/* * Copyright (c) 2010-2011 Atheros Communications Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include "hw.h" #include "ar9003_phy.h" void ar9003_paprd_enable(struct ath_hw *ah, bool val) { struct ath9k_channel *chan = ah->curchan; struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep; /* * 3 bits for modalHeader5G.papdRateMaskHt20 * is used for sub-band disabling of PAPRD. * 5G band is divided into 3 sub-bands -- upper, * middle, lower. * if bit 30 of modalHeader5G.papdRateMaskHt20 is set * -- disable PAPRD for upper band 5GHz * if bit 29 of modalHeader5G.papdRateMaskHt20 is set * -- disable PAPRD for middle band 5GHz * if bit 28 of modalHeader5G.papdRateMaskHt20 is set * -- disable PAPRD for lower band 5GHz */ if (IS_CHAN_5GHZ(chan)) { if (chan->channel >= UPPER_5G_SUB_BAND_START) { if (le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20) & BIT(30)) val = false; } else if (chan->channel >= MID_5G_SUB_BAND_START) { if (le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20) & BIT(29)) val = false; } else { if (le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20) & BIT(28)) val = false; } } if (val) { ah->paprd_table_write_done = true; ath9k_hw_apply_txpower(ah, chan, false); } REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B0, AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val); if (ah->caps.tx_chainmask & BIT(1)) REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B1, AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val); if (ah->caps.tx_chainmask & BIT(2)) REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B2, AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val); } EXPORT_SYMBOL(ar9003_paprd_enable); static int ar9003_get_training_power_2g(struct ath_hw *ah) { struct ath9k_channel *chan = ah->curchan; unsigned int power, scale, delta; scale = ar9003_get_paprd_scale_factor(ah, chan); if (AR_SREV_9330(ah) || AR_SREV_9340(ah) || AR_SREV_9462(ah) || AR_SREV_9565(ah)) { power = ah->paprd_target_power + 2; } else if (AR_SREV_9485(ah)) { power = 25; } else { power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE5, AR_PHY_POWERTX_RATE5_POWERTXHT20_0); delta = abs((int) ah->paprd_target_power - (int) power); if (delta > scale) return -1; if (delta < 4) power -= 4 - delta; } return power; } static int ar9003_get_training_power_5g(struct ath_hw *ah) { struct ath_common *common = ath9k_hw_common(ah); struct ath9k_channel *chan = ah->curchan; unsigned int power, scale, delta; scale = ar9003_get_paprd_scale_factor(ah, chan); if (IS_CHAN_HT40(chan)) power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE8, AR_PHY_POWERTX_RATE8_POWERTXHT40_5); else power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE6, AR_PHY_POWERTX_RATE6_POWERTXHT20_5); power += scale; delta = abs((int) ah->paprd_target_power - (int) power); if (delta > scale) return -1; switch (get_streams(ah->txchainmask)) { case 1: delta = 6; break; case 2: delta = 4; break; case 3: delta = 2; break; default: delta = 0; ath_dbg(common, CALIBRATE, "Invalid tx-chainmask: %u\n", ah->txchainmask); } power += delta; return power; } static int ar9003_paprd_setup_single_table(struct ath_hw *ah) { struct ath_common *common = ath9k_hw_common(ah); static const u32 ctrl0[3] = { AR_PHY_PAPRD_CTRL0_B0, AR_PHY_PAPRD_CTRL0_B1, AR_PHY_PAPRD_CTRL0_B2 }; static const u32 