// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2016-2017 Google, Inc * * Fairchild FUSB302 Type-C Chip Driver */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "fusb302_reg.h" /* * When the device is SNK, BC_LVL interrupt is used to monitor cc pins * for the current capability offered by the SRC. As FUSB302 chip fires * the BC_LVL interrupt on PD signalings, cc lvl should be handled after * a delay to avoid measuring on PD activities. The delay is slightly * longer than PD_T_PD_DEBPUNCE (10-20ms). */ #define T_BC_LVL_DEBOUNCE_DELAY_MS 30 enum toggling_mode { TOGGLINE_MODE_OFF, TOGGLING_MODE_DRP, TOGGLING_MODE_SNK, TOGGLING_MODE_SRC, }; static const char * const toggling_mode_name[] = { [TOGGLINE_MODE_OFF] = "toggling_OFF", [TOGGLING_MODE_DRP] = "toggling_DRP", [TOGGLING_MODE_SNK] = "toggling_SNK", [TOGGLING_MODE_SRC] = "toggling_SRC", }; enum src_current_status { SRC_CURRENT_DEFAULT, SRC_CURRENT_MEDIUM, SRC_CURRENT_HIGH, }; static const u8 ra_mda_value[] = { [SRC_CURRENT_DEFAULT] = 4, /* 210mV */ [SRC_CURRENT_MEDIUM] = 9, /* 420mV */ [SRC_CURRENT_HIGH] = 18, /* 798mV */ }; static const u8 rd_mda_value[] = { [SRC_CURRENT_DEFAULT] = 38, /* 1638mV */ [SRC_CURRENT_MEDIUM] = 38, /* 1638mV */ [SRC_CURRENT_HIGH] = 61, /* 2604mV */ }; #define LOG_BUFFER_ENTRIES 1024 #define LOG_BUFFER_ENTRY_SIZE 128 struct fusb302_chip { struct device *dev; struct i2c_client *i2c_client; struct tcpm_port *tcpm_port; struct tcpc_dev tcpc_dev; struct tcpc_config tcpc_config; struct regulator *vbus; int gpio_int_n; int gpio_int_n_irq; struct extcon_dev *extcon; struct workqueue_struct *wq; struct delayed_work bc_lvl_handler; atomic_t pm_suspend; atomic_t i2c_busy; /* lock for sharing chip states */ struct mutex lock; /* chip status */ enum toggling_mode toggling_mode; enum src_current_status src_current_status; bool intr_togdone; bool intr_bc_lvl; bool intr_comp_chng; /* port status */ bool pull_up; bool vconn_on; bool vbus_on; bool charge_on; bool vbus_present; enum typec_cc_polarity cc_polarity; enum typec_cc_status cc1; enum typec_cc_status cc2; u32 snk_pdo[PDO_MAX_OBJECTS]; #ifdef CONFIG_DEBUG_FS struct dentry *dentry; /* lock for log buffer access */ struct mutex logbuffer_lock; int logbuffer_head; int logbuffer_tail; u8 *logbuffer[LOG_BUFFER_ENTRIES]; #endif }; /* * Logging */ #ifdef CONFIG_DEBUG_FS static bool fusb302_log_full(struct fusb302_chip *chip) { return chip->logbuffer_tail == (chip->logbuffer_head + 1) % LOG_BUFFER_ENTRIES; } static void _fusb302_log(struct fusb302_chip *chip, const char *fmt, va_list args) { char tmpbuffer[LOG_BUFFER_ENTRY_SIZE]; u64 ts_nsec = local_clock(); unsigned long rem_nsec; if (!chip->logbuffer[chip->logbuffer_head]) { chip->logbuffer[chip->logbuffer_head] = kzalloc(LOG_BUFFER_ENTRY_SIZE, GFP_KERNEL); if (!chip->logbuffer[chip->logbuffer_head]) return; } vsnprintf(tmpbuffer, sizeof(tmpbuffer), fmt, args); mutex_lock(&chip->logbuffer_lock); if (fusb302_log_full(chip)) { chip->logbuffer_head = max(chip->logbuffer_head - 1, 0); strlcpy(tmpbuffer, "overflow", sizeof(tmpbuffer)); } if (chip->logbuffer_head < 0 || chip->logbuffer_head >= LOG_BUFFER_ENTRIES) { dev_warn(chip->dev, "Bad log buffer index %d\n", chip->logbuffer_head); goto abort; } if (!chip->logbuffer[chip->logbuffer_head]) { dev_warn(chip->dev, "Log buffer index %d is NULL\n", chip->logbuffer_head); goto abort; } rem_nsec = do_div(ts_nsec, 1000000000); scnprintf(chip->logbuffer[chip->logbuffer_head], LOG_BUFFER_ENTRY_SIZE, "[%5lu.%06lu] %s", (unsigned long)ts_nsec, rem_nsec / 1000, tmpbuffer); chip->logbuffer_head = (chip->logbuffer_head + 1) % LOG_BUFFER_ENTRIES; abort: mutex_unlock(&chip->logbuffer_lock); } static void fusb302_log(struct fusb302_chip *chip, const char *fmt, ...) { va_list args; va_start(args, fmt); _fusb302_log(chip, fmt, args); va_end(args); } static int fusb302_debug_show(struct seq_file *s, void *v) { struct fusb302_chip *chip = (struct fusb302_chip *)s->private; int tail; mutex_lock(&chip->logbuffer_lock); tail = chip->logbuffer_tail; while (tail != chip->logbuffer_head) { seq_printf(s, "%s\n", chip->logbuffer[tail]); tail = (tail + 1) % LOG_BUFFER_ENTRIES; } if (!seq_has_overflowed(s)) chip->logbuffer_tail = tail; mutex_unlock(&chip->logbuffer_lock); return 0; } DEFINE_SHOW_ATTRIBUTE(fusb302_debug); static struct dentry *rootdir; static void fusb302_debugfs_init(struct fusb302_chip *chip) { mutex_init(&chip->logbuffer_lock); if (!rootdir) rootdir = debugfs_create_dir("fusb302", NULL); chip->dentry = debugfs_create_file(dev_name(chip->dev), S_IFREG | 0444, rootdir, chip, &fusb302_debug_fops); } static void fusb302_debugfs_exit(struct fusb302_chip *chip) { debugfs_remove(chip->dentry); debugfs_remove(rootdir); } #else static void fusb302_log(const struct fusb302_chip *chip, const char *fmt, ...) { } static void fusb302_debugfs_init(const struct fusb302_chip *chip) { } static void fusb302_debugfs_exit(const struct fusb302_chip *chip) { } #endif #define FUSB302_RESUME_RETRY 10 #define FUSB302_RESUME_RETRY_SLEEP 50 static bool fusb302_is_suspended(struct fusb302_chip *chip) { int retry_cnt; for (retry_cnt = 0; retry_cnt < FUSB302_RESUME_RETRY; retry_cnt++) { if (atomic_read(&chip->pm_suspend)) { dev_err(chip->dev, "i2c: pm suspend, retry %d/%d\n", retry_cnt + 1, FUSB302_RESUME_RETRY); msleep(FUSB302_RESUME_RETRY_SLEEP); } else { return false; } } return true; } static int fusb302_i2c_write(struct fusb302_chip *chip, u8 address, u8 data) { int ret = 0; atomic_set(&chip->i2c_busy, 1); if (fusb302_is_suspended(chip)) { atomic_set(&chip->i2c_busy, 0); return -ETIMEDOUT; } ret = i2c_smbus_write_byte_data(chip->i2c_client, address, data); if (ret < 0) fusb302_log(chip, "cannot