// SPDX-License-Identifier: GPL-2.0 /* Marvell OcteonTx2 RVU Ethernet driver * * Copyright (C) 2018 Marvell International Ltd. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include "otx2_reg.h" #include "otx2_common.h" #include "otx2_struct.h" static void otx2_nix_rq_op_stats(struct queue_stats *stats, struct otx2_nic *pfvf, int qidx) { u64 incr = (u64)qidx << 32; u64 *ptr; ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_RQ_OP_OCTS); stats->bytes = otx2_atomic64_add(incr, ptr); ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_RQ_OP_PKTS); stats->pkts = otx2_atomic64_add(incr, ptr); } static void otx2_nix_sq_op_stats(struct queue_stats *stats, struct otx2_nic *pfvf, int qidx) { u64 incr = (u64)qidx << 32; u64 *ptr; ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_OCTS); stats->bytes = otx2_atomic64_add(incr, ptr); ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_PKTS); stats->pkts = otx2_atomic64_add(incr, ptr); } void otx2_update_lmac_stats(struct otx2_nic *pfvf) { struct msg_req *req; if (!netif_running(pfvf->netdev)) return; mutex_lock(&pfvf->mbox.lock); req = otx2_mbox_alloc_msg_cgx_stats(&pfvf->mbox); if (!req) { mutex_unlock(&pfvf->mbox.lock); return; } otx2_sync_mbox_msg(&pfvf->mbox); mutex_unlock(&pfvf->mbox.lock); } void otx2_update_lmac_fec_stats(struct otx2_nic *pfvf) { struct msg_req *req; if (!netif_running(pfvf->netdev)) return; mutex_lock(&pfvf->mbox.lock); req = otx2_mbox_alloc_msg_cgx_fec_stats(&pfvf->mbox); if (!req) { mutex_unlock(&pfvf->mbox.lock); return; } otx2_sync_mbox_msg(&pfvf->mbox); mutex_unlock(&pfvf->mbox.lock); } int otx2_update_rq_stats(struct otx2_nic *pfvf, int qidx) { struct otx2_rcv_queue *rq = &pfvf->qset.rq[qidx]; if (!pfvf->qset.rq) return 0; otx2_nix_rq_op_stats(&rq->stats, pfvf, qidx); return 1; } int otx2_update_sq_stats(struct otx2_nic *pfvf, int qidx) { struct otx2_snd_queue *sq = &pfvf->qset.sq[qidx]; if (!pfvf->qset.sq) return 0; otx2_nix_sq_op_stats(&sq->stats, pfvf, qidx); return 1; } void otx2_get_dev_stats(struct otx2_nic *pfvf) { struct otx2_dev_stats *dev_stats = &pfvf->hw.dev_stats; #define OTX2_GET_RX_STATS(reg) \ otx2_read64(pfvf, NIX_LF_RX_STATX(reg)) #define OTX2_GET_TX_STATS(reg) \ otx2_read64(pfvf, NIX_LF_TX_STATX(reg)) dev_stats->rx_bytes = OTX2_GET_RX_STATS(RX_OCTS); dev_stats->rx_drops = OTX2_GET_RX_STATS(RX_DROP); dev_stats->rx_bcast_frames = OTX2_GET_RX_STATS(RX_BCAST); dev_stats->rx_mcast_frames = OTX2_GET_RX_STATS(RX_MCAST); dev_stats->rx_ucast_frames = OTX2_GET_RX_STATS(RX_UCAST); dev_stats->rx_frames = dev_stats->rx_bcast_frames + dev_stats->rx_mcast_frames + dev_stats->rx_ucast_frames; dev_stats->tx_bytes = OTX2_GET_TX_STATS(TX_OCTS); dev_stats->tx_drops = OTX2_GET_TX_STATS(TX_DROP); dev_stats->tx_bcast_frames = OTX2_GET_TX_STATS(TX_BCAST); dev_stats->tx_mcast_frames = OTX2_GET_TX_STATS(TX_MCAST); dev_stats->tx_ucast_frames = OTX2_GET_TX_STATS(TX_UCAST); dev_stats->tx_frames = dev_stats->tx_bcast_frames + dev_stats->tx_mcast_frames + dev_stats->tx_ucast_frames; } void otx2_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) { struct otx2_nic *pfvf = netdev_priv(netdev); struct otx2_dev_stats *dev_stats; otx2_get_dev_stats(pfvf); dev_stats = &pfvf->hw.dev_stats; stats->rx_bytes = dev_stats->rx_bytes; stats->rx_packets = dev_stats->rx_frames; stats->rx_dropped = dev_stats->rx_drops; stats->multicast = dev_stats->rx_mcast_frames; stats->tx_bytes = dev_stats->tx_bytes; stats->tx_packets = dev_stats->tx_frames; stats->tx_dropped = dev_stats->tx_drops; } EXPORT_SYMBOL(otx2_get_stats64); /* Sync MAC address with RVU AF */ static int otx2_hw_set_mac_addr(struct otx2_nic *pfvf, u8 *mac) { struct nix_set_mac_addr *req; int err; mutex_lock(&pfvf->mbox.lock); req = otx2_mbox_alloc_msg_nix_set_mac_addr(&pfvf->mbox); if (!req) { mutex_unlock(&pfvf->mbox.lock); return -ENOMEM; } ether_addr_copy(req->mac_addr, mac); err = otx2_sync_mbox_msg(&pfvf->mbox); mutex_unlock(&pfvf->mbox.lock); return err; } static int otx2_hw_get_mac_addr(struct otx2_nic *pfvf, struct net_device *netdev) { struct nix_get_mac_addr_rsp *rsp; struct mbox_msghdr *msghdr; struct msg_req *req; int err; mutex_lock(&pfvf->mbox.lock); req = otx2_mbox_alloc_msg_nix_get_mac_addr(&pfvf->mbox); if (!req) { mutex_unlock(&pfvf->mbox.lock); return -ENOMEM; } err = otx2_sync_mbox_msg(&pfvf->mbox); if (err) { mutex_unlock(&pfvf->mbox.lock); return err; } msghdr = otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr); if (IS_ERR(msghdr)) { mutex_unlock(&pfvf->mbox.lock); return PTR_ERR(msghdr); } rsp = (struct nix_get_mac_addr_rsp *)msghdr; ether_addr_copy(netdev->dev_addr, rsp->mac_addr); mutex_unlock(&pfvf->mbox.lock); return 0; } int otx2_set_mac_address(struct net_device *netdev, void *p) { struct otx2_nic *pfvf = netdev_priv(netdev); struct sockaddr *addr = p; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; if (!otx2_hw_set_mac_addr(pfvf, addr->sa_data)) { memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); /* update dmac field in vlan offload rule */ if (pfvf->flags & OTX2_FLAG_RX_VLAN_SUPPORT) otx2_install_rxvlan_offload_flow(pfvf); } else { return -EPERM; } return 0; } EXPORT_SYMBOL(otx2_set_mac_address); int otx2_hw_set_mtu(struct otx2_nic *pfvf, int mtu) { struct nix_frs_cfg *req; int err; mutex_lock(&pfvf->mbox.lock); req = otx2_mbox_alloc_msg_nix_set_hw_frs(&pfvf->mbox); if (!req) { mutex_unlock(&pfvf->mbox.lock); return -ENOMEM; } /* Add EDSA/HIGIG2 header len to maxlen */ pfvf->max_frs = mtu + OTX2_ETH_HLEN + pfvf->addl_mtu; req->maxlen = pfvf->max_frs; err = otx2_sync_mbox_msg(&pfvf->mbox); mutex_unlock(&pfvf->mbox.lock); return err; } int otx2_config_pause_frm(struct otx2_nic *pfvf) { struct cgx_pause_frm_cfg *req; int err; if (is_otx2_lbkvf(pfvf->pdev)) return 0; mutex_lock(&pfvf->mbox.lock); req = otx2_mbox_alloc_msg_cgx_cfg_pause_frm(&pfvf->mbox); if (!req) { err = -ENOMEM; goto unlock; } req->rx_pause = !!(pfvf->flags & OTX2_FLAG_RX_PAUSE_ENABLED); req->tx_pause = !!(pfvf->flags & OTX2_FLAG_TX_PAUSE_ENABLED); req->set = 1; err = otx2_sync_mbox_msg(&pfvf->mbox); unlock: mutex_unlock(&pfvf->mbox.lock); return err; } int otx2_set_flowkey_cfg(struct otx2_nic *pfvf) { struct otx2_rss_info *rss = &pfvf->hw.rss_info; struct nix_rss_flowkey_cfg *req; int err; mutex_lock(&pfvf->mbox.lock); req = otx2_mbox_alloc_msg_nix_rss_flowkey_cfg(&pfvf->mbox); if (!req) { mutex_unlock(&pfvf->mbox.lock); return -ENOMEM; } req->mcam_index = -1; /* Default or reserved index */ req->flowkey_cfg = rss->flowkey_cfg; req->group = DEFAULT_RSS_CONTEXT_GROUP; err = otx2_sync_mbox_msg(&pfvf->mbox); mutex_unlock(&pfvf->mbox.lock); return err; } int otx2_set_rss_table(struct otx2_nic *pfvf) { struct otx2_rss_info *rss = &pfvf->hw.rss_info; struct mbox *mbox = &pfvf->mbox; struct nix_aq_enq_req *aq; int idx, err; mutex_lock(&mbox->lock); /* Get memory to put this msg */ for (idx = 0; idx < rss->rss_size; idx++) { aq = otx2_mbox_alloc_msg_nix_aq_enq(mbox); if (!aq) { /* The shared memory buffer can be full. * Flush it and retry */ err = otx2_sync_mbox_msg(mbox); if (err) { mutex_unlock(&mbox->lock); return err; } aq = otx2_mbox_alloc_msg_nix_aq_enq(mbox); if (!aq) { mutex_unlock(&mbox->lock); return -ENOMEM; } } aq->rss.rq = rss->ind_tbl[idx]; /* Fill AQ info */ aq->qidx = idx; aq->ctype = NIX_AQ_CTYPE_RSS; aq->op = NIX_AQ_INSTOP_INIT; } err = otx2_sync_mbox_msg(mbox); mutex_unlock(&mbox->lock); return err; } void otx2_set_rss_key(struct otx2_nic *pfvf) { struct otx2_rss_info *rss = &pfvf->hw.rss_info; u64 *key = (u64 *)&rss->key[4]; int idx; /* 352bit or 44byte key needs to be configured as below * NIX_LF_RX_SECRETX0 = key<351:288> * NIX_LF_RX_SECRETX1 = key<287:224> * NIX_LF_RX_SECRETX2 = key<223:160> * NIX_LF_RX_SECRETX3 = key<159:96> * NIX_LF_RX_SECRETX4 = key<95:32> * NIX_LF_RX_SECRETX5<63:32> = key<31:0> */ otx2_write64(pfvf, NIX_LF_RX_SECRETX(5), (u64)(*((u32 *)&rss->key)) << 32); idx = sizeof(rss->key) / sizeof(u64); while (idx > 0) { idx--; otx2_write64(pfvf, NIX_LF_RX_SECRETX(idx), *key++); } } int otx2_rss_init(struct otx2_nic *pfvf) { struct otx2_rss_info *rss = &pfvf->hw.rss_info; int idx, ret = 0; rss->rss_size = sizeof(rss->ind_tbl); /* Init RSS key if it is not setup already */ if (!rss->enable) netdev_rss_key_fill(rss->key, sizeof(rss->key)); otx2_set_rss_key(pfvf); if (!netif_is_rxfh_configured(pfvf->netdev)) { /* Default indirection table */ for (idx = 0; idx < rss->rss_size; idx++) rss->ind_tbl[idx] = ethtool_rxfh_indir_default(idx, pfvf->hw.rx_queues); } ret = otx2_set_rss_table(pfvf); if (ret) return ret; /* Flowkey or hash config to be used for generating flow tag */ rss->flowkey_cfg = rss->enable ? rss->flowkey_cfg : NIX_FLOW_KEY_TYPE_IPV4 | NIX_FLOW_KEY_TYPE_IPV6 | NIX_FLOW_KEY_TYPE_TCP | NIX_FLOW_KEY_TYPE_UDP | NIX_FLOW_KEY_TYPE_SCTP | NIX_FLOW_KEY_TYPE_VLAN; ret = otx2_set_flowkey_cfg(pfvf); if (ret) return ret; rss->enable = true; return 0; } void otx2_config_irq_coalescing(struct otx2_nic *pfvf, int qidx) { /* Configure CQE interrupt coalescing parameters * * HW triggers an irq when ECOUNT > cq_ecount_wait, hence * set 1 less than cq_ecount_wait. And cq_time_wait is in * usecs, convert that to 100ns count. */ otx2_write64(pfvf, NIX_LF_CINTX_WAIT(qidx), ((u64)(pfvf->hw.cq_time_wait * 10) << 48) | ((u64)pfvf->hw.cq_qcount_wait << 32) | (pfvf->hw.cq_ecount_wait - 1)); } dma_addr_t otx2_alloc_rbuf(struct otx2_nic *pfvf, struct otx2_pool *pool, gfp_t gfp) { dma_addr_t iova; /* Check if request can be accommodated in previous allocated page */ if (pool->page && ((pool->page_offset + pool->rbsize) <= PAGE_SIZE)) { pool->pageref++; goto ret; } otx2_get_page(pool); /* Allocate a new page */ pool->page = alloc_pages(gfp | __GFP_COMP | __GFP_NOWARN, pool->rbpage_order); if (unlikely(!pool->page)) return -ENOMEM; pool->page_offset = 0; ret: iova = (u64)otx2_dma_map_page(pfvf, pool->page, pool->page_offset, pool->rbsize, DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC); if (!iova) { if (!pool->page_offset) __free_pages(pool->page, pool->rbpage_order); pool->page = NULL; return -ENOMEM; } pool->page_offset += pool->rbsize; return iova; } void otx2_tx_timeout(struct net_device *netdev) { struct otx2_nic *pfvf = netdev_priv(netdev); schedule_work(&pfvf->reset_task); } EXPORT_SYMBOL(otx2_tx_timeout); void otx2_get_mac_from_af(struct net_device *netdev) { struct otx2_nic *pfvf = netdev_priv(netdev); int err; err = otx2_hw_get_mac_addr(pfvf, netdev); if (err) dev_warn(pfvf->dev, "Failed to read mac from hardware\n"); /* If AF doesn't provide a valid MAC, generate a random one */ if (!is_valid_ether_addr(netdev->dev_addr)) eth_hw_addr_random(netdev); } EXPORT_SYMBOL(otx2_get_mac_from_af); int otx2_txschq_config(struct otx2_nic *pfvf, int lvl) { struct otx2_hw *hw = &pfvf->hw; struct nix_txschq_config *req; u64 schq, parent; req = otx2_mbox_alloc_msg_nix_txschq_cfg(&pfvf->mbox); if (!req) return -ENOMEM; req->lvl = lvl; req->num_regs = 1; schq = hw->txschq_list[lvl][0]; /* Set topology e.t.c configuration */ if (lvl == NIX_TXSCH_LVL_SMQ) { req->reg[0] = NIX_AF_SMQX_CFG(schq); req->regval[0] = ((OTX2_MAX_MTU + OTX2_ETH_HLEN) << 8) | OTX2_MIN_MTU; req->regval[0] |= (0x20ULL << 51) | (0x80ULL << 39) | (0x2ULL << 36); req->num_regs++; /* MDQ config */ parent = hw->txschq_list[NIX_TXSCH_LVL_TL4][0]; req->reg[1] = NIX_AF_MDQX_PARENT(schq); req->regval[1] = parent << 16; req->num_regs++; /* Set DWRR quantum */ req->reg[2] = NIX_AF_MDQX_SCHEDULE(schq); req->regval[2] = DFLT_RR_QTM; } else if (lvl == NIX_TXSCH_LVL_TL4) { parent = hw->txschq_list[NIX_TXSCH_LVL_TL3][0]; req->reg[0] = NIX_AF_TL4X_PARENT(schq); req->regval[0] = parent << 16; req->num_regs++; req->reg[1] = NIX_AF_TL4X_SCHEDULE(schq); req->regval[1] = DFLT_RR_QTM; } else if (lvl == NIX_TXSCH_LVL_TL3) { parent = hw->txschq_list[NIX_TXSCH_LVL_TL2][0]; req->reg[0] = NIX_AF_TL3X_PARENT(schq); req->regval[0] = parent << 16; req->num_regs++; req->reg[1] = NIX_AF_TL3X_SCHEDULE(schq); req->regval[1] = DFLT_RR_QTM; } else if (lvl == NIX_TXSCH_LVL_TL2) { parent = hw->txschq_list[NIX_TXSCH_LVL_TL1][0]; req->reg[0] = NIX_AF_TL2X_PARENT(schq); req->regval[0] = parent << 16; req->num_regs++; req->reg[1] = NIX_AF_TL2X_SCHEDULE(schq); req->regval[1] = TXSCH_TL1_DFLT_RR_PRIO << 24 | DFLT_RR_QTM; req->num_regs++; req->reg[2] = NIX_AF_TL3_TL2X_LINKX_CFG(schq, hw->tx_link); /* Enable this queue and backpressure */ req->regval[2] = BIT_ULL(13) | BIT_ULL(12); } else if (lvl == NIX_TXSCH_LVL_TL1) { /* Default config for TL1. * For VF this is always ignored. */ /* Set DWRR quantum */ req->reg[0] = NIX_AF_TL1X_SCHEDULE(schq); req->regval[0] = TXSCH_TL1_DFLT_RR_QTM; req->num_regs++; req->reg[1] = NIX_AF_TL1X_TOPOLOGY(schq); req->regval[1] = (TXSCH_TL1_DFLT_RR_PRIO << 1); req->num_regs++; req->reg[2] = NIX_AF_TL1X_CIR(schq); req->regval[2] = 0; } return otx2_sync_mbox_msg(&pfvf->mbox); } int otx2_txsch_alloc(struct otx2_nic *pfvf) { struct nix_txsch_alloc_req *req; int lvl; /* Get memory to put this msg */ req = otx2_mbox_alloc_msg_nix_txsch_alloc(&pfvf->mbox); if (!req) return -ENOMEM; /* Request one schq per level */ for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++) req->schq[lvl] = 1; return otx2_sync_mbox_msg(&pfvf->mbox); } int otx2_txschq_stop(struct otx2_nic *pfvf) { struct nix_txsch_free_req *free_req; int lvl, schq, err; mutex_lock(&pfvf->mbox.lock); /* Free the transmit schedulers */ free_req = otx2_mbox_alloc_msg_nix_txsch_free(&pfvf->mbox); if (!free_req) { mutex_unlock(&pfvf->mbox.lock); return -ENOMEM; } free_req->flags = TXSCHQ_FREE_ALL; err = otx2_sync_mbox_msg(&pfvf->mbox); mutex_unlock(&pfvf->mbox.lock); /* Clear the txschq list */ for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++) { for (schq = 0; schq < MAX_TXSCHQ_PER_FUNC; schq++) pfvf->hw.txschq_list[lvl][schq] = 0; } return err; } void otx2_sqb_flush(struct