ctrl1[3] = { AR_PHY_PAPRD_CTRL1_B0, AR_PHY_PAPRD_CTRL1_B1, AR_PHY_PAPRD_CTRL1_B2 }; int training_power; int i, val; u32 am2pm_mask = ah->paprd_ratemask; if (IS_CHAN_2GHZ(ah->curchan)) training_power = ar9003_get_training_power_2g(ah); else training_power = ar9003_get_training_power_5g(ah); ath_dbg(common, CALIBRATE, "Training power: %d, Target power: %d\n", training_power, ah->paprd_target_power); if (training_power < 0) { ath_dbg(common, CALIBRATE, "PAPRD target power delta out of range\n"); return -ERANGE; } ah->paprd_training_power = training_power; if (AR_SREV_9330(ah)) am2pm_mask = 0; REG_RMW_FIELD(ah, AR_PHY_PAPRD_AM2AM, AR_PHY_PAPRD_AM2AM_MASK, ah->paprd_ratemask); REG_RMW_FIELD(ah, AR_PHY_PAPRD_AM2PM, AR_PHY_PAPRD_AM2PM_MASK, am2pm_mask); REG_RMW_FIELD(ah, AR_PHY_PAPRD_HT40, AR_PHY_PAPRD_HT40_MASK, ah->paprd_ratemask_ht40); ath_dbg(common, CALIBRATE, "PAPRD HT20 mask: 0x%x, HT40 mask: 0x%x\n", ah->paprd_ratemask, ah->paprd_ratemask_ht40); for (i = 0; i < ah->caps.max_txchains; i++) { REG_RMW_FIELD(ah, ctrl0[i], AR_PHY_PAPRD_CTRL0_USE_SINGLE_TABLE_MASK, 1); REG_RMW_FIELD(ah, ctrl1[i], AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2PM_ENABLE, 1); REG_RMW_FIELD(ah, ctrl1[i], AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2AM_ENABLE, 1); REG_RMW_FIELD(ah, ctrl1[i], AR_PHY_PAPRD_CTRL1_ADAPTIVE_SCALING_ENA, 0); REG_RMW_FIELD(ah, ctrl1[i], AR_PHY_PAPRD_CTRL1_PA_GAIN_SCALE_FACT_MASK, 181); REG_RMW_FIELD(ah, ctrl1[i], AR_PHY_PAPRD_CTRL1_PAPRD_MAG_SCALE_FACT, 361); REG_RMW_FIELD(ah, ctrl1[i], AR_PHY_PAPRD_CTRL1_ADAPTIVE_SCALING_ENA, 0); REG_RMW_FIELD(ah, ctrl0[i], AR_PHY_PAPRD_CTRL0_PAPRD_MAG_THRSH, 3); } ar9003_paprd_enable(ah, false); REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1, AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_LB_SKIP, 0x30); REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1, AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_LB_ENABLE, 1); REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1, AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_TX_GAIN_FORCE, 1); REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1, AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_RX_BB_GAIN_FORCE, 0); REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1, AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_IQCORR_ENABLE, 0); REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1, AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_AGC2_SETTLING, 28); REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1, AR_PHY_PAPRD_TRAINER_CNTL1_CF_CF_PAPRD_TRAIN_ENABLE, 1); if (AR_SREV_9485(ah)) { val = 148; } else { if (IS_CHAN_2GHZ(ah->curchan)) { if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) val = 145; else val = 147; } else { val = 137; } } REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL2, AR_PHY_PAPRD_TRAINER_CNTL2_CF_PAPRD_INIT_RX_BB_GAIN, val); REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3, AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_FINE_CORR_LEN, 4); REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3, AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_COARSE_CORR_LEN, 4); REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3, AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_NUM_CORR_STAGES, 7); REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3, AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_MIN_LOOPBACK_DEL, 