/* * Copyright 2019 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "pp_debug.h" #include #include "amdgpu.h" #include "amdgpu_smu.h" #include "atomfirmware.h" #include "amdgpu_atomfirmware.h" #include "smu_v11_0.h" #include "smu11_driver_if.h" #include "soc15_common.h" #include "atom.h" #include "vega20_ppt.h" #include "pp_thermal.h" #include "asic_reg/thm/thm_11_0_2_offset.h" #include "asic_reg/thm/thm_11_0_2_sh_mask.h" #include "asic_reg/mp/mp_9_0_offset.h" #include "asic_reg/mp/mp_9_0_sh_mask.h" #include "asic_reg/nbio/nbio_7_4_offset.h" #include "asic_reg/smuio/smuio_9_0_offset.h" #include "asic_reg/smuio/smuio_9_0_sh_mask.h" MODULE_FIRMWARE("amdgpu/vega20_smc.bin"); #define SMU11_TOOL_SIZE 0x19000 #define SMU11_THERMAL_MINIMUM_ALERT_TEMP 0 #define SMU11_THERMAL_MAXIMUM_ALERT_TEMP 255 #define SMU11_TEMPERATURE_UNITS_PER_CENTIGRADES 1000 #define SMU11_VOLTAGE_SCALE 4 #define SMC_DPM_FEATURE (FEATURE_DPM_PREFETCHER_MASK | \ FEATURE_DPM_GFXCLK_MASK | \ FEATURE_DPM_UCLK_MASK | \ FEATURE_DPM_SOCCLK_MASK | \ FEATURE_DPM_UVD_MASK | \ FEATURE_DPM_VCE_MASK | \ FEATURE_DPM_MP0CLK_MASK | \ FEATURE_DPM_LINK_MASK | \ FEATURE_DPM_DCEFCLK_MASK) static int smu_v11_0_send_msg_without_waiting(struct smu_context *smu, uint16_t msg) { struct amdgpu_device *adev = smu->adev; WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_66, msg); return 0; } static int smu_v11_0_read_arg(struct smu_context *smu, uint32_t *arg) { struct amdgpu_device *adev = smu->adev; *arg = RREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_82); return 0; } static int smu_v11_0_wait_for_response(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; uint32_t cur_value, i; for (i = 0; i < adev->usec_timeout; i++) { cur_value = RREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90); if ((cur_value & MP1_C2PMSG_90__CONTENT_MASK) != 0) break; udelay(1); } /* timeout means wrong logic */ if (i == adev->usec_timeout) return -ETIME; return RREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90) == 0x1 ? 0 : -EIO; } static int smu_v11_0_send_msg(struct smu_context *smu, uint16_t msg) { struct amdgpu_device *adev = smu->adev; int ret = 0, index = 0; index = smu_msg_get_index(smu, msg); if (index < 0) return index; smu_v11_0_wait_for_response(smu); WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90, 0); smu_v11_0_send_msg_without_waiting(smu, (uint16_t)index); ret = smu_v11_0_wait_for_response(smu); if (ret) pr_err("Failed to send message 0x%x, response 0x%x\n", index, ret); return ret; } static int smu_v11_0_send_msg_with_param(struct smu_context *smu, uint16_t msg, uint32_t param) { struct amdgpu_device *adev = smu->adev; int ret = 0, index = 0; index = smu_msg_get_index(smu, msg); if (index < 0) return index; ret = smu_v11_0_wait_for_response(smu); if (ret) pr_err("Failed to send message 0x%x, response 0x%x, param 0x%x\n", index, ret, param); WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90, 0); WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_82, param); smu_v11_0_send_msg_without_waiting(smu, (uint16_t)index); ret = smu_v11_0_wait_for_response(smu); if (ret) pr_err("Failed to send message 0x%x, response 0x%x param 0x%x\n", index, ret, param); return ret; } static int smu_v11_0_init_microcode(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; const char *chip_name; char fw_name[30]; int err = 0; const struct smc_firmware_header_v1_0 *hdr; const struct common_firmware_header *header; struct amdgpu_firmware_info *ucode = NULL; switch (adev->asic_type) { case CHIP_VEGA20: chip_name = "vega20"; break; default: dev_err(adev->dev, "Unsupported ASIC type %d\n", adev->asic_type); return -EINVAL; } snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_smc.bin", chip_name); err = request_firmware(&adev->pm.fw, fw_name, adev->dev); if (err) goto out; err = amdgpu_ucode_validate(adev->pm.fw); if (err) goto out; hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data; amdgpu_ucode_print_smc_hdr(&hdr->header); adev->pm.fw_version = le32_to_cpu(hdr->header.ucode_version); if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) { ucode = &adev->firmware.ucode[AMDGPU_UCODE_ID_SMC]; ucode->ucode_id = AMDGPU_UCODE_ID_SMC; ucode->fw = adev->pm.fw; header = (const struct common_firmware_header *)ucode->fw->data; adev->firmware.fw_size += ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE); } out: if (err) { DRM_ERROR("smu_v11_0: Failed to load firmware \"%s\"\n", fw_name); release_firmware(adev->pm.fw); adev->pm.fw = NULL; } return err; } static int smu_v11_0_load_microcode(struct smu_context *smu) { return 0; } static int smu_v11_0_check_fw_status(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; uint32_t mp1_fw_flags; mp1_fw_flags = RREG32_PCIE(MP1_Public | (smnMP1_FIRMWARE_FLAGS & 0xffffffff)); if ((mp1_fw_flags & MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK) >> MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED__SHIFT) return 0; return -EIO; } static int smu_v11_0_check_fw_version(struct smu_context *smu) { uint32_t smu_version = 0xff; int ret = 0; ret = smu_send_smc_msg(smu, SMU_MSG_GetDriverIfVersion); if (ret) goto err; ret = smu_read_smc_arg(smu, &smu_version); if (ret) goto err; if (smu_version != smu->smc_if_version) ret = -EINVAL; err: return ret; } static int smu_v11_0_read_pptable_from_vbios(struct smu_context *smu) { int ret, index; uint16_t size; uint8_t frev, crev; void *table; index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1, powerplayinfo); ret = smu_get_atom_data_table(smu, index, &size, &frev, &crev, (uint8_t **)&table); if (ret) return ret; if (!smu->smu_table.power_play_table) smu->smu_table.power_play_table = table; if (!smu->smu_table.power_play_table_size) smu->smu_table.power_play_table_size = size; return 0; } static int smu_v11_0_init_dpm_context(struct smu_context *smu) { struct smu_dpm_context *smu_dpm = &smu->smu_dpm; if (smu_dpm->dpm_context || smu_dpm->dpm_context_size != 0) return -EINVAL; return smu_alloc_dpm_context(smu); } static int smu_v11_0_fini_dpm_context(struct smu_context *smu) { struct smu_dpm_context *smu_dpm = &smu->smu_dpm; if (!smu_dpm->dpm_context || smu_dpm->dpm_context_size == 0) return -EINVAL; kfree(smu_dpm->dpm_context); kfree(smu_dpm->golden_dpm_context); kfree(smu_dpm->dpm_current_power_state); kfree(smu_dpm->dpm_request_power_state); smu_dpm->dpm_context = NULL; smu_dpm->golden_dpm_context = NULL; smu_dpm->dpm_context_size = 0; smu_dpm->dpm_current_power_state = NULL; smu_dpm->dpm_request_power_state = NULL; return 0; } static int smu_v11_0_init_smc_tables(struct smu_context *smu) { struct smu_table_context *smu_table = &smu->smu_table; struct smu_table *tables = NULL; int ret = 0; if (smu_table->tables || smu_table->table_count != 0) return -EINVAL; tables = kcalloc(TABLE_COUNT, sizeof(struct smu_table), GFP_KERNEL); if (!tables) return -ENOMEM; smu_table->tables = tables; smu_table->table_count = TABLE_COUNT; SMU_TABLE_INIT(tables, TABLE_PPTABLE, sizeof(PPTable_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, TABLE_WATERMARKS, sizeof(Watermarks_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, TABLE_SMU_METRICS, sizeof(SmuMetrics_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, TABLE_OVERDRIVE, sizeof(OverDriveTable_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, TABLE_PMSTATUSLOG, SMU11_TOOL_SIZE, PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, TABLE_ACTIVITY_MONITOR_COEFF, sizeof(DpmActivityMonitorCoeffInt_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); ret = smu_v11_0_init_dpm_context(smu); if (ret) return ret; return 0; } static int smu_v11_0_fini_smc_tables(struct smu_context *smu) { struct smu_table_context *smu_table = &smu->smu_table; int ret = 0; if (!smu_table->tables || smu_table->table_count == 0) return -EINVAL; kfree(smu_table->tables); smu_table->tables = NULL; smu_table->table_count = 0; ret = smu_v11_0_fini_dpm_context(smu); if (ret) return ret; return 0; } static int smu_v11_0_init_power(struct smu_context *smu) { struct smu_power_context *smu_power = &smu->smu_power; if (smu_power->power_context || smu_power->power_context_size != 0) return -EINVAL; smu_power->power_context = kzalloc(sizeof(struct smu_11_0_dpm_context), GFP_KERNEL); if (!smu_power->power_context) return -ENOMEM; smu_power->power_context_size = sizeof(struct smu_11_0_dpm_context); return 0; } static int smu_v11_0_fini_power(struct smu_context *smu) { struct smu_power_context *smu_power = &smu->smu_power; if (!smu_power->power_context || smu_power->power_context_size == 0) return -EINVAL; kfree(smu_power->power_context); smu_power->power_context = NULL; smu_power->power_context_size = 0; return 0; } int smu_v11_0_get_vbios_bootup_values(struct smu_context *smu) { int ret, index; uint16_t size; uint8_t frev, crev; struct atom_common_table_header *header; struct atom_firmware_info_v3_3 *v_3_3; struct atom_firmware_info_v3_1 *v_3_1; index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1, firmwareinfo); ret = smu_get_atom_data_table(smu, index, &size, &frev, &crev, (uint8_t **)&header); if (ret) return ret; if (header->format_revision != 3) { pr_err("unknown atom_firmware_info version! for smu11\n"); return -EINVAL; } switch (header->content_revision) { case 0: case 1: case 2: v_3_1 = (struct atom_firmware_info_v3_1 *)header; smu->smu_table.boot_values.revision = v_3_1->firmware_revision; smu->smu_table.boot_values.gfxclk = v_3_1->bootup_sclk_in10khz; smu->smu_table.boot_values.uclk = v_3_1->bootup_mclk_in10khz; smu->smu_table.boot_values.socclk = 0; smu->smu_table.boot_values.dcefclk = 0; smu->smu_table.boot_values.vddc = v_3_1->bootup_vddc_mv; smu->smu_table.boot_values.vddci = v_3_1->bootup_vddci_mv; smu->smu_table.boot_values.mvddc = v_3_1->bootup_mvddc_mv; smu->smu_table.boot_values.vdd_gfx = v_3_1->bootup_vddgfx_mv; smu->smu_table.boot_values.cooling_id = v_3_1->coolingsolution_id; smu->smu_table.boot_values.pp_table_id = 0; break; case 3: default: v_3_3 = (struct atom_firmware_info_v3_3 *)header; smu->smu_table.boot_values.revision = v_3_3->firmware_revision; smu->smu_table.boot_values.gfxclk = v_3_3->bootup_sclk_in10khz; smu->smu_table.boot_values.uclk = v_3_3->bootup_mclk_in10khz; smu->smu_table.boot_values.socclk = 0; smu->smu_table.boot_values.dcefclk = 0; smu->smu_table.boot_values.vddc = v_3_3->bootup_vddc_mv; smu->smu_table.boot_values.vddci = v_3_3->bootup_vddci_mv; smu->smu_table.boot_values.mvddc = v_3_3->bootup_mvddc_mv; smu->smu_table.boot_values.vdd_gfx = v_3_3->bootup_vddgfx_mv; smu->smu_table.boot_values.cooling_id = v_3_3->coolingsolution_id; smu->smu_table.boot_values.pp_table_id = v_3_3->pplib_pptable_id; } return 0; } static int smu_v11_0_get_clk_info_from_vbios(struct smu_context *smu) { int ret, index; struct amdgpu_device *adev = smu->adev; struct atom_get_smu_clock_info_parameters_v3_1 input = {0}; struct atom_get_smu_clock_info_output_parameters_v3_1 *output; input.clk_id = SMU11_SYSPLL0_SOCCLK_ID; input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ; index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1, getsmuclockinfo); ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&input); if (ret) return -EINVAL; output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input; smu->smu_table.boot_values.socclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000; memset(&input, 0, sizeof(input)); input.clk_id = SMU11_SYSPLL0_DCEFCLK_ID; input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ; index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1, getsmuclockinfo); ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&input); if (ret) return -EINVAL; output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input; smu->smu_table.boot_values.dcefclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000; memset(&input, 0, sizeof(input)); input.clk_id = SMU11_SYSPLL0_ECLK_ID; input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ; index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1, getsmuclockinfo); ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&input); if (ret) return -EINVAL; output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input; smu->smu_table.boot_values.eclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000; memset(&input, 0, sizeof(input)); input.clk_id = SMU11_SYSPLL0_VCLK_ID; input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ; index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1, getsmuclockinfo); ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&input); if (ret) return -EINVAL; output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input; smu->smu_table.boot_values.vclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000; memset(&input, 0, sizeof(input)); input.clk_id = SMU11_SYSPLL0_DCLK_ID; input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ; index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1, getsmuclockinfo); ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&input); if (ret) return -EINVAL; output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input; smu->smu_table.boot_values.dclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000; return 0; } static int smu_v11_0_notify_memory_pool_location(struct smu_context *smu) { struct smu_table_context *smu_table = &smu->smu_table; struct smu_table *memory_pool = &smu_table->memory_pool; int ret = 0; uint64_t address; uint32_t address_low, address_high; if (memory_pool->size == 0 || memory_pool->cpu_addr == NULL) return ret; address = (uintptr_t)memory_pool->cpu_addr; address_high = (uint32_t)upper_32_bits(address); address_low = (uint32_t)lower_32_bits(address); ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetSystemVirtualDramAddrHigh, address_high); if (ret) return ret; ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetSystemVirtualDramAddrLow, address_low); if (ret) return ret; address = memory_pool->mc_address; address_high = (uint32_t)upper_32_bits(address); address_low = (uint32_t)lower_32_bits(address); ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrHigh, address_high); if (ret) return ret; ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrLow, address_low); if (ret) return ret; ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramSize, (uint32_t)memory_pool->size); if (ret) return ret; return ret; } static int smu_v11_0_check_pptable(struct smu_context *smu) { int ret; ret = smu_check_powerplay_table(smu); return ret; } static int smu_v11_0_parse_pptable(struct smu_context *smu) { int ret; struct smu_table_context *table_context = &smu->smu_table; if (table_context->driver_pptable) return -EINVAL; table_context->driver_pptable = kzalloc(sizeof(PPTable_t), GFP_KERNEL); if (!table_context->driver_pptable) return -ENOMEM; ret = smu_store_powerplay_table(smu); if (ret) return -EINVAL; ret = smu_append_powerplay_table(smu); return ret; } static int smu_v11_0_populate_smc_pptable(struct smu_context *smu) { int ret; ret = smu_set_default_dpm_table(smu); return ret; } static int smu_v11_0_write_pptable(struct smu_context *smu) { struct smu_table_context *table_context = &smu->smu_table; int ret = 0; ret = smu_update_table(smu, TABLE_PPTABLE, table_context->driver_pptable, true); return ret; } static int smu_v11_0_write_watermarks_table(struct smu_context *smu) { return smu_update_table(smu, TABLE_WATERMARKS, smu->smu_table.tables[TABLE_WATERMARKS].cpu_addr, true); } static int smu_v11_0_set_deep_sleep_dcefclk(struct smu_context *smu, uint32_t clk) { int ret; ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetMinDeepSleepDcefclk, clk); if (ret) pr_err("SMU11 attempt to set divider for DCEFCLK Failed!"); return ret; } static int smu_v11_0_set_min_dcef_deep_sleep(struct smu_context *smu) { struct smu_table_context *table_context = &smu->smu_table; if (!table_context) return -EINVAL; return smu_set_deep_sleep_dcefclk(smu, table_context->boot_values.dcefclk / 100); } static int smu_v11_0_set_tool_table_location(struct smu_context *smu) { int ret = 0; struct smu_table *tool_table = &smu->smu_table.tables[TABLE_PMSTATUSLOG]; if (tool_table->mc_address) { ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetToolsDramAddrHigh, upper_32_bits(tool_table->mc_address)); if (!ret) ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetToolsDramAddrLow, lower_32_bits(tool_table->mc_address)); } return ret; } static int smu_v11_0_init_display(struct smu_context *smu) { int ret = 0; ret = smu_send_smc_msg_with_param(smu, SMU_MSG_NumOfDisplays, 0); return ret; } static int smu_v11_0_update_feature_enable_state(struct smu_context *smu, uint32_t feature_id, bool enabled) { uint32_t feature_low = 0, feature_high = 0; int ret = 0; if (feature_id >= 0 && feature_id < 31) feature_low = (1 << feature_id); else if (feature_id > 31 && feature_id < 63) feature_high = (1 << feature_id); else return -EINVAL; if (enabled) { ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnableSmuFeaturesLow, feature_low); if (ret) return ret; ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnableSmuFeaturesHigh, feature_high); if (ret) return ret; } else { ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DisableSmuFeaturesLow, feature_low); if (ret) return ret; ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DisableSmuFeaturesHigh, feature_high); if (ret) return ret; } return ret; } static int smu_v11_0_set_allowed_mask(struct smu_context *smu) { struct smu_feature *feature = &smu->smu_feature; int ret = 0; uint32_t feature_mask[2]; mutex_lock(&feature->mutex); if (bitmap_empty(feature->allowed, SMU_FEATURE_MAX) || feature->feature_num < 64) goto failed; bitmap_copy((unsigned long *)feature_mask, feature->allowed, 64); ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetAllowedFeaturesMaskHigh, feature_mask[1]); if (ret) goto failed; ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetAllowedFeaturesMaskLow, feature_mask[0]); if (ret) goto failed; failed: mutex_unlock(&feature->mutex); return ret; } static int smu_v11_0_get_enabled_mask(struct smu_context *smu, uint32_t *feature_mask, uint32_t num) { uint32_t feature_mask_high = 0, feature_mask_low = 0; int ret = 0; if (!feature_mask || num < 2) return -EINVAL; ret = smu_send_smc_msg(smu, SMU_MSG_GetEnabledSmuFeaturesHigh); if (ret) return ret; ret = smu_read_smc_arg(smu, &feature_mask_high); if (ret) return ret; ret = smu_send_smc_msg(smu, SMU_MSG_GetEnabledSmuFeaturesLow); if (ret) return ret; ret = smu_read_smc_arg(smu, &feature_mask_low); if (ret) return ret; feature_mask[0] = feature_mask_low; feature_mask[1] = feature_mask_high; return ret; } static bool smu_v11_0_is_dpm_running(struct smu_context *smu) { int ret = 0; uint32_t feature_mask[2]; unsigned long feature_enabled; ret = smu_v11_0_get_enabled_mask(smu, feature_mask, 2); feature_enabled = (unsigned long)((uint64_t)feature_mask[0] | ((uint64_t)feature_mask[1] << 32)); return !!