/* * Copyright (C) 2014 NVIDIA CORPORATION. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include "mc.h" #define MC_INTSTATUS 0x000 #define MC_INTMASK 0x004 #define MC_ERR_STATUS 0x08 #define MC_ERR_STATUS_TYPE_SHIFT 28 #define MC_ERR_STATUS_TYPE_INVALID_SMMU_PAGE (6 << MC_ERR_STATUS_TYPE_SHIFT) #define MC_ERR_STATUS_TYPE_MASK (0x7 << MC_ERR_STATUS_TYPE_SHIFT) #define MC_ERR_STATUS_READABLE (1 << 27) #define MC_ERR_STATUS_WRITABLE (1 << 26) #define MC_ERR_STATUS_NONSECURE (1 << 25) #define MC_ERR_STATUS_ADR_HI_SHIFT 20 #define MC_ERR_STATUS_ADR_HI_MASK 0x3 #define MC_ERR_STATUS_SECURITY (1 << 17) #define MC_ERR_STATUS_RW (1 << 16) #define MC_ERR_ADR 0x0c #define MC_DECERR_EMEM_OTHERS_STATUS 0x58 #define MC_SECURITY_VIOLATION_STATUS 0x74 #define MC_EMEM_ARB_CFG 0x90 #define MC_EMEM_ARB_CFG_CYCLES_PER_UPDATE(x) (((x) & 0x1ff) << 0) #define MC_EMEM_ARB_CFG_CYCLES_PER_UPDATE_MASK 0x1ff #define MC_EMEM_ARB_MISC0 0xd8 #define MC_EMEM_ADR_CFG 0x54 #define MC_EMEM_ADR_CFG_EMEM_NUMDEV BIT(0) static const struct of_device_id tegra_mc_of_match[] = { #ifdef CONFIG_ARCH_TEGRA_2x_SOC { .compatible = "nvidia,tegra20-mc", .data = &tegra20_mc_soc }, #endif #ifdef CONFIG_ARCH_TEGRA_3x_SOC { .compatible = "nvidia,tegra30-mc", .data = &tegra30_mc_soc }, #endif #ifdef CONFIG_ARCH_TEGRA_114_SOC { .compatible = "nvidia,tegra114-mc", .data = &tegra114_mc_soc }, #endif #ifdef CONFIG_ARCH_TEGRA_124_SOC { .compatible = "nvidia,tegra124-mc", .data = &tegra124_mc_soc }, #endif #ifdef CONFIG_ARCH_TEGRA_132_SOC { .compatible = "nvidia,tegra132-mc", .data = &tegra132_mc_soc }, #endif #ifdef CONFIG_ARCH_TEGRA_210_SOC { .compatible = "nvidia,tegra210-mc", .data = &tegra210_mc_soc }, #endif { } }; MODULE_DEVICE_TABLE(of, tegra_mc_of_match); static int terga_mc_block_dma_common(struct tegra_mc *mc, const struct tegra_mc_reset *rst) { unsigned long flags; u32 value; spin_lock_irqsave(&mc->lock, flags); value = mc_readl(mc, rst->control) | BIT(rst->bit); mc_writel(mc, value, rst->control); spin_unlock_irqrestore(&mc->lock, flags); return 0; } static bool terga_mc_dma_idling_common(struct tegra_mc *mc, const struct tegra_mc_reset *rst) { return (mc_readl(mc, rst->status) & BIT(rst->bit)) != 0; } static int terga_mc_unblock_dma_common(struct tegra_mc *mc, const struct tegra_mc_reset *rst) { unsigned long flags; u32 value; spin_lock_irqsave(&mc->lock, flags); value = mc_readl(mc, rst->control) & ~BIT(rst->bit); mc_writel(mc, value, rst->control); spin_unlock_irqrestore(&mc->lock, flags); return 0; } static int terga_mc_reset_status_common(struct tegra_mc *mc, const struct tegra_mc_reset *rst) { return (mc_readl(mc, rst->control) & BIT(rst->bit)) != 0; } const struct tegra_mc_reset_ops terga_mc_reset_ops_common = { .block_dma = terga_mc_block_dma_common, .dma_idling = terga_mc_dma_idling_common, .unblock_dma = terga_mc_unblock_dma_common, .reset_status = terga_mc_reset_status_common, }; static inline struct tegra_mc *reset_to_mc(struct reset_controller_dev *rcdev) { return container_of(rcdev, struct tegra_mc, reset); } static