealloc > 0; inode_pa_eligible = true; size = extent_logical_end(sbi, &ac->ac_o_ex); isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1) >> bsbits; /* No point in using inode preallocation for closed files */ if ((size == isize) && !ext4_fs_is_busy(sbi) && !inode_is_open_for_write(ac->ac_inode)) inode_pa_eligible = false; size = max(size, isize); /* Don't use group allocation for large files */ if (size > sbi->s_mb_stream_request) group_pa_eligible = false; if (!group_pa_eligible) { if (inode_pa_eligible) ac->ac_flags |= EXT4_MB_STREAM_ALLOC; else ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC; return; } BUG_ON(ac->ac_lg != NULL); /* * locality group prealloc space are per cpu. The reason for having * per cpu locality group is to reduce the contention between block * request from multiple CPUs. */ ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups); /* we're going to use group allocation */ ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC; /* serialize all allocations in the group */ mutex_lock(&ac->ac_lg->lg_mutex); } static noinline_for_stack void ext4_mb_initialize_context(struct ext4_allocation_context *ac, struct ext4_allocation_request *ar) { struct super_block *sb = ar->inode->i_sb; struct ext4_sb_info *sbi = EXT4_SB(sb); struct ext4_super_block *es = sbi->s_es; ext4_group_t group; unsigned int len; ext4_fsblk_t goal; ext4_grpblk_t block; /* we can't allocate > group size */ len = ar->len; /* just a dirty hack to filter too big requests */ if (len >= EXT4_CLUSTERS_PER_GROUP(sb)) len = EXT4_CLUSTERS_PER_GROUP(sb); /* start searching from the goal */ goal = ar->goal; if (goal < le32_to_cpu(es->s_first_data_block) || goal >= ext4_blocks_count(es)) goal = le32_to_cpu(es->s_first_data_block); ext4_get_group_no_and_offset(sb, goal, &group, &block); /* set up allocation goals */ ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical); ac->ac_status = AC_STATUS_CONTINUE; ac->ac_sb = sb; ac->ac_inode = ar->inode; ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical; ac->ac_o_ex.fe_group = group; ac->ac_o_ex.fe_start = block; ac->ac_o_ex.fe_len = len; ac->ac_g_ex = ac->ac_o_ex; ac->ac_orig_goal_len = ac->ac_g_ex.fe_len; ac->ac_flags = ar->flags; /* we have to define context: we'll work with a file or * locality group. this is a policy, actually */ ext4_mb_group_or_file(ac); mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, " "left: %u/%u, right %u/%u to %swritable\n", (unsigned) ar->len, (unsigned) ar->logical, (unsigned) ar->goal, ac->ac_flags, ac->ac_2order, (unsigned) ar->lleft, (unsigned) ar->pleft, (unsigned) ar->lright, (unsigned) ar->pright, inode_is_open_for_write(ar->inode) ? "" : "non-"); } static noinline_for_stack void ext4_mb_discard_lg_preallocations(struct super_block *sb, struct ext4_locality_group *lg, int order, int total_entries) { ext4_group_t group = 0; struct ext4_buddy e4b; LIST_HEAD(discard_list); struct ext4_prealloc_space *pa, *tmp; mb_debug(sb, "discard locality group preallocation\n"); spin_lock(&lg->lg_prealloc_lock); list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order], pa_node.lg_list, lockdep_is_held(&lg->lg_prealloc_lock)) { spin_lock(&pa->pa_lock); if (atomic_read(&pa->pa_count)) { /* * This is the pa that we just used * for block allocation. So don't * free that */ spin_unlock(&pa->pa_lock); continue; } if (pa->pa_deleted) { spin_unlock(&pa->pa_lock); continue; } /* only lg prealloc space */ BUG_ON(pa->pa_type != MB_GROUP_PA); /* seems this one can be freed ... */ ext4_mb_mark_pa_deleted(sb, pa); spin_unlock(&pa->pa_lock); list_del_rcu(&pa->pa_node.lg_list); list_add(&pa->u.pa_tmp_list, &discard_list); total_entries--; if (total_entries <= 5) { /* * we want to keep only 5 entries * allowing it to grow to 8. This * mak sure we don't call discard * soon for this list. */ break; } } spin_unlock(&lg->lg_prealloc_lock); list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) { int err; group = ext4_get_group_number(sb, pa->pa_pstart); err = ext4_mb_load_buddy_gfp(sb, group, &e4b, GFP_NOFS|__GFP_NOFAIL); if (err) { ext4_error_err(sb, -err, "Error %d loading buddy information for %u", err, group); continue; } ext4_lock_group(sb, group); list_del(&pa->pa_group_list); ext4_mb_release_group_pa(&e4b, pa); ext4_unlock_group(sb, group); ext4_mb_unload_buddy(&e4b); list_del(&pa->u.pa_tmp_list); call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); } } /* * We have incremented pa_count. So it cannot be freed at this * point. Also we hold lg_mutex. So no parallel allocation is * possible from this lg. That means pa_free cannot be updated. * * A parallel ext4_mb_discard_group_preallocations is possible. * which can cause the lg_prealloc_list to be updated. */ static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac) { int order, added = 0, lg_prealloc_count = 1; struct super_block *sb = ac->ac_sb; struct ext4_locality_group *lg = ac->ac_lg; struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa; order = fls(pa->pa_free) - 1; if (order > PREALLOC_TB_SIZE - 1) /* The max size of hash table is PREALLOC_TB_SIZE */ order = PREALLOC_TB_SIZE - 1; /* Add the prealloc space to lg */ spin_lock(&lg->lg_prealloc_lock); list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order], pa_node.lg_list, lockdep_is_held(&lg->lg_prealloc_lock)) { spin_lock(&tmp_pa->pa_lock); if (tmp_pa->pa_deleted) { spin_unlock(&tmp_pa->pa_lock); continue; } if (!added && pa->pa_free < tmp_pa->pa_free) { /* Add to the tail of the previous entry */ list_add_tail_rcu(&pa->pa_node.lg_list, &tmp_pa->pa_node.lg_list); added = 1; /* * we want to count the total * number of entries in the list */ } spin_unlock(&tmp_pa->pa_lock); lg_prealloc_count++; } if (!added) list_add_tail_rcu(&pa->pa_node.lg_list, &lg->lg_prealloc_list[order]); spin_unlock(&lg->lg_prealloc_lock); /* Now trim the list to be not more than 8 elements */ if (lg_prealloc_count > 8) ext4_mb_discard_lg_preallocations(sb, lg, order, lg_prealloc_count); } /* * release all resource we used in allocation */ static void ext4_mb_release_context(struct ext4_allocation_context *ac) { struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); struct ext4_prealloc_space *pa = ac->ac_pa; if (pa) { if (pa->pa_type == MB_GROUP_PA) { /* see comment in ext4_mb_use_group_pa() */ spin_lock(&pa->pa_lock); pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); pa->pa_free -= ac->ac_b_ex.fe_len; pa->pa_len -= ac->ac_b_ex.fe_len; spin_unlock(&pa->pa_lock); /* * We want to add the pa to the right bucket. * Remove it from the list and while adding * make sure the list to which we are adding * doesn't grow big. */ if (likely(pa->pa_free)) { spin_lock(pa->pa_node_lock.lg_lock); list_del_rcu(&pa->pa_node.lg_list); spin_unlock(pa->pa_node_lock.lg_lock); ext4_mb_add_n_trim(ac); } } ext4_mb_put_pa(ac, ac->ac_sb, pa); } if (ac->ac_bitmap_page) put_page(ac->ac_bitmap_page); if (ac->ac_buddy_page) put_page(ac->ac_buddy_page); if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) mutex_unlock(&ac->ac_lg->lg_mutex); ext4_mb_collect_stats(ac); } static int ext4_mb_discard_preallocations(struct super_block *sb, int needed) { ext4_group_t i, ngroups = ext4_get_groups_count(sb); int ret; int freed = 0, busy = 0; int retry = 0; trace_ext4_mb_discard_preallocations(sb, needed); if (needed == 0) needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1; repeat: for (i = 0; i < ngroups && needed > 0; i++) { ret = ext4_mb_discard_group_preallocations(sb, i, &busy); freed += ret; needed -= ret; cond_resched(); } if (needed > 0 && busy && ++retry < 3) { busy = 0; goto repeat; } return freed; } static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb, struct ext4_allocation_context *ac, u64 *seq) { int freed; u64 seq_retry = 0; bool ret = false; freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len); if (freed) { ret = true; goto out_dbg; } seq_retry = ext4_get_discard_pa_seq_sum(); if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) { ac->ac_flags |= EXT4_MB_STRICT_CHECK; *seq = seq_retry; ret = true; } out_dbg: mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no"); return ret; } /* * Simple allocator for Ext4 fast commit replay path. It searches for blocks * linearly starting at the goal block and also excludes the blocks which * are going to be in use after fast commit replay. */ static ext4_fsblk_t ext4_mb_new_blocks_simple(struct ext4_allocation_request *ar, int *errp) { struct buffer_head *bitmap_bh; struct super_block *sb = ar->inode->i_sb; struct ext4_sb_info *sbi = EXT4_SB(sb); ext4_group_t group, nr; ext4_grpblk_t blkoff; ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); ext4_grpblk_t i = 0; ext4_fsblk_t goal, block; struct ext4_super_block *es = sbi->s_es; goal = ar->goal; if (goal < le32_to_cpu(es->s_first_data_block) || goal >= ext4_blocks_count(es)) goal = le32_to_cpu(es->s_first_data_block); ar->len = 0; ext4_get_group_no_and_offset(sb, goal, &group, &blkoff); for (nr = ext4_get_groups_count(sb); nr > 0; nr--) { bitmap_bh = ext4_read_block_bitmap(sb, group); if (IS_ERR(bitmap_bh)) { *errp = PTR_ERR(bitmap_bh); pr_warn("Failed to read block bitmap\n"); return 0; } while (1) { i = mb_find_next_zero_bit(bitmap_bh->b_data, max, blkoff); if (i >= max) break; if (ext4_fc_replay_check_excluded(sb, ext4_group_first_block_no(sb, group) + EXT4_C2B(sbi, i))) { blkoff = i + 1; } else break; } brelse(bitmap_bh); if (i < max) break; if (++group >= ext4_get_groups_count(sb)) group = 0; blkoff = 0; } if (i >= max) { *errp = -ENOSPC; return 0; } block = ext4_group_first_block_no(sb, group) + EXT4_C2B(sbi, i); ext4_mb_mark_bb(sb, block, 1, true); ar->len = 1; return block; } /* * Main entry point into mballoc to allocate blocks * it tries to use preallocation first, then falls back * to usual allocation */ ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle, struct ext4_allocation_request *ar, int *errp) { struct ext4_allocation_context *ac = NULL; struct ext4_sb_info *sbi; struct super_block *sb; ext4_fsblk_t block = 0; unsigned int inquota = 0; unsigned int reserv_clstrs = 0; int retries = 0; u64 seq; might_sleep(); sb = ar->inode->i_sb; sbi = EXT4_SB(sb); trace_ext4_request_blocks(ar); if (sbi->s_mount_state & EXT4_FC_REPLAY) return ext4_mb_new_blocks_simple(ar, errp); /* Allow to use superuser reservation for quota file */ if (ext4_is_quota_file(ar->inode)) ar->flags |= EXT4_MB_USE_ROOT_BLOCKS; if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) { /* Without delayed allocation we need to verify * there is enough free blocks to do block allocation * and verify allocation doesn't exceed the quota limits. */ while (ar->len && ext4_claim_free_clusters(sbi, ar->len, ar->flags)) { /* let others to free the space */ cond_resched(); ar->len = ar->len >> 1; } if (!ar->len) { ext4_mb_show_pa(sb); *errp = -ENOSPC; return 0; } reserv_clstrs = ar->len; if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) { dquot_alloc_block_nofail(ar->inode, EXT4_C2B(sbi, ar->len)); } else { while (ar->len && dquot_alloc_block(ar->inode, EXT4_C2B(sbi, ar->len))) { ar->flags |= EXT4_MB_HINT_NOPREALLOC; ar->len--; } } inquota = ar->len; if (ar->len == 0) { *errp = -EDQUOT; goto out; } } ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS); if (!ac) { ar->len = 0; *errp = -ENOMEM; goto out; } ext4_mb_initialize_context(ac, ar); ac->ac_op = EXT4_MB_HISTORY_PREALLOC; seq = this_cpu_read(discard_pa_seq); if (!ext4_mb_use_preallocated(ac)) { ac->ac_op = EXT4_MB_HISTORY_ALLOC; ext4_mb_normalize_request(ac, ar); *errp = ext4_mb_pa_alloc(ac); if (*errp) goto errout; repeat: /* allocate space in core */ *errp = ext4_mb_regular_allocator(ac); /* * pa allocated above is added to grp->bb_prealloc_list only * when we were able to allocate some block i.e. when * ac->ac_status == AC_STATUS_FOUND. * And error from above mean ac->ac_status != AC_STATUS_FOUND * So we have to free this pa here itself. */ if (*errp) { ext4_mb_pa_put_free(ac); ext4_discard_allocated_blocks(ac); goto errout; } if (ac->ac_status == AC_STATUS_FOUND && ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len) ext4_mb_pa_put_free(ac); } if (likely(ac->ac_status == AC_STATUS_FOUND)) { *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs); if (*errp) { ext4_discard_allocated_blocks(ac); goto errout; } else { block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); ar->len = ac->ac_b_ex.fe_len; } } else { if (++retries < 3 && ext4_mb_discard_preallocations_should_retry(sb, ac, &seq)) goto repeat; /* * If