(feature_enabled & SMC_DPM_FEATURE); } static int smu_v11_0_system_features_control(struct smu_context *smu, bool en) { struct smu_feature *feature = &smu->smu_feature; uint32_t feature_mask[2]; int ret = 0; ret = smu_send_smc_msg(smu, (en ? SMU_MSG_EnableAllSmuFeatures : SMU_MSG_DisableAllSmuFeatures)); if (ret) return ret; ret = smu_feature_get_enabled_mask(smu, feature_mask, 2); if (ret) return ret; bitmap_copy(feature->enabled, (unsigned long *)&feature_mask, feature->feature_num); bitmap_copy(feature->supported, (unsigned long *)&feature_mask, feature->feature_num); return ret; } static int smu_v11_0_notify_display_change(struct smu_context *smu) { int ret = 0; if (smu_feature_is_enabled(smu, FEATURE_DPM_UCLK_BIT)) ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetUclkFastSwitch, 1); return ret; } static int smu_v11_0_get_max_sustainable_clock(struct smu_context *smu, uint32_t *clock, PPCLK_e clock_select) { int ret = 0; ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetDcModeMaxDpmFreq, clock_select << 16); if (ret) { pr_err("[GetMaxSustainableClock] Failed to get max DC clock from SMC!"); return ret; } ret = smu_read_smc_arg(smu, clock); if (ret) return ret; if (*clock != 0) return 0; /* if DC limit is zero, return AC limit */ ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMaxDpmFreq, clock_select << 16); if (ret) { pr_err("[GetMaxSustainableClock] failed to get max AC clock from SMC!"); return ret; } ret = smu_read_smc_arg(smu, clock); return ret; } static int smu_v11_0_init_max_sustainable_clocks(struct smu_context *smu) { struct smu_11_0_max_sustainable_clocks *max_sustainable_clocks; int ret = 0; if (!smu->smu_table.max_sustainable_clocks) max_sustainable_clocks = kzalloc(sizeof(struct smu_11_0_max_sustainable_clocks), GFP_KERNEL); else max_sustainable_clocks = smu->smu_table.max_sustainable_clocks; smu->smu_table.max_sustainable_clocks = (void *)max_sustainable_clocks; max_sustainable_clocks->uclock = smu->smu_table.boot_values.uclk / 100; max_sustainable_clocks->soc_clock = smu->smu_table.boot_values.socclk / 100; max_sustainable_clocks->dcef_clock = smu->smu_table.boot_values.dcefclk / 100; max_sustainable_clocks->display_clock = 0xFFFFFFFF; max_sustainable_clocks->phy_clock = 0xFFFFFFFF; max_sustainable_clocks->pixel_clock = 0xFFFFFFFF; if (smu_feature_is_enabled(smu, FEATURE_DPM_UCLK_BIT)) { ret = smu_v11_0_get_max_sustainable_clock(smu, &(max_sustainable_clocks->uclock), PPCLK_UCLK); if (ret) { pr_err("[%s] failed to get max UCLK from SMC!", __func__); return ret; } } if (smu_feature_is_enabled(smu, FEATURE_DPM_SOCCLK_BIT)) { ret = smu_v11_0_get_max_sustainable_clock(smu, &(max_sustainable_clocks->soc_clock), PPCLK_SOCCLK); if (ret) { pr_err("[%s] failed to get max SOCCLK from SMC!", __func__); return ret; } } if (smu_feature_is_enabled(smu, FEATURE_DPM_DCEFCLK_BIT)) { ret = smu_v11_0_get_max_sustainable_clock(smu, &(max_sustainable_clocks->dcef_clock), PPCLK_DCEFCLK); if (ret) { pr_err("[%s] failed to get max DCEFCLK from SMC!", __func__); return ret; } ret = smu_v11_0_get_max_sustainable_clock(smu, &(max_sustainable_clocks->display_clock), PPCLK_DISPCLK); if (ret) { pr_err("[%s] failed to get max DISPCLK from SMC!", __func__); return ret; } ret = smu_v11_0_get_max_sustainable_clock(smu, &(max_sustainable_clocks->phy_clock), PPCLK_PHYCLK); if (ret) { pr_err("[%s] failed to get max PHYCLK from SMC!", __func__); return ret; } ret = smu_v11_0_get_max_sustainable_clock(smu, &(max_sustainable_clocks->pixel_clock), PPCLK_PIXCLK); if (ret) { pr_err("[%s] failed to get max PIXCLK from SMC!", __func__); return ret; } } if (max_sustainable_clocks->soc_clock < max_sustainable_clocks->uclock) max_sustainable_clocks->uclock = max_sustainable_clocks->soc_clock; return 0; } static int smu_v11_0_get_power_limit(struct smu_context *smu, uint32_t *limit, bool get_default) { int ret = 0; if (get_default) { mutex_lock(&smu->mutex); *limit = smu->default_power_limit; if (smu->od_enabled) { *limit *= (100 + smu->smu_table.TDPODLimit); *limit /= 100; } mutex_unlock(&smu->mutex); } else { ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetPptLimit, POWER_SOURCE_AC << 16); if (ret) { pr_err("[%s] get PPT limit failed!", __func__); return ret; } smu_read_smc_arg(smu, limit); smu->power_limit = *limit; } return ret; } static int smu_v11_0_set_power_limit(struct smu_context *smu, uint32_t n) { uint32_t max_power_limit; int ret = 0; if (n == 0) n = smu->default_power_limit; max_power_limit = smu->default_power_limit; if (smu->od_enabled) { max_power_limit *= (100 + smu->smu_table.TDPODLimit); max_power_limit /= 100; } if (smu_feature_is_enabled(smu, FEATURE_PPT_BIT)) ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetPptLimit, n); if (ret) { pr_err("[%s] Set power limit Failed!", __func__); return ret; } return ret; } static int smu_v11_0_get_current_clk_freq(struct smu_context *smu, uint32_t clk_id, uint32_t *value) { int ret = 0; uint32_t freq; if (clk_id >= PPCLK_COUNT || !value) return -EINVAL; ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetDpmClockFreq, (clk_id << 16)); if (ret) return ret; ret = smu_read_smc_arg(smu, &freq); if (ret) return ret; freq *= 100; *value = freq; return ret; } static int smu_v11_0_get_thermal_range(struct smu_context *smu, struct PP_TemperatureRange *range) { memcpy(range, &SMU7ThermalWithDelayPolicy[0], sizeof(struct PP_TemperatureRange)); range->max = smu->smu_table.software_shutdown_temp * PP_TEMPERATURE_UNITS_PER_CENTIGRADES; return 0; } static int smu_v11_0_set_thermal_range(struct smu_context *smu, struct PP_TemperatureRange *range) { struct amdgpu_device *adev = smu->adev; int low = SMU11_THERMAL_MINIMUM_ALERT_TEMP * PP_TEMPERATURE_UNITS_PER_CENTIGRADES; int high = SMU11_THERMAL_MAXIMUM_ALERT_TEMP * PP_TEMPERATURE_UNITS_PER_CENTIGRADES; uint32_t val; if (low < range->min) low = range->min; if (high > range->max) high = range->max; if (low > high) return -EINVAL; val = RREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL); val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, MAX_IH_CREDIT, 