const struct tegra_mc_reset *tegra_mc_reset_find(struct tegra_mc *mc, unsigned long id) { unsigned int i; for (i = 0; i < mc->soc->num_resets; i++) if (mc->soc->resets[i].id == id) return &mc->soc->resets[i]; return NULL; } static int tegra_mc_hotreset_assert(struct reset_controller_dev *rcdev, unsigned long id) { struct tegra_mc *mc = reset_to_mc(rcdev); const struct tegra_mc_reset_ops *rst_ops; const struct tegra_mc_reset *rst; int retries = 500; int err; rst = tegra_mc_reset_find(mc, id); if (!rst) return -ENODEV; rst_ops = mc->soc->reset_ops; if (!rst_ops) return -ENODEV; if (rst_ops->block_dma) { /* block clients DMA requests */ err = rst_ops->block_dma(mc, rst); if (err) { dev_err(mc->dev, "Failed to block %s DMA: %d\n", rst->name, err); return err; } } if (rst_ops->dma_idling) { /* wait for completion of the outstanding DMA requests */ while (!rst_ops->dma_idling(mc, rst)) { if (!retries--) { dev_err(mc->dev, "Failed to flush %s DMA\n", rst->name); return -EBUSY; } usleep_range(10, 100); } } if (rst_ops->hotreset_assert) { /* clear clients DMA requests sitting before arbitration */ err = rst_ops->hotreset_assert(mc, rst); if (err) { dev_err(mc->dev, "Failed to hot reset %s: %d\n", rst->name, err); return err; } } return 0; } static int tegra_mc_hotreset_deassert(struct reset_controller_dev *rcdev, unsigned long id) { struct tegra_mc *mc = reset_to_mc(rcdev); const struct tegra_mc_reset_ops *rst_ops; const struct tegra_mc_reset *rst; int err; rst = tegra_mc_reset_find(mc, id); if (!rst) return -ENODEV; rst_ops = mc->soc->reset_ops; if (!rst_ops) return -ENODEV; if (rst_ops->hotreset_deassert) { /* take out client from hot reset */ err = rst_ops->hotreset_deassert(mc, rst); if (err) { dev_err(mc->dev, "Failed to deassert hot reset %s: %d\n", rst->name, err); return err; } } if (rst_ops->unblock_dma) { /* allow new DMA requests to proceed to arbitration */ err = rst_ops->unblock_dma(mc, rst); if (err) { dev_err(mc->dev, "Failed to unblock %s DMA : %d\n", rst->name, err); return err; } } return 0; } static int tegra_mc_hotreset_status(struct reset_controller_dev *rcdev, unsigned long id) { struct tegra_mc *mc = reset_to_mc(rcdev); const struct tegra_mc_reset_ops *rst_ops; const struct tegra_mc_reset *rst; rst = tegra_mc_reset_find(mc, id); if (!rst) return -ENODEV; rst_ops = mc->soc->reset_ops; if (!rst_ops) return -ENODEV; return rst_ops->reset_status(mc, rst); } static const struct reset_control_ops tegra_mc_reset_ops = { .assert = tegra_mc_hotreset_assert, .deassert = tegra_mc_hotreset_deassert, .status = tegra_mc_hotreset_status, }; static int tegra_mc_reset_setup(struct tegra_mc *mc) { int err; mc->reset.ops = &tegra_mc_reset_ops; mc->reset.owner = THIS_MODULE; mc->reset.of_node = mc->dev->of_node; mc->reset.of_reset_n_cells = 1; mc->reset.nr_resets = mc->soc->num_resets; err = reset_controller_register(&mc->reset); if (err < 0) return err; return 0; } static int tegra_mc_setup_latency_allowance(struct tegra_mc *mc) { unsigned long long tick; unsigned int i; u32 value; /* compute