write 0x%02x to 0x%02x, ret=%d", data, address, ret); atomic_set(&chip->i2c_busy, 0); return ret; } static int fusb302_i2c_block_write(struct fusb302_chip *chip, u8 address, u8 length, const u8 *data) { int ret = 0; if (length <= 0) return ret; atomic_set(&chip->i2c_busy, 1); if (fusb302_is_suspended(chip)) { atomic_set(&chip->i2c_busy, 0); return -ETIMEDOUT; } ret = i2c_smbus_write_i2c_block_data(chip->i2c_client, address, length, data); if (ret < 0) fusb302_log(chip, "cannot block write 0x%02x, len=%d, ret=%d", address, length, ret); atomic_set(&chip->i2c_busy, 0); return ret; } static int fusb302_i2c_read(struct fusb302_chip *chip, u8 address, u8 *data) { int ret = 0; atomic_set(&chip->i2c_busy, 1); if (fusb302_is_suspended(chip)) { atomic_set(&chip->i2c_busy, 0); return -ETIMEDOUT; } ret = i2c_smbus_read_byte_data(chip->i2c_client, address); *data = (u8)ret; if (ret < 0) fusb302_log(chip, "cannot read %02x, ret=%d", address, ret); atomic_set(&chip->i2c_busy, 0); return ret; } static int fusb302_i2c_block_read(struct fusb302_chip *chip, u8 address, u8 length, u8 *data) { int ret = 0; if (length <= 0) return ret; atomic_set(&chip->i2c_busy, 1); if (fusb302_is_suspended(chip)) { atomic_set(&chip->i2c_busy, 0); return -ETIMEDOUT; } ret = i2c_smbus_read_i2c_block_data(chip->i2c_client, address, length, data); if (ret < 0) { fusb302_log(chip, "cannot block read 0x%02x, len=%d, ret=%d", address, length, ret); goto done; } if (ret != length) { fusb302_log(chip, "only read %d/%d bytes from 0x%02x", ret, length, address); ret = -EIO; } done: atomic_set(&chip->i2c_busy, 0); return ret; } static int fusb302_i2c_mask_write(struct fusb302_chip *chip, u8 address, u8 mask, u8 value) { int ret = 0; u8 data; ret = fusb302_i2c_read(chip, address, &data); if (ret < 0) return ret; data &= ~mask; data |= value; ret = fusb302_i2c_write(chip, address, data); if (ret < 0) return ret; return ret; } static int fusb302_i2c_set_bits(struct fusb302_chip *chip, u8 address, u8 set_bits) { return fusb302_i2c_mask_write(chip, address, 0x00, set_bits); } static int fusb302_i2c_clear_bits(struct fusb302_chip *chip, u8 address, u8 clear_bits) { return fusb302_i2c_mask_write(chip, address, clear_bits, 0x00); } static int fusb302_sw_reset(struct fusb302_chip *chip) { int ret = 0; ret = fusb302_i2c_write(chip, FUSB_REG_RESET, FUSB_REG_RESET_SW_RESET); if (ret < 0) fusb302_log(chip, "cannot sw reset the chip, ret=%d", ret); else fusb302_log(chip, "sw reset"); return ret; } static int fusb302_enable_tx_auto_retries(struct fusb302_chip *chip) { int ret = 0; ret = fusb302_i2c_set_bits(chip, FUSB_REG_CONTROL3, FUSB_REG_CONTROL3_N_RETRIES_3 | FUSB_REG_CONTROL3_AUTO_RETRY); return ret; } /* * initialize interrupt on the chip * - unmasked interrupt: VBUS_OK */ static int fusb302_init_interrupt(struct fusb302_chip *chip) { int ret = 0; ret = fusb302_i2c_write(chip, FUSB_REG_MASK, 0xFF & ~FUSB_REG_MASK_VBUSOK); if (ret < 0) return ret; ret = fusb302_i2c_write(chip, FUSB_REG_MASKA, 0xFF); if (ret < 0) return ret; ret = fusb302_i2c_write(chip, FUSB_REG_MASKB, 0xFF); if (ret < 0) return ret; ret = fusb302_i2c_clear_bits(chip, FUSB_REG_CONTROL0, FUSB_REG_CONTROL0_INT_MASK); if (ret < 0) return ret; return ret; } static int fusb302_set_power_mode(struct fusb302_chip *chip, u8 power_mode) { int ret = 0; ret = fusb302_i2c_write(chip, FUSB_REG_POWER, power_mode); return ret; } static int tcpm_init(struct tcpc_dev *dev) { struct fusb302_chip *chip = container_of(dev, struct fusb302_chip, tcpc_dev); int ret = 0; u8 data; ret = fusb302_sw_reset(chip); if (ret < 0) return ret; ret = fusb302_enable_tx_auto_retries(chip); if (ret < 0) return ret; ret = fusb302_init_interrupt(chip); if (ret < 0) return ret; ret = fusb302_set_power_mode(chip, FUSB_REG_POWER_PWR_ALL); if (ret < 0) return ret; ret = fusb302_i2c_read(chip, FUSB_REG_STATUS0, &data); if (ret < 0) return ret; chip->vbus_present = !!(data & FUSB_REG_STATUS0_VBUSOK); ret = fusb302_i2c_read(chip, FUSB_REG_DEVICE_ID, &data); if (ret < 0) return ret; fusb302_log(chip, "fusb302 device ID: 0x%02x", data); return ret; } static int tcpm_get_vbus(struct tcpc_dev *dev) { struct fusb302_chip *chip = container_of(dev, struct fusb302_chip, tcpc_dev); int ret = 0; mutex_lock(&chip->lock); ret = chip->vbus_present ? 1 : 0; mutex_unlock(&chip->lock); return ret; } static int tcpm_get_current_limit(struct tcpc_dev *dev) { struct fusb302_chip *chip = container_of(dev, struct fusb302_chip, tcpc_dev); int current_limit = 0; unsigned long timeout; if (!chip->extcon) return 0; /* * USB2 Charger detection may still be in progress when we get here, * this can take upto 600ms, wait 800ms max. */ timeout = jiffies + msecs_to_jiffies(800); do { if (extcon_get_state(chip->extcon, EXTCON_CHG_USB_SDP) == 1) current_limit = 500; if (extcon_get_state(chip->extcon, EXTCON_CHG_USB_CDP) == 1 || extcon_get_state(chip->extcon, EXTCON_CHG_USB_ACA) == 1) current_limit = 1500; if (extcon_get_state(chip->extcon, EXTCON_CHG_USB_DCP) == 1) current_limit = 2000; msleep(50); } while (current_limit == 0 && time_before(jiffies, timeout)); return current_limit; } static int fusb302_set_cc_pull(struct fusb302_chip *chip, bool pull_up, bool pull_down) { int ret = 0; u8 data = 0x00; u8 mask = FUSB_REG_SWITCHES0_CC1_PU_EN | FUSB_REG_SWITCHES0_CC2_PU_EN | FUSB_REG_SWITCHES0_CC1_PD_EN | FUSB_REG_SWITCHES0_CC2_PD_EN; if (pull_up) data |= (chip->cc_polarity == TYPEC_POLARITY_CC1) ? FUSB_REG_SWITCHES0_CC1_PU_EN : FUSB_REG_SWITCHES0_CC2_PU_EN; if (pull_down) data |= FUSB_REG_SWITCHES0_CC1_PD_EN | FUSB_REG_SWITCHES0_CC2_PD_EN; ret = fusb302_i2c_mask_write(chip, FUSB_REG_SWITCHES0, mask, data); if (ret < 0) return ret; chip->pull_up = pull_up; return ret; } static int fusb302_set_src_current(struct fusb302_chip *chip, enum src_current_status status) { int ret = 0; chip->src_current_status = status; switch (status) { case SRC_CURRENT_DEFAULT: ret = fusb302_i2c_mask_write(chip, FUSB_REG_CONTROL0, FUSB_REG_CONTROL0_HOST_CUR_MASK, FUSB_REG_CONTROL0_HOST_CUR_DEF); break; case SRC_CURRENT_MEDIUM: ret = fusb302_i2c_mask_write(chip, FUSB_REG_CONTROL0, FUSB_REG_CONTROL0_HOST_CUR_MASK, FUSB_REG_CONTROL0_HOST_CUR_MED); break; case SRC_CURRENT_HIGH: ret = fusb302_i2c_mask_write(chip, FUSB_REG_CONTROL0, FUSB_REG_CONTROL0_HOST_CUR_MASK, FUSB_REG_CONTROL0_HOST_CUR_HIGH); break; default: break; } return ret; } static int fusb302_set_toggling(struct fusb302_chip *chip, enum toggling_mode mode) { int ret = 0; /* first disable toggling */ ret = fusb302_i2c_clear_bits(chip, FUSB_REG_CONTROL2, FUSB_REG_CONTROL2_TOGGLE); if (ret < 0) return ret; /* mask interrupts for SRC or SNK */ ret = fusb302_i2c_set_bits(chip, FUSB_REG_MASK, FUSB_REG_MASK_BC_LVL | FUSB_REG_MASK_COMP_CHNG); if (ret < 0) return ret; chip->intr_bc_lvl = false; chip->intr_comp_chng = false; /* configure toggling mode: none/snk/src/drp */ switch (mode) { case TOGGLINE_MODE_OFF: ret = fusb302_i2c_mask_write(chip, FUSB_REG_CONTROL2, FUSB_REG_CONTROL2_MODE_MASK, FUSB_REG_CONTROL2_MODE_NONE); if (ret < 0) return ret; break; case TOGGLING_MODE_SNK: ret = fusb302_i2c_mask_write(chip, FUSB_REG_CONTROL2, FUSB_REG_CONTROL2_MODE_MASK, FUSB_REG_CONTROL2_MODE_UFP); if (ret < 0) return ret; break; case TOGGLING_MODE_SRC: ret = fusb302_i2c_mask_write(chip, FUSB_REG_CONTROL2, FUSB_REG_CONTROL2_MODE_MASK, FUSB_REG_CONTROL2_MODE_DFP); if (ret < 0) return ret; break; case TOGGLING_MODE_DRP: ret = fusb302_i2c_mask_write(chip, FUSB_REG_CONTROL2, FUSB_REG_CONTROL2_MODE_MASK, FUSB_REG_CONTROL2_MODE_DRP); if (ret < 0) return ret; break; default: break; } if (mode == TOGGLINE_MODE_OFF) { /* mask TOGDONE interrupt */ ret = fusb302_i2c_set_bits(chip, FUSB_REG_MASKA, FUSB_REG_MASKA_TOGDONE); if (ret < 0) return ret; chip->intr_togdone = false; } else { /* Datasheet says vconn MUST be off when toggling */ WARN(chip->vconn_on, "Vconn is on during toggle start"); /* unmask TOGDONE interrupt */ ret = fusb302_i2c_clear_bits(chip, FUSB_REG_MASKA, FUSB_REG_MASKA_TOGDONE); if (ret < 0) return ret; chip->intr_togdone = true; /* start toggling */ ret = fusb302_i2c_set_bits(chip, FUSB_REG_CONTROL2, FUSB_REG_CONTROL2_TOGGLE); if (ret < 0) return ret; /* during toggling, consider cc as Open */ chip->cc1 = TYPEC_CC_OPEN; chip->cc2 = TYPEC_CC_OPEN; } chip->toggling_mode = mode; return ret; } static const char * const typec_cc_status_name[] = { [TYPEC_CC_OPEN] = "Open", [TYPEC_CC_RA] = "Ra", [TYPEC_CC_RD] = "Rd", [TYPEC_CC_RP_DEF] = "Rp-def", [TYPEC_CC_RP_1_5] = "Rp-1.5", [TYPEC_CC_RP_3_0] = "Rp-3.0", }; static const enum src_current_status cc_src_current[] = { [TYPEC_CC_OPEN] = SRC_CURRENT_DEFAULT, [TYPEC_CC_RA] = SRC_CURRENT_DEFAULT, [TYPEC_CC_RD] = SRC_CURRENT_DEFAULT, [TYPEC_CC_RP_DEF] = SRC_CURRENT_DEFAULT, [TYPEC_CC_RP_1_5] = SRC_CURRENT_MEDIUM, [TYPEC_CC_RP_3_0] = SRC_CURRENT_HIGH, }; static int tcpm_set_cc(struct tcpc_dev *dev, enum typec_cc_status cc) { struct fusb302_chip *chip = container_of(dev, struct fusb302_chip, tcpc_dev); int ret = 0; bool pull_up, pull_down; u8 rd_mda; mutex_lock(&chip->lock); switch (cc) { case TYPEC_CC_OPEN: pull_up = false; pull_down = false; break; case TYPEC_CC_RD: pull_up = false; pull_down = true; break; case TYPEC_CC_RP_DEF: case TYPEC_CC_RP_1_5: case TYPEC_CC_RP_3_0: pull_up = true; pull_down = false; break; default: fusb302_log(chip, "unsupported cc value %s", typec_cc_status_name[cc]); ret = -EINVAL; goto done; } ret = fusb302_set_toggling(chip, TOGGLINE_MODE_OFF); if (ret < 0) { fusb302_log(chip, "cannot stop toggling, ret=%d", ret); goto done; } ret = fusb302_set_cc_pull(chip, pull_up, pull_down); if (ret < 0) { fusb302_log(chip, "cannot set cc pulling up %s, down %s, ret = %d", pull_up ? "True" : "False", pull_down ? "True" : "False", ret); goto done; } /* reset the cc status */ chip->cc1 = TYPEC_CC_OPEN; chip->cc2 = TYPEC_CC_OPEN; /* adjust current for SRC */ if (pull_up) { ret = fusb302_set_src_current(chip, cc_src_current[cc]); if (ret < 0) { fusb302_log(chip, "cannot set src current %s, ret=%d", typec_cc_status_name[cc], ret); goto done; } } /* enable/disable interrupts, BC_LVL for SNK and COMP_CHNG for SRC */ if (pull_up) { rd_mda = rd_mda_value[cc_src_current[cc]]; ret = fusb302_i2c_write(chip, FUSB_REG_MEASURE, rd_mda); if (ret < 0) { fusb302_log(chip, "cannot set SRC measure value, ret=%d", ret); goto done; } ret = fusb302_i2c_mask_write(chip, FUSB_REG_MASK, FUSB_REG_MASK_BC_LVL | FUSB_REG_MASK_COMP_CHNG, FUSB_REG_MASK_COMP_CHNG); if (ret < 0) { fusb302_log(chip, "cannot set SRC interrupt, ret=%d", ret); goto done; } chip->intr_bc_lvl = false; chip->intr_comp_chng = true; } if (pull_down) { ret = fusb302_i2c_mask_write(chip, FUSB_REG_MASK, FUSB_REG_MASK_BC_LVL | FUSB_REG_MASK_COMP_CHNG, FUSB_REG_MASK_BC_LVL); if (ret < 0) { fusb302_log(chip, "cannot set SRC interrupt, ret=%d", ret); goto done; } chip->intr_bc_lvl = true; chip->intr_comp_chng = false; } fusb302_log(chip, "cc := %s", typec_cc_status_name[cc]); done: mutex_unlock(&chip->lock); return ret; } static int tcpm_get_cc(struct tcpc_dev *dev, enum typec_cc_status *cc1, enum typec_cc_status *cc2) { struct fusb302_chip *chip = container_of(dev, struct fusb302_chip, tcpc_dev); mutex_lock(&chip->lock); *cc1 = chip->cc1; *cc2 = chip->cc2; fusb302_log(chip, "cc1=%s, cc2=%s", typec_cc_status_name[*cc1], typec_cc_status_name[*cc2]); mutex_unlock(&chip->lock); return 0; } static int tcpm_set_polarity(struct