otx2_nic *pfvf) { int qidx, sqe_tail, sqe_head; u64 incr, *ptr, val; int timeout = 1000; ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_STATUS); for (qidx = 0; qidx < pfvf->hw.tx_queues; qidx++) { incr = (u64)qidx << 32; while (timeout) { val = otx2_atomic64_add(incr, ptr); sqe_head = (val >> 20) & 0x3F; sqe_tail = (val >> 28) & 0x3F; if (sqe_head == sqe_tail) break; usleep_range(1, 3); timeout--; } } } /* RED and drop levels of CQ on packet reception. * For CQ level is measure of emptiness ( 0x0 = full, 255 = empty). */ #define RQ_PASS_LVL_CQ(skid, qsize) ((((skid) + 16) * 256) / (qsize)) #define RQ_DROP_LVL_CQ(skid, qsize) (((skid) * 256) / (qsize)) /* RED and drop levels of AURA for packet reception. * For AURA level is measure of fullness (0x0 = empty, 255 = full). * Eg: For RQ length 1K, for pass/drop level 204/230. * RED accepts pkts if free pointers > 102 & <= 205. * Drops pkts if free pointers < 102. */ #define RQ_BP_LVL_AURA (255 - ((85 * 256) / 100)) /* BP when 85% is full */ #define RQ_PASS_LVL_AURA (255 - ((95 * 256) / 100)) /* RED when 95% is full */ #define RQ_DROP_LVL_AURA (255 - ((99 * 256) / 100)) /* Drop when 99% is full */ /* Send skid of 2000 packets required for CQ size of 4K CQEs. */ #define SEND_CQ_SKID 2000 static int otx2_rq_init(struct otx2_nic *pfvf, u16 qidx, u16 lpb_aura) { struct otx2_qset *qset = &pfvf->qset; struct nix_aq_enq_req *aq; /* Get memory to put this msg */ aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox); if (!aq) return -ENOMEM; aq->rq.cq = qidx; aq->rq.ena = 1; aq->rq.pb_caching = 1; aq->rq.lpb_aura = lpb_aura; /* Use large packet buffer aura */ aq->rq.lpb_sizem1 = (DMA_BUFFER_LEN(pfvf->rbsize) / 8) - 1; aq->rq.xqe_imm_size = 0; /* Copying of packet to CQE not needed */ aq->rq.flow_tagw = 32; /* Copy full 32bit flow_tag to CQE header */ aq->rq.qint_idx = 0; aq->rq.lpb_drop_ena = 1; /* Enable RED dropping for AURA */ aq->rq.xqe_drop_ena = 1; /* Enable RED dropping for CQ/SSO */ aq->rq.xqe_pass = RQ_PASS_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt); aq->rq.xqe_drop = RQ_DROP_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt); aq->rq.lpb_aura_pass = RQ_PASS_LVL_AURA; aq->rq.lpb_aura_drop = RQ_DROP_LVL_AURA; /* Fill AQ info */ aq->qidx = qidx; aq->ctype = NIX_AQ_CTYPE_RQ; aq->op = NIX_AQ_INSTOP_INIT; return otx2_sync_mbox_msg(&pfvf->mbox); } static int otx2_sq_init(struct otx2_nic *pfvf, u16 qidx, u16 sqb_aura) { struct otx2_qset *qset = &pfvf->qset; struct otx2_snd_queue *sq; struct nix_aq_enq_req *aq; struct otx2_pool *pool; int err; pool = &pfvf->qset.pool[sqb_aura]; sq = &qset->sq[qidx]; sq->sqe_size = NIX_SQESZ_W16 ? 64 : 128; sq->sqe_cnt = qset->sqe_cnt; err = qmem_alloc(pfvf->dev, &sq->sqe, 1, sq->sqe_size); if (err) return err; err = qmem_alloc(pfvf->dev, &sq->tso_hdrs, qset->sqe_cnt, TSO_HEADER_SIZE); if (err) return err; sq->sqe_base = sq->sqe->base; sq->sg = kcalloc(qset->sqe_cnt, sizeof(struct sg_list), GFP_KERNEL); if (!sq->sg) return -ENOMEM; if (pfvf->ptp) { err = qmem_alloc(pfvf->dev, &sq->timestamps, qset->sqe_cnt, sizeof(*sq->timestamps)); if (err) return err; } sq->head = 0; sq->sqe_per_sqb = (pfvf->hw.sqb_size / sq->sqe_size) - 1; sq->num_sqbs = (qset->sqe_cnt + sq->sqe_per_sqb) / sq->sqe_per_sqb; /* Set SQE threshold to 10% of total SQEs */ sq->sqe_thresh = ((sq->num_sqbs * sq->sqe_per_sqb) * 10) / 100; sq->aura_id = sqb_aura; sq->aura_fc_addr = pool->fc_addr->base; sq->lmt_addr = (__force u64 *)(pfvf->reg_base + LMT_LF_LMTLINEX(qidx)); sq->io_addr = (__force u64)otx2_get_regaddr(pfvf, NIX_LF_OP_SENDX(0)); sq->stats.bytes = 0; sq->stats.pkts = 0; /* Get memory to put this msg */ aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox); if (!aq) return -ENOMEM; aq->sq.cq = pfvf->hw.rx_queues + qidx; aq->sq.max_sqe_size = NIX_MAXSQESZ_W16; /* 128 byte */ aq->sq.cq_ena = 1; aq->sq.ena = 1; /* Only one SMQ is allocated, map all SQ's to that SMQ */ aq->sq.smq = pfvf->hw.txschq_list[NIX_TXSCH_LVL_SMQ][0]; aq->sq.smq_rr_quantum = DFLT_RR_QTM; aq->sq.default_chan = pfvf->hw.tx_chan_base; aq->sq.sqe_stype = NIX_STYPE_STF; /* Cache SQB */ aq->sq.sqb_aura = sqb_aura; aq->sq.sq_int_ena = NIX_SQINT_BITS; aq->sq.qint_idx = 0; /* Due pipelining impact minimum 2000 unused SQ CQE's * need to maintain to avoid CQ overflow. */ aq->sq.cq_limit = ((SEND_CQ_SKID * 256) / (sq->sqe_cnt)); /* Fill AQ info */ aq->qidx = qidx; aq->ctype = NIX_AQ_CTYPE_SQ; aq->op = NIX_AQ_INSTOP_INIT; return otx2_sync_mbox_msg(&pfvf->mbox); } static int otx2_cq_init(struct otx2_nic *pfvf, u16 qidx) { struct otx2_qset *qset = &pfvf->qset; struct nix_aq_enq_req *aq; struct