/* * Copyright 2015 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include "pp_debug.h" #include #include #include #include #include #include #include "ppatomctrl.h" #include "atombios.h" #include "pptable_v1_0.h" #include "pppcielanes.h" #include "amd_pcie_helpers.h" #include "hardwaremanager.h" #include "process_pptables_v1_0.h" #include "cgs_common.h" #include "smu7_common.h" #include "hwmgr.h" #include "smu7_hwmgr.h" #include "smu_ucode_xfer_vi.h" #include "smu7_powertune.h" #include "smu7_dyn_defaults.h" #include "smu7_thermal.h" #include "smu7_clockpowergating.h" #include "processpptables.h" #include "pp_thermal.h" #include "ivsrcid/ivsrcid_vislands30.h" #define MC_CG_ARB_FREQ_F0 0x0a #define MC_CG_ARB_FREQ_F1 0x0b #define MC_CG_ARB_FREQ_F2 0x0c #define MC_CG_ARB_FREQ_F3 0x0d #define MC_CG_SEQ_DRAMCONF_S0 0x05 #define MC_CG_SEQ_DRAMCONF_S1 0x06 #define MC_CG_SEQ_YCLK_SUSPEND 0x04 #define MC_CG_SEQ_YCLK_RESUME 0x0a #define SMC_CG_IND_START 0xc0030000 #define SMC_CG_IND_END 0xc0040000 #define MEM_FREQ_LOW_LATENCY 25000 #define MEM_FREQ_HIGH_LATENCY 80000 #define MEM_LATENCY_HIGH 45 #define MEM_LATENCY_LOW 35 #define MEM_LATENCY_ERR 0xFFFF #define MC_SEQ_MISC0_GDDR5_SHIFT 28 #define MC_SEQ_MISC0_GDDR5_MASK 0xf0000000 #define MC_SEQ_MISC0_GDDR5_VALUE 5 #define PCIE_BUS_CLK 10000 #define TCLK (PCIE_BUS_CLK / 10) static const struct profile_mode_setting smu7_profiling[6] = {{1, 0, 100, 30, 1, 0, 100, 10}, {1, 10, 0, 30, 0, 0, 0, 0}, {0, 0, 0, 0, 1, 10, 16, 31}, {1, 0, 11, 50, 1, 0, 100, 10}, {1, 0, 5, 30, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0}, }; #define PPSMC_MSG_SetVBITimeout_VEGAM ((uint16_t) 0x310) #define ixPWR_SVI2_PLANE1_LOAD 0xC0200280 #define PWR_SVI2_PLANE1_LOAD__PSI1_MASK 0x00000020L #define PWR_SVI2_PLANE1_LOAD__PSI0_EN_MASK 0x00000040L #define PWR_SVI2_PLANE1_LOAD__PSI1__SHIFT 0x00000005 #define PWR_SVI2_PLANE1_LOAD__PSI0_EN__SHIFT 0x00000006 /** Values for the CG_THERMAL_CTRL::DPM_EVENT_SRC field. */ enum DPM_EVENT_SRC { DPM_EVENT_SRC_ANALOG = 0, DPM_EVENT_SRC_EXTERNAL = 1, DPM_EVENT_SRC_DIGITAL = 2, DPM_EVENT_SRC_ANALOG_OR_EXTERNAL = 3, DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL = 4 }; static const unsigned long PhwVIslands_Magic = (unsigned long)(PHM_VIslands_Magic); static int smu7_force_clock_level(struct pp_hwmgr *hwmgr, enum pp_clock_type type, uint32_t mask); static struct smu7_power_state *cast_phw_smu7_power_state( struct pp_hw_power_state *hw_ps) { PP_ASSERT_WITH_CODE((PhwVIslands_Magic == hw_ps->magic), "Invalid Powerstate Type!", return NULL); return (struct smu7_power_state *)hw_ps; } static const struct smu7_power_state *cast_const_phw_smu7_power_state( const struct pp_hw_power_state *hw_ps) { PP_ASSERT_WITH_CODE((PhwVIslands_Magic == hw_ps->magic), "Invalid Powerstate Type!", return NULL); return (const struct smu7_power_state *)hw_ps; } /** * Find the MC microcode version and store it in the HwMgr struct * * @param hwmgr the address of the powerplay hardware manager. * @return always 0 */ static int smu7_get_mc_microcode_version(struct pp_hwmgr *hwmgr) { cgs_write_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_INDEX, 0x9F); hwmgr->microcode_version_info.MC = cgs_read_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_DATA); return 0; } static uint16_t smu7_get_current_pcie_speed(struct pp_hwmgr *hwmgr) { uint32_t speedCntl = 0; /* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */ speedCntl = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__PCIE, ixPCIE_LC_SPEED_CNTL); return((uint16_t)PHM_GET_FIELD(speedCntl, PCIE_LC_SPEED_CNTL, LC_CURRENT_DATA_RATE)); } static int smu7_get_current_pcie_lane_number(struct pp_hwmgr *hwmgr) { uint32_t link_width; /* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */ link_width = PHM_READ_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE, PCIE_LC_LINK_WIDTH_CNTL, LC_LINK_WIDTH_RD); PP_ASSERT_WITH_CODE((7 >= link_width), "Invalid PCIe lane width!", return 0); return decode_pcie_lane_width(link_width); } /** * Enable voltage control * * @param pHwMgr the address of the powerplay hardware manager. * @return always PP_Result_OK */ static int smu7_enable_smc_voltage_controller(struct pp_hwmgr *hwmgr) { if (hwmgr->chip_id == CHIP_VEGAM) { PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_SVI2_PLANE1_LOAD, PSI1, 0); PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_SVI2_PLANE1_LOAD, PSI0_EN, 0); } if (hwmgr->feature_mask & PP_SMC_VOLTAGE_CONTROL_MASK) smum_send_msg_to_smc(hwmgr, PPSMC_MSG_Voltage_Cntl_Enable); return 0; } /** * Checks if we want to support voltage control * * @param hwmgr the address of the powerplay hardware manager. */ static bool smu7_voltage_control(const struct pp_hwmgr *hwmgr) { const struct smu7_hwmgr *data = (const struct smu7_hwmgr *)(hwmgr->backend); return (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control); } /** * Enable voltage control * * @param hwmgr the address of the powerplay hardware manager. * @return always 0 */ static int smu7_enable_voltage_control(struct pp_hwmgr *hwmgr) { /* enable voltage control */ PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, VOLT_PWRMGT_EN, 1); return 0; } static int phm_get_svi2_voltage_table_v0(pp_atomctrl_voltage_table *voltage_table, struct phm_clock_voltage_dependency_table *voltage_dependency_table ) { uint32_t i; PP_ASSERT_WITH_CODE((NULL != voltage_table), "Voltage Dependency Table empty.", return -EINVAL;); voltage_table->mask_low = 0; voltage_table->phase_delay = 0; voltage_table->count = voltage_dependency_table->count; for (i = 0; i < voltage_dependency_table->count; i++) { voltage_table->entries[i].value = voltage_dependency_table->entries[i].v; voltage_table->entries[i].smio_low = 0; } return 0; } /** * Create Voltage Tables. * * @param hwmgr the address of the powerplay hardware manager. * @return always 0 */ static int smu7_construct_voltage_tables(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)hwmgr->pptable; int result = 0; uint32_t tmp; if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) { result = atomctrl_get_voltage_table_v3(hwmgr, VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT, &(data->mvdd_voltage_table)); PP_ASSERT_WITH_CODE((0 == result), "Failed to retrieve MVDD table.", return result); } else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) { if (hwmgr->pp_table_version == PP_TABLE_V1) result = phm_get_svi2_mvdd_voltage_table(&(data->mvdd_voltage_table), table_info->vdd_dep_on_mclk); else if (hwmgr->pp_table_version == PP_TABLE_V0) result = phm_get_svi2_voltage_table_v0(&(data->mvdd_voltage_table), hwmgr->dyn_state.mvdd_dependency_on_mclk); PP_ASSERT_WITH_CODE((0 == result), "Failed to retrieve SVI2 MVDD table from dependancy table.", return result;); } if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) { result = atomctrl_get_voltage_table_v3(hwmgr, VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT, &(data->vddci_voltage_table)); PP_ASSERT_WITH_CODE((0 == result), "Failed to retrieve VDDCI table.", return result); } else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) { if (hwmgr->pp_table_version == PP_TABLE_V1) result = phm_get_svi2_vddci_voltage_table(&(data->vddci_voltage_table), table_info->vdd_dep_on_mclk); else if (hwmgr->pp_table_version == PP_TABLE_V0) result = phm_get_svi2_voltage_table_v0(&(data->vddci_voltage_table), hwmgr->dyn_state.vddci_dependency_on_mclk); PP_ASSERT_WITH_CODE((0 == result), "Failed to retrieve SVI2 VDDCI table from dependancy table.", return result); } if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) { /* VDDGFX has only SVI2 voltage control */ result = phm_get_svi2_vdd_voltage_table(&(data->vddgfx_voltage_table), table_info->vddgfx_lookup_table); PP_ASSERT_WITH_CODE((0 == result), "Failed to retrieve