the number of MC clock cycles per tick */ tick = (unsigned long long)mc->tick * clk_get_rate(mc->clk); do_div(tick, NSEC_PER_SEC); value = readl(mc->regs + MC_EMEM_ARB_CFG); value &= ~MC_EMEM_ARB_CFG_CYCLES_PER_UPDATE_MASK; value |= MC_EMEM_ARB_CFG_CYCLES_PER_UPDATE(tick); writel(value, mc->regs + MC_EMEM_ARB_CFG); /* write latency allowance defaults */ for (i = 0; i < mc->soc->num_clients; i++) { const struct tegra_mc_la *la = &mc->soc->clients[i].la; u32 value; value = readl(mc->regs + la->reg); value &= ~(la->mask << la->shift); value |= (la->def & la->mask) << la->shift; writel(value, mc->regs + la->reg); } return 0; } void tegra_mc_write_emem_configuration(struct tegra_mc *mc, unsigned long rate) { unsigned int i; struct tegra_mc_timing *timing = NULL; for (i = 0; i < mc->num_timings; i++) { if (mc->timings[i].rate == rate) { timing = &mc->timings[i]; break; } } if (!timing) { dev_err(mc->dev, "no memory timing registered for rate %lu\n", rate); return; } for (i = 0; i < mc->soc->num_emem_regs; ++i) mc_writel(mc, timing->emem_data[i], mc->soc->emem_regs[i]); } unsigned int tegra_mc_get_emem_device_count(struct tegra_mc *mc) { u8 dram_count; dram_count = mc_readl(mc, MC_EMEM_ADR_CFG); dram_count &= MC_EMEM_ADR_CFG_EMEM_NUMDEV; dram_count++; return dram_count; } static int load_one_timing(struct tegra_mc *mc, struct tegra_mc_timing *timing, struct device_node *node) { int err; u32 tmp; err = of_property_read_u32(node, "clock-frequency", &tmp); if (err) { dev_err(mc->dev, "timing %pOFn: failed to read rate\n", node); return err; } timing->rate = tmp; timing->emem_data = devm_kcalloc(mc->dev, mc->soc->num_emem_regs, sizeof(u32), GFP_KERNEL); if (!timing->emem_data) return -ENOMEM; err = of_property_read_u32_array(node, "nvidia,emem-configuration", timing->emem_data, mc->soc->num_emem_regs); if (err) { dev_err(mc->dev, "timing %pOFn: failed to read EMEM configuration\n", node); return err; } return 0; } static int load_timings(struct tegra_mc *mc, struct device_node *node) { struct device_node *child; struct tegra_mc_timing *timing; int child_count = of_get_child_count(node); int i = 0, err; mc->timings = devm_kcalloc(mc->dev, child_count, sizeof(*timing), GFP_KERNEL); if (!mc->timings) return -ENOMEM; mc->num_timings = child_count; for_each_child_of_node(node, child) { timing = &mc->timings[i++]; err = load_one_timing(mc, timing, child); if (err) { of_node_put(child); return err; } } return 0; } static int tegra_mc_setup_timings(struct tegra_mc *mc) { struct device_node *node; u32 ram_code, node_ram_code; int err; ram_code = tegra_read_ram_code(); mc->num_timings = 0; for_each_child_of_node(mc->dev->of_node, node) { err = of_property_read_u32(node, "nvidia,ram-code", &node_ram_code); if (err || (node_ram_code != ram_code)) continue; err = load_timings(mc, node); of_node_put(node); if (err) return err; break; } if (mc->num_timings == 0) dev_warn(mc->dev, "no memory timings for RAM code %u registered\n", ram_code); return 0; } static const char *const status_names[32] = { [ 