1); if (AR_SREV_9485(ah) || AR_SREV_9462(ah) || AR_SREV_9565(ah) || AR_SREV_9550(ah) || AR_SREV_9330(ah) || AR_SREV_9340(ah)) REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3, AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP, -3); else REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3, AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP, -6); val = -10; if (IS_CHAN_2GHZ(ah->curchan) && !AR_SREV_9462(ah) && !AR_SREV_9565(ah)) val = -15; REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3, AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_ADC_DESIRED_SIZE, val); REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3, AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_BBTXMIX_DISABLE, 1); REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4, AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_SAFETY_DELTA, 0); REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4, AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_MIN_CORR, 400); REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4, AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_NUM_TRAIN_SAMPLES, 100); REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_0_B0, AR_PHY_PAPRD_PRE_POST_SCALING, 261376); REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_1_B0, AR_PHY_PAPRD_PRE_POST_SCALING, 248079); REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_2_B0, AR_PHY_PAPRD_PRE_POST_SCALING, 233759); REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_3_B0, AR_PHY_PAPRD_PRE_POST_SCALING, 220464); REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_4_B0, AR_PHY_PAPRD_PRE_POST_SCALING, 208194); REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_5_B0, AR_PHY_PAPRD_PRE_POST_SCALING, 196949); REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_6_B0, AR_PHY_PAPRD_PRE_POST_SCALING, 185706); REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_7_B0, AR_PHY_PAPRD_PRE_POST_SCALING, 175487); return 0; } static void ar9003_paprd_get_gain_table(struct ath_hw *ah) { u32 *entry = ah->paprd_gain_table_entries; u8 *index = ah->paprd_gain_table_index; u32 reg = AR_PHY_TXGAIN_TABLE; int i; for (i = 0; i < PAPRD_GAIN_TABLE_ENTRIES; i++) { entry[i] = REG_READ(ah, reg); index[i] = (entry[i] >> 24) & 0xff; reg += 4; } } static unsigned int ar9003_get_desired_gain(struct ath_hw *ah, int chain, int target_power) { int olpc_gain_delta = 0, cl_gain_mod; int alpha_therm, alpha_volt; int therm_cal_value, volt_cal_value; int therm_value, volt_value; int thermal_gain_corr, voltage_gain_corr; int desired_scale, desired_gain = 0; u32 reg_olpc = 0, reg_cl_gain = 0; REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1, AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE); desired_scale = REG_READ_FIELD(ah, AR_PHY_TPC_12, AR_PHY_TPC_12_DESIRED_SCALE_HT40_5); alpha_therm = REG_READ_FIELD(ah, AR_PHY_TPC_19, AR_PHY_TPC_19_ALPHA_THERM); alpha_volt = REG_READ_FIELD(ah, AR_PHY_TPC_19, AR_PHY_TPC_19_ALPHA_VOLT); therm_cal_value = REG_READ_FIELD(ah, AR_PHY_TPC_18, AR_PHY_TPC_18_THERM_CAL_VALUE); volt_cal_value = REG_READ_FIELD(ah, AR_PHY_TPC_18, AR_PHY_TPC_18_VOLT_CAL_VALUE); therm_value = REG_READ_FIELD(ah, AR_PHY_BB_THERM_ADC_4, AR_PHY_BB_THERM_ADC_4_LATEST_THERM_VALUE); volt_value = REG_READ_FIELD(ah, AR_PHY_BB_THERM_ADC_4, AR_PHY_BB_THERM_ADC_4_LATEST_VOLT_VALUE); switch (chain) { case 