5); val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_IH_HW_ENA, 1); val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, DIG_THERM_INTH, (high / PP_TEMPERATURE_UNITS_PER_CENTIGRADES)); val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, DIG_THERM_INTL, (low / PP_TEMPERATURE_UNITS_PER_CENTIGRADES)); val = val & (~THM_THERMAL_INT_CTRL__THERM_TRIGGER_MASK_MASK); WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL, val); return 0; } static int smu_v11_0_enable_thermal_alert(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; uint32_t val = 0; val |= (1 << THM_THERMAL_INT_ENA__THERM_INTH_CLR__SHIFT); val |= (1 << THM_THERMAL_INT_ENA__THERM_INTL_CLR__SHIFT); val |= (1 << THM_THERMAL_INT_ENA__THERM_TRIGGER_CLR__SHIFT); WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_ENA, val); return 0; } static int smu_v11_0_set_thermal_fan_table(struct smu_context *smu) { int ret; struct smu_table_context *table_context = &smu->smu_table; PPTable_t *pptable = table_context->driver_pptable; ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetFanTemperatureTarget, (uint32_t)pptable->FanTargetTemperature); return ret; } static int smu_v11_0_start_thermal_control(struct smu_context *smu) { int ret = 0; struct PP_TemperatureRange range; struct amdgpu_device *adev = smu->adev; smu_v11_0_get_thermal_range(smu, &range); if (smu->smu_table.thermal_controller_type) { ret = smu_v11_0_set_thermal_range(smu, &range); if (ret) return ret; ret = smu_v11_0_enable_thermal_alert(smu); if (ret) return ret; ret = smu_v11_0_set_thermal_fan_table(smu); if (ret) return ret; } adev->pm.dpm.thermal.min_temp = range.min; adev->pm.dpm.thermal.max_temp = range.max; return ret; } static int smu_v11_0_get_current_activity_percent(struct smu_context *smu, uint32_t *value) { int ret = 0; SmuMetrics_t metrics; if (!value) return -EINVAL; ret = smu_update_table(smu, TABLE_SMU_METRICS, (void *)&metrics, false); if (ret) return ret; *value = metrics.AverageGfxActivity; return 0; } static int smu_v11_0_thermal_get_temperature(struct smu_context *smu, uint32_t *value) { struct amdgpu_device *adev = smu->adev; uint32_t temp = 0; if (!value) return -EINVAL; temp = RREG32_SOC15(THM, 0, mmCG_MULT_THERMAL_STATUS); temp = (temp & CG_MULT_THERMAL_STATUS__CTF_TEMP_MASK) >> CG_MULT_THERMAL_STATUS__CTF_TEMP__SHIFT; temp = temp & 0x1ff; temp *= SMU11_TEMPERATURE_UNITS_PER_CENTIGRADES; *value = temp; return 0; } static int smu_v11_0_get_gpu_power(struct smu_context *smu, uint32_t *value) { int ret = 0; SmuMetrics_t metrics; if (!value) return -EINVAL; ret = smu_update_table(smu, TABLE_SMU_METRICS, (void *)&metrics, false); if (ret) return ret; *value = metrics.CurrSocketPower << 8; return 0; } static uint16_t convert_to_vddc(uint8_t vid) { return (uint16_t) ((6200 - (vid * 25)) / SMU11_VOLTAGE_SCALE); } static int smu_v11_0_get_gfx_vdd(struct smu_context *smu, uint32_t *value) { struct amdgpu_device *adev = smu->adev; uint32_t vdd = 0, val_vid = 0; if (!value) return -EINVAL; val_vid = (RREG32_SOC15(SMUIO, 0, mmSMUSVI0_TEL_PLANE0) & SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR_MASK) >> SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR__SHIFT; vdd = (uint32_t)convert_to_vddc((uint8_t)val_vid); *value = vdd; return 0; } static int smu_v11_0_read_sensor(struct smu_context *smu, enum amd_pp_sensors sensor, void *data, uint32_t *size) { struct smu_table_context *table_context = &smu->smu_table; PPTable_t *pptable = table_context->driver_pptable; int ret = 0; switch (sensor) { case AMDGPU_PP_SENSOR_GPU_LOAD: ret = smu_v11_0_get_current_activity_percent(smu, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_GFX_MCLK: ret = smu_get_current_clk_freq(smu, PPCLK_UCLK, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_GFX_SCLK: ret = smu_get_current_clk_freq(smu, PPCLK_GFXCLK, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_GPU_TEMP: ret = smu_v11_0_thermal_get_temperature(smu, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_GPU_POWER: ret = smu_v11_0_get_gpu_power(smu, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_VDDGFX: ret = smu_v11_0_get_gfx_vdd(smu, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_UVD_POWER: *(uint32_t *)data = smu_feature_is_enabled(smu, FEATURE_DPM_UVD_BIT) ? 1 : 0; *size = 4; break; case AMDGPU_PP_SENSOR_VCE_POWER: *(uint32_t *)data = smu_feature_is_enabled(smu, FEATURE_DPM_VCE_BIT) ? 1 : 0; *size = 4; break; case AMDGPU_PP_SENSOR_MIN_FAN_RPM: *(uint32_t *)data = 0; *size = 4; break; case AMDGPU_PP_SENSOR_MAX_FAN_RPM: *(uint32_t *)data = pptable->FanMaximumRpm; *size = 4; break; default: ret = smu_common_read_sensor(smu, sensor, data, size); break; } if (ret) *size = 0; return ret; } static int smu_v11_0_display_clock_voltage_request(struct smu_context *smu, struct pp_display_clock_request *clock_req) { enum amd_pp_clock_type clk_type = clock_req->clock_type; int ret = 0; PPCLK_e clk_select = 0; uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000; if (smu_feature_is_enabled(smu, FEATURE_DPM_DCEFCLK_BIT)) { switch (clk_type) { case amd_pp_dcef_clock: clk_select = PPCLK_DCEFCLK; break; case amd_pp_disp_clock: clk_select = PPCLK_DISPCLK; break; case amd_pp_pixel_clock: clk_select = PPCLK_PIXCLK; break; case amd_pp_phy_clock: clk_select = PPCLK_PHYCLK; break; default: pr_info("[%s] Invalid Clock Type!", __func__); ret = -EINVAL; break; } if (ret) goto failed; ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinByFreq, (clk_select << 16) | clk_freq); } failed: return ret; } static int smu_v11_0_set_watermarks_table(struct smu_context *smu, Watermarks_t *table, struct dm_pp_wm_sets_with_clock_ranges_soc15 *clock_ranges) { int i; if (!table || !clock_ranges) return -EINVAL; if (clock_ranges->num_wm_dmif_sets > 4 || clock_ranges->num_wm_mcif_sets > 4) return -EINVAL; for (i = 0; i < clock_ranges->num_wm_dmif_sets; i++) { table->WatermarkRow[1][i].MinClock = cpu_to_le16((uint16_t) (clock_ranges->wm_dmif_clocks_ranges[i].wm_min_dcfclk_clk_in_khz / 1000)); table->WatermarkRow[1][i].MaxClock = cpu_to_le16((uint16_t) (clock_ranges->wm_dmif_clocks_ranges[i].wm_max_dcfclk_clk_in_khz / 1000)); table->WatermarkRow[1][i].MinUclk = cpu_to_le16((uint16_t) (clock_ranges->wm_dmif_clocks_ranges[i].wm_min_mem_clk_in_khz / 1000)); table->WatermarkRow[1][i].MaxUclk = cpu_to_le16((uint16_t) (clock_ranges->wm_dmif_clocks_ranges[i].wm_max_mem_clk_in_khz / 1000)); table->WatermarkRow[1][i].WmSetting = (uint8_t) clock_ranges->wm_dmif_clocks_ranges[i].wm_set_id; } for (i = 0; i < clock_ranges->num_wm_mcif_sets; i++) { table->WatermarkRow[0][i].MinClock = cpu_to_le16((uint16_t) (clock_ranges->wm_mcif_clocks_ranges[i].wm_min_socclk_clk_in_khz / 1000)); table->WatermarkRow[0][i].MaxClock = cpu_to_le16((uint16_t) (clock_ranges->wm_mcif_clocks_ranges[i].wm_max_socclk_clk_in_khz / 1000)); table->WatermarkRow[0][i].MinUclk = cpu_to_le16((uint16_t) (clock_ranges->wm_mcif_clocks_ranges[i].wm_min_mem_clk_in_khz / 1000)); table->WatermarkRow[0][i].MaxUclk = cpu_to_le16((uint16_t) (clock_ranges->wm_mcif_clocks_ranges[i].wm_max_mem_clk_in_khz / 1000)); table->WatermarkRow[0][i].WmSetting = (uint8_t) clock_ranges->wm_mcif_clocks_ranges[i].wm_set_id; } return 0; } static int smu_v11_0_set_watermarks_for_clock_ranges(struct smu_context *smu, struct dm_pp_wm_sets_with_clock_ranges_soc15 *clock_ranges) { int ret = 0; struct smu_table *watermarks = &smu->smu_table.tables[TABLE_WATERMARKS]; Watermarks_t *table = watermarks->cpu_addr; if (!smu->disable_watermark && smu_feature_is_enabled(smu, FEATURE_DPM_DCEFCLK_BIT) && smu_feature_is_enabled(smu, FEATURE_DPM_SOCCLK_BIT)) { smu_v11_0_set_watermarks_table(smu, table, clock_ranges); smu->watermarks_bitmap |= WATERMARKS_EXIST; smu->watermarks_bitmap &= ~WATERMARKS_LOADED; } return ret; } static int smu_v11_0_get_clock_ranges(struct smu_context *smu, uint32_t *clock, PPCLK_e clock_select, bool max) { int ret; *clock = 0; if (max) { ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMaxDpmFreq, (clock_select << 16)); if (ret) { pr_err("[GetClockRanges] Failed to get max clock from SMC!\n"); return ret; } smu_read_smc_arg(smu, clock); } else { ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMinDpmFreq, (clock_select << 16)); if (ret) { pr_err("[GetClockRanges] Failed to get min clock from SMC!\n"); return ret; } smu_read_smc_arg(smu, clock); } return 0; } static uint32_t smu_v11_0_dpm_get_sclk(struct smu_context *smu, bool low) { uint32_t gfx_clk; int ret; if (!smu_feature_is_enabled(smu, FEATURE_DPM_GFXCLK_BIT)) { pr_err("[GetSclks]: gfxclk dpm not enabled!\n"); return -EPERM; } if (low) { ret = smu_v11_0_get_clock_ranges(smu, &gfx_clk, PPCLK_GFXCLK, false); if (ret) { pr_err("[GetSclks]: fail to get min PPCLK_GFXCLK\n"); return ret; } } else { ret = smu_v11_0_get_clock_ranges(smu, &gfx_clk, PPCLK_GFXCLK, true); if (ret) { pr_err("[GetSclks]: fail to get max PPCLK_GFXCLK\n"); return ret; } } return (gfx_clk * 100); } static uint32_t smu_v11_0_dpm_get_mclk(struct smu_context *smu, bool low) { uint32_t mem_clk; int ret; if (!smu_feature_is_enabled(smu, FEATURE_DPM_UCLK_BIT)) { pr_err("[GetMclks]: memclk dpm not enabled!\n"); return -EPERM; } if (low) { ret = smu_v11_0_get_clock_ranges(smu, &mem_clk, PPCLK_UCLK, false); if (ret) { pr_err("[GetMclks]: fail to get min PPCLK_UCLK\n"); return ret; } } else { ret = smu_v11_0_get_clock_ranges(smu, &mem_clk, PPCLK_GFXCLK, true); if (ret) { pr_err("[GetMclks]: fail to get max PPCLK_UCLK\n"); return ret; } } return (mem_clk * 100); } static int smu_v11_0_set_od8_default_settings(struct smu_context *smu, bool initialize) { struct smu_table_context *table_context = &smu->smu_table; int ret; if (initialize) { if (table_context->overdrive_table) return -EINVAL; table_context->overdrive_table = kzalloc(sizeof(OverDriveTable_t), GFP_KERNEL); if (!table_context->overdrive_table) return -ENOMEM; ret = smu_update_table(smu, TABLE_OVERDRIVE, table_context->overdrive_table, false); if (ret) { pr_err("Failed to export over drive table!\n"); return ret; } smu_set_default_od8_settings(smu); } ret = smu_update_table(smu, TABLE_OVERDRIVE, table_context->overdrive_table, true); if (ret) { pr_err("Failed to import over drive table!\n"); return ret; } return 0; } static int smu_v11_0_conv_power_profile_to_pplib_workload(int power_profile) { int pplib_workload = 0; switch (power_profile) { case PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT: pplib_workload = WORKLOAD_DEFAULT_BIT; break; case PP_SMC_POWER_PROFILE_FULLSCREEN3D: pplib_workload = WORKLOAD_PPLIB_FULL_SCREEN_3D_BIT; break; case PP_SMC_POWER_PROFILE_POWERSAVING: pplib_workload = WORKLOAD_PPLIB_POWER_SAVING_BIT; break; case PP_SMC_POWER_PROFILE_VIDEO: pplib_workload = WORKLOAD_PPLIB_VIDEO_BIT; break; case PP_SMC_POWER_PROFILE_VR: pplib_workload = WORKLOAD_PPLIB_VR_BIT; break; case PP_SMC_POWER_PROFILE_COMPUTE: pplib_workload = WORKLOAD_PPLIB_COMPUTE_BIT; break; case PP_SMC_POWER_PROFILE_CUSTOM: pplib_workload = WORKLOAD_PPLIB_CUSTOM_BIT; break; } return pplib_workload; } static int smu_v11_0_get_power_profile_mode(struct smu_context *smu, char *buf) { DpmActivityMonitorCoeffInt_t activity_monitor; uint32_t i, size = 0; uint16_t workload_type = 0; static const char *profile_name[] = { "BOOTUP_DEFAULT", "3D_FULL_SCREEN", "POWER_SAVING", "VIDEO", "VR", "COMPUTE", "CUSTOM"}; static const char *title[] = { "PROFILE_INDEX(NAME)", "CLOCK_TYPE(NAME)", "FPS", "UseRlcBusy", "MinActiveFreqType", "MinActiveFreq", "BoosterFreqType", "BoosterFreq", "PD_Data_limit_c", "PD_Data_error_coeff", "PD_Data_error_rate_coeff"}; int result = 0; if (!buf) return -EINVAL; size += sprintf(buf + size, "%16s %s %s %s %s %s %s %s %s %s %s\n", title[0], title[1], title[2], title[3], title[4], title[5], title[6], title[7], title[8], title[9], title[10]); for (i = 0; i <= PP_SMC_POWER_PROFILE_CUSTOM; i++) { /* conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT */ workload_type = smu_v11_0_conv_power_profile_to_pplib_workload(i); result = smu_update_table_with_arg(smu, TABLE_ACTIVITY_MONITOR_COEFF, workload_type, &activity_monitor, false); if (result) { pr_err("[%s] Failed to get activity monitor!", __func__); return result; } size += sprintf(buf + size, "%2d %14s%s:\n", i, profile_name[i], (i == smu->power_profile_mode) ? "*" : " "); size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n", " ", 