1] = "External interrupt", [ 6] = "EMEM address decode error", [ 7] = "GART page fault", [ 8] = "Security violation", [ 9] = "EMEM arbitration error", [10] = "Page fault", [11] = "Invalid APB ASID update", [12] = "VPR violation", [13] = "Secure carveout violation", [16] = "MTS carveout violation", }; static const char *const error_names[8] = { [2] = "EMEM decode error", [3] = "TrustZone violation", [4] = "Carveout violation", [6] = "SMMU translation error", }; static irqreturn_t tegra_mc_irq(int irq, void *data) { struct tegra_mc *mc = data; unsigned long status; unsigned int bit; /* mask all interrupts to avoid flooding */ status = mc_readl(mc, MC_INTSTATUS) & mc->soc->intmask; if (!status) return IRQ_NONE; for_each_set_bit(bit, &status, 32) { const char *error = status_names[bit] ?: "unknown"; const char *client = "unknown", *desc; const char *direction, *secure; phys_addr_t addr = 0; unsigned int i; char perm[7]; u8 id, type; u32 value; value = mc_readl(mc, MC_ERR_STATUS); #ifdef CONFIG_PHYS_ADDR_T_64BIT if (mc->soc->num_address_bits > 32) { addr = ((value >> MC_ERR_STATUS_ADR_HI_SHIFT) & MC_ERR_STATUS_ADR_HI_MASK); addr <<= 32; } #endif if (value & MC_ERR_STATUS_RW) direction = "write"; else direction = "read"; if (value & MC_ERR_STATUS_SECURITY) secure = "secure "; else secure = ""; id = value & mc->soc->client_id_mask; for (i = 0; i < mc->soc->num_clients; i++) { if (mc->soc->clients[i].id == id) { client = mc->soc->clients[i].name; break; } } type = (value & MC_ERR_STATUS_TYPE_MASK) >> MC_ERR_STATUS_TYPE_SHIFT; desc = error_names[type]; switch (value & MC_ERR_STATUS_TYPE_MASK) { case MC_ERR_STATUS_TYPE_INVALID_SMMU_PAGE: perm[0] = ' '; perm[1] = '['; if (value & MC_ERR_STATUS_READABLE) perm[2] = 'R'; else perm[2] = '-'; if (value & MC_ERR_STATUS_WRITABLE) perm[3] = 'W'; else perm[3] = '-'; if (value & MC_ERR_STATUS_NONSECURE) perm[4] = '-'; else perm[4] = 'S'; perm[5] = ']'; perm[6] = '\0'; break; default: perm[0] = '\0'; break; } value = mc_readl(mc, MC_ERR_ADR); addr |= value; dev_err_ratelimited(mc->dev, "%s: %s%s @%pa: %s (%s%s)\n", client, secure, direction, &addr, error, desc, perm); } /* clear interrupts */ mc_writel(mc, status, MC_INTSTATUS); return IRQ_HANDLED; } static __maybe_unused irqreturn_t tegra20_mc_irq(int irq, void *data) { struct tegra_mc *mc = data; unsigned long status; unsigned int bit; /* mask all interrupts to avoid flooding */ status = mc_readl(mc, MC_INTSTATUS) & mc->soc->intmask; if (!status) return IRQ_NONE; for_each_set_bit(bit, &status, 32) { const char *direction = "read", *secure = ""; const char *error = status_names[bit]; const char *client, *desc; phys_addr_t addr; u32 value, reg; u8 id, type; switch (BIT(bit)) { case MC_INT_DECERR_EMEM: reg = MC_DECERR_EMEM_OTHERS_STATUS; value = mc_readl(mc, reg); id = value & mc->soc->client_id_mask; desc = error_names[2]; if (value & BIT(31)) direction = "write"; break; case MC_INT_INVALID_GART_PAGE: dev_err_ratelimited(mc->dev, "%s\n", error); continue; case MC_INT_SECURITY_VIOLATION: reg = MC_SECURITY_VIOLATION_STATUS; value = mc_readl(mc, reg); id = value & mc->soc->client_id_mask; type = (value & BIT(30)) ? 