0: reg_olpc = AR_PHY_TPC_11_B0; reg_cl_gain = AR_PHY_CL_TAB_0; break; case 1: reg_olpc = AR_PHY_TPC_11_B1; reg_cl_gain = AR_PHY_CL_TAB_1; break; case 2: reg_olpc = AR_PHY_TPC_11_B2; reg_cl_gain = AR_PHY_CL_TAB_2; break; default: ath_dbg(ath9k_hw_common(ah), CALIBRATE, "Invalid chainmask: %d\n", chain); break; } olpc_gain_delta = REG_READ_FIELD(ah, reg_olpc, AR_PHY_TPC_11_OLPC_GAIN_DELTA); cl_gain_mod = REG_READ_FIELD(ah, reg_cl_gain, AR_PHY_CL_TAB_CL_GAIN_MOD); if (olpc_gain_delta >= 128) olpc_gain_delta = olpc_gain_delta - 256; thermal_gain_corr = (alpha_therm * (therm_value - therm_cal_value) + (256 / 2)) / 256; voltage_gain_corr = (alpha_volt * (volt_value - volt_cal_value) + (128 / 2)) / 128; desired_gain = target_power - olpc_gain_delta - thermal_gain_corr - voltage_gain_corr + desired_scale + cl_gain_mod; return desired_gain; } static void ar9003_tx_force_gain(struct ath_hw *ah, unsigned int gain_index) { int selected_gain_entry, txbb1dbgain, txbb6dbgain, txmxrgain; int padrvgnA, padrvgnB, padrvgnC, padrvgnD; u32 *gain_table_entries = ah->paprd_gain_table_entries; selected_gain_entry = gain_table_entries[gain_index]; txbb1dbgain = selected_gain_entry & 0x7; txbb6dbgain = (selected_gain_entry >> 3) & 0x3; txmxrgain = (selected_gain_entry >> 5) & 0xf; padrvgnA = (selected_gain_entry >> 9) & 0xf; padrvgnB = (selected_gain_entry >> 13) & 0xf; padrvgnC = (selected_gain_entry >> 17) & 0xf; padrvgnD = (selected_gain_entry >> 21) & 0x3; REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN, AR_PHY_TX_FORCED_GAIN_FORCED_TXBB1DBGAIN, txbb1dbgain); REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN, AR_PHY_TX_FORCED_GAIN_FORCED_TXBB6DBGAIN, txbb6dbgain); REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN, AR_PHY_TX_FORCED_GAIN_FORCED_TXMXRGAIN, txmxrgain); REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN, AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNA, padrvgnA); REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN, AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNB, padrvgnB); REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN, AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNC, padrvgnC); REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN, AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGND, padrvgnD); REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN, AR_PHY_TX_FORCED_GAIN_FORCED_ENABLE_PAL, 0); REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN, AR_PHY_TX_FORCED_GAIN_FORCE_TX_GAIN, 0); REG_RMW_FIELD(ah, AR_PHY_TPC_1, AR_PHY_TPC_1_FORCED_DAC_GAIN, 0); REG_RMW_FIELD(ah, AR_PHY_TPC_1, AR_PHY_TPC_1_FORCE_DAC_GAIN, 0); } static inline int find_expn(int num) { return fls(num) - 1; } static inline int find_proper_scale(int expn, int N) { return (expn > N) ? expn - 10 : 0; } #define NUM_BIN 23 static bool create_pa_curve(u32 *data_L, u32 *data_U, u32 *pa_table, u16 *gain) { unsigned int thresh_accum_cnt; int x_est[NUM_BIN + 1], Y[NUM_BIN + 1], theta[NUM_BIN + 1]; int PA_in[NUM_BIN + 1]; int B1_tmp[NUM_BIN + 1], B2_tmp[NUM_BIN + 1]; unsigned int B1_abs_max, B2_abs_max; int max_index, scale_factor; int y_est[NUM_BIN + 1]; int x_est_fxp1_nonlin, x_tilde[NUM_BIN + 1]; unsigned int x_tilde_abs; int G_fxp, Y_intercept, order_x_by_y, M, I, L, sum_y_sqr, sum_y_quad; int Q_x, Q_B1, Q_B2, beta_raw, alpha_raw, scale_B; int