SVI2 VDDGFX table from lookup table.", return result;); } if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->voltage_control) { result = atomctrl_get_voltage_table_v3(hwmgr, VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_GPIO_LUT, &data->vddc_voltage_table); PP_ASSERT_WITH_CODE((0 == result), "Failed to retrieve VDDC table.", return result;); } else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) { if (hwmgr->pp_table_version == PP_TABLE_V0) result = phm_get_svi2_voltage_table_v0(&data->vddc_voltage_table, hwmgr->dyn_state.vddc_dependency_on_mclk); else if (hwmgr->pp_table_version == PP_TABLE_V1) result = phm_get_svi2_vdd_voltage_table(&(data->vddc_voltage_table), table_info->vddc_lookup_table); PP_ASSERT_WITH_CODE((0 == result), "Failed to retrieve SVI2 VDDC table from dependancy table.", return result;); } tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDC); PP_ASSERT_WITH_CODE( (data->vddc_voltage_table.count <= tmp), "Too many voltage values for VDDC. Trimming to fit state table.", phm_trim_voltage_table_to_fit_state_table(tmp, &(data->vddc_voltage_table))); tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDGFX); PP_ASSERT_WITH_CODE( (data->vddgfx_voltage_table.count <= tmp), "Too many voltage values for VDDC. Trimming to fit state table.", phm_trim_voltage_table_to_fit_state_table(tmp, &(data->vddgfx_voltage_table))); tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDCI); PP_ASSERT_WITH_CODE( (data->vddci_voltage_table.count <= tmp), "Too many voltage values for VDDCI. Trimming to fit state table.", phm_trim_voltage_table_to_fit_state_table(tmp, &(data->vddci_voltage_table))); tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_MVDD); PP_ASSERT_WITH_CODE( (data->mvdd_voltage_table.count <= tmp), "Too many voltage values for MVDD. Trimming to fit state table.", phm_trim_voltage_table_to_fit_state_table(tmp, &(data->mvdd_voltage_table))); return 0; } /** * Programs static screed detection parameters * * @param hwmgr the address of the powerplay hardware manager. * @return always 0 */ static int smu7_program_static_screen_threshold_parameters( struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); /* Set static screen threshold unit */ PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD_UNIT, data->static_screen_threshold_unit); /* Set static screen threshold */ PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD, data->static_screen_threshold); return 0; } /** * Setup display gap for glitch free memory clock switching. * * @param hwmgr the address of the powerplay hardware manager. * @return always 0 */ static int smu7_enable_display_gap(struct pp_hwmgr *hwmgr) { uint32_t display_gap = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL); display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL, DISP_GAP, DISPLAY_GAP_IGNORE); display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL, DISP_GAP_MCHG, DISPLAY_GAP_VBLANK); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL, display_gap); return 0; } /** * Programs activity state transition voting clients * * @param hwmgr the address of the powerplay hardware manager. * @return always 0 */ static int smu7_program_voting_clients(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); int i; /* Clear reset for voting clients before enabling DPM */ PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 0); PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 0); for (i = 0; i < 8; i++) cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_FREQ_TRAN_VOTING_0 + i * 4, data->voting_rights_clients[i]); return 0; } static int smu7_clear_voting_clients(struct pp_hwmgr *hwmgr) { int i; /* Reset voting clients before disabling DPM */ PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 1); PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 1); for (i = 0; i < 