block allocation fails then the pa allocated above * needs to be freed here itself. */ ext4_mb_pa_put_free(ac); *errp = -ENOSPC; } if (*errp) { errout: ac->ac_b_ex.fe_len = 0; ar->len = 0; ext4_mb_show_ac(ac); } ext4_mb_release_context(ac); kmem_cache_free(ext4_ac_cachep, ac); out: if (inquota && ar->len < inquota) dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len)); if (!ar->len) { if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) /* release all the reserved blocks if non delalloc */ percpu_counter_sub(&sbi->s_dirtyclusters_counter, reserv_clstrs); } trace_ext4_allocate_blocks(ar, (unsigned long long)block); return block; } /* * We can merge two free data extents only if the physical blocks * are contiguous, AND the extents were freed by the same transaction, * AND the blocks are associated with the same group. */ static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi, struct ext4_free_data *entry, struct ext4_free_data *new_entry, struct rb_root *entry_rb_root) { if ((entry->efd_tid != new_entry->efd_tid) || (entry->efd_group != new_entry->efd_group)) return; if (entry->efd_start_cluster + entry->efd_count == new_entry->efd_start_cluster) { new_entry->efd_start_cluster = entry->efd_start_cluster; new_entry->efd_count += entry->efd_count; } else if (new_entry->efd_start_cluster + new_entry->efd_count == entry->efd_start_cluster) { new_entry->efd_count += entry->efd_count; } else return; spin_lock(&sbi->s_md_lock); list_del(&entry->efd_list); spin_unlock(&sbi->s_md_lock); rb_erase(&entry->efd_node, entry_rb_root); kmem_cache_free(ext4_free_data_cachep, entry); } static noinline_for_stack void ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b, struct ext4_free_data *new_entry) { ext4_group_t group = e4b->bd_group; ext4_grpblk_t cluster; ext4_grpblk_t clusters = new_entry->efd_count; struct ext4_free_data *entry; struct ext4_group_info *db = e4b->bd_info; struct super_block *sb = e4b->bd_sb; struct ext4_sb_info *sbi = EXT4_SB(sb); struct rb_node **n = &db->bb_free_root.rb_node, *node; struct rb_node *parent = NULL, *new_node; BUG_ON(!ext4_handle_valid(handle)); BUG_ON(e4b->bd_bitmap_page == NULL); BUG_ON(e4b->bd_buddy_page == NULL); new_node = &new_entry->efd_node; cluster = new_entry->efd_start_cluster; if (!*n) { /* first free block exent. We need to protect buddy cache from being freed, * otherwise we'll refresh it from * on-disk bitmap and lose not-yet-available * blocks */ get_page(e4b->bd_buddy_page); get_page(e4b->bd_bitmap_page); } while (*n) { parent = *n; entry = rb_entry(parent, struct ext4_free_data, efd_node); if (cluster < entry->efd_start_cluster) n = &(*n)->rb_left; else if (cluster >= (entry->efd_start_cluster + entry->efd_count)) n = &(*n)->rb_right; else { ext4_grp_locked_error(sb, group, 0, ext4_group_first_block_no(sb, group) + EXT4_C2B(sbi, cluster), "Block already on to-be-freed list"); kmem_cache_free(ext4_free_data_cachep, new_entry); return; } } rb_link_node(new_node, parent, n); rb_insert_color(new_node, &db->bb_free_root); /* Now try to see the extent can be merged to left and right */ node = rb_prev(new_node); if (node) { entry = rb_entry(node, struct ext4_free_data, efd_node); ext4_try_merge_freed_extent(sbi, entry, new_entry, &(db->bb_free_root)); } node = rb_next(new_node); if (node) { entry = rb_entry(node, struct ext4_free_data, efd_node); ext4_try_merge_freed_extent(sbi, entry, new_entry, &(db->bb_free_root)); } spin_lock(&sbi->s_md_lock); list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list[new_entry->efd_tid & 1]); sbi->s_mb_free_pending += clusters; spin_unlock(&sbi->s_md_lock); } static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block, unsigned long count) { struct super_block *sb = inode->i_sb; ext4_group_t group; ext4_grpblk_t blkoff; ext4_get_group_no_and_offset(sb, block, &group, &blkoff); ext4_mb_mark_context(NULL, sb, false, group, blkoff, count, EXT4_MB_BITMAP_MARKED_CHECK | EXT4_MB_SYNC_UPDATE, NULL); } /** * ext4_mb_clear_bb() -- helper function for freeing blocks. * Used by ext4_free_blocks() * @handle: handle for this transaction * @inode: inode * @block: starting physical block to be freed * @count: number of blocks to be freed * @flags: flags used by ext4_free_blocks */ static void ext4_mb_clear_bb(handle_t *handle, struct inode *inode, ext4_fsblk_t block, unsigned long count, int flags) { struct super_block *sb = inode->i_sb; struct ext4_group_info *grp; unsigned int overflow; ext4_grpblk_t bit; ext4_group_t block_group; struct ext4_sb_info *sbi; struct ext4_buddy e4b; unsigned int count_clusters; int err = 0; int mark_flags = 0; ext4_grpblk_t changed; sbi = EXT4_SB(sb); if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && !ext4_inode_block_valid(inode, block, count)) { ext4_error(sb, "Freeing blocks in system zone - " "Block = %llu, count = %lu", block, count); /* err = 0. ext4_std_error should be a no op */ goto error_out; } flags |= EXT4_FREE_BLOCKS_VALIDATED; do_more: overflow = 0; ext4_get_group_no_and_offset(sb, block, &block_group, &bit); grp = ext4_get_group_info(sb, block_group); if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) return; /* * Check to see if we are freeing blocks across a group * boundary. */ if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) { overflow = EXT4_C2B(sbi, bit) + count - EXT4_BLOCKS_PER_GROUP(sb); count -= overflow; /* The range changed so it's no longer validated */ flags &= ~EXT4_FREE_BLOCKS_VALIDATED; } count_clusters = EXT4_NUM_B2C(sbi, count); trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters); /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */ err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b, GFP_NOFS|__GFP_NOFAIL); if (err) goto error_out; if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && !ext4_inode_block_valid(inode, block, count)) { ext4_error(sb, "Freeing blocks in system zone - " "Block = %llu, count = %lu", block, count); /* err = 0. ext4_std_error should be a no op */ goto error_clean; } #ifdef AGGRESSIVE_CHECK mark_flags |= EXT4_MB_BITMAP_MARKED_CHECK; #endif err = ext4_mb_mark_context(handle, sb, false, block_group, bit, count_clusters, mark_flags, &changed); if (err && changed == 0) goto error_clean; #ifdef AGGRESSIVE_CHECK BUG_ON(changed != count_clusters); #endif /* * We need to make sure we don't reuse the freed block until after the * transaction is committed. We make an exception if the inode is to be * written in writeback mode since writeback mode has weak data * consistency guarantees. */ if (ext4_handle_valid(handle) && ((flags & EXT4_FREE_BLOCKS_METADATA) || !ext4_should_writeback_data(inode))) { struct ext4_free_data *new_entry; /* * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed * to fail. */ new_entry = kmem_cache_alloc(ext4_free_data_cachep, GFP_NOFS|__GFP_NOFAIL); new_entry->efd_start_cluster = bit; new_entry->efd_group = block_group; new_entry->efd_count = count_clusters; new_entry->efd_tid = handle->h_transaction->t_tid; ext4_lock_group(sb, block_group); ext4_mb_free_metadata(handle, &e4b, new_entry); } else { if (test_opt(sb, DISCARD)) { err = ext4_issue_discard(sb, block_group, bit, count_clusters, NULL); if (err && err != -EOPNOTSUPP) ext4_msg(sb, KERN_WARNING, "discard request in" " group:%u block:%d count:%lu failed" " with %d", block_group, bit, count, err); } else EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info); ext4_lock_group(sb, block_group); mb_free_blocks(inode, &e4b, bit, count_clusters); } ext4_unlock_group(sb, block_group); /* * on a bigalloc file system, defer the s_freeclusters_counter * update to the caller (ext4_remove_space and friends) so they * can determine if a cluster freed here should be rereserved */ if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) { if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE)) dquot_free_block(inode, EXT4_C2B(sbi, count_clusters)); percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters); } if (overflow && !err) { block += count; count = overflow; ext4_mb_unload_buddy(&e4b); /* The range changed so it's no longer validated */ flags &= ~EXT4_FREE_BLOCKS_VALIDATED; goto do_more; } error_clean: ext4_mb_unload_buddy(&e4b); error_out: ext4_std_error(sb, err); } /** * ext4_free_blocks() -- Free given blocks and update quota * @handle: handle for this transaction * @inode: inode * @bh: optional buffer of the block to be freed * @block: starting physical block to be freed * @count: number of blocks to be freed * @flags: flags used by ext4_free_blocks */ void ext4_free_blocks(handle_t *handle, struct inode *inode, struct buffer_head *bh, ext4_fsblk_t block, unsigned long count, int flags) { struct super_block *sb = inode->i_sb; unsigned int overflow; struct ext4_sb_info *sbi; sbi = EXT4_SB(sb); if (bh) { if (block) BUG_ON(block != bh->b_blocknr); else block = bh->b_blocknr; } if (sbi->s_mount_state & EXT4_FC_REPLAY) { ext4_free_blocks_simple(inode, block, EXT4_NUM_B2C(sbi, count)); return; } might_sleep(); if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && !ext4_inode_block_valid(inode, block, count)) { ext4_error(sb, "Freeing blocks not in datazone - " "block = %llu, count = %lu", block, count); return; } flags |= EXT4_FREE_BLOCKS_VALIDATED; ext4_debug("freeing block %llu\n", block); trace_ext4_free_blocks(inode, block, count, flags); if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { BUG_ON(count > 1); ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA, inode, bh, block); } /* * If the extent to be freed does not begin on a cluster * boundary, we need to deal with partial clusters at the * beginning and end of the extent. Normally we will free * blocks at the beginning or the end unless we are explicitly * requested to avoid doing so. */ overflow = EXT4_PBLK_COFF(sbi, block); if (overflow) { if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) { overflow = sbi->s_cluster_ratio - overflow; block += overflow; if (count > overflow) count -= overflow; else return; } else { block -= overflow; count += overflow; } /* The range changed so it's no longer validated */ flags &= ~EXT4_FREE_BLOCKS_VALIDATED; } overflow = EXT4_LBLK_COFF(sbi, count); if (overflow) { if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) { if (count > overflow) count -= overflow; else return; } else count += sbi->s_cluster_ratio - overflow; /* The range changed so it's no longer validated */ flags &= ~EXT4_FREE_BLOCKS_VALIDATED; } if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { int i; int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA; for (i = 0; i < count; i++) { cond_resched(); if (is_metadata) bh = sb_find_get_block(inode->i_sb, block + i); ext4_forget(handle, is_metadata, inode, bh, block + i); } } ext4_mb_clear_bb(handle, inode, block, count, flags); } /** * ext4_group_add_blocks() -- Add given blocks to an existing group * @handle: handle to this transaction * @sb: super block * @block: start physical block to add to the block group * @count: number of blocks to free * * This marks the blocks as free in the bitmap and buddy. */ int ext4_group_add_blocks(handle_t *handle, struct super_block *sb, ext4_fsblk_t block, unsigned long count) { ext4_group_t block_group; ext4_grpblk_t bit; struct ext4_sb_info *sbi = EXT4_SB(sb); struct ext4_buddy e4b; int err = 0; ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block); ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1); unsigned long cluster_count = last_cluster - first_cluster + 1; ext4_grpblk_t changed; ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1); if (cluster_count == 0) return 0; ext4_get_group_no_and_offset(sb, block, &block_group, &bit); /* * Check to see if we are freeing blocks across a group * boundary. */ if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) { ext4_warning(sb, "too many blocks added to group %u", block_group); err = -EINVAL; goto error_out; } err = ext4_mb_load_buddy(sb, block_group, &e4b); if (err) goto error_out; if (!ext4_sb_block_valid(sb, NULL, block, count)) { ext4_error(sb, "Adding blocks in system zones - " "Block = %llu, count = %lu", block, count); err = -EINVAL; goto error_clean; } err = ext4_mb_mark_context(handle, sb, false, block_group, bit, cluster_count, EXT4_MB_BITMAP_MARKED_CHECK, &changed); if (err && changed == 0) goto error_clean; if (changed != cluster_count) ext4_error(sb, "bit already cleared in group %u", block_group); ext4_lock_group(sb, block_group); mb_free_blocks(NULL, &e4b, bit, cluster_count); ext4_unlock_group(sb, block_group); percpu_counter_add(&sbi->s_freeclusters_counter, changed); error_clean: ext4_mb_unload_buddy(&e4b); error_out: ext4_std_error(sb, err); return err; } /** * ext4_trim_extent -- function to TRIM one single free extent in the group * @sb: super block for the file system * @start: starting block of the free extent in the alloc. group * @count: number of blocks to TRIM * @e4b: ext4 buddy for the group * * Trim "count" blocks starting at "start" in the "group". To assure that no * one will allocate those blocks, mark it as used in buddy bitmap. This must * be called with under the group lock. */ static int ext4_trim_extent(struct super_block *sb, int start, int count, struct ext4_buddy *e4b) __releases(bitlock) __acquires(bitlock) { struct ext4_free_extent ex; ext4_group_t group = e4b->bd_group; int ret = 0; trace_ext4_trim_extent(sb, group, start, count); assert_spin_locked(ext4_group_lock_ptr(sb, group)); ex.fe_start = start; ex.fe_group = group; ex.fe_len = count; /* * Mark blocks used, so no one can reuse them while * being trimmed. */ mb_mark_used(e4b, &ex); ext4_unlock_group(sb, group); ret = ext4_issue_discard(sb, group, start, count, NULL); ext4_lock_group(sb, group); mb_free_blocks(NULL, e4b, start, ex.fe_len); return ret; } static ext4_grpblk_t ext4_last_grp_cluster(struct super_block *sb, ext4_group_t grp) { unsigned long nr_clusters_in_group; if (grp < (ext4_get_groups_count(sb) - 1)) nr_clusters_in_group = EXT4_CLUSTERS_PER_GROUP(sb); else nr_clusters_in_group = (ext4_blocks_count(EXT4_SB(sb)->s_es) - ext4_group_first_block_no(sb, grp)) >> EXT4_CLUSTER_BITS(sb); return nr_clusters_in_group - 1; } static bool ext4_trim_interrupted(void) { return fatal_signal_pending(current) || freezing(current); } static int ext4_try_to_trim_range(struct super_block *sb, struct ext4_buddy *e4b, ext4_grpblk_t start, ext4_grpblk_t max, ext4_grpblk_t minblocks) __acquires(ext4_group_lock_ptr(sb, e4b->bd_group)) __releases(ext4_group_lock_ptr(sb, e4b->bd_group)) { ext4_grpblk_t next, count, free_count, last, origin_start; bool set_trimmed = false; void *bitmap; if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) return 0; last = ext4_last_grp_cluster(sb, e4b->bd_group); bitmap = e4b->bd_bitmap; if (start == 0 && max >= last) set_trimmed = true; origin_start = start; start = max(e4b->bd_info->bb_first_free, start); count = 0; free_count = 0; while (start <= max) { start = mb_find_next_zero_bit(bitmap, max + 1, start); if (start > max) break; next = mb_find_next_bit(bitmap, last + 1, start); if (origin_start == 0 && next >= last) set_trimmed = true; if ((next - start) >= minblocks) { int ret = ext4_trim_extent(sb, start, next - start, e4b); if (ret && ret != -EOPNOTSUPP) return count; count += next - start; } free_count += next - start; start = next + 1; if (ext4_trim_interrupted()) return count; if (need_resched()) { ext4_unlock_group(sb, e4b->bd_group); cond_resched(); ext4_lock_group(sb, e4b->bd_group); } if ((e4b->bd_info->bb_free - free_count) < minblocks) break; } if (set_trimmed) EXT4_MB_GRP_SET_TRIMMED(e4b->bd_info); return count; } /** * ext4_trim_all_free -- function to trim all free space in alloc. group * @sb: super block for file system * @group: group to be trimmed * @start: first group block to examine * @max: last group block to examine * @minblocks: minimum extent block count * * ext4_trim_all_free walks through group's block bitmap searching for free * extents. When the free extent is found, mark it as used in group buddy * bitmap. Then issue a TRIM command on this extent and free the extent in * the group buddy bitmap. */ static ext4_grpblk_t ext4_trim_all_free(struct super_block *sb, ext4_group_t group, ext4_grpblk_t start, ext4_grpblk_t max, ext4_grpblk_t minblocks) { struct ext4_buddy e4b; int ret; trace_ext4_trim_all_free(sb, group, start, max); ret = ext4_mb_load_buddy(sb, group, &e4b); if (ret) { ext4_warning(sb, "Error %d loading buddy information for %u", ret, group); return ret; } ext4_lock_group(sb, group); if (!EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) || minblocks < EXT4_SB(sb)->s_last_trim_minblks) ret = ext4_try_to_trim_range(sb, &e4b, start, max, minblocks); else