Q_scale_B, Q_beta, Q_alpha, alpha, beta, order_1, order_2; int order1_5x, order2_3x, order1_5x_rem, order2_3x_rem; int y5, y3, tmp; int theta_low_bin = 0; int i; /* disregard any bin that contains <= 16 samples */ thresh_accum_cnt = 16; scale_factor = 5; max_index = 0; memset(theta, 0, sizeof(theta)); memset(x_est, 0, sizeof(x_est)); memset(Y, 0, sizeof(Y)); memset(y_est, 0, sizeof(y_est)); memset(x_tilde, 0, sizeof(x_tilde)); for (i = 0; i < NUM_BIN; i++) { s32 accum_cnt, accum_tx, accum_rx, accum_ang; /* number of samples */ accum_cnt = data_L[i] & 0xffff; if (accum_cnt <= thresh_accum_cnt) continue; max_index++; /* sum(tx amplitude) */ accum_tx = ((data_L[i] >> 16) & 0xffff) | ((data_U[i] & 0x7ff) << 16); /* sum(rx amplitude distance to lower bin edge) */ accum_rx = ((data_U[i] >> 11) & 0x1f) | ((data_L[i + 23] & 0xffff) << 5); /* sum(angles) */ accum_ang = ((data_L[i + 23] >> 16) & 0xffff) | ((data_U[i + 23] & 0x7ff) << 16); accum_tx <<= scale_factor; accum_rx <<= scale_factor; x_est[max_index] = (((accum_tx + accum_cnt) / accum_cnt) + 32) >> scale_factor; Y[max_index] = ((((accum_rx + accum_cnt) / accum_cnt) + 32) >> scale_factor) + (1 << scale_factor) * i + 16; if (accum_ang >= (1 << 26)) accum_ang -= 1 << 27; theta[max_index] = ((accum_ang * (1 << scale_factor)) + accum_cnt) / accum_cnt; } /* * Find average theta of first 5 bin and all of those to same value. * Curve is linear at that range. */ for (i = 1; i < 6; i++) theta_low_bin += theta[i]; theta_low_bin = theta_low_bin / 5; for (i = 1; i < 6; i++) theta[i] = theta_low_bin; /* Set values at origin */ theta[0] = theta_low_bin; for (i = 0; i <= max_index; i++) theta[i] -= theta_low_bin; x_est[0] = 0; Y[0] = 0; scale_factor = 8; /* low signal gain */ if (x_est[6] == x_est[3]) return false; G_fxp = (((Y[6] - Y[3]) * 1 << scale_factor) + (x_est[6] - x_est[3])) / (x_est[6] - x_est[3]); /* prevent division by zero */ if (G_fxp == 0) return false; Y_intercept = (G_fxp * (x_est[0] - x_est[3]) + (1 << scale_factor)) / (1 << scale_factor) + Y[3]; for (i = 0; i <= max_index; i++) y_est[i] = Y[i] - Y_intercept; for (i = 0; i <= 3; i++) { y_est[i] = i * 32; x_est[i] = ((y_est[i] * 1 << scale_factor) + G_fxp) / G_fxp; } if (y_est[max_index] == 0) return false; x_est_fxp1_nonlin = x_est[max_index] - ((1 << scale_factor) * y_est[max_index] + G_fxp) / G_fxp; order_x_by_y = (x_est_fxp1_nonlin + y_est[max_index]) / y_est[max_index]; if (order_x_by_y == 0) M = 10; else if (order_x_by_y == 1) M = 9; else M = 8; I = (max_index > 15) ? 7 : max_index >> 1; L = max_index - I; scale_factor = 8; sum_y_sqr = 0; sum_y_quad = 0; x_tilde_abs = 0; for (i = 0; i <= L; i++) { unsigned int y_sqr; unsigned int y_quad; unsigned int tmp_abs; /* prevent division by zero */ if (y_est[i + I] == 0) return false; x_est_fxp1_nonlin = x_est[i + I] - ((1 << scale_factor) * y_est[i + I] + G_fxp) / G_fxp; x_tilde[i] = (x_est_fxp1_nonlin * (1 << M) + y_est[i + I]) / y_est[i + I]; x_tilde[i] = (x_tilde[i] * (1 << M) + y_est[i + I]) / y_est[i + I]; x_tilde[i] = (x_tilde[i] * (1 << M) + y_est[i + I]) / y_est[i + I]; y_sqr = (y_est[i + I] * y_est[i + I] + (scale_factor * scale_factor)) / (scale_factor * scale_factor); tmp_abs = abs(x_tilde[i]); if (tmp_abs > x_tilde_abs) x_tilde_abs = tmp_abs; y_quad = y_sqr * y_sqr; sum_y_sqr = sum_y_sqr + y_sqr; sum_y_quad = sum_y_quad + y_quad; B1_tmp[i] = y_sqr * (L + 