otx2_cq_queue *cq; int err, pool_id; cq = &qset->cq[qidx]; cq->cq_idx = qidx; if (qidx < pfvf->hw.rx_queues) { cq->cq_type = CQ_RX; cq->cint_idx = qidx; cq->cqe_cnt = qset->rqe_cnt; } else { cq->cq_type = CQ_TX; cq->cint_idx = qidx - pfvf->hw.rx_queues; cq->cqe_cnt = qset->sqe_cnt; } cq->cqe_size = pfvf->qset.xqe_size; /* Allocate memory for CQEs */ err = qmem_alloc(pfvf->dev, &cq->cqe, cq->cqe_cnt, cq->cqe_size); if (err) return err; /* Save CQE CPU base for faster reference */ cq->cqe_base = cq->cqe->base; /* In case where all RQs auras point to single pool, * all CQs receive buffer pool also point to same pool. */ pool_id = ((cq->cq_type == CQ_RX) && (pfvf->hw.rqpool_cnt != pfvf->hw.rx_queues)) ? 0 : qidx; cq->rbpool = &qset->pool[pool_id]; cq->refill_task_sched = false; /* Get memory to put this msg */ aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox); if (!aq) return -ENOMEM; aq->cq.ena = 1; aq->cq.qsize = Q_SIZE(cq->cqe_cnt, 4); aq->cq.caching = 1; aq->cq.base = cq->cqe->iova; aq->cq.cint_idx = cq->cint_idx; aq->cq.cq_err_int_ena = NIX_CQERRINT_BITS; aq->cq.qint_idx = 0; aq->cq.avg_level = 255; if (qidx < pfvf->hw.rx_queues) { aq->cq.drop = RQ_DROP_LVL_CQ(pfvf->hw.rq_skid, cq->cqe_cnt); aq->cq.drop_ena = 1; /* Enable receive CQ backpressure */ aq->cq.bp_ena = 1; aq->cq.bpid = pfvf->bpid[0]; /* Set backpressure level is same as cq pass level */ aq->cq.bp = RQ_PASS_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt); } /* Fill AQ info */ aq->qidx = qidx; aq->ctype = NIX_AQ_CTYPE_CQ; aq->op = NIX_AQ_INSTOP_INIT; return otx2_sync_mbox_msg(&pfvf->mbox); } static void otx2_pool_refill_task(struct work_struct *work) { struct otx2_cq_queue *cq; struct otx2_pool *rbpool; struct refill_work *wrk; int qidx, free_ptrs = 0; struct otx2_nic *pfvf; s64 bufptr; wrk = container_of(work, struct refill_work, pool_refill_work.work); pfvf = wrk->pf; qidx = wrk - pfvf->refill_wrk; cq = &pfvf->qset.cq[qidx]; rbpool = cq->rbpool; free_ptrs = cq->pool_ptrs; while (cq->pool_ptrs) { bufptr = otx2_alloc_rbuf(pfvf, rbpool, GFP_KERNEL); if (bufptr <= 0) { /* Schedule a WQ if we fails to free atleast half of the * pointers else enable napi for this RQ. */ if (!((free_ptrs - cq->pool_ptrs) > free_ptrs / 2)) { struct delayed_work *dwork; dwork = &wrk->pool_refill_work; schedule_delayed_work(dwork, msecs_to_jiffies(100)); } else { cq->refill_task_sched = false; } return; } otx2_aura_freeptr(pfvf, qidx, bufptr + OTX2_HEAD_ROOM); cq->pool_ptrs--; } cq->refill_task_sched = false; } int otx2_config_nix_queues(struct otx2_nic *pfvf) { int qidx, err; /* Initialize RX queues */ for (qidx = 0; qidx < pfvf->hw.rx_queues; qidx++) { u16 lpb_aura = otx2_get_pool_idx(pfvf, AURA_NIX_RQ, qidx); err = otx2_rq_init(pfvf, qidx, lpb_aura); if (err) return err; } /* Initialize TX queues */ for (qidx = 0; qidx < pfvf->hw.tx_queues; qidx++) { u16 sqb_aura = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx); err = otx2_sq_init(pfvf, qidx, sqb_aura); if (err) return err; } /* Initialize completion queues */ for (qidx = 0; qidx < pfvf->qset.cq_cnt; qidx++) { err = otx2_cq_init(pfvf, qidx); if (err) return err; } /* Initialize work queue for receive buffer refill */ pfvf->refill_wrk = devm_kcalloc(pfvf->dev, pfvf->qset.cq_cnt, sizeof(struct refill_work), GFP_KERNEL); if (!pfvf->refill_wrk) return -ENOMEM; for (qidx = 0; qidx < pfvf->qset.cq_cnt; qidx++) { pfvf->refill_wrk[qidx].pf = pfvf; INIT_DELAYED_WORK(&pfvf->refill_wrk[qidx].pool_refill_work, otx2_pool_refill_task); } return 0; } int otx2_config_nix(struct otx2_nic *pfvf) { struct nix_lf_alloc_req *nixlf; struct nix_lf_alloc_rsp *rsp; int err; pfvf->qset.xqe_size = NIX_XQESZ_W16 ? 128 : 512; /* Get memory to put this msg */ nixlf = otx2_mbox_alloc_msg_nix_lf_alloc(&pfvf->mbox); if (!nixlf) return -ENOMEM; /* Set RQ/SQ/CQ counts */ nixlf->rq_cnt = pfvf->hw.rx_queues; nixlf->sq_cnt = pfvf->hw.tx_queues; nixlf->cq_cnt = pfvf->qset.cq_cnt; nixlf->rss_sz = MAX_RSS_INDIR_TBL_SIZE; nixlf->rss_grps = 1; /* Single RSS indir table supported, for now */ nixlf->xqe_sz = NIX_XQESZ_W16; /* We don't know absolute NPA LF idx attached. * AF will replace 'RVU_DEFAULT_PF_FUNC' with * NPA LF attached to this RVU PF/VF. */ nixlf->npa_func = RVU_DEFAULT_PF_FUNC; /* Disable alignment pad, enable L2 length check, * enable L4 TCP/UDP checksum verification. */ nixlf->rx_cfg = BIT_ULL(33) | BIT_ULL(35) | BIT_ULL(37); err = otx2_sync_mbox_msg(&pfvf->mbox); if (err) return err; rsp = (struct nix_lf_alloc_rsp *)otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &nixlf->hdr); if (IS_ERR(rsp)) return PTR_ERR(rsp); if (rsp->qints < 1) return -ENXIO; return rsp->hdr.rc; } void otx2_sq_free_sqbs(struct otx2_nic *pfvf) { struct otx2_qset *qset = &pfvf->qset; struct otx2_hw *hw = &pfvf->hw; struct otx2_snd_queue *sq; int sqb, qidx; u64 iova, pa; for (qidx = 0; qidx < hw->tx_queues; qidx++) { sq = &qset->sq[qidx]; if (!sq->sqb_ptrs) continue; for (sqb = 0; sqb < sq->sqb_count; sqb++) { if (!sq->sqb_ptrs[sqb]) continue; iova = sq->sqb_ptrs[sqb]; pa = otx2_iova_to_phys(pfvf->iommu_domain, iova); dma_unmap_page_attrs(pfvf->dev, iova, hw->sqb_size, DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC); put_page(virt_to_page(phys_to_virt(pa))); } sq->sqb_count = 0; } } void otx2_free_aura_ptr(struct otx2_nic *pfvf, int type) { int pool_id, pool_start = 0, pool_end = 0, size = 0; u64 iova, pa; if (type == AURA_NIX_SQ) { pool_start = otx2_get_pool_idx(pfvf, type, 0); pool_end = pool_start + pfvf->hw.sqpool_cnt; size = pfvf->hw.sqb_size; } if (type == AURA_NIX_RQ) { pool_start = otx2_get_pool_idx(pfvf, type, 0); pool_end = pfvf->hw.rqpool_cnt; size = pfvf->rbsize; } /* Free SQB and RQB pointers from the aura pool */ for (pool_id = pool_start; pool_id < pool_end; pool_id++) { iova = otx2_aura_allocptr(pfvf, pool_id); while (iova) { if (type == AURA_NIX_RQ) iova -= OTX2_HEAD_ROOM; pa = otx2_iova_to_phys(pfvf->iommu_domain, iova); dma_unmap_page_attrs(pfvf->dev, iova, size, DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC); put_page(virt_to_page(phys_to_virt(pa))); iova = otx2_aura_allocptr(pfvf, pool_id); } } } void otx2_aura_pool_free(struct otx2_nic *pfvf) { struct otx2_pool *pool; int pool_id; if (!pfvf->qset.pool) return; for (pool_id = 0; pool_id < pfvf->hw.pool_cnt; pool_id++) { pool = &pfvf->qset.pool[pool_id]; qmem_free(pfvf->dev, pool->stack); qmem_free(pfvf->dev, pool->fc_addr); } devm_kfree(pfvf->dev, pfvf->qset.pool); pfvf->qset.pool = NULL; } static int otx2_aura_init(struct otx2_nic *pfvf, int aura_id, int pool_id, int numptrs) { struct npa_aq_enq_req *aq; struct otx2_pool *pool; int err; pool = &pfvf->qset.pool[pool_id]; /* Allocate memory for HW to update Aura count. * Alloc one cache line, so that it fits all FC_STYPE modes. */ if (!pool->fc_addr) { err = qmem_alloc(pfvf->dev, &pool->fc_addr, 1, OTX2_ALIGN); if (err) return err; } /* Initialize this aura's context via AF */ aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox); if (!aq) { /* Shared mbox memory buffer is full, flush it and retry */ err = otx2_sync_mbox_msg(&pfvf->mbox); if (err) return err; aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox); if (!aq) return -ENOMEM; } aq->aura_id = aura_id; /* Will be filled by AF with correct pool context address */ aq->aura.pool_addr = pool_id; aq->aura.pool_caching = 1; aq->aura.shift = ilog2(numptrs) - 8; aq->aura.count = numptrs; aq->aura.limit = numptrs; aq->aura.avg_level = 255; aq->aura.ena = 1; aq->aura.fc_ena = 1; aq->aura.fc_addr = pool->fc_addr->iova; aq->aura.fc_hyst_bits = 0; /* Store count on all updates */ /* Enable backpressure for RQ aura */ if (aura_id < pfvf->hw.rqpool_cnt) { aq->aura.bp_ena = 0; aq->aura.nix0_bpid = pfvf->bpid[0]; /* Set backpressure level for RQ's Aura */ aq->aura.bp = RQ_BP_LVL_AURA; } /* Fill AQ info */ aq->ctype = NPA_AQ_CTYPE_AURA; aq->op = NPA_AQ_INSTOP_INIT; return 0; } static int otx2_pool_init(struct otx2_nic *pfvf, u16 pool_id, int stack_pages, int numptrs, int buf_size) { struct npa_aq_enq_req *aq; struct otx2_pool *pool; int err; pool = &pfvf->qset.pool[pool_id]; /* Alloc memory for stack which is used to store buffer pointers */ err = qmem_alloc(pfvf->dev, &pool->stack, stack_pages, pfvf->hw.stack_pg_bytes); if (err) return err; pool->rbsize = buf_size; pool->rbpage_order = get_order(buf_size); /* Initialize this pool's context via AF */ aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox); if (!aq) { /* Shared mbox memory buffer is full, flush it and retry */ err = otx2_sync_mbox_msg(&pfvf->mbox); if (err) { qmem_free(pfvf->dev, pool->stack); return err; } aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox); if (!aq) { qmem_free(pfvf->dev, pool->stack); return -ENOMEM; } } aq->aura_id = pool_id; aq->pool.stack_base = pool->stack->iova; aq->pool.stack_caching = 1; aq->pool.ena = 1; aq->pool.buf_size = buf_size / 128; aq->pool.stack_max_pages = stack_pages; aq->pool.shift = ilog2(numptrs) - 8; aq->pool.ptr_start = 0; aq->pool.ptr_end = ~0ULL; /* Fill AQ info */ aq->ctype = NPA_AQ_CTYPE_POOL; aq->op = NPA_AQ_INSTOP_INIT; return 0; } int otx2_sq_aura_pool_init(struct otx2_nic *pfvf) { int qidx, pool_id, stack_pages, num_sqbs; struct otx2_qset *qset = &pfvf->qset; struct otx2_hw *hw = &pfvf->hw; struct otx2_snd_queue *sq; struct otx2_pool *pool; int err, ptr; s64 bufptr; /* Calculate number of SQBs needed. * * For a 128byte SQE, and 4K size SQB, 31 SQEs will fit in one SQB. * Last SQE is used for pointing to next SQB. */ num_sqbs = (hw->sqb_size / 128) - 1; num_sqbs = (qset->sqe_cnt + num_sqbs) / num_sqbs; /* Get no of stack pages needed */ stack_pages = (num_sqbs + hw->stack_pg_ptrs - 1) / hw->stack_pg_ptrs; for (qidx = 0; qidx < hw->tx_queues; qidx++) { pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx); /* Initialize aura context */ err = otx2_aura_init(pfvf, pool_id, pool_id, num_sqbs); if (err) goto fail; /* Initialize pool context */ err = otx2_pool_init(pfvf, pool_id, stack_pages, num_sqbs, hw->sqb_size); if (err) goto fail; } /* Flush accumulated messages */ err = otx2_sync_mbox_msg(&pfvf->mbox); if (err) goto fail; /* Allocate pointers and free them to aura/pool */ for (qidx = 0; qidx < hw->tx_queues; qidx++) { pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx); pool = &pfvf->qset.pool[pool_id]; sq = &qset->sq[qidx]; sq->sqb_count = 0; sq->sqb_ptrs = kcalloc(num_sqbs, sizeof(u64 *), GFP_KERNEL); if (!sq->sqb_ptrs) return -ENOMEM; for (ptr = 0; ptr < num_sqbs; ptr++) { bufptr = otx2_alloc_rbuf(pfvf, pool, GFP_KERNEL); if (bufptr <= 0) return bufptr; otx2_aura_freeptr(pfvf, pool_id, bufptr); sq->sqb_ptrs[sq->sqb_count++] = (u64)bufptr; } otx2_get_page(pool); } return 0; fail: otx2_mbox_reset(&pfvf->mbox.mbox, 0); otx2_aura_pool_free(pfvf); return err; } int otx2_rq_aura_pool_init(struct otx2_nic *pfvf) { struct otx2_hw *hw = &pfvf->hw; int stack_pages, pool_id, rq; struct otx2_pool *pool; int err, ptr, num_ptrs; s64 bufptr; num_ptrs = pfvf->qset.rqe_cnt; stack_pages = (num_ptrs + hw->stack_pg_ptrs - 1) / hw->stack_pg_ptrs; for (rq = 0; rq < hw->rx_queues; rq++) { pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_RQ, rq); /* Initialize aura context */ err = otx2_aura_init(pfvf, pool_id, pool_id, num_ptrs); if (err) goto fail; } for (pool_id = 0; pool_id < hw->rqpool_cnt; pool_id++) { err = otx2_pool_init(pfvf, pool_id, stack_pages, num_ptrs, pfvf->rbsize); if (err) goto fail; } /* Flush accumulated messages */ err = otx2_sync_mbox_msg(&pfvf->mbox); if (err) goto fail; /* Allocate pointers and free them to aura/pool */ for (pool_id = 0; pool_id < hw->rqpool_cnt; pool_id++) { pool = &pfvf->qset.pool[pool_id]; for (ptr = 0; ptr < num_ptrs; ptr++) { bufptr = otx2_alloc_rbuf(pfvf, pool, GFP_KERNEL); if (bufptr <= 0) return bufptr; otx2_aura_freeptr(pfvf, pool_id, bufptr + OTX2_HEAD_ROOM); } otx2_get_page(pool); } return 0; fail: otx2_mbox_reset(&pfvf->mbox.mbox, 0); otx2_aura_pool_free(pfvf); return err; } int otx2_config_npa(struct otx2_nic *pfvf) { struct otx2_qset *qset = &pfvf->qset; struct npa_lf_alloc_req *npalf; struct otx2_hw *hw = &pfvf->hw; int aura_cnt; /* Pool - Stack of free buffer pointers * Aura - Alloc/frees pointers from/to pool for NIX DMA. */ if (!hw->pool_cnt) return -EINVAL; qset->pool = devm_kzalloc(pfvf->dev, sizeof(struct otx2_pool) * hw->pool_cnt, GFP_KERNEL); if (!qset->pool) return -ENOMEM; /* Get memory to put this msg */ npalf = otx2_mbox_alloc_msg_npa_lf_alloc(&pfvf->mbox); if (!npalf) return -ENOMEM; /* Set aura and pool counts */ npalf->nr_pools = hw->pool_cnt; aura_cnt = ilog2(roundup_pow_of_two(hw->pool_cnt)); npalf->aura_sz = (aura_cnt >= ilog2(128)) ? (aura_cnt - 6) : 1; return otx2_sync_mbox_msg(&pfvf->mbox); } int otx2_detach_resources(struct mbox *mbox) { struct rsrc_detach *detach; mutex_lock(&mbox->lock); detach = otx2_mbox_alloc_msg_detach_resources(mbox); if (!detach) { mutex_unlock(&mbox->lock); return -ENOMEM; } /* detach all */ detach->partial = false; /* Send detach request to AF */ otx2_mbox_msg_send(&mbox->mbox, 0); mutex_unlock(&mbox->lock); return 0; } EXPORT_SYMBOL(otx2_detach_resources); int otx2_attach_npa_nix(struct otx2_nic *pfvf) { struct rsrc_attach *attach; struct msg_req *msix; int err; mutex_lock(&pfvf->mbox.lock); /* Get memory to put this msg */ attach = otx2_mbox_alloc_msg_attach_resources(&pfvf->mbox); if (!attach) { mutex_unlock(&pfvf->mbox.lock); return -ENOMEM; } attach->npalf = true; attach->nixlf = true; /* Send attach request to AF */ err = otx2_sync_mbox_msg(&pfvf->mbox); if (err) { mutex_unlock(&pfvf->mbox.lock); return err; } pfvf->nix_blkaddr = BLKADDR_NIX0; /* If the platform has two NIX blocks then LF may be * allocated from NIX1. */ if (otx2_read64(pfvf, RVU_PF_BLOCK_ADDRX_DISC(BLKADDR_NIX1)) & 0x1FFULL) pfvf->nix_blkaddr = BLKADDR_NIX1; /* Get NPA and NIX MSIX vector