/* SPDX-License-Identifier: GPL-2.0 */ #ifndef BTRFS_MISC_H #define BTRFS_MISC_H #include #include #include #include /* * Enumerate bits using enum autoincrement. Define the @name as the n-th bit. */ #define ENUM_BIT(name) \ __ ## name ## _BIT, \ name = (1U << __ ## name ## _BIT), \ __ ## name ## _SEQ = __ ## name ## _BIT static inline void cond_wake_up(struct wait_queue_head *wq) { /* * This implies a full smp_mb barrier, see comments for * waitqueue_active why. */ if (wq_has_sleeper(wq)) wake_up(wq); } static inline void cond_wake_up_nomb(struct wait_queue_head *wq) { /* * Special case for conditional wakeup where the barrier required for * waitqueue_active is implied by some of the preceding code. Eg. one * of such atomic operations (atomic_dec_and_return, ...), or a * unlock/lock sequence, etc. */ if (waitqueue_active(wq)) wake_up(wq); } static inline u64 mult_perc(u64 num, u32 percent) { return div_u64(num * percent, 100); } /* Copy of is_power_of_two that is 64bit safe */ static inline bool is_power_of_two_u64(u64 n) { return n != 0 && (n & (n - 1)) == 0; } static inline bool has_single_bit_set(u64 n) { return is_power_of_two_u64(n); } /* * Simple bytenr based rb_tree relate structures * * Any structure wants to use bytenr as single search index should have their * structure start with these members. */ struct rb_simple_node { struct rb_node rb_node; u64 bytenr; }; static inline struct rb_node *rb_simple_search(struct rb_root *root, u64 bytenr) { struct rb_node *node = root->rb_node; struct rb_simple_node *entry; while (node) { entry = rb_entry(node, struct rb_simple_node, rb_node); if (bytenr < entry->bytenr) node = node->rb_left; else if (bytenr > entry->bytenr) node = node->rb_right; else return node; } return NULL; } /* * Search @root from an entry that starts or comes after @bytenr. * * @root: the root to search. * @bytenr: bytenr to search from. * * Return the rb_node that start at or after @bytenr. If there is no entry at * or after @bytner return NULL. */ static inline struct rb_node *rb_simple_search_first(struct rb_root *root, u64 bytenr) { struct rb_node *node = root->rb_node, *ret = NULL; struct rb_simple_node *entry, *ret_entry = NULL; while (node) { entry = rb_entry(node, struct rb_simple_node, rb_node); if (bytenr < entry->bytenr) { if (!ret || entry->bytenr < ret_entry->bytenr) { ret = node; ret_entry = entry; } node = node->rb_left; } else if (bytenr > entry->bytenr) { node = node->rb_right; } else { return node; } } return ret; } static inline struct rb_node *rb_simple_insert(struct rb_root *root, u64 bytenr, struct rb_node *node) { struct rb_node **p = &root->rb_node; struct rb_node *parent = NULL; struct rb_simple_node *entry; while (*p) { parent = *p; entry = rb_entry(parent, struct rb_simple_node, rb_node); if (bytenr < entry->bytenr) p = &(*p)->rb_left; else if (bytenr > entry->bytenr) p = &(*p)->rb_right; else return parent; } rb_link_node(node, parent, p); rb_insert_color(node, root); return NULL; } static inline bool bitmap_test_range_all_set(const unsigned long *addr, unsigned long start, unsigned long nbits) { unsigned long found_zero; found_zero = find_next_zero_bit(addr, start + nbits, start); return (found_zero == start + nbits); } static inline bool bitmap_test_range_all_zero(const unsigned long *addr, unsigned long start, unsigned long nbits) { unsigned long found_set; found_set = find_next_bit(addr, start + nbits, start); return (found_set == start + nbits); } #endif