8; i++) cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_FREQ_TRAN_VOTING_0 + i * 4, 0); return 0; } /* Copy one arb setting to another and then switch the active set. * arb_src and arb_dest is one of the MC_CG_ARB_FREQ_Fx constants. */ static int smu7_copy_and_switch_arb_sets(struct pp_hwmgr *hwmgr, uint32_t arb_src, uint32_t arb_dest) { uint32_t mc_arb_dram_timing; uint32_t mc_arb_dram_timing2; uint32_t burst_time; uint32_t mc_cg_config; switch (arb_src) { case MC_CG_ARB_FREQ_F0: mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING); mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2); burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0); break; case MC_CG_ARB_FREQ_F1: mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1); mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1); burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1); break; default: return -EINVAL; } switch (arb_dest) { case MC_CG_ARB_FREQ_F0: cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING, mc_arb_dram_timing); cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2, mc_arb_dram_timing2); PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0, burst_time); break; case MC_CG_ARB_FREQ_F1: cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1, mc_arb_dram_timing); cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1, mc_arb_dram_timing2); PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1, burst_time); break; default: return -EINVAL; } mc_cg_config = cgs_read_register(hwmgr->device, mmMC_CG_CONFIG); mc_cg_config |= 0x0000000F; cgs_write_register(hwmgr->device, mmMC_CG_CONFIG, mc_cg_config); PHM_WRITE_FIELD(hwmgr->device, MC_ARB_CG, CG_ARB_REQ, arb_dest); return 0; } static int smu7_reset_to_default(struct pp_hwmgr *hwmgr) { return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ResetToDefaults); } /** * Initial switch from ARB F0->F1 * * @param hwmgr the address of the powerplay hardware manager. * @return always 0 * This function is to be called from the SetPowerState table. */ static int smu7_initial_switch_from_arbf0_to_f1(struct pp_hwmgr *hwmgr) { return smu7_copy_and_switch_arb_sets(hwmgr, MC_CG_ARB_FREQ_F0, MC_CG_ARB_FREQ_F1); } static int smu7_force_switch_to_arbf0(struct pp_hwmgr *hwmgr) { uint32_t tmp; tmp = (cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixSMC_SCRATCH9) & 0x0000ff00) >> 8; if (tmp == MC_CG_ARB_FREQ_F0) return 0; return smu7_copy_and_switch_arb_sets(hwmgr, tmp, MC_CG_ARB_FREQ_F0); } static int smu7_setup_default_pcie_table(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); struct phm_ppt_v1_pcie_table *pcie_table = NULL; uint32_t i, max_entry; uint32_t tmp; PP_ASSERT_WITH_CODE((data->use_pcie_performance_levels || data->use_pcie_power_saving_levels), "No pcie performance levels!", return -EINVAL); if (table_info != NULL) pcie_table = table_info->pcie_table; if (data->use_pcie_performance_levels && !data->use_pcie_power_saving_levels) { data->pcie_gen_power_saving = data->pcie_gen_performance; data->pcie_lane_power_saving = data->pcie_lane_performance; } else if (!data->use_pcie_performance_levels && data->use_pcie_power_saving_levels) { data->pcie_gen_performance = data->pcie_gen_power_saving; data->pcie_lane_performance = data->pcie_lane_power_saving; } tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_LINK); phm_reset_single_dpm_table(&data->dpm_table.pcie_speed_table, tmp, MAX_REGULAR_DPM_NUMBER); if (pcie_table != NULL) { /* max_entry is used to make sure we reserve one PCIE level * for boot level (fix for A+A PSPP issue). * If PCIE table from PPTable have ULV entry + 8 entries, * then ignore the last entry.