0, "GFXCLK", activity_monitor.Gfx_FPS, activity_monitor.Gfx_UseRlcBusy, activity_monitor.Gfx_MinActiveFreqType, activity_monitor.Gfx_MinActiveFreq, activity_monitor.Gfx_BoosterFreqType, activity_monitor.Gfx_BoosterFreq, activity_monitor.Gfx_PD_Data_limit_c, activity_monitor.Gfx_PD_Data_error_coeff, activity_monitor.Gfx_PD_Data_error_rate_coeff); size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n", " ", 1, "SOCCLK", activity_monitor.Soc_FPS, activity_monitor.Soc_UseRlcBusy, activity_monitor.Soc_MinActiveFreqType, activity_monitor.Soc_MinActiveFreq, activity_monitor.Soc_BoosterFreqType, activity_monitor.Soc_BoosterFreq, activity_monitor.Soc_PD_Data_limit_c, activity_monitor.Soc_PD_Data_error_coeff, activity_monitor.Soc_PD_Data_error_rate_coeff); size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n", " ", 2, "UCLK", activity_monitor.Mem_FPS, activity_monitor.Mem_UseRlcBusy, activity_monitor.Mem_MinActiveFreqType, activity_monitor.Mem_MinActiveFreq, activity_monitor.Mem_BoosterFreqType, activity_monitor.Mem_BoosterFreq, activity_monitor.Mem_PD_Data_limit_c, activity_monitor.Mem_PD_Data_error_coeff, activity_monitor.Mem_PD_Data_error_rate_coeff); size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n", " ", 3, "FCLK", activity_monitor.Fclk_FPS, activity_monitor.Fclk_UseRlcBusy, activity_monitor.Fclk_MinActiveFreqType, activity_monitor.Fclk_MinActiveFreq, activity_monitor.Fclk_BoosterFreqType, activity_monitor.Fclk_BoosterFreq, activity_monitor.Fclk_PD_Data_limit_c, activity_monitor.Fclk_PD_Data_error_coeff, activity_monitor.Fclk_PD_Data_error_rate_coeff); } return size; } static int smu_v11_0_set_power_profile_mode(struct smu_context *smu, long *input, uint32_t size) { DpmActivityMonitorCoeffInt_t activity_monitor; int workload_type = 0, ret = 0; smu->power_profile_mode = input[size]; if (smu->power_profile_mode > PP_SMC_POWER_PROFILE_CUSTOM) { pr_err("Invalid power profile mode %d\n", smu->power_profile_mode); return -EINVAL; } if (smu->power_profile_mode == PP_SMC_POWER_PROFILE_CUSTOM) { ret = smu_update_table_with_arg(smu, TABLE_ACTIVITY_MONITOR_COEFF, WORKLOAD_PPLIB_CUSTOM_BIT, &activity_monitor, false); if (ret) { pr_err("[%s] Failed to get activity monitor!", __func__); return ret; } switch (input[0]) { case 0: /* Gfxclk */ activity_monitor.Gfx_FPS = input[1]; activity_monitor.Gfx_UseRlcBusy = input[2]; activity_monitor.Gfx_MinActiveFreqType = input[3]; activity_monitor.Gfx_MinActiveFreq = input[4]; activity_monitor.Gfx_BoosterFreqType = input[5]; activity_monitor.Gfx_BoosterFreq = input[6]; activity_monitor.Gfx_PD_Data_limit_c = input[7]; activity_monitor.Gfx_PD_Data_error_coeff = input[8]; activity_monitor.Gfx_PD_Data_error_rate_coeff = input[9]; break; case 1: /* Socclk */ activity_monitor.Soc_FPS = input[1]; activity_monitor.Soc_UseRlcBusy = input[2]; activity_monitor.Soc_MinActiveFreqType = input[3]; activity_monitor.Soc_MinActiveFreq = input[4]; activity_monitor.Soc_BoosterFreqType = input[5]; activity_monitor.Soc_BoosterFreq = input[6]; activity_monitor.Soc_PD_Data_limit_c = input[7]; activity_monitor.Soc_PD_Data_error_coeff = input[8]; activity_monitor.Soc_PD_Data_error_rate_coeff = input[9]; break; case 2: /* Uclk */ activity_monitor.Mem_FPS = input[1]; activity_monitor.Mem_UseRlcBusy = input[2]; activity_monitor.Mem_MinActiveFreqType = input[3]; activity_monitor.Mem_MinActiveFreq = input[4]; activity_monitor.Mem_BoosterFreqType = input[5]; activity_monitor.Mem_BoosterFreq = input[6]; activity_monitor.Mem_PD_Data_limit_c = input[7]; activity_monitor.Mem_PD_Data_error_coeff = input[8]; activity_monitor.Mem_PD_Data_error_rate_coeff = input[9]; break; case 3: /* Fclk */ activity_monitor.Fclk_FPS = input[1]; activity_monitor.Fclk_UseRlcBusy = input[2]; activity_monitor.Fclk_MinActiveFreqType = input[3]; activity_monitor.Fclk_MinActiveFreq = input[4]; activity_monitor.Fclk_BoosterFreqType = input[5]; activity_monitor.Fclk_BoosterFreq = input[6]; activity_monitor.Fclk_PD_Data_limit_c = input[7]; activity_monitor.Fclk_PD_Data_error_coeff = input[8]; activity_monitor.Fclk_PD_Data_error_rate_coeff = input[9]; break; } ret = smu_update_table_with_arg(smu, TABLE_ACTIVITY_MONITOR_COEFF, WORKLOAD_PPLIB_COMPUTE_BIT, &activity_monitor, true); if (ret) { pr_err("[%s] Failed to set activity monitor!", __func__); return ret; } } /* conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT */ workload_type = smu_v11_0_conv_power_profile_to_pplib_workload(smu->power_profile_mode); smu_send_smc_msg_with_param(smu, SMU_MSG_SetWorkloadMask, 1 << workload_type); return ret; } static int smu_v11_0_update_od8_settings(struct smu_context *smu, uint32_t index, uint32_t value) { struct smu_table_context *table_context = &smu->smu_table; int ret; ret = smu_update_table(smu, TABLE_OVERDRIVE, table_context->overdrive_table, false); if (ret) { pr_err("Failed to export over drive table!\n"); return ret; } smu_update_specified_od8_value(smu, index, value); ret = smu_update_table(smu, TABLE_OVERDRIVE, table_context->overdrive_table, true); if (ret) { pr_err("Failed to import over drive table!\n"); return ret; } return 0; } static int smu_v11_0_dpm_set_uvd_enable(struct smu_context *smu, bool enable) { if (!smu_feature_is_supported(smu, FEATURE_DPM_VCE_BIT)) return 0; if (enable == smu_feature_is_enabled(smu, FEATURE_DPM_VCE_BIT)) return 0; return smu_feature_set_enabled(smu, FEATURE_DPM_VCE_BIT, enable); } static int smu_v11_0_dpm_set_vce_enable(struct smu_context *smu, bool enable) { if (!smu_feature_is_supported(smu, FEATURE_DPM_UVD_BIT)) return 0; if (enable == smu_feature_is_enabled(smu, FEATURE_DPM_UVD_BIT)) return 0; return smu_feature_set_enabled(smu, FEATURE_DPM_UVD_BIT, enable); } static int smu_v11_0_get_current_rpm(struct smu_context *smu, uint32_t *current_rpm) { int ret; ret = smu_send_smc_msg(smu, SMU_MSG_GetCurrentRpm); if (ret) { pr_err("Attempt to get current RPM from SMC Failed!\n"); return ret; } smu_read_smc_arg(smu, current_rpm); return 0; } static uint32_t smu_v11_0_get_fan_control_mode(struct smu_context *smu) { if (!smu_feature_is_enabled(smu, FEATURE_FAN_CONTROL_BIT)) return AMD_FAN_CTRL_MANUAL; else return AMD_FAN_CTRL_AUTO; } static int smu_v11_0_get_fan_speed_percent(struct smu_context *smu, uint32_t *speed) { int ret = 0; uint32_t percent = 0; uint32_t current_rpm; PPTable_t *pptable = smu->smu_table.driver_pptable; ret = smu_v11_0_get_current_rpm(smu, ¤t_rpm); percent = current_rpm * 100 / pptable->FanMaximumRpm; *speed = percent > 100 ? 