ret = 0; ext4_unlock_group(sb, group); ext4_mb_unload_buddy(&e4b); ext4_debug("trimmed %d blocks in the group %d\n", ret, group); return ret; } /** * ext4_trim_fs() -- trim ioctl handle function * @sb: superblock for filesystem * @range: fstrim_range structure * * start: First Byte to trim * len: number of Bytes to trim from start * minlen: minimum extent length in Bytes * ext4_trim_fs goes through all allocation groups containing Bytes from * start to start+len. For each such a group ext4_trim_all_free function * is invoked to trim all free space. */ int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range) { unsigned int discard_granularity = bdev_discard_granularity(sb->s_bdev); struct ext4_group_info *grp; ext4_group_t group, first_group, last_group; ext4_grpblk_t cnt = 0, first_cluster, last_cluster; uint64_t start, end, minlen, trimmed = 0; ext4_fsblk_t first_data_blk = le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block); ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es); int ret = 0; start = range->start >> sb->s_blocksize_bits; end = start + (range->len >> sb->s_blocksize_bits) - 1; minlen = EXT4_NUM_B2C(EXT4_SB(sb), range->minlen >> sb->s_blocksize_bits); if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) || start >= max_blks || range->len < sb->s_blocksize) return -EINVAL; /* No point to try to trim less than discard granularity */ if (range->minlen < discard_granularity) { minlen = EXT4_NUM_B2C(EXT4_SB(sb), discard_granularity >> sb->s_blocksize_bits); if (minlen > EXT4_CLUSTERS_PER_GROUP(sb)) goto out; } if (end >= max_blks - 1) end = max_blks - 1; if (end <= first_data_blk) goto out; if (start < first_data_blk) start = first_data_blk; /* Determine first and last group to examine based on start and end */ ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start, &first_group, &first_cluster); ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end, &last_group, &last_cluster); /* end now represents the last cluster to discard in this group */ end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; for (group = first_group; group <= last_group; group++) { if (ext4_trim_interrupted()) break; grp = ext4_get_group_info(sb, group); if (!grp) continue; /* We only do this if the grp has never been initialized */ if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { ret = ext4_mb_init_group(sb, group, GFP_NOFS); if (ret) break; } /* * For all the groups except the last one, last cluster will * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to * change it for the last group, note that last_cluster is * already computed earlier by ext4_get_group_no_and_offset() */ if (group == last_group) end = last_cluster; if (grp->bb_free >= minlen) { cnt = ext4_trim_all_free(sb, group, first_cluster, end, minlen); if (cnt < 0) { ret = cnt; break; } trimmed += cnt; } /* * For every group except the first one, we are sure * that the first cluster to discard will be cluster #0. */ first_cluster = 0; } if (!ret) EXT4_SB(sb)->s_last_trim_minblks = minlen; out: range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits; return ret; } /* Iterate all the free extents in the group. */ int ext4_mballoc_query_range( struct super_block *sb, ext4_group_t group, ext4_grpblk_t start, ext4_grpblk_t end, ext4_mballoc_query_range_fn formatter, void *priv) { void *bitmap; ext4_grpblk_t next; struct ext4_buddy e4b; int error; error = ext4_mb_load_buddy(sb, group, &e4b); if (error) return error; bitmap = e4b.bd_bitmap; ext4_lock_group(sb, group); start = max(e4b.bd_info->bb_first_free, start); if (end >= EXT4_CLUSTERS_PER_GROUP(sb)) end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; while (start <= end) { start = mb_find_next_zero_bit(bitmap, end + 1, start); if (start > end) break; next = mb_find_next_bit(bitmap, end + 1, start); ext4_unlock_group(sb, group); error = formatter(sb, group, start, next - start, priv); if (error) goto out_unload; ext4_lock_group(sb, group); start = next + 1; } ext4_unlock_group(sb, group); out_unload: ext4_mb_unload_buddy(&e4b); return error; } #ifdef CONFIG_EXT4_KUNIT_TESTS #include "mballoc-test.c" #endif