tcpc_dev *dev, enum typec_cc_polarity polarity) { return 0; } static int tcpm_set_vconn(struct tcpc_dev *dev, bool on) { struct fusb302_chip *chip = container_of(dev, struct fusb302_chip, tcpc_dev); int ret = 0; u8 switches0_data = 0x00; u8 switches0_mask = FUSB_REG_SWITCHES0_VCONN_CC1 | FUSB_REG_SWITCHES0_VCONN_CC2; mutex_lock(&chip->lock); if (chip->vconn_on == on) { fusb302_log(chip, "vconn is already %s", on ? "On" : "Off"); goto done; } if (on) { switches0_data = (chip->cc_polarity == TYPEC_POLARITY_CC1) ? FUSB_REG_SWITCHES0_VCONN_CC2 : FUSB_REG_SWITCHES0_VCONN_CC1; } ret = fusb302_i2c_mask_write(chip, FUSB_REG_SWITCHES0, switches0_mask, switches0_data); if (ret < 0) goto done; chip->vconn_on = on; fusb302_log(chip, "vconn := %s", on ? "On" : "Off"); done: mutex_unlock(&chip->lock); return ret; } static int tcpm_set_vbus(struct tcpc_dev *dev, bool on, bool charge) { struct fusb302_chip *chip = container_of(dev, struct fusb302_chip, tcpc_dev); int ret = 0; mutex_lock(&chip->lock); if (chip->vbus_on == on) { fusb302_log(chip, "vbus is already %s", on ? "On" : "Off"); } else { if (on) ret = regulator_enable(chip->vbus); else ret = regulator_disable(chip->vbus); if (ret < 0) { fusb302_log(chip, "cannot %s vbus regulator, ret=%d", on ? "enable" : "disable", ret); goto done; } chip->vbus_on = on; fusb302_log(chip, "vbus := %s", on ? "On" : "Off"); } if (chip->charge_on == charge) fusb302_log(chip, "charge is already %s", charge ? "On" : "Off"); else chip->charge_on = charge; done: mutex_unlock(&chip->lock); return ret; } static int tcpm_set_current_limit(struct tcpc_dev *dev, u32 max_ma, u32 mv) { struct fusb302_chip *chip = container_of(dev, struct fusb302_chip, tcpc_dev); fusb302_log(chip, "current limit: %d ma, %d mv (not implemented)", max_ma, mv); return 0; } static int fusb302_pd_tx_flush(struct fusb302_chip *chip) { return fusb302_i2c_set_bits(chip, FUSB_REG_CONTROL0, FUSB_REG_CONTROL0_TX_FLUSH); } static int fusb302_pd_rx_flush(struct fusb302_chip *chip) { return fusb302_i2c_set_bits(chip, FUSB_REG_CONTROL1, FUSB_REG_CONTROL1_RX_FLUSH); } static int fusb302_pd_set_auto_goodcrc(struct fusb302_chip *chip, bool on) { if (on) return fusb302_i2c_set_bits(chip, FUSB_REG_SWITCHES1, FUSB_REG_SWITCHES1_AUTO_GCRC); return fusb302_i2c_clear_bits(chip, FUSB_REG_SWITCHES1, FUSB_REG_SWITCHES1_AUTO_GCRC); } static int fusb302_pd_set_interrupts(struct fusb302_chip *chip, bool on) { int ret = 0; u8 mask_interrupts = FUSB_REG_MASK_COLLISION; u8 maska_interrupts = FUSB_REG_MASKA_RETRYFAIL | FUSB_REG_MASKA_HARDSENT | FUSB_REG_MASKA_TX_SUCCESS | FUSB_REG_MASKA_HARDRESET; u8 maskb_interrupts = FUSB_REG_MASKB_GCRCSENT; ret = on ? fusb302_i2c_clear_bits(chip, FUSB_REG_MASK, mask_interrupts) : fusb302_i2c_set_bits(chip, FUSB_REG_MASK, mask_interrupts); if (ret < 0) return ret; ret = on ? fusb302_i2c_clear_bits(chip, FUSB_REG_MASKA, maska_interrupts) : fusb302_i2c_set_bits(chip, FUSB_REG_MASKA, maska_interrupts); if (ret < 0) return ret; ret = on ? fusb302_i2c_clear_bits(chip, FUSB_REG_MASKB, maskb_interrupts) : fusb302_i2c_set_bits(chip, FUSB_REG_MASKB, maskb_interrupts); return ret; } static int tcpm_set_pd_rx(struct tcpc_dev *dev, bool on) { struct fusb302_chip *chip = container_of(dev, struct fusb302_chip, tcpc_dev); int ret = 0; mutex_lock(&chip->lock); ret = fusb302_pd_rx_flush(chip); if (ret < 0) { fusb302_log(chip, "cannot flush pd rx buffer, ret=%d", ret); goto done; } ret = fusb302_pd_tx_flush(chip); if (ret < 0) { fusb302_log(chip, "cannot flush pd tx buffer, ret=%d", ret); goto done; } ret = fusb302_pd_set_auto_goodcrc(chip, on); if (ret < 0) { fusb302_log(chip, "cannot turn %s auto GCRC, ret=%d", on ? "on" : "off", ret); goto done; } ret = fusb302_pd_set_interrupts(chip, on); if (ret < 0) { fusb302_log(chip, "cannot turn %s pd interrupts, ret=%d", on ? "on" : "off", ret); goto done; } fusb302_log(chip, "pd := %s", on ? "on" : "off"); done: mutex_unlock(&chip->lock); return ret; } static const char * const typec_role_name[] = { [TYPEC_SINK] = "Sink", [TYPEC_SOURCE] = "Source", }; static const char * const typec_data_role_name[] = { [TYPEC_DEVICE] = "Device", [TYPEC_HOST] = "Host", }; static int tcpm_set_roles(struct tcpc_dev *dev, bool attached, enum typec_role pwr, enum typec_data_role data) { struct fusb302_chip *chip = container_of(dev, struct fusb302_chip, tcpc_dev); int ret = 0; u8 switches1_mask = FUSB_REG_SWITCHES1_POWERROLE | FUSB_REG_SWITCHES1_DATAROLE; u8 switches1_data = 0x00; mutex_lock(&chip->lock); if (pwr == TYPEC_SOURCE) switches1_data |= FUSB_REG_SWITCHES1_POWERROLE; if (data == TYPEC_HOST) switches1_data |= FUSB_REG_SWITCHES1_DATAROLE; ret = fusb302_i2c_mask_write(chip, FUSB_REG_SWITCHES1, switches1_mask, switches1_data); if (ret < 0) { fusb302_log(chip, "unable to set pd header %s, %s, ret=%d", typec_role_name[pwr], typec_data_role_name[data], ret); goto done; } fusb302_log(chip, "pd header := %s, %s", typec_role_name[pwr], typec_data_role_name[data]); done: mutex_unlock(&chip->lock); return ret; } static int tcpm_start_drp_toggling(struct tcpc_dev *dev, enum typec_cc_status cc) { struct fusb302_chip *chip = container_of(dev, struct fusb302_chip, tcpc_dev); int ret = 0; mutex_lock(&chip->lock); ret = fusb302_set_src_current(chip, cc_src_current[cc]); if (ret < 0) { fusb302_log(chip, "unable to set src current %s, ret=%d", typec_cc_status_name[cc], ret); goto done; } ret = fusb302_set_toggling(chip, TOGGLING_MODE_DRP); if (ret < 0) { fusb302_log(chip, "unable to start drp toggling, ret=%d", ret); goto done; } fusb302_log(chip, "start drp toggling"); done: mutex_unlock(&chip->lock); return ret; } static int fusb302_pd_send_message(struct fusb302_chip *chip, const