/* * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Authors: * Zhi Wang * * Contributors: * Ping Gao * Tina Zhang * Chanbin Du * Min He * Bing Niu * Zhenyu Wang * */ #include #include "gem/i915_gem_context.h" #include "gem/i915_gem_pm.h" #include "gt/intel_context.h" #include "i915_drv.h" #include "gvt.h" #define RING_CTX_OFF(x) \ offsetof(struct execlist_ring_context, x) static void set_context_pdp_root_pointer( struct execlist_ring_context *ring_context, u32 pdp[8]) { int i; for (i = 0; i < 8; i++) ring_context->pdps[i].val = pdp[7 - i]; } static void update_shadow_pdps(struct intel_vgpu_workload *workload) { struct drm_i915_gem_object *ctx_obj = workload->req->hw_context->state->obj; struct execlist_ring_context *shadow_ring_context; struct page *page; if (WARN_ON(!workload->shadow_mm)) return; if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount))) return; page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN); shadow_ring_context = kmap(page); set_context_pdp_root_pointer(shadow_ring_context, (void *)workload->shadow_mm->ppgtt_mm.shadow_pdps); kunmap(page); } /* * when populating shadow ctx from guest, we should not overrride oa related * registers, so that they will not be overlapped by guest oa configs. Thus * made it possible to capture oa data from host for both host and guests. */ static void sr_oa_regs(struct intel_vgpu_workload *workload, u32 *reg_state, bool save) { struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv; u32 ctx_oactxctrl = dev_priv->perf.ctx_oactxctrl_offset; u32 ctx_flexeu0 = dev_priv->perf.ctx_flexeu0_offset; int i = 0; u32 flex_mmio[] = { i915_mmio_reg_offset(EU_PERF_CNTL0), i915_mmio_reg_offset(EU_PERF_CNTL1), i915_mmio_reg_offset(EU_PERF_CNTL2), i915_mmio_reg_offset(EU_PERF_CNTL3), i915_mmio_reg_offset(EU_PERF_CNTL4), i915_mmio_reg_offset(EU_PERF_CNTL5), i915_mmio_reg_offset(EU_PERF_CNTL6), }; if (workload->ring_id != RCS0) return; if (save) { workload->oactxctrl = reg_state[ctx_oactxctrl + 1]; for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) { u32 state_offset = ctx_flexeu0 + i * 2; workload->flex_mmio[i] = reg_state[state_offset + 1]; } } else { reg_state[ctx_oactxctrl] = i915_mmio_reg_offset(GEN8_OACTXCONTROL); reg_state[ctx_oactxctrl + 1] = workload->oactxctrl; for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) { u32 state_offset = ctx_flexeu0 + i * 2; u32 mmio = flex_mmio[i]; reg_state[state_offset] = mmio; reg_state[state_offset + 1] = workload->flex_mmio[i]; } } } static int populate_shadow_context(struct intel_vgpu_workload *workload) { struct intel_vgpu *vgpu = workload->vgpu; struct intel_gvt *gvt = vgpu->gvt; int ring_id = workload->ring_id; struct drm_i915_gem_object *ctx_obj = workload->req->hw_context->state->obj; struct execlist_ring_context *shadow_ring_context; struct page *page; void *dst; unsigned long context_gpa, context_page_num; int i; page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN); shadow_ring_context = kmap(page); sr_oa_regs(workload, (u32 *)shadow_ring_context, true); #define COPY_REG(name) \ intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \ + RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4) #define COPY_REG_MASKED(name) {\ intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \ + RING_CTX_OFF(name.val),\ &shadow_ring_context->name.val, 4);\ shadow_ring_context->name.val |= 0xffff << 16;\ } COPY_REG_MASKED(ctx_ctrl); COPY_REG(ctx_timestamp); if (ring_id == RCS0) { COPY_REG(bb_per_ctx_ptr); COPY_REG(rcs_indirect_ctx); COPY_REG(rcs_indirect_ctx_offset); } #undef COPY_REG #undef COPY_REG_MASKED intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa + sizeof(*shadow_ring_context), (void *)shadow_ring_context + sizeof(*shadow_ring_context), I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context)); sr_oa_regs(workload, (u32 *)shadow_ring_context, false); kunmap(page); if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val)) return 0; gvt_dbg_sched("ring id %d workload lrca %x", ring_id, workload->ctx_desc.lrca); context_page_num = gvt->dev_priv->engine[ring_id]->context_size; context_page_num = context_page_num >> PAGE_SHIFT; if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS0) context_page_num = 19; i = 2; while (i < context_page_num) { context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, (u32)((workload->ctx_desc.lrca + i) << I915_GTT_PAGE_SHIFT)); if (context_gpa == INTEL_GVT_INVALID_ADDR) { gvt_vgpu_err("Invalid guest context descriptor\n"); return -EFAULT; } page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i); dst = kmap(page); intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst, I915_GTT_PAGE_SIZE); kunmap(page); i++; } return 0; } static inline bool is_gvt_request(struct i915_request *req) { return i915_gem_context_force_single_submission(req->gem_context); } static void save_ring_hw_state(struct intel_vgpu *vgpu, int ring_id) { struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; u32 ring_base = dev_priv->engine[ring_id]->mmio_base; i915_reg_t reg; reg = RING_INSTDONE(ring_base); vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg); reg = RING_ACTHD(ring_base); vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg); reg = RING_ACTHD_UDW(ring_base); vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg); } static int shadow_context_status_change(struct notifier_block *nb, unsigned long action, void *data) { struct i915_request *req = data; struct intel_gvt *gvt = container_of(nb, struct intel_gvt, shadow_ctx_notifier_block[req->engine->id]); struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; enum intel_engine_id ring_id = req->engine->id; struct intel_vgpu_workload *workload; unsigned long flags; if (!is_gvt_request(req)) { spin_lock_irqsave(&scheduler->mmio_context_lock, flags); if (action == INTEL_CONTEXT_SCHEDULE_IN && scheduler->engine_owner[ring_id]) { /* Switch ring from vGPU to host. */ intel_gvt_switch_mmio(scheduler->engine_owner[ring_id], NULL, ring_id); scheduler->engine_owner[ring_id] = NULL; } spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags); return NOTIFY_OK; } workload = scheduler->current_workload[ring_id]; if (unlikely(!workload)) return NOTIFY_OK; switch (action) { case INTEL_CONTEXT_SCHEDULE_IN: spin_lock_irqsave(&scheduler->mmio_context_lock, flags); if (workload->vgpu != scheduler->engine_owner[ring_id]) { /* Switch ring from host to vGPU or vGPU to vGPU. */ intel_gvt_switch_mmio(scheduler->engine_owner[ring_id], workload->vgpu, ring_id); scheduler->engine_owner[ring_id] = workload->vgpu; } else gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n", ring_id, workload->vgpu->id); spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags); atomic_set(&workload->shadow_ctx_active, 1); break; case INTEL_CONTEXT_SCHEDULE_OUT: save_ring_hw_state(workload->vgpu, ring_id); atomic_set(&workload->shadow_ctx_active, 0); break; case INTEL_CONTEXT_SCHEDULE_PREEMPTED: save_ring_hw_state(workload->vgpu, ring_id); break; default: WARN_ON(1); return NOTIFY_OK; } wake_up(&workload->shadow_ctx_status_wq); return NOTIFY_OK; } static void shadow_context_descriptor_update(struct intel_context *ce, struct intel_vgpu_workload *workload) { u64 desc = ce->lrc_desc; /* * Update bits 0-11 of the context descriptor which includes flags * like GEN8_CTX_* cached in desc_template */ desc &= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT); desc |= workload->ctx_desc.addressing_mode << GEN8_CTX_ADDRESSING_MODE_SHIFT; ce->lrc_desc = desc; } static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload) { struct intel_vgpu *vgpu = workload->vgpu; struct i915_request *req = workload->req; void *shadow_ring_buffer_va; u32 *cs; int err; if (IS_GEN(req->i915, 9) && is_inhibit_context(req->hw_context)) intel_vgpu_restore_inhibit_context(vgpu, req); /* * To track whether a request has started on HW, we can emit a * breadcrumb at the beginning of the request and check its * timeline's HWSP to see if the breadcrumb has advanced past the * start of this request. Actually, the request must have the * init_breadcrumb if its timeline set has_init_bread_crumb, or the * scheduler might get a wrong state of it during reset. Since the * requests from gvt always set the has_init_breadcrumb flag, here * need to do the emit_init_breadcrumb for all the requests. */ if (req->engine->emit_init_breadcrumb) { err = req->engine->emit_init_breadcrumb(req); if (err) { gvt_vgpu_err("fail to emit init breadcrumb\n"); return err; } } /* allocate shadow ring buffer */ cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32)); if (IS_ERR(cs)) { gvt_vgpu_err("fail to alloc size =%ld shadow ring buffer\n", workload->rb_len); return PTR_ERR(cs); } shadow_ring_buffer_va = workload->shadow_ring_buffer_va; /* get shadow ring buffer va */ workload->shadow_ring_buffer_va = cs; memcpy(cs, shadow_ring_buffer_va, workload->rb_len); cs += workload->rb_len / sizeof(u32); intel_ring_advance(workload->req, cs); return 0; } static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) { if (!wa_ctx->indirect_ctx.obj) return; i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj); i915_gem_object_put(wa_ctx->indirect_ctx.obj); wa_ctx->indirect_ctx.obj = NULL; wa_ctx->indirect_ctx.shadow_va = NULL; } static void set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload, struct i915_gem_context *ctx) { struct intel_vgpu_mm *mm = workload->shadow_mm; struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ctx->vm); int i = 0; if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) { px_dma(ppgtt->pd) = mm->ppgtt_mm.shadow_pdps[0]; } else { for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) { struct i915_page_directory * const pd = i915_pd_entry(ppgtt->pd, i); px_dma(pd) = mm->ppgtt_mm.shadow_pdps[i]; } } } static int intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload) { struct intel_vgpu *vgpu = workload->vgpu; struct intel_vgpu_submission *s = &vgpu->submission; struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; struct i915_request *rq; lockdep_assert_held(&dev_priv->drm.struct_mutex); if (workload->req) return 0; rq = i915_request_create(s->shadow[workload->ring_id]); if (IS_ERR(rq)) { gvt_vgpu_err("fail to allocate gem request\n"); return PTR_ERR(rq); } workload->req = i915_request_get(rq); return 