offsets */ msix = otx2_mbox_alloc_msg_msix_offset(&pfvf->mbox); if (!msix) { mutex_unlock(&pfvf->mbox.lock); return -ENOMEM; } err = otx2_sync_mbox_msg(&pfvf->mbox); if (err) { mutex_unlock(&pfvf->mbox.lock); return err; } mutex_unlock(&pfvf->mbox.lock); if (pfvf->hw.npa_msixoff == MSIX_VECTOR_INVALID || pfvf->hw.nix_msixoff == MSIX_VECTOR_INVALID) { dev_err(pfvf->dev, "RVUPF: Invalid MSIX vector offset for NPA/NIX\n"); return -EINVAL; } return 0; } EXPORT_SYMBOL(otx2_attach_npa_nix); void otx2_ctx_disable(struct mbox *mbox, int type, bool npa) { struct hwctx_disable_req *req; mutex_lock(&mbox->lock); /* Request AQ to disable this context */ if (npa) req = otx2_mbox_alloc_msg_npa_hwctx_disable(mbox); else req = otx2_mbox_alloc_msg_nix_hwctx_disable(mbox); if (!req) { mutex_unlock(&mbox->lock); return; } req->ctype = type; if (otx2_sync_mbox_msg(mbox)) dev_err(mbox->pfvf->dev, "%s failed to disable context\n", __func__); mutex_unlock(&mbox->lock); } int otx2_nix_config_bp(struct otx2_nic *pfvf, bool enable) { struct nix_bp_cfg_req *req; if (enable) req = otx2_mbox_alloc_msg_nix_bp_enable(&pfvf->mbox); else req = otx2_mbox_alloc_msg_nix_bp_disable(&pfvf->mbox); if (!req) return -ENOMEM; req->chan_base = 0; req->chan_cnt = 1; req->bpid_per_chan = 0; return otx2_sync_mbox_msg(&pfvf->mbox); } /* Mbox message handlers */ void mbox_handler_cgx_stats(struct otx2_nic *pfvf, struct cgx_stats_rsp *rsp) { int id; for (id = 0; id < CGX_RX_STATS_COUNT; id++) pfvf->hw.cgx_rx_stats[id] = rsp->rx_stats[id]; for (id = 0; id < CGX_TX_STATS_COUNT; id++) pfvf->hw.cgx_tx_stats[id] = rsp->tx_stats[id]; } void mbox_handler_cgx_fec_stats(struct otx2_nic *pfvf, struct cgx_fec_stats_rsp *rsp) { pfvf->hw.cgx_fec_corr_blks += rsp->fec_corr_blks; pfvf->hw.cgx_fec_uncorr_blks += rsp->fec_uncorr_blks; } void mbox_handler_nix_txsch_alloc(struct otx2_nic *pf, struct nix_txsch_alloc_rsp *rsp) { int lvl, schq; /* Setup transmit scheduler list */ for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++) for (schq = 0; schq < rsp->schq[lvl]; schq++) pf->hw.txschq_list[lvl][schq] = rsp->schq_list[lvl][schq]; } EXPORT_SYMBOL(mbox_handler_nix_txsch_alloc); void mbox_handler_npa_lf_alloc(struct otx2_nic *pfvf, struct npa_lf_alloc_rsp *rsp) { pfvf->hw.stack_pg_ptrs = rsp->stack_pg_ptrs; pfvf->hw.stack_pg_bytes = rsp->stack_pg_bytes; } EXPORT_SYMBOL(mbox_handler_npa_lf_alloc); void mbox_handler_nix_lf_alloc(struct otx2_nic *pfvf, struct nix_lf_alloc_rsp *rsp) { pfvf->hw.sqb_size = rsp->sqb_size; pfvf->hw.rx_chan_base = rsp->rx_chan_base; pfvf->hw.tx_chan_base = rsp->tx_chan_base; pfvf->hw.lso_tsov4_idx = rsp->lso_tsov4_idx; pfvf->hw.lso_tsov6_idx = rsp->lso_tsov6_idx; pfvf->hw.cgx_links = rsp->cgx_links; pfvf->hw.lbk_links = rsp->lbk_links; pfvf->hw.tx_link = rsp->tx_link; } EXPORT_SYMBOL(mbox_handler_nix_lf_alloc); void mbox_handler_msix_offset(struct otx2_nic *pfvf, struct msix_offset_rsp *rsp) { pfvf->hw.npa_msixoff = rsp->npa_msixoff; pfvf->hw.nix_msixoff = rsp->nix_msixoff; } EXPORT_SYMBOL(mbox_handler_msix_offset); void mbox_handler_nix_bp_enable(struct otx2_nic *pfvf, struct nix_bp_cfg_rsp *rsp) { int chan, chan_id; for (chan = 0; chan < rsp->chan_cnt; chan++) { chan_id = ((rsp->chan_bpid[chan] >> 10) & 0x7F); pfvf->bpid[chan_id] = rsp->chan_bpid[chan] & 0x3FF; } } EXPORT_SYMBOL(mbox_handler_nix_bp_enable); void otx2_free_cints(struct otx2_nic *pfvf, int n) { struct otx2_qset *qset = &pfvf->qset; struct otx2_hw *hw = &pfvf->hw; int irq, qidx; for (qidx = 0, irq = hw->nix_msixoff + NIX_LF_CINT_VEC_START; qidx < n; qidx++, irq++) { int vector = pci_irq_vector(pfvf->pdev, irq); irq_set_affinity_hint(vector, NULL); free_cpumask_var(hw->affinity_mask[irq]); free_irq(vector, &qset->napi[qidx]); } } void otx2_set_cints_affinity(struct otx2_nic *pfvf) { struct otx2_hw *hw = &pfvf->hw; int vec, cpu, irq, cint; vec = hw->nix_msixoff + NIX_LF_CINT_VEC_START; cpu = cpumask_first(cpu_online_mask); /* CQ interrupts */ for (cint = 0; cint < pfvf->hw.cint_cnt; cint++, vec++) { if (!alloc_cpumask_var(&hw->affinity_mask[vec], GFP_KERNEL)) return; cpumask_set_cpu(cpu, hw->affinity_mask[vec]); irq = pci_irq_vector(pfvf->pdev, vec); irq_set_affinity_hint(irq, hw->affinity_mask[vec]); cpu = cpumask_next(cpu, cpu_online_mask); if (unlikely(cpu >= nr_cpu_ids)) cpu = 0; } } #define M(_name, _id, _fn_name, _req_type, _rsp_type) \ int __weak \ otx2_mbox_up_handler_ ## _fn_name(struct otx2_nic *pfvf, \ struct _req_type *req, \ struct _rsp_type *rsp) \ { \ /* Nothing to do here */ \ return 0; \ } \ EXPORT_SYMBOL(otx2_mbox_up_handler_ ## _fn_name); MBOX_UP_CGX_MESSAGES #undef M