struct pd_message *msg) { int ret = 0; u8 buf[40]; u8 pos = 0; int len; /* SOP tokens */ buf[pos++] = FUSB302_TKN_SYNC1; buf[pos++] = FUSB302_TKN_SYNC1; buf[pos++] = FUSB302_TKN_SYNC1; buf[pos++] = FUSB302_TKN_SYNC2; len = pd_header_cnt_le(msg->header) * 4; /* plug 2 for header */ len += 2; if (len > 0x1F) { fusb302_log(chip, "PD message too long %d (incl. header)", len); return -EINVAL; } /* packsym tells the FUSB302 chip that the next X bytes are payload */ buf[pos++] = FUSB302_TKN_PACKSYM | (len & 0x1F); memcpy(&buf[pos], &msg->header, sizeof(msg->header)); pos += sizeof(msg->header); len -= 2; memcpy(&buf[pos], msg->payload, len); pos += len; /* CRC */ buf[pos++] = FUSB302_TKN_JAMCRC; /* EOP */ buf[pos++] = FUSB302_TKN_EOP; /* turn tx off after sending message */ buf[pos++] = FUSB302_TKN_TXOFF; /* start transmission */ buf[pos++] = FUSB302_TKN_TXON; ret = fusb302_i2c_block_write(chip, FUSB_REG_FIFOS, pos, buf); if (ret < 0) return ret; fusb302_log(chip, "sending PD message header: %x", msg->header); fusb302_log(chip, "sending PD message len: %d", len); return ret; } static int fusb302_pd_send_hardreset(struct fusb302_chip *chip) { return fusb302_i2c_set_bits(chip, FUSB_REG_CONTROL3, FUSB_REG_CONTROL3_SEND_HARDRESET); } static const char * const transmit_type_name[] = { [TCPC_TX_SOP] = "SOP", [TCPC_TX_SOP_PRIME] = "SOP'", [TCPC_TX_SOP_PRIME_PRIME] = "SOP''", [TCPC_TX_SOP_DEBUG_PRIME] = "DEBUG'", [TCPC_TX_SOP_DEBUG_PRIME_PRIME] = "DEBUG''", [TCPC_TX_HARD_RESET] = "HARD_RESET", [TCPC_TX_CABLE_RESET] = "CABLE_RESET", [TCPC_TX_BIST_MODE_2] = "BIST_MODE_2", }; static int tcpm_pd_transmit(struct tcpc_dev *dev, enum tcpm_transmit_type type, const struct pd_message *msg) { struct fusb302_chip *chip = container_of(dev, struct fusb302_chip, tcpc_dev); int ret = 0; mutex_lock(&chip->lock); switch (type) { case TCPC_TX_SOP: ret = fusb302_pd_send_message(chip, msg); if (ret < 0) fusb302_log(chip, "cannot send PD message, ret=%d", ret); break; case TCPC_TX_HARD_RESET: ret = fusb302_pd_send_hardreset(chip); if (ret < 0) fusb302_log(chip, "cannot send hardreset, ret=%d", ret); break; default: fusb302_log(chip, "type %s not supported", transmit_type_name[type]); ret = -EINVAL; } mutex_unlock(&chip->lock); return ret; } static enum typec_cc_status fusb302_bc_lvl_to_cc(u8 bc_lvl) { if (bc_lvl == FUSB_REG_STATUS0_BC_LVL_1230_MAX) return TYPEC_CC_RP_3_0; if (bc_lvl == FUSB_REG_STATUS0_BC_LVL_600_1230) return TYPEC_CC_RP_1_5; if (bc_lvl == FUSB_REG_STATUS0_BC_LVL_200_600) return TYPEC_CC_RP_DEF; return TYPEC_CC_OPEN; } static void fusb302_bc_lvl_handler_work(struct work_struct *work) { struct fusb302_chip *chip = container_of(work, struct fusb302_chip, bc_lvl_handler.work); int ret = 0; u8 status0; u8 bc_lvl; enum typec_cc_status cc_status; mutex_lock(&chip->lock); if (!chip->intr_bc_lvl) { fusb302_log(chip, "BC_LVL interrupt is turned off, abort"); goto done; } ret = fusb302_i2c_read(chip, FUSB_REG_STATUS0, &status0); if (ret < 0) goto done; fusb302_log(chip, "BC_LVL handler, status0=0x%02x", status0); if (status0 & FUSB_REG_STATUS0_ACTIVITY) { fusb302_log(chip, "CC activities detected, delay handling"); mod_delayed_work(chip->wq, &chip->bc_lvl_handler, msecs_to_jiffies(T_BC_LVL_DEBOUNCE_DELAY_MS)); goto done; } bc_lvl = status0 & FUSB_REG_STATUS0_BC_LVL_MASK; cc_status = fusb302_bc_lvl_to_cc(bc_lvl); if (chip->cc_polarity == TYPEC_POLARITY_CC1) { if (chip->cc1 != cc_status) { fusb302_log(chip, "cc1: %s -> %s", typec_cc_status_name[chip->cc1], typec_cc_status_name[cc_status]); chip->cc1 = cc_status; tcpm_cc_change(chip->tcpm_port); } } else { if (chip->cc2 != cc_status) { fusb302_log(chip, "cc2: %s -> %s", typec_cc_status_name[chip->cc2], typec_cc_status_name[cc_status]); chip->cc2 = cc_status; tcpm_cc_change(chip->tcpm_port); } } done: mutex_unlock(&chip->lock); } #define PDO_FIXED_FLAGS \ (PDO_FIXED_DUAL_ROLE | PDO_FIXED_DATA_SWAP | PDO_FIXED_USB_COMM) static const u32 src_pdo[] = { PDO_FIXED(5000, 400, PDO_FIXED_FLAGS), }; static const u32 snk_pdo[] = { PDO_FIXED(5000, 400, PDO_FIXED_FLAGS), }; static const struct tcpc_config fusb302_tcpc_config = { .src_pdo = src_pdo, .nr_src_pdo = ARRAY_SIZE(src_pdo), .operating_snk_mw = 2500, .type = TYPEC_PORT_DRP, .data = TYPEC_PORT_DRD, .default_role = TYPEC_SINK, .alt_modes = NULL, }; static void init_tcpc_dev(struct tcpc_dev *fusb302_tcpc_dev) { fusb302_tcpc_dev->init = tcpm_init; fusb302_tcpc_dev->get_vbus = tcpm_get_vbus; fusb302_tcpc_dev->get_current_limit = tcpm_get_current_limit; fusb302_tcpc_dev->set_cc = tcpm_set_cc; fusb302_tcpc_dev->get_cc = tcpm_get_cc; fusb302_tcpc_dev->set_polarity = tcpm_set_polarity; fusb302_tcpc_dev->set_vconn = tcpm_set_vconn; fusb302_tcpc_dev->set_vbus = tcpm_set_vbus; fusb302_tcpc_dev->set_current_limit = tcpm_set_current_limit; fusb302_tcpc_dev->set_pd_rx = tcpm_set_pd_rx; fusb302_tcpc_dev->set_roles = tcpm_set_roles; fusb302_tcpc_dev->start_drp_toggling = tcpm_start_drp_toggling; fusb302_tcpc_dev->pd_transmit = tcpm_pd_transmit; } static const char * const cc_polarity_name[] = { [TYPEC_POLARITY_CC1] = "Polarity_CC1", [TYPEC_POLARITY_CC2] = "Polarity_CC2", }; static int fusb302_set_cc_polarity(struct fusb302_chip *chip, enum typec_cc_polarity cc_polarity) { int ret = 0; u8 switches0_mask = FUSB_REG_SWITCHES0_CC1_PU_EN | FUSB_REG_SWITCHES0_CC2_PU_EN | FUSB_REG_SWITCHES0_VCONN_CC1 | FUSB_REG_SWITCHES0_VCONN_CC2 | FUSB_REG_SWITCHES0_MEAS_CC1 | FUSB_REG_SWITCHES0_MEAS_CC2; u8 switches0_data = 0x00; u8 switches1_mask = FUSB_REG_SWITCHES1_TXCC1_EN | FUSB_REG_SWITCHES1_TXCC2_EN; u8 switches1_data = 0x00; if (cc_polarity == TYPEC_POLARITY_CC1) { switches0_data = FUSB_REG_SWITCHES0_MEAS_CC1; if (chip->vconn_on) switches0_data |= FUSB_REG_SWITCHES0_VCONN_CC2; if (chip->pull_up) switches0_data |= FUSB_REG_SWITCHES0_CC1_PU_EN; switches1_data = FUSB_REG_SWITCHES1_TXCC1_EN; } else { switches0_data = FUSB_REG_SWITCHES0_MEAS_CC2; if (chip->vconn_on) switches0_data |= FUSB_REG_SWITCHES0_VCONN_CC1; if (chip->pull_up) switches0_data |= FUSB_REG_SWITCHES0_CC2_PU_EN; switches1_data = FUSB_REG_SWITCHES1_TXCC2_EN; } ret = fusb302_i2c_mask_write(chip, FUSB_REG_SWITCHES0, switches0_mask, switches0_data); if (ret < 0) return ret; ret = fusb302_i2c_mask_write(chip, FUSB_REG_SWITCHES1, switches1_mask, switches1_data); if (ret < 0) return ret; chip->cc_polarity = cc_polarity; return ret; } static int fusb302_handle_togdone_snk(struct fusb302_chip *chip, u8 togdone_result) { int ret = 0; u8 status0; u8 bc_lvl; enum typec_cc_polarity cc_polarity; enum typec_cc_status cc_status_active, cc1, cc2; /* set pull_up, pull_down */ ret = fusb302_set_cc_pull(chip, false, true); if (ret < 0) { fusb302_log(chip, "cannot set cc to pull down, ret=%d", ret); return ret; } /* set polarity */ cc_polarity = (togdone_result == FUSB_REG_STATUS1A_TOGSS_SNK1) ? TYPEC_POLARITY_CC1 : TYPEC_POLARITY_CC2; ret = fusb302_set_cc_polarity(chip, cc_polarity); if (ret < 0) { fusb302_log(chip, "cannot set cc polarity %s, ret=%d", cc_polarity_name[cc_polarity], ret); return ret; } /* fusb302_set_cc_polarity() has set the correct measure block */ ret = fusb302_i2c_read(chip, FUSB_REG_STATUS0, &status0); if (ret < 0) return ret; bc_lvl = status0 & FUSB_REG_STATUS0_BC_LVL_MASK; cc_status_active = fusb302_bc_lvl_to_cc(bc_lvl); /* restart toggling if the cc status on the active line is OPEN */ if (cc_status_active == TYPEC_CC_OPEN) { fusb302_log(chip, "restart toggling as CC_OPEN detected"); ret = fusb302_set_toggling(chip, chip->toggling_mode); return ret; } /* update tcpm with the new cc value */ cc1 = (cc_polarity == TYPEC_POLARITY_CC1) ? cc_status_active : TYPEC_CC_OPEN; cc2 = (cc_polarity == TYPEC_POLARITY_CC2) ? cc_status_active : TYPEC_CC_OPEN; if ((chip->cc1 != cc1) || (chip->cc2 != cc2)) { chip->cc1 = cc1; chip->cc2 = cc2; tcpm_cc_change(chip->tcpm_port); } /* turn off toggling */ ret = fusb302_set_toggling(chip, TOGGLINE_MODE_OFF); if (ret < 0) { fusb302_log(chip, "cannot set toggling mode off, ret=%d", ret); return ret; } /* unmask bc_lvl interrupt */ ret = fusb302_i2c_clear_bits(chip, FUSB_REG_MASK, FUSB_REG_MASK_BC_LVL); if (ret < 0) { fusb302_log(chip, "cannot unmask bc_lcl interrupt, ret=%d", ret); return ret; } chip->intr_bc_lvl = true; fusb302_log(chip, "detected cc1=%s, cc2=%s", typec_cc_status_name[cc1], typec_cc_status_name[cc2]); return ret; } static int fusb302_handle_togdone_src(struct fusb302_chip *chip, u8 togdone_result) { /* * - set polarity (measure cc, vconn, tx) * - set pull_up, pull_down * - set cc1, cc2, and update to tcpm_port * - set I_COMP interrupt on */ int ret = 0; u8 status0; u8 ra_mda = ra_mda_value[chip->src_current_status]; u8 rd_mda = rd_mda_value[chip->src_current_status]; bool ra_comp, rd_comp; enum typec_cc_polarity cc_polarity; enum typec_cc_status cc_status_active, cc1, cc2; /* set pull_up, pull_down */ ret = fusb302_set_cc_pull(chip, true, false); if (ret < 0) { fusb302_log(chip, "cannot set cc to pull up, ret=%d", ret); return ret; } /* set polarity */ cc_polarity = (togdone_result == FUSB_REG_STATUS1A_TOGSS_SRC1) ? TYPEC_POLARITY_CC1 : TYPEC_POLARITY_CC2; ret = fusb302_set_cc_polarity(chip, cc_polarity); if (ret < 0) { fusb302_log(chip, "cannot set cc polarity %s, ret=%d", cc_polarity_name[cc_polarity], ret); return ret; } /* fusb302_set_cc_polarity() has set the correct measure block */ ret = fusb302_i2c_write(chip, FUSB_REG_MEASURE, rd_mda); if (ret < 0) return ret; usleep_range(50, 100); ret = fusb302_i2c_read(chip, FUSB_REG_STATUS0, &status0); if (ret < 0) return ret; rd_comp = !!(status0 & FUSB_REG_STATUS0_COMP); if (!rd_comp) { ret = fusb302_i2c_write(chip, FUSB_REG_MEASURE, ra_mda); if (ret < 0) return ret; usleep_range(50, 100); ret = fusb302_i2c_read(chip, FUSB_REG_STATUS0, &status0); if (ret < 0) return ret; ra_comp = !!(status0 & FUSB_REG_STATUS0_COMP); } if (rd_comp) cc_status_active = TYPEC_CC_OPEN; else if (ra_comp) cc_status_active = TYPEC_CC_RD; else /* Ra is not supported, report as Open */ cc_status_active = TYPEC_CC_OPEN; /* restart toggling if the cc status on the active line is OPEN */ if (cc_status_active == TYPEC_CC_OPEN) { fusb302_log(chip, "restart toggling as CC_OPEN detected"); ret = fusb302_set_toggling(chip, chip->toggling_mode); return ret; } /* update tcpm with the new cc value */ cc1 = (cc_polarity == TYPEC_POLARITY_CC1) ? cc_status_active : TYPEC_CC_OPEN; cc2 = (cc_polarity == TYPEC_POLARITY_CC2) ? cc_status_active : TYPEC_CC_OPEN; if ((chip->cc1 != cc1) || (chip->cc2 != cc2)) { chip->cc1 = cc1; chip->cc2 = cc2; tcpm_cc_change(chip->tcpm_port); } /* turn off toggling */ ret = fusb302_set_toggling(chip, TOGGLINE_MODE_OFF); if (ret < 0) { fusb302_log(chip, "cannot set toggling mode off, ret=%d", ret); return ret; } /* set MDAC to Rd threshold, and unmask I_COMP for unplug detection */ ret = fusb302_i2c_write(chip, FUSB_REG_MEASURE, rd_mda); if (ret < 0) return ret; /* unmask comp_chng interrupt */ ret = fusb302_i2c_clear_bits(chip, FUSB_REG_MASK, FUSB_REG_MASK_COMP_CHNG); if (ret < 0) { fusb302_log(chip, "cannot unmask bc_lcl interrupt, ret=%d", ret); return ret; } chip->intr_comp_chng = true; fusb302_log(chip, "detected cc1=%s, cc2=%s", typec_cc_status_name[cc1], typec_cc_status_name[cc2]); return ret; } static int fusb302_handle_togdone(struct fusb302_chip *chip) { int ret = 0; u8 status1a; u8 togdone_result; ret = fusb302_i2c_read(chip, FUSB_REG_STATUS1A, &status1a); if (ret < 