*/ max_entry = (tmp < pcie_table->count) ? tmp : pcie_table->count; for (i = 1; i < max_entry; i++) { phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i - 1, get_pcie_gen_support(data->pcie_gen_cap, pcie_table->entries[i].gen_speed), get_pcie_lane_support(data->pcie_lane_cap, pcie_table->entries[i].lane_width)); } data->dpm_table.pcie_speed_table.count = max_entry - 1; smum_update_smc_table(hwmgr, SMU_BIF_TABLE); } else { /* Hardcode Pcie Table */ phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 0, get_pcie_gen_support(data->pcie_gen_cap, PP_Min_PCIEGen), get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane)); phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 1, get_pcie_gen_support(data->pcie_gen_cap, PP_Min_PCIEGen), get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane)); phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 2, get_pcie_gen_support(data->pcie_gen_cap, PP_Max_PCIEGen), get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane)); phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 3, get_pcie_gen_support(data->pcie_gen_cap, PP_Max_PCIEGen), get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane)); phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 4, get_pcie_gen_support(data->pcie_gen_cap, PP_Max_PCIEGen), get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane)); phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 5, get_pcie_gen_support(data->pcie_gen_cap, PP_Max_PCIEGen), get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane)); data->dpm_table.pcie_speed_table.count = 6; } /* Populate last level for boot PCIE level, but do not increment count. */ if (hwmgr->chip_family == AMDGPU_FAMILY_CI) { for (i = 0; i <= data->dpm_table.pcie_speed_table.count; i++) phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i, get_pcie_gen_support(data->pcie_gen_cap, PP_Max_PCIEGen), data->vbios_boot_state.pcie_lane_bootup_value); } else { phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, data->dpm_table.pcie_speed_table.count, get_pcie_gen_support(data->pcie_gen_cap, PP_Min_PCIEGen), get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane)); } return 0; } static int smu7_reset_dpm_tables(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); memset(&(data->dpm_table), 0x00, sizeof(data->dpm_table)); phm_reset_single_dpm_table( &data->dpm_table.sclk_table, smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_GRAPHICS), MAX_REGULAR_DPM_NUMBER); phm_reset_single_dpm_table( &data->dpm_table.mclk_table, smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_MEMORY), MAX_REGULAR_DPM_NUMBER); phm_reset_single_dpm_table( &data->dpm_table.vddc_table, smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDC), MAX_REGULAR_DPM_NUMBER); phm_reset_single_dpm_table( &data->dpm_table.vddci_table, smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDCI), MAX_REGULAR_DPM_NUMBER); phm_reset_single_dpm_table( &data->dpm_table.mvdd_table, smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_MVDD), MAX_REGULAR_DPM_NUMBER); return 0; } /* * This function is to initialize all DPM state tables * for SMU7 based on the dependency table. * Dynamic state patching function will then trim these * state tables to the allowed range based * on the power policy or external client requests, * such as UVD request, etc. */ static int smu7_setup_dpm_tables_v0(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct phm_clock_voltage_dependency_table *allowed_vdd_sclk_table = hwmgr->dyn_state.vddc_dependency_on_sclk; struct phm_clock_voltage_dependency_table *allowed_vdd_mclk_table = hwmgr->dyn_state.vddc_dependency_on_mclk; struct phm_cac_leakage_table *std_voltage_table = hwmgr->dyn_state.cac_leakage_table; uint32_t i; PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table != NULL, "SCLK dependency table is missing. This table is mandatory", return -EINVAL); PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table->count >= 1, "SCLK dependency table has to have is missing. This table is mandatory", return -EINVAL); PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table != NULL, "MCLK dependency table is missing. This table is