4 : 3; desc = error_names[type]; secure = "secure "; if (value & BIT(31)) direction = "write"; break; default: continue; } client = mc->soc->clients[id].name; addr = mc_readl(mc, reg + sizeof(u32)); dev_err_ratelimited(mc->dev, "%s: %s%s @%pa: %s (%s)\n", client, secure, direction, &addr, error, desc); } /* clear interrupts */ mc_writel(mc, status, MC_INTSTATUS); return IRQ_HANDLED; } static int tegra_mc_probe(struct platform_device *pdev) { const struct of_device_id *match; struct resource *res; struct tegra_mc *mc; void *isr; int err; match = of_match_node(tegra_mc_of_match, pdev->dev.of_node); if (!match) return -ENODEV; mc = devm_kzalloc(&pdev->dev, sizeof(*mc), GFP_KERNEL); if (!mc) return -ENOMEM; platform_set_drvdata(pdev, mc); spin_lock_init(&mc->lock); mc->soc = match->data; mc->dev = &pdev->dev; /* length of MC tick in nanoseconds */ mc->tick = 30; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); mc->regs = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(mc->regs)) return PTR_ERR(mc->regs); #ifdef CONFIG_ARCH_TEGRA_2x_SOC if (mc->soc == &tegra20_mc_soc) { res = platform_get_resource(pdev, IORESOURCE_MEM, 1); mc->regs2 = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(mc->regs2)) return PTR_ERR(mc->regs2); isr = tegra20_mc_irq; } else #endif { mc->clk = devm_clk_get(&pdev->dev, "mc"); if (IS_ERR(mc->clk)) { dev_err(&pdev->dev, "failed to get MC clock: %ld\n", PTR_ERR(mc->clk)); return PTR_ERR(mc->clk); } err = tegra_mc_setup_latency_allowance(mc); if (err < 0) { dev_err(&pdev->dev, "failed to setup latency allowance: %d\n", err); return err; } isr = tegra_mc_irq; } err = tegra_mc_setup_timings(mc); if (err < 0) { dev_err(&pdev->dev, "failed to setup timings: %d\n", err); return err; } mc->irq = platform_get_irq(pdev, 0); if (mc->irq < 0) { dev_err(&pdev->dev, "interrupt not specified\n"); return mc->irq; } WARN(!mc->soc->client_id_mask, "Missing client ID mask for this SoC\n"); mc_writel(mc, mc->soc->intmask, MC_INTMASK); err = devm_request_irq(&pdev->dev, mc->irq, isr, IRQF_SHARED, dev_name(&pdev->dev), mc); if (err < 0) { dev_err(&pdev->dev, "failed to request IRQ#%u: %d\n", mc->irq, err); return err; } err = tegra_mc_reset_setup(mc); if (err < 0) dev_err(&pdev->dev, "failed to register reset controller: %d\n", err); if (IS_ENABLED(CONFIG_TEGRA_IOMMU_SMMU)) { mc->smmu = tegra_smmu_probe(&pdev->dev, mc->soc->smmu, mc); if (IS_ERR(mc->smmu)) dev_err(&pdev->dev, "failed to probe SMMU: %ld\n", PTR_ERR(mc->smmu)); } return 0; } static struct platform_driver tegra_mc_driver = { .driver = { .name = "tegra-mc", .of_match_table = tegra_mc_of_match, .suppress_bind_attrs = true, }, .prevent_deferred_probe = true, .probe = tegra_mc_probe, }; static int tegra_mc_init(void) { return platform_driver_register(&tegra_mc_driver); } arch_initcall(tegra_mc_init); MODULE_AUTHOR("Thierry Reding "); MODULE_DESCRIPTION("NVIDIA Tegra Memory Controller driver"); MODULE_LICENSE("GPL v2");