0) return ret; togdone_result = (status1a >> FUSB_REG_STATUS1A_TOGSS_POS) & FUSB_REG_STATUS1A_TOGSS_MASK; switch (togdone_result) { case FUSB_REG_STATUS1A_TOGSS_SNK1: case FUSB_REG_STATUS1A_TOGSS_SNK2: return fusb302_handle_togdone_snk(chip, togdone_result); case FUSB_REG_STATUS1A_TOGSS_SRC1: case FUSB_REG_STATUS1A_TOGSS_SRC2: return fusb302_handle_togdone_src(chip, togdone_result); case FUSB_REG_STATUS1A_TOGSS_AA: /* doesn't support */ fusb302_log(chip, "AudioAccessory not supported"); fusb302_set_toggling(chip, chip->toggling_mode); break; default: fusb302_log(chip, "TOGDONE with an invalid state: %d", togdone_result); fusb302_set_toggling(chip, chip->toggling_mode); break; } return ret; } static int fusb302_pd_reset(struct fusb302_chip *chip) { return fusb302_i2c_set_bits(chip, FUSB_REG_RESET, FUSB_REG_RESET_PD_RESET); } static int fusb302_pd_read_message(struct fusb302_chip *chip, struct pd_message *msg) { int ret = 0; u8 token; u8 crc[4]; int len; /* first SOP token */ ret = fusb302_i2c_read(chip, FUSB_REG_FIFOS, &token); if (ret < 0) return ret; ret = fusb302_i2c_block_read(chip, FUSB_REG_FIFOS, 2, (u8 *)&msg->header); if (ret < 0) return ret; len = pd_header_cnt_le(msg->header) * 4; /* add 4 to length to include the CRC */ if (len > PD_MAX_PAYLOAD * 4) { fusb302_log(chip, "PD message too long %d", len); return -EINVAL; } if (len > 0) { ret = fusb302_i2c_block_read(chip, FUSB_REG_FIFOS, len, (u8 *)msg->payload); if (ret < 0) return ret; } /* another 4 bytes to read CRC out */ ret = fusb302_i2c_block_read(chip, FUSB_REG_FIFOS, 4, crc); if (ret < 0) return ret; fusb302_log(chip, "PD message header: %x", msg->header); fusb302_log(chip, "PD message len: %d", len); /* * Check if we've read off a GoodCRC message. If so then indicate to * TCPM that the previous transmission has completed. Otherwise we pass * the received message over to TCPM for processing. * * We make this check here instead of basing the reporting decision on * the IRQ event type, as it's possible for the chip to report the * TX_SUCCESS and GCRCSENT events out of order on occasion, so we need * to check the message type to ensure correct reporting to TCPM. */ if ((!len) && (pd_header_type_le(msg->header) == PD_CTRL_GOOD_CRC)) tcpm_pd_transmit_complete(chip->tcpm_port, TCPC_TX_SUCCESS); else tcpm_pd_receive(chip->tcpm_port, msg); return ret; } static irqreturn_t fusb302_irq_intn(int irq, void *dev_id) { struct fusb302_chip *chip = dev_id; int ret = 0; u8 interrupt; u8 interrupta; u8 interruptb; u8 status0; bool vbus_present; bool comp_result; bool intr_togdone; bool intr_bc_lvl; bool intr_comp_chng; struct pd_message pd_msg; mutex_lock(&chip->lock); /* grab a snapshot of intr flags */ intr_togdone = chip->intr_togdone; intr_bc_lvl = chip->intr_bc_lvl; intr_comp_chng = chip->intr_comp_chng; ret = fusb302_i2c_read(chip, FUSB_REG_INTERRUPT, &interrupt); if (ret < 0) goto done; ret = fusb302_i2c_read(chip, FUSB_REG_INTERRUPTA, &interrupta); if (ret < 0) goto done; ret = fusb302_i2c_read(chip, FUSB_REG_INTERRUPTB, &interruptb); if (ret < 0) goto done; ret = fusb302_i2c_read(chip, FUSB_REG_STATUS0, &status0); if (ret < 0) goto done; fusb302_log(chip, "IRQ: 0x%02x, a: 0x%02x, b: 0x%02x, status0: 0x%02x", interrupt, interrupta, interruptb, status0); if (interrupt & FUSB_REG_INTERRUPT_VBUSOK) { vbus_present = !!(status0 & FUSB_REG_STATUS0_VBUSOK); fusb302_log(chip, "IRQ: VBUS_OK, vbus=%s", vbus_present ? "On" : "Off"); if (vbus_present != chip->vbus_present) { chip->vbus_present = vbus_present; tcpm_vbus_change(chip->tcpm_port); } } if ((interrupta & FUSB_REG_INTERRUPTA_TOGDONE) && intr_togdone) { fusb302_log(chip, "IRQ: TOGDONE"); ret = fusb302_handle_togdone(chip); if (ret < 0) { fusb302_log(chip, "handle togdone error, ret=%d", ret); goto done; } } if ((interrupt & FUSB_REG_INTERRUPT_BC_LVL) && intr_bc_lvl) { fusb302_log(chip, "IRQ: BC_LVL, handler pending"); /* * as BC_LVL interrupt can be affected by PD activity, * apply delay to for the handler to wait for the PD * signaling to finish. */ mod_delayed_work(chip->wq, &chip->bc_lvl_handler, msecs_to_jiffies(T_BC_LVL_DEBOUNCE_DELAY_MS)); } if ((interrupt & FUSB_REG_INTERRUPT_COMP_CHNG) && intr_comp_chng) { comp_result = !!(status0 & FUSB_REG_STATUS0_COMP); fusb302_log(chip, "IRQ: COMP_CHNG, comp=%s", comp_result ? "true" : "false"); if (comp_result) { /* cc level > Rd_threashold, detach */ if (chip->cc_polarity == TYPEC_POLARITY_CC1) chip->cc1 = TYPEC_CC_OPEN; else chip->cc2 = TYPEC_CC_OPEN; tcpm_cc_change(chip->tcpm_port); } } if (interrupt & FUSB_REG_INTERRUPT_COLLISION) { fusb302_log(chip, "IRQ: PD collision"); tcpm_pd_transmit_complete(chip->tcpm_port, TCPC_TX_FAILED); } if (interrupta & FUSB_REG_INTERRUPTA_RETRYFAIL) { fusb302_log(chip, "IRQ: PD retry failed"); tcpm_pd_transmit_complete(chip->tcpm_port, TCPC_TX_FAILED); } if (interrupta & FUSB_REG_INTERRUPTA_HARDSENT) { fusb302_log(chip, "IRQ: PD hardreset sent"); ret = fusb302_pd_reset(chip); if (ret < 0) { fusb302_log(chip, "cannot PD reset, ret=%d", ret); goto done; } tcpm_pd_transmit_complete(chip->tcpm_port, TCPC_TX_SUCCESS); } if (interrupta & FUSB_REG_INTERRUPTA_TX_SUCCESS) { fusb302_log(chip, "IRQ: PD tx success"); ret = fusb302_pd_read_message(chip, &pd_msg); if (ret < 0) { fusb302_log(chip, "cannot read in PD message, ret=%d", ret); goto done; } } if (interrupta & FUSB_REG_INTERRUPTA_HARDRESET) { fusb302_log(chip, "IRQ: PD received hardreset"); ret = fusb302_pd_reset(chip); if (ret < 0) { fusb302_log(chip, "cannot PD reset, ret=%d", ret); goto done; } tcpm_pd_hard_reset(chip->tcpm_port); } if (interruptb & FUSB_REG_INTERRUPTB_GCRCSENT) { fusb302_log(chip, "IRQ: PD sent good CRC"); ret = fusb302_pd_read_message(chip, &pd_msg); if (ret < 0) { fusb302_log(chip, "cannot read in PD message, ret=%d", ret); goto done; } } done: mutex_unlock(&chip->lock); return IRQ_HANDLED; } static int init_gpio(struct fusb302_chip *chip) { struct device_node *node; int ret = 0; node = chip->dev->of_node; chip->gpio_int_n = of_get_named_gpio(node, "fcs,int_n", 0); if (!gpio_is_valid(chip->gpio_int_n)) { ret = chip->gpio_int_n; dev_err(chip->dev, "cannot get named GPIO Int_N, ret=%d", ret); return ret; } ret = devm_gpio_request(chip->dev, chip->gpio_int_n, "fcs,int_n"); if (ret < 0) { dev_err(chip->dev, "cannot request GPIO Int_N, ret=%d", ret); return ret; } ret = gpio_direction_input(chip->gpio_int_n); if (ret < 0) { dev_err(chip->dev, "cannot set GPIO Int_N to input, ret=%d", ret); return ret; } ret = gpio_to_irq(chip->gpio_int_n); if (ret < 0) { dev_err(chip->dev, "cannot request IRQ for GPIO Int_N, ret=%d", ret); return ret; } chip->gpio_int_n_irq = ret; return 0; } static int fusb302_composite_snk_pdo_array(struct fusb302_chip *chip) { struct device *dev = chip->dev; u32 max_uv, max_ua; chip->snk_pdo[0] = PDO_FIXED(5000, 400, PDO_FIXED_FLAGS); /* * As max_snk_ma/mv/mw is not needed for tcpc_config, * those settings should be passed in via sink PDO, so * "fcs, max-sink-*" properties will be deprecated, to * perserve compatibility with existing users of them, * we read those properties to convert them to be a var * PDO. */ if (device_property_read_u32(dev, "fcs,max-sink-microvolt", &max_uv) || device_property_read_u32(dev, "fcs,max-sink-microamp", &max_ua)) return 1; chip->snk_pdo[1] = PDO_VAR(5000, max_uv / 1000, max_ua / 1000); return 2; } static int fusb302_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct fusb302_chip *chip; struct i2c_adapter *adapter; struct device *dev = &client->dev; const char *name; int ret = 0; u32 v; adapter = to_i2c_adapter(client->dev.parent); if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_I2C_BLOCK)) { dev_err(&client->dev, "I2C/SMBus block functionality not supported!\n"); return -ENODEV; } chip = devm_kzalloc(&client->dev, sizeof(*chip), GFP_KERNEL); if (!chip) return -ENOMEM; chip->i2c_client = client; i2c_set_clientdata(client, chip); chip->dev = &client->dev; chip->tcpc_config = fusb302_tcpc_config; chip->tcpc_dev.config = &chip->tcpc_config; mutex_init(&chip->lock); if (!device_property_read_u32(dev, "fcs,operating-sink-microwatt", &v)) chip->tcpc_config.operating_snk_mw = v / 1000; /* Composite sink PDO */ chip->tcpc_config.nr_snk_pdo = fusb302_composite_snk_pdo_array(chip); chip->tcpc_config.snk_pdo = chip->snk_pdo; /* * Devicetree platforms should get extcon via phandle (not yet * supported). On ACPI platforms, we get the name from a device prop. * This device prop is for kernel internal use only and is expected * to be set by the platform code which also registers the i2c client * for the fusb302. */ if (device_property_read_string(dev, "fcs,extcon-name", &name) == 0) { chip->extcon = extcon_get_extcon_dev(name); if (!chip->extcon) return -EPROBE_DEFER; } fusb302_debugfs_init(chip); chip->wq = create_singlethread_workqueue(dev_name(chip->dev)); if (!chip->wq) { ret = -ENOMEM; goto clear_client_data; } INIT_DELAYED_WORK(&chip->bc_lvl_handler, fusb302_bc_lvl_handler_work); init_tcpc_dev(&chip->tcpc_dev); chip->vbus = devm_regulator_get(chip->dev, "vbus"); if (IS_ERR(chip->vbus)) { ret = PTR_ERR(chip->vbus); goto destroy_workqueue; } if (client->irq) { chip->gpio_int_n_irq = client->irq; } else { ret = init_gpio(chip); if (ret < 0) goto destroy_workqueue; } chip->tcpm_port = tcpm_register_port(&client->dev, &chip->tcpc_dev); if (IS_ERR(chip->tcpm_port)) { ret = PTR_ERR(chip->tcpm_port); if (ret != -EPROBE_DEFER) dev_err(dev, "cannot register tcpm port, ret=%d", ret); goto destroy_workqueue; } ret = devm_request_threaded_irq(chip->dev, chip->gpio_int_n_irq, NULL, fusb302_irq_intn, IRQF_ONESHOT | IRQF_TRIGGER_LOW, "fsc_interrupt_int_n", chip); if (ret < 0) { dev_err(dev, "cannot request IRQ for GPIO Int_N, ret=%d", ret); goto tcpm_unregister_port; } enable_irq_wake(chip->gpio_int_n_irq); return ret; tcpm_unregister_port: tcpm_unregister_port(chip->tcpm_port); destroy_workqueue: destroy_workqueue(chip->wq); clear_client_data: i2c_set_clientdata(client, NULL); fusb302_debugfs_exit(chip); return ret; } static int fusb302_remove(struct i2c_client *client) { struct fusb302_chip *chip = i2c_get_clientdata(client); tcpm_unregister_port(chip->tcpm_port); destroy_workqueue(chip->wq); i2c_set_clientdata(client, NULL); fusb302_debugfs_exit(chip); return 0; } static int fusb302_pm_suspend(struct device *dev) { struct fusb302_chip *chip = dev->driver_data; if (atomic_read(&chip->i2c_busy)) return -EBUSY; atomic_set(&chip->pm_suspend, 1); return 0; } static int fusb302_pm_resume(struct device *dev) { struct fusb302_chip *chip = dev->driver_data; atomic_set(&chip->pm_suspend, 0); return 0; } static const struct of_device_id fusb302_dt_match[] = { {.compatible = "fcs,fusb302"}, {}, }; MODULE_DEVICE_TABLE(of, fusb302_dt_match); static const struct i2c_device_id fusb302_i2c_device_id[] = { {"typec_fusb302", 0}, {}, }; MODULE_DEVICE_TABLE(i2c, fusb302_i2c_device_id); static const struct dev_pm_ops fusb302_pm_ops = { .suspend = fusb302_pm_suspend, .resume = fusb302_pm_resume, }; static struct i2c_driver fusb302_driver = { .driver = { .name = "typec_fusb302", .pm = &fusb302_pm_ops, .of_match_table = of_match_ptr(fusb302_dt_match), }, .probe = fusb302_probe, .remove = fusb302_remove, .id_table = fusb302_i2c_device_id, }; module_i2c_driver(fusb302_driver); MODULE_AUTHOR("Yueyao Zhu "); MODULE_DESCRIPTION("Fairchild FUSB302 Type-C Chip Driver"); MODULE_LICENSE("GPL");