100 : percent; return ret; } static int smu_v11_0_smc_fan_control(struct smu_context *smu, bool start) { int ret = 0; if (smu_feature_is_supported(smu, FEATURE_FAN_CONTROL_BIT)) return 0; ret = smu_feature_set_enabled(smu, FEATURE_FAN_CONTROL_BIT, start); if (ret) pr_err("[%s]%s smc FAN CONTROL feature failed!", __func__, (start ? "Start" : "Stop")); return ret; } static int smu_v11_0_set_fan_static_mode(struct smu_context *smu, uint32_t mode) { struct amdgpu_device *adev = smu->adev; WREG32_SOC15(THM, 0, mmCG_FDO_CTRL2, REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL2), CG_FDO_CTRL2, TMIN, 0)); WREG32_SOC15(THM, 0, mmCG_FDO_CTRL2, REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL2), CG_FDO_CTRL2, FDO_PWM_MODE, mode)); return 0; } static int smu_v11_0_set_fan_speed_percent(struct smu_context *smu, uint32_t speed) { struct amdgpu_device *adev = smu->adev; uint32_t duty100; uint32_t duty; uint64_t tmp64; bool stop = 0; if (speed > 100) speed = 100; if (smu_v11_0_smc_fan_control(smu, stop)) return -EINVAL; duty100 = REG_GET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL1), CG_FDO_CTRL1, FMAX_DUTY100); if (!duty100) return -EINVAL; tmp64 = (uint64_t)speed * duty100; do_div(tmp64, 100); duty = (uint32_t)tmp64; WREG32_SOC15(THM, 0, mmCG_FDO_CTRL0, REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL0), CG_FDO_CTRL0, FDO_STATIC_DUTY, duty)); return smu_v11_0_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC); } static int smu_v11_0_set_fan_control_mode(struct smu_context *smu, uint32_t mode) { int ret = 0; bool start = 1; bool stop = 0; switch (mode) { case AMD_FAN_CTRL_NONE: ret = smu_v11_0_set_fan_speed_percent(smu, 100); break; case AMD_FAN_CTRL_MANUAL: ret = smu_v11_0_smc_fan_control(smu, stop); break; case AMD_FAN_CTRL_AUTO: ret = smu_v11_0_smc_fan_control(smu, start); break; default: break; } if (ret) { pr_err("[%s]Set fan control mode failed!", __func__); return -EINVAL; } return ret; } static int smu_v11_0_set_fan_speed_rpm(struct smu_context *smu, uint32_t speed) { struct amdgpu_device *adev = smu->adev; int ret; uint32_t tach_period, crystal_clock_freq; bool stop = 0; if (!speed) return -EINVAL; mutex_lock(&(smu->mutex)); ret = smu_v11_0_smc_fan_control(smu, stop); if (ret) goto set_fan_speed_rpm_failed; crystal_clock_freq = amdgpu_asic_get_xclk(adev); tach_period = 60 * crystal_clock_freq * 10000 / (8 * speed); WREG32_SOC15(THM, 0, mmCG_TACH_CTRL, REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_TACH_CTRL), CG_TACH_CTRL, TARGET_PERIOD, tach_period)); ret = smu_v11_0_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC_RPM); set_fan_speed_rpm_failed: mutex_unlock(&(smu->mutex)); return ret; } static int smu_v11_0_set_xgmi_pstate(struct smu_context *smu, uint32_t pstate) { int ret = 0; mutex_lock(&(smu->mutex)); ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetXgmiMode, pstate ? XGMI_STATE_D0 : XGMI_STATE_D3); mutex_unlock(&(smu->mutex)); return ret; } static const struct smu_funcs smu_v11_0_funcs = { .init_microcode = smu_v11_0_init_microcode, .load_microcode = smu_v11_0_load_microcode, .check_fw_status = smu_v11_0_check_fw_status, .check_fw_version = smu_v11_0_check_fw_version, .send_smc_msg = smu_v11_0_send_msg, .send_smc_msg_with_param = smu_v11_0_send_msg_with_param, .read_smc_arg = smu_v11_0_read_arg, .read_pptable_from_vbios = smu_v11_0_read_pptable_from_vbios, .init_smc_tables = smu_v11_0_init_smc_tables, .fini_smc_tables = smu_v11_0_fini_smc_tables, .init_power = smu_v11_0_init_power, .fini_power = smu_v11_0_fini_power, .get_vbios_bootup_values = smu_v11_0_get_vbios_bootup_values, .get_clk_info_from_vbios = smu_v11_0_get_clk_info_from_vbios, .notify_memory_pool_location = smu_v11_0_notify_memory_pool_location, .check_pptable = smu_v11_0_check_pptable, .parse_pptable = smu_v11_0_parse_pptable, .populate_smc_pptable = smu_v11_0_populate_smc_pptable, .write_pptable = smu_v11_0_write_pptable, .write_watermarks_table = smu_v11_0_write_watermarks_table, .set_min_dcef_deep_sleep = smu_v11_0_set_min_dcef_deep_sleep, .set_tool_table_location = smu_v11_0_set_tool_table_location, .init_display = smu_v11_0_init_display, .set_allowed_mask = smu_v11_0_set_allowed_mask, .get_enabled_mask = smu_v11_0_get_enabled_mask, .is_dpm_running = smu_v11_0_is_dpm_running, .system_features_control = smu_v11_0_system_features_control, .update_feature_enable_state = smu_v11_0_update_feature_enable_state, .notify_display_change = smu_v11_0_notify_display_change, .get_power_limit = smu_v11_0_get_power_limit, .set_power_limit = smu_v11_0_set_power_limit, .get_current_clk_freq = smu_v11_0_get_current_clk_freq, .init_max_sustainable_clocks = smu_v11_0_init_max_sustainable_clocks, .start_thermal_control = smu_v11_0_start_thermal_control, .read_sensor = smu_v11_0_read_sensor, .set_deep_sleep_dcefclk = smu_v11_0_set_deep_sleep_dcefclk, .display_clock_voltage_request = smu_v11_0_display_clock_voltage_request, .set_watermarks_for_clock_ranges = smu_v11_0_set_watermarks_for_clock_ranges, .get_sclk = smu_v11_0_dpm_get_sclk, .get_mclk = smu_v11_0_dpm_get_mclk, .set_od8_default_settings = smu_v11_0_set_od8_default_settings, .conv_power_profile_to_pplib_workload = smu_v11_0_conv_power_profile_to_pplib_workload, .get_power_profile_mode = smu_v11_0_get_power_profile_mode, .set_power_profile_mode = smu_v11_0_set_power_profile_mode, .update_od8_settings = smu_v11_0_update_od8_settings, .dpm_set_uvd_enable = smu_v11_0_dpm_set_uvd_enable, .dpm_set_vce_enable = smu_v11_0_dpm_set_vce_enable, .get_current_rpm = smu_v11_0_get_current_rpm, .get_fan_control_mode = smu_v11_0_get_fan_control_mode, .set_fan_control_mode = smu_v11_0_set_fan_control_mode, .get_fan_speed_percent = smu_v11_0_get_fan_speed_percent, .set_fan_speed_percent = smu_v11_0_set_fan_speed_percent, .set_fan_speed_rpm = smu_v11_0_set_fan_speed_rpm, .set_xgmi_pstate = smu_v11_0_set_xgmi_pstate, }; void smu_v11_0_set_smu_funcs(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; smu->funcs = &smu_v11_0_funcs; switch (adev->asic_type) { case CHIP_VEGA20: vega20_set_ppt_funcs(smu); break; default: pr_warn("Unknown asic for smu11\n"); } }