1); B2_tmp[i] = y_sqr; } B1_abs_max = 0; B2_abs_max = 0; for (i = 0; i <= L; i++) { int abs_val; B1_tmp[i] -= sum_y_sqr; B2_tmp[i] = sum_y_quad - sum_y_sqr * B2_tmp[i]; abs_val = abs(B1_tmp[i]); if (abs_val > B1_abs_max) B1_abs_max = abs_val; abs_val = abs(B2_tmp[i]); if (abs_val > B2_abs_max) B2_abs_max = abs_val; } Q_x = find_proper_scale(find_expn(x_tilde_abs), 10); Q_B1 = find_proper_scale(find_expn(B1_abs_max), 10); Q_B2 = find_proper_scale(find_expn(B2_abs_max), 10); beta_raw = 0; alpha_raw = 0; for (i = 0; i <= L; i++) { x_tilde[i] = x_tilde[i] / (1 << Q_x); B1_tmp[i] = B1_tmp[i] / (1 << Q_B1); B2_tmp[i] = B2_tmp[i] / (1 << Q_B2); beta_raw = beta_raw + B1_tmp[i] * x_tilde[i]; alpha_raw = alpha_raw + B2_tmp[i] * x_tilde[i]; } scale_B = ((sum_y_quad / scale_factor) * (L + 1) - (sum_y_sqr / scale_factor) * sum_y_sqr) * scale_factor; Q_scale_B = find_proper_scale(find_expn(abs(scale_B)), 10); scale_B = scale_B / (1 << Q_scale_B); if (scale_B == 0) return false; Q_beta = find_proper_scale(find_expn(abs(beta_raw)), 10); Q_alpha = find_proper_scale(find_expn(abs(alpha_raw)), 10); beta_raw = beta_raw / (1 << Q_beta); alpha_raw = alpha_raw / (1 << Q_alpha); alpha = (alpha_raw << 10) / scale_B; beta = (beta_raw << 10) / scale_B; order_1 = 3 * M - Q_x - Q_B1 - Q_beta + 10 + Q_scale_B; order_2 = 3 * M - Q_x - Q_B2 - Q_alpha + 10 + Q_scale_B; order1_5x = order_1 / 5; order2_3x = order_2 / 3; order1_5x_rem = order_1 - 5 * order1_5x; order2_3x_rem = order_2 - 3 * order2_3x; for (i = 0; i < PAPRD_TABLE_SZ; i++) { tmp = i * 32; y5 = ((beta * tmp) >> 6) >> order1_5x; y5 = (y5 * tmp) >> order1_5x; y5 = (y5 * tmp) >> order1_5x; y5 = (y5 * tmp) >> order1_5x; y5 = (y5 * tmp) >> order1_5x; y5 = y5 >> order1_5x_rem; y3 = (alpha * tmp) >> order2_3x; y3 = (y3 * tmp) >> order2_3x; y3 = (y3 * tmp) >> order2_3x; y3 = y3 >> order2_3x_rem; PA_in[i] = y5 + y3 + (256 * tmp) / G_fxp; if (i >= 2) { tmp = PA_in[i] - PA_in[i - 1]; if (tmp < 0) PA_in[i] = PA_in[i - 1] + (PA_in[i - 1] - PA_in[i - 2]); } PA_in[i] = (PA_in[i] < 1400) ? PA_in[i] : 1400; } beta_raw = 0; alpha_raw = 0; for (i = 0; i <= L; i++) { int theta_tilde = ((theta[i + I] << M) + y_est[i + I]) / y_est[i + I]; theta_tilde = ((theta_tilde << M) + y_est[i + I]) / y_est[i + I]; theta_tilde = ((theta_tilde << M) + y_est[i + I]) / y_est[i + I]; beta_raw = beta_raw + B1_tmp[i] * theta_tilde; alpha_raw = alpha_raw + B2_tmp[i] * theta_tilde; } Q_beta = find_proper_scale(find_expn(abs(beta_raw)), 10); Q_alpha = find_proper_scale(find_expn(abs(alpha_raw)), 10); beta_raw = beta_raw / (1 << Q_beta); alpha_raw = alpha_raw / (1 << Q_alpha); alpha = (alpha_raw << 10) / scale_B; beta = (beta_raw << 10) / scale_B; order_1 = 3 * M - Q_x - Q_B1 - Q_beta + 10 + Q_scale_B + 5; order_2 = 3 * M - Q_x - Q_B2 - Q_alpha + 10 + Q_scale_B + 5; order1_5x = order_1 / 5; order2_3x = order_2 / 3; order1_5x_rem = order_1 - 5 * order1_5x; order2_3x_rem = order_2 - 3 * order2_3x; for (i = 0; i < PAPRD_TABLE_SZ; i++) { int PA_angle; /* pa_table[4] is calculated from PA_angle for i=5 */ if (i == 4) continue; tmp = i * 32; if (beta > 0) y5 = (((beta * tmp - 64) >> 6) - (1 << order1_5x)) / (1 << order1_5x); else y5 = ((((beta * tmp - 64) >> 6) + (1 << order1_5x)) / (1 << order1_5x)); y5 = (y5 * tmp) / (1 << order1_5x); y5 = (y5 * tmp) / (1 << order1_5x); y5 = (y5 * tmp) / (1 << order1_5x); y5 = (y5 * tmp) / (1 << order1_5x); y5 = y5 / (1 << order1_5x_rem); if (beta > 0) y3 = (alpha * tmp - (1 << order2_3x)) / (1 << order2_3x); else y3 = (alpha * tmp + (1 << order2_3x)) / (1 << order2_3x); y3 = (y3 * tmp) / (1 << order2_3x); y3 = (y3 * tmp) / (1 << order2_3x); y3 = y3 / (1 << order2_3x_rem); if (i < 4) { PA_angle = 0; } else { PA_angle = y5 + y3; if (PA_angle < -150) PA_angle = -150; else if (PA_angle > 150) PA_angle = 150; } pa_table[i] = ((PA_in[i] & 0x7ff) << 11) + (PA_angle & 0x7ff); if (i == 5) { PA_angle = (PA_angle + 2) >> 1; pa_table[i - 1] = ((PA_in[i - 1] & 0x7ff) << 11) + (PA_angle & 0x7ff); } } *gain = G_fxp; return true; } void ar9003_paprd_populate_single_table(struct ath_hw *ah, struct ath9k_hw_cal_data *caldata, int chain) { u32 *paprd_table_val = caldata->pa_table[chain]; u32 small_signal_gain = caldata->small_signal_gain[chain]; u32 training_power = ah->paprd_training_power; u32 reg = 0; int i; if (chain == 0) reg = AR_PHY_PAPRD_MEM_TAB_B0; else if (chain == 1) reg = AR_PHY_PAPRD_MEM_TAB_B1; else if (chain == 2) reg = AR_PHY_PAPRD_MEM_TAB_B2; for (i = 0; i < PAPRD_TABLE_SZ; i++) { REG_WRITE(ah, reg, paprd_table_val[i]); reg = reg + 4; } if (chain == 0) reg = AR_PHY_PA_GAIN123_B0; else if (chain == 1) reg = AR_PHY_PA_GAIN123_B1; else reg = AR_PHY_PA_GAIN123_B2; REG_RMW_FIELD(ah, reg, AR_PHY_PA_GAIN123_PA_GAIN1, small_signal_gain); REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B0, AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL, training_power); if (ah->caps.tx_chainmask & BIT(1)) REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B1, AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL, training_power); if (ah->caps.tx_chainmask & BIT(2)) /* val AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL correct? */ REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B2, AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL, training_power); } EXPORT_SYMBOL(ar9003_paprd_populate_single_table); void ar9003_paprd_setup_gain_table(struct ath_hw *ah, int chain) { unsigned int i, desired_gain, gain_index; unsigned int train_power = ah->paprd_training_power; desired_gain = ar9003_get_desired_gain(ah, chain, train_power); gain_index = 0; for (i = 0; i < PAPRD_GAIN_TABLE_ENTRIES; i++) { if (ah->paprd_gain_table_index[i] >= desired_gain) break; gain_index++; } ar9003_tx_force_gain(ah, gain_index); REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1, AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE); } EXPORT_SYMBOL(ar9003_paprd_setup_gain_table); static bool ar9003_paprd_retrain_pa_in(struct ath_hw *ah, struct ath9k_hw_cal_data *caldata, int chain) { u32 *pa_in = caldata->pa_table[chain]; int capdiv_offset, quick_drop_offset; int capdiv2g, quick_drop; int count = 0; int i; if (!AR_SREV_9485(ah) && !AR_SREV_9330(ah)) return false; capdiv2g = REG_READ_FIELD(ah, AR_PHY_65NM_CH0_TXRF3, AR_PHY_65NM_CH0_TXRF3_CAPDIV2G); quick_drop = REG_READ_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3, AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP); if (quick_drop) quick_drop -= 0x40; for (i = 0; i < NUM_BIN + 1; i++) { if (pa_in[i] == 1400) count++; } if (AR_SREV_9485(ah)) { if (pa_in[23] < 800) { capdiv_offset = (int)((1000 - pa_in[23] + 75) / 150); capdiv2g += capdiv_offset; if (capdiv2g > 7) { capdiv2g = 7; if (pa_in[23] < 600) { quick_drop++; if (quick_drop > 0) quick_drop = 0; } } } else if (pa_in[23] == 1400) { quick_drop_offset = min_t(int, count / 3, 2); quick_drop += quick_drop_offset; capdiv2g += quick_drop_offset / 2; if (capdiv2g > 7) capdiv2g = 7; if (quick_drop > 0) { quick_drop = 0; capdiv2g -= quick_drop_offset; if (capdiv2g < 0) capdiv2g = 0; } } else { return false; } } else if (AR_SREV_9330(ah)) { if (pa_in[23] < 1000) { capdiv_offset = (1000 - pa_in[23]) / 100; capdiv2g += capdiv_offset; if (capdiv_offset > 3) { capdiv_offset = 1; quick_drop--; } capdiv2g += capdiv_offset; if (capdiv2g > 6) capdiv2g = 6; if (quick_drop < -4) quick_drop = -4; } else if (pa_in[23] == 1400) { if (count > 3) { quick_drop++; capdiv2g -= count / 4; if (quick_drop > -2) quick_drop = -2; } else { capdiv2g--; } if (capdiv2g < 0) capdiv2g = 0; } else { return false; } } REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_TXRF3, AR_PHY_65NM_CH0_TXRF3_CAPDIV2G, capdiv2g); REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3, AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP, quick_drop); return true; } int ar9003_paprd_create_curve(struct ath_hw *ah, struct ath9k_hw_cal_data *caldata, int chain) { u16 *small_signal_gain = &caldata->small_signal_gain[chain]; u32 *pa_table = caldata->pa_table[chain]; u32 *data_L, *data_U; int i, status = 0; u32 *buf; u32 reg; memset(caldata->pa_table[chain], 0, sizeof(caldata->pa_table[chain])); buf = kmalloc(2 * 48 * sizeof(u32), GFP_KERNEL); if (!buf) return -ENOMEM; data_L = &buf[0]; data_U = &buf[48]; REG_CLR_BIT(ah, AR_PHY_CHAN_INFO_MEMORY, AR_PHY_CHAN_INFO_MEMORY_CHANINFOMEM_S2_READ); reg = AR_PHY_CHAN_INFO_TAB_0; for (i = 0; i < 48; i++) data_L[i] = REG_READ(ah, reg + (i << 2)); REG_SET_BIT(ah, AR_PHY_CHAN_INFO_MEMORY, AR_PHY_CHAN_INFO_MEMORY_CHANINFOMEM_S2_READ); for (i = 0; i < 48; i++) data_U[i] = REG_READ(ah, reg + (i << 2)); if (!create_pa_curve(data_L, data_U, pa_table, small_signal_gain)) status = -2; if (ar9003_paprd_retrain_pa_in(ah, caldata, chain)) status = -EINPROGRESS; REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1, AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE); kfree(buf); return status; } EXPORT_SYMBOL(ar9003_paprd_create_curve); int ar9003_paprd_init_table(struct ath_hw *ah) { int ret; ret = ar9003_paprd_setup_single_table(ah); if (ret < 0) return ret; ar9003_paprd_get_gain_table(ah); return 0; } EXPORT_SYMBOL(ar9003_paprd_init_table); bool ar9003_paprd_is_done(struct ath_hw *ah) { int paprd_done, agc2_pwr; paprd_done = REG_READ_FIELD(ah, AR_PHY_PAPRD_TRAINER_STAT1, AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE); if (AR_SREV_9485(ah)) goto exit; if (paprd_done == 0x1) { agc2_pwr = REG_READ_FIELD(ah, AR_PHY_PAPRD_TRAINER_STAT1, AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_AGC2_PWR); ath_dbg(ath9k_hw_common(ah), CALIBRATE, "AGC2_PWR = 0x%x training done = 0x%x\n", agc2_pwr, paprd_done); /* * agc2_pwr range should not be less than 'IDEAL_AGC2_PWR_CHANGE' * when the training is completely done, otherwise retraining is * done to make sure the value is in ideal range */ if (agc2_pwr <= PAPRD_IDEAL_AGC2_PWR_RANGE) paprd_done = 0; } exit: return !!paprd_done; } EXPORT_SYMBOL(ar9003_paprd_is_done); bool ar9003_is_paprd_enabled(struct ath_hw *ah) { if ((ah->caps.hw_caps & ATH9K_HW_CAP_PAPRD) && ah->config.enable_paprd) return true; return false; } EXPORT_SYMBOL(ar9003_is_paprd_enabled);