0; } /** * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and * shadow it as well, include ringbuffer,wa_ctx and ctx. * @workload: an abstract entity for each execlist submission. * * This function is called before the workload submitting to i915, to make * sure the content of the workload is valid. */ int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload) { struct intel_vgpu *vgpu = workload->vgpu; struct intel_vgpu_submission *s = &vgpu->submission; struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; int ret; lockdep_assert_held(&dev_priv->drm.struct_mutex); if (workload->shadow) return 0; if (!test_and_set_bit(workload->ring_id, s->shadow_ctx_desc_updated)) shadow_context_descriptor_update(s->shadow[workload->ring_id], workload); ret = intel_gvt_scan_and_shadow_ringbuffer(workload); if (ret) return ret; if (workload->ring_id == RCS0 && workload->wa_ctx.indirect_ctx.size) { ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx); if (ret) goto err_shadow; } workload->shadow = true; return 0; err_shadow: release_shadow_wa_ctx(&workload->wa_ctx); return ret; } static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload); static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload) { struct intel_gvt *gvt = workload->vgpu->gvt; const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd; struct intel_vgpu_shadow_bb *bb; int ret; list_for_each_entry(bb, &workload->shadow_bb, list) { /* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va * is only updated into ring_scan_buffer, not real ring address * allocated in later copy_workload_to_ring_buffer. pls be noted * shadow_ring_buffer_va is now pointed to real ring buffer va * in copy_workload_to_ring_buffer. */ if (bb->bb_offset) bb->bb_start_cmd_va = workload->shadow_ring_buffer_va + bb->bb_offset; if (bb->ppgtt) { /* for non-priv bb, scan&shadow is only for * debugging purpose, so the content of shadow bb * is the same as original bb. Therefore, * here, rather than switch to shadow bb's gma * address, we directly use original batch buffer's * gma address, and send original bb to hardware * directly */ if (bb->clflush & CLFLUSH_AFTER) { drm_clflush_virt_range(bb->va, bb->obj->base.size); bb->clflush &= ~CLFLUSH_AFTER; } i915_gem_object_finish_access(bb->obj); bb->accessing = false; } else { bb->vma = i915_gem_object_ggtt_pin(bb->obj, NULL, 0, 0, 0); if (IS_ERR(bb->vma)) { ret = PTR_ERR(bb->vma); goto err; } /* relocate shadow batch buffer */ bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma); if (gmadr_bytes == 8) bb->bb_start_cmd_va[2] = 0; /* No one is going to touch shadow bb from now on. */ if (bb->clflush & CLFLUSH_AFTER) { drm_clflush_virt_range(bb->va, bb->obj->base.size); bb->clflush &= ~CLFLUSH_AFTER; } ret = i915_gem_object_set_to_gtt_domain(bb->obj, false); if (ret) goto err; ret = i915_vma_move_to_active(bb->vma, workload->req, 0); if (ret) goto err; i915_gem_object_finish_access(bb->obj); bb->accessing = false; } } return 0; err: release_shadow_batch_buffer(workload); return ret; } static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx) { struct intel_vgpu_workload *workload = container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx); struct i915_request *rq = workload->req; struct execlist_ring_context *shadow_ring_context = (struct execlist_ring_context *)rq->hw_context->lrc_reg_state; shadow_ring_context->bb_per_ctx_ptr.val = (shadow_ring_context->bb_per_ctx_ptr.val & (~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma; shadow_ring_context->rcs_indirect_ctx.val = (shadow_ring_context->rcs_indirect_ctx.val & (~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma; } static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) { struct i915_vma *vma; unsigned char *per_ctx_va = (unsigned char *)wa_ctx->indirect_ctx.shadow_va + wa_ctx->indirect_ctx.size; if (wa_ctx->indirect_ctx.size == 0) return 0; vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL, 0, CACHELINE_BYTES, 0); if (IS_ERR(vma)) return PTR_ERR(vma); /* FIXME: we are not tracking our pinned VMA leaving it * up to the core to fix up the stray pin_count upon * free. */ wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma); wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1); memset(per_ctx_va, 0, CACHELINE_BYTES); update_wa_ctx_2_shadow_ctx(wa_ctx); return 0; } static void update_vreg_in_ctx(struct intel_vgpu_workload *workload) { struct intel_vgpu *vgpu = workload->vgpu; struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; u32 ring_base; ring_base = dev_priv->engine[workload->ring_id]->mmio_base; vgpu_vreg_t(vgpu, RING_START(ring_base)) = workload->rb_start; } static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload) { struct intel_vgpu *vgpu = workload->vgpu; struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; struct intel_vgpu_shadow_bb *bb, *pos; if (list_empty(&workload->shadow_bb)) return; bb = list_first_entry(&workload->shadow_bb, struct intel_vgpu_shadow_bb, list); mutex_lock(&dev_priv->drm.struct_mutex); list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) { if (bb->obj) { if (bb->accessing) i915_gem_object_finish_access(bb->obj); if (bb->va && !IS_ERR(bb->va)) i915_gem_object_unpin_map(bb->obj); if (bb->vma && !IS_ERR(bb->vma)) { i915_vma_unpin(bb->vma); i915_vma_close(bb->vma); } i915_gem_object_put(bb->obj); } list_del(&bb->list); kfree(bb); } mutex_unlock(&dev_priv->drm.struct_mutex); } static int prepare_workload(struct intel_vgpu_workload *workload) { struct intel_vgpu *vgpu = workload->vgpu; struct intel_vgpu_submission *s = &vgpu->submission; int ring = workload->ring_id; int ret = 0; ret = intel_vgpu_pin_mm(workload->shadow_mm); if (ret) { gvt_vgpu_err("fail to vgpu pin mm\n"); return ret; } if (workload->shadow_mm->type != INTEL_GVT_MM_PPGTT || !workload->shadow_mm->ppgtt_mm.shadowed) { gvt_vgpu_err("workload shadow ppgtt isn't ready\n"); return -EINVAL; } update_shadow_pdps(workload); set_context_ppgtt_from_shadow(workload, s->shadow[ring]->gem_context); ret = intel_vgpu_sync_oos_pages(workload->vgpu); if (ret) { gvt_vgpu_err("fail to vgpu sync oos pages\n"); goto err_unpin_mm; } ret = intel_vgpu_flush_post_shadow(workload->vgpu); if (ret) { gvt_vgpu_err("fail to flush post shadow\n"); goto err_unpin_mm; } ret = copy_workload_to_ring_buffer(workload); if (ret) { gvt_vgpu_err("fail to generate request\n"); goto err_unpin_mm; } ret = prepare_shadow_batch_buffer(workload); if (ret) { gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n"); goto err_unpin_mm; } ret = prepare_shadow_wa_ctx(&workload->wa_ctx); if (ret) { gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n"); goto err_shadow_batch; } if (workload->prepare) { ret = workload->prepare(workload); if (ret) goto err_shadow_wa_ctx; } return 0; err_shadow_wa_ctx: release_shadow_wa_ctx(&workload->wa_ctx); err_shadow_batch: release_shadow_batch_buffer(workload); err_unpin_mm: intel_vgpu_unpin_mm(workload->shadow_mm); return ret; } static int dispatch_workload(struct intel_vgpu_workload *workload) { struct intel_vgpu *vgpu = workload->vgpu; struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; struct i915_request *rq; int ring_id = workload->ring_id; int ret; gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n", ring_id, workload); mutex_lock(&vgpu->vgpu_lock); mutex_lock(&dev_priv->drm.struct_mutex); ret = intel_gvt_workload_req_alloc(workload); if (ret) goto err_req; ret = intel_gvt_scan_and_shadow_workload(workload); if (ret) goto out; ret = populate_shadow_context(workload); if (ret) { release_shadow_wa_ctx(&workload->wa_ctx); goto out; } ret = prepare_workload(workload); out: if (ret) { /* We might still need to add request with * clean ctx to retire it properly.. */ rq = fetch_and_zero(&workload->req); i915_request_put(rq); } if (!IS_ERR_OR_NULL(workload->req)) { gvt_dbg_sched("ring id %d submit workload to i915 %p\n", ring_id, workload->req); i915_request_add(workload->req); workload->dispatched = true; } err_req: if (ret) workload->status = ret; mutex_unlock(&dev_priv->drm.struct_mutex); mutex_unlock(&vgpu->vgpu_lock); return ret; } static struct intel_vgpu_workload *pick_next_workload( struct intel_gvt *gvt, int ring_id) { struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; struct intel_vgpu_workload *workload = NULL; mutex_lock(&gvt->sched_lock); /* * no current vgpu / will be scheduled out / no workload * bail out */ if (!scheduler->current_vgpu) { gvt_dbg_sched("ring id %d stop - no current vgpu\n", ring_id); goto out; } if (scheduler->need_reschedule) { gvt_dbg_sched("ring id %d stop - will reschedule\n", ring_id); goto out; } if (!scheduler->current_vgpu->active || list_empty(workload_q_head(scheduler->current_vgpu, ring_id))) goto out; /* * still have current workload, maybe the workload disptacher * fail to submit it for some reason, resubmit it. */ if (scheduler->current_workload[ring_id]) { workload = scheduler->current_workload[ring_id]; gvt_dbg_sched("ring id %d still have current workload %p\n", ring_id, workload); goto out; } /* * pick a workload as current workload * once current workload is set, schedule policy routines * will wait the current workload is finished when trying to * schedule out a vgpu. */ scheduler->current_workload[ring_id] = container_of( workload_q_head(scheduler->current_vgpu, ring_id)->next, struct intel_vgpu_workload, list); workload = scheduler->current_workload[ring_id]; gvt_dbg_sched("ring id %d pick new workload %p\n", ring_id, workload); atomic_inc(&workload->vgpu->submission.running_workload_num); out: mutex_unlock(&gvt->sched_lock); return workload; } static void update_guest_context(struct intel_vgpu_workload *workload) { struct i915_request *rq = workload->req; struct intel_vgpu *vgpu = workload->vgpu; struct intel_gvt *gvt = vgpu->gvt; struct drm_i915_gem_object *ctx_obj = rq->hw_context->state->obj; struct execlist_ring_context *shadow_ring_context; struct page *page; void *src; unsigned long context_gpa, context_page_num; int i; struct drm_i915_private *dev_priv = gvt->dev_priv; u32 ring_base; u32 head, tail; u16 wrap_count; gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id, workload->ctx_desc.lrca); head = workload->rb_head; tail = workload->rb_tail; wrap_count = workload->guest_rb_head >> RB_HEAD_WRAP_CNT_OFF; if (tail < head) { if (wrap_count == RB_HEAD_WRAP_CNT_MAX) wrap_count = 0; else wrap_count += 1; } head = (wrap_count << RB_HEAD_WRAP_CNT_OFF) | tail; ring_base = dev_priv->engine[workload->ring_id]->mmio_base; vgpu_vreg_t(vgpu, RING_TAIL(ring_base)) = tail; vgpu_vreg_t(vgpu, RING_HEAD(ring_base)) = head; context_page_num = rq->engine->context_size; context_page_num = context_page_num >> PAGE_SHIFT; if (IS_BROADWELL(gvt->dev_priv) && rq->engine->id == RCS0) context_page_num = 19; i = 2; while (i < context_page_num) { context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, (u32)((workload->ctx_desc.lrca + i) << I915_GTT_PAGE_SHIFT)); if (context_gpa == INTEL_GVT_INVALID_ADDR) { gvt_vgpu_err("invalid guest context descriptor\n"); return; } page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i); src = kmap(page); intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src, I915_GTT_PAGE_SIZE); kunmap(page); i++; } intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4); page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN); shadow_ring_context = kmap(page); #define COPY_REG(name) \ intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \ RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4) COPY_REG(ctx_ctrl); COPY_REG(ctx_timestamp); #undef COPY_REG intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + sizeof(*shadow_ring_context), (void *)shadow_ring_context + sizeof(*shadow_ring_context), I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context)); kunmap(page); } void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu, intel_engine_mask_t engine_mask) { struct intel_vgpu_submission *s = &vgpu->submission; struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; struct intel_engine_cs *engine; struct intel_vgpu_workload *pos, *n; intel_engine_mask_t tmp; /* free the unsubmited workloads in the queues. */ for_each_engine_masked(engine, dev_priv, engine_mask, tmp) { list_for_each_entry_safe(pos, n, &s->workload_q_head[engine->id], list) { list_del_init(&pos->list); intel_vgpu_destroy_workload(pos); } clear_bit(engine->id, s->shadow_ctx_desc_updated); } } static void complete_current_workload(struct intel_gvt *gvt, int ring_id) { struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; struct intel_vgpu_workload *workload = scheduler->current_workload[ring_id]; struct intel_vgpu *vgpu = workload->vgpu; struct intel_vgpu_submission *s = &vgpu->submission; struct i915_request *rq = workload->req; int event; mutex_lock(&vgpu->vgpu_lock); mutex_lock(&gvt->sched_lock); /* For the workload w/ request, needs to wait for the context * switch to make sure request is completed. * For the workload w/o request, directly complete the workload. */ if (rq) { wait_event(workload->shadow_ctx_status_wq, !atomic_read(&workload->shadow_ctx_active)); /* If this request caused GPU hang, req->fence.error will * be set to -EIO. Use -EIO to set workload status so * that when this request caused GPU hang, didn't trigger * context switch interrupt to guest. */ if (likely(workload->status == -EINPROGRESS)) { if (workload->req->fence.error == -EIO) workload->status = -EIO; else workload->status = 0; } if (!workload->status && !(vgpu->resetting_eng & BIT(ring_id))) { update_guest_context(workload); for_each_set_bit(event, workload->pending_events, INTEL_GVT_EVENT_MAX) intel_vgpu_trigger_virtual_event(vgpu, event); } i915_request_put(fetch_and_zero(&workload->req)); } gvt_dbg_sched("ring id %d complete workload %p status %d\n", ring_id, workload, workload->status); scheduler->current_workload[ring_id] = NULL; list_del_init(&workload->list); if (workload->status || vgpu->resetting_eng & BIT(ring_id)) { /* if workload->status is not successful means HW GPU * has occurred GPU hang or something wrong with i915/GVT, * and GVT won't inject context switch interrupt to guest. * So this error is a vGPU hang actually to the guest. * According to this we should emunlate a vGPU hang. If * there are pending workloads which are already submitted * from guest, we should clean them up like HW GPU does. * * if it is in middle of engine resetting, the pending * workloads won't be submitted to HW GPU and will be * cleaned up during the resetting process later, so doing * the workload clean up here doesn't have any impact. **/ intel_vgpu_clean_workloads(vgpu, BIT(ring_id)); } workload->complete(workload); atomic_dec(&s->running_workload_num); wake_up(&scheduler->workload_complete_wq); if (gvt->scheduler.need_reschedule) intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED); mutex_unlock(&gvt->sched_lock); mutex_unlock(&vgpu->vgpu_lock); } struct workload_thread_param { struct intel_gvt *gvt; int ring_id; }; static int workload_thread(void *priv) { struct workload_thread_param *p = (struct workload_thread_param *)priv; struct intel_gvt *gvt = p->gvt; int ring_id = p->ring_id; struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; struct intel_vgpu_workload *workload = NULL; struct intel_vgpu *vgpu = NULL; int ret; bool need_force_wake = (INTEL_GEN(gvt->dev_priv) >= 9); DEFINE_WAIT_FUNC(wait, woken_wake_function); struct intel_runtime_pm *rpm = &gvt->dev_priv->runtime_pm; kfree(p); gvt_dbg_core("workload thread for ring %d started\n", ring_id); while (!kthread_should_stop()) { add_wait_queue(&scheduler->waitq[ring_id], &wait); do { workload = pick_next_workload(gvt, ring_id); if (workload) break; wait_woken(&wait, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); } while (!kthread_should_stop()); remove_wait_queue(&scheduler->waitq[ring_id], &wait); if (!workload) break; gvt_dbg_sched("ring id %d next workload %p vgpu %d\n", workload->ring_id, workload, workload->vgpu->id); intel_runtime_pm_get(rpm); gvt_dbg_sched("ring id %d will dispatch workload %p\n", workload->ring_id, workload); if (need_force_wake) intel_uncore_forcewake_get(&gvt->dev_priv->uncore, FORCEWAKE_ALL); /* * Update the vReg of the vGPU which submitted this * workload. The vGPU may use these registers for checking * the context state. The value comes from GPU commands * in this workload. */ update_vreg_in_ctx(workload); ret = dispatch_workload(workload); if (ret) { vgpu = workload->vgpu; gvt_vgpu_err("fail to dispatch workload, skip\n"); goto complete; } gvt_dbg_sched("ring id %d wait workload %p\n", workload->ring_id, workload); i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT); complete: gvt_dbg_sched("will complete workload %p, status: %d\n", workload, workload->status); complete_current_workload(gvt, ring_id); if (need_force_wake) intel_uncore_forcewake_put(&gvt->dev_priv->uncore, FORCEWAKE_ALL); intel_runtime_pm_put_unchecked(rpm); if (ret && (vgpu_is_vm_unhealthy(ret))) enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR); } return 0; } void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu) { struct intel_vgpu_submission *s = &vgpu->submission; struct intel_gvt *gvt = vgpu->gvt; struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; if (atomic_read(&s->running_workload_num)) { gvt_dbg_sched("wait vgpu idle\n"); wait_event(scheduler->workload_complete_wq, !atomic_read(&s->running_workload_num)); } } void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt) { struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; struct intel_engine_cs *engine; enum intel_engine_id i; gvt_dbg_core("clean workload scheduler\n"); for_each_engine(engine, gvt->dev_priv, i) { atomic_notifier_chain_unregister( &engine->context_status_notifier, &gvt->shadow_ctx_notifier_block[i]); kthread_stop(scheduler->thread[i]); } } int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt) { struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; struct workload_thread_param *param = NULL; struct intel_engine_cs *engine; enum intel_engine_id i; int ret; gvt_dbg_core("init workload scheduler\n"); init_waitqueue_head(&scheduler->workload_complete_wq); for_each_engine(engine, gvt->dev_priv, i) { init_waitqueue_head(&scheduler->waitq[i]); param = kzalloc(sizeof(*param), GFP_KERNEL); if (!param) { ret = -ENOMEM; goto err; } param->gvt = gvt; param->ring_id = i; scheduler->thread[i] = kthread_run(workload_thread, param, "gvt workload %d", i); if (IS_ERR(scheduler->thread[i])) { gvt_err("fail to create workload thread\n"); ret = PTR_ERR(scheduler->thread[i]); goto err; } gvt->shadow_ctx_notifier_block[i].notifier_call = shadow_context_status_change; atomic_notifier_chain_register(&engine->context_status_notifier, &gvt->shadow_ctx_notifier_block[i]); } return 0; err: intel_gvt_clean_workload_scheduler(gvt); kfree(param); param = NULL; return ret; } static void i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s, struct i915_ppgtt *ppgtt) { int i; if (i915_vm_is_4lvl(&ppgtt->vm)) { px_dma(ppgtt->pd) = s->i915_context_pml4; } else { for (i = 0; i < GEN8_3LVL_PDPES; i++) { struct i915_page_directory * const pd = i915_pd_entry(ppgtt->pd, i); px_dma(pd) = s->i915_context_pdps[i]; } } } /** * intel_vgpu_clean_submission - free submission-related resource for vGPU * @vgpu: a vGPU * * This function is called when a vGPU is being destroyed. * */ void intel_vgpu_clean_submission(struct intel_vgpu *vgpu) { struct intel_vgpu_submission *s = &vgpu->submission; struct intel_engine_cs *engine; enum intel_engine_id id; intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0); i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(s->shadow[0]->vm)); for_each_engine(engine, vgpu->gvt->dev_priv, id) intel_context_unpin(s->shadow[id]); kmem_cache_destroy(s->workloads); } /** * intel_vgpu_reset_submission - reset submission-related resource for vGPU * @vgpu: a vGPU * @engine_mask: engines expected to be reset * * This function is called when a vGPU is being destroyed. * */ void intel_vgpu_reset_submission(struct intel_vgpu *vgpu, intel_engine_mask_t engine_mask) { struct intel_vgpu_submission *s = &vgpu->submission; if (!s->active) return; intel_vgpu_clean_workloads(vgpu, engine_mask); s->ops->reset(vgpu, engine_mask); } static void i915_context_ppgtt_root_save(struct intel_vgpu_submission *s, struct i915_ppgtt *ppgtt) { int i; if (i915_vm_is_4lvl(&ppgtt->vm)) { s->i915_context_pml4 = px_dma(ppgtt->pd); } else { for (i = 0; i < GEN8_3LVL_PDPES; i++) { struct i915_page_directory * const pd = i915_pd_entry(ppgtt->pd, i); s->i915_context_pdps[i] = px_dma(pd); } } } /** * intel_vgpu_setup_submission - setup submission-related resource for vGPU * @vgpu: a vGPU * * This function is called when a vGPU is being created. * * Returns: * Zero on success, negative error code if failed. * */ int intel_vgpu_setup_submission(struct intel_vgpu *vgpu) { struct drm_i915_private *i915 = vgpu->gvt->dev_priv; struct intel_vgpu_submission *s = &vgpu->submission; struct intel_engine_cs *engine; struct i915_gem_context *ctx; enum intel_engine_id i; int ret; mutex_lock(&i915->drm.struct_mutex); ctx = i915_gem_context_create_kernel(i915, I915_PRIORITY_MAX); if (IS_ERR(ctx)) { ret = PTR_ERR(ctx); goto out_unlock; } i915_gem_context_set_force_single_submission(ctx); i915_context_ppgtt_root_save(s, i915_vm_to_ppgtt(ctx->vm)); for_each_engine(engine, i915, i) { struct intel_context *ce; INIT_LIST_HEAD(&s->workload_q_head[i]); s->shadow[i] = ERR_PTR(-EINVAL); ce = intel_context_create(ctx, engine); if (IS_ERR(ce)) { ret = PTR_ERR(ce); goto out_shadow_ctx; } if (!USES_GUC_SUBMISSION(i915)) { /* Max ring buffer size */ const unsigned int ring_size = 512 * SZ_4K; ce->ring = __intel_context_ring_size(ring_size); } ret = intel_context_pin(ce); intel_context_put(ce); if (ret) goto out_shadow_ctx; s->shadow[i] = ce; } bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES); s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload", sizeof(struct intel_vgpu_workload), 0, SLAB_HWCACHE_ALIGN, offsetof(struct intel_vgpu_workload, rb_tail), sizeof_field(struct intel_vgpu_workload, rb_tail), NULL); if (!s->workloads) { ret = -ENOMEM; goto out_shadow_ctx; } atomic_set(&s->running_workload_num, 0); bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES); i915_gem_context_put(ctx); mutex_unlock(&i915->drm.struct_mutex); return 0; out_shadow_ctx: i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(ctx->vm)); for_each_engine(engine, i915, i) { if (IS_ERR(s->shadow[i])) break; intel_context_unpin(s->shadow[i]); intel_context_put(s->shadow[i]); } i915_gem_context_put(ctx); out_unlock: mutex_unlock(&i915->drm.struct_mutex); return ret; } /** * intel_vgpu_select_submission_ops - select virtual submission interface * @vgpu: a vGPU * @engine_mask: either ALL_ENGINES or target engine mask * @interface: expected vGPU virtual submission interface * * This function is called when guest configures submission interface. * * Returns: * Zero on success, negative error code if failed. * */ int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu, intel_engine_mask_t engine_mask, unsigned int interface) { struct intel_vgpu_submission *s = &vgpu->submission; const struct intel_vgpu_submission_ops *ops[] = { [INTEL_VGPU_EXECLIST_SUBMISSION] = &intel_vgpu_execlist_submission_ops, }; int ret; if (WARN_ON(interface >= ARRAY_SIZE(ops))) return -EINVAL; if (WARN_ON(interface == 0 && engine_mask != ALL_ENGINES)) return -EINVAL; if (s->active) s->ops->clean(vgpu, engine_mask); if (interface == 0) { s->ops = NULL; s->virtual_submission_interface = 0; s->active = false; gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id); return 0; } ret = ops[interface]->init(vgpu, engine_mask); if (ret) return ret; s->ops = ops[interface]; s->virtual_submission_interface = interface; s->active = true; gvt_dbg_core("vgpu%d: activate ops [ %s ]\n", vgpu->id, s->ops->name); return 0; } /** * intel_vgpu_destroy_workload - destroy a vGPU workload * @workload: workload to destroy * * This function is called when destroy a vGPU workload. * */ void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload) { struct intel_vgpu_submission *s = &workload->vgpu->submission; release_shadow_batch_buffer(workload); release_shadow_wa_ctx(&workload->wa_ctx); if (workload->shadow_mm) intel_vgpu_mm_put(workload->shadow_mm); kmem_cache_free(s->workloads, workload); } static struct intel_vgpu_workload * alloc_workload(struct intel_vgpu *vgpu) { struct intel_vgpu_submission *s = &vgpu->submission; struct intel_vgpu_workload *workload; workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL); if (!workload) return ERR_PTR(-ENOMEM); INIT_LIST_HEAD(&workload->list); INIT_LIST_HEAD(&workload->shadow_bb); init_waitqueue_head(&workload->shadow_ctx_status_wq); atomic_set(&workload->shadow_ctx_active, 0); workload->status = -EINPROGRESS; workload->vgpu = vgpu; return workload; } #define RING_CTX_OFF(x) \ offsetof(struct execlist_ring_context, x) static void read_guest_pdps(struct intel_vgpu *vgpu, u64 ring_context_gpa, u32 pdp[8]) { u64 gpa; int i; gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val); for (i = 0; i < 8; i++) intel_gvt_hypervisor_read_gpa(vgpu, gpa + i * 8, &pdp[7 - i], 4); } static int prepare_mm(struct intel_vgpu_workload *workload) { struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc; struct intel_vgpu_mm *mm; struct intel_vgpu *vgpu = workload->vgpu; enum intel_gvt_gtt_type root_entry_type; u64 pdps[GVT_RING_CTX_NR_PDPS]; switch (desc->addressing_mode) { case 1: /* legacy 32-bit */ root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY; break; case 3: /* legacy 64-bit */ root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY; break; default: gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n"); return -EINVAL; } read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps); mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps); if (IS_ERR(mm)) return PTR_ERR(mm); workload->shadow_mm = mm; return 0; } #define same_context(a, b) (((a)->context_id == (b)->context_id) && \ ((a)->lrca == (b)->lrca)) /** * intel_vgpu_create_workload - create a vGPU workload * @vgpu: a vGPU * @ring_id: ring index * @desc: a guest context descriptor * * This function is called when creating a vGPU workload. * * Returns: * struct intel_vgpu_workload * on success, negative error code in * pointer if failed. * */ struct intel_vgpu_workload * intel_vgpu_create_workload(struct intel_vgpu *vgpu, int ring_id, struct execlist_ctx_descriptor_format *desc) { struct intel_vgpu_submission *s = &vgpu->submission; struct list_head *q = workload_q_head(vgpu, ring_id); struct intel_vgpu_workload *last_workload = NULL; struct intel_vgpu_workload *workload = NULL; struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; u64 ring_context_gpa; u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx; u32 guest_head; int ret; ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, (u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT)); if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) { gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca); return ERR_PTR(-EINVAL); } intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + RING_CTX_OFF(ring_header.val), &head, 4); intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + RING_CTX_OFF(ring_tail.val), &tail, 4); guest_head = head; head &= RB_HEAD_OFF_MASK; tail &= RB_TAIL_OFF_MASK; list_for_each_entry_reverse(last_workload, q, list) { if (same_context(&last_workload->ctx_desc, desc)) { gvt_dbg_el("ring id %d cur workload == last\n", ring_id); gvt_dbg_el("ctx head %x real head %lx\n", head, last_workload->rb_tail); /* * cannot use guest context head pointer here, * as it might not be updated at this time */ head = last_workload->rb_tail; break; } } gvt_dbg_el("ring id %d begin a new workload\n", ring_id); /* record some ring buffer register values for scan and shadow */ intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + RING_CTX_OFF(rb_start.val), &start, 4); intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + RING_CTX_OFF(rb_ctrl.val), &ctl, 4); intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4); if (!intel_gvt_ggtt_validate_range(vgpu, start, _RING_CTL_BUF_SIZE(ctl))) { gvt_vgpu_err("context contain invalid rb at: 0x%x\n", start); return ERR_PTR(-EINVAL); } workload = alloc_workload(vgpu); if (IS_ERR(workload)) return workload; workload->ring_id = ring_id; workload->ctx_desc = *desc; workload->ring_context_gpa = ring_context_gpa; workload->rb_head = head; workload->guest_rb_head = guest_head; workload->rb_tail = tail; workload->rb_start = start; workload->rb_ctl = ctl; if (ring_id == RCS0) { intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4); intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4); workload->wa_ctx.indirect_ctx.guest_gma = indirect_ctx & INDIRECT_CTX_ADDR_MASK; workload->wa_ctx.indirect_ctx.size = (indirect_ctx & INDIRECT_CTX_SIZE_MASK) * CACHELINE_BYTES; if (workload->wa_ctx.indirect_ctx.size != 0) { if (!intel_gvt_ggtt_validate_range(vgpu, workload->wa_ctx.indirect_ctx.guest_gma, workload->wa_ctx.indirect_ctx.size)) { gvt_vgpu_err("invalid wa_ctx at: 0x%lx\n", workload->wa_ctx.indirect_ctx.guest_gma); kmem_cache_free(s->workloads, workload); return ERR_PTR(-EINVAL); } } workload->wa_ctx.per_ctx.guest_gma = per_ctx & PER_CTX_ADDR_MASK; workload->wa_ctx.per_ctx.valid = per_ctx & 1; if (workload->wa_ctx.per_ctx.valid) { if (!intel_gvt_ggtt_validate_range(vgpu, workload->wa_ctx.per_ctx.guest_gma, CACHELINE_BYTES)) { gvt_vgpu_err("invalid per_ctx at: 0x%lx\n", workload->wa_ctx.per_ctx.guest_gma); kmem_cache_free(s->workloads, workload); return ERR_PTR(-EINVAL); } } } gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n", workload, ring_id, head, tail, start, ctl); ret = prepare_mm(workload); if (ret) { kmem_cache_free(s->workloads, workload); return ERR_PTR(ret); } /* Only scan and shadow the first workload in the queue * as there is only one pre-allocated buf-obj for shadow. */ if (list_empty(workload_q_head(vgpu, ring_id))) { intel_runtime_pm_get(&dev_priv->runtime_pm); mutex_lock(&dev_priv->drm.struct_mutex); ret = intel_gvt_scan_and_shadow_workload(workload); mutex_unlock(&dev_priv->drm.struct_mutex); intel_runtime_pm_put_unchecked(&dev_priv->runtime_pm); } if (ret) { if (vgpu_is_vm_unhealthy(ret)) enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR); intel_vgpu_destroy_workload(workload); return ERR_PTR(ret); } return workload; } /** * intel_vgpu_queue_workload - Qeue a vGPU workload * @workload: the workload to queue in */ void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload) { list_add_tail(&workload->list, workload_q_head(workload->vgpu, workload->ring_id)); intel_gvt_kick_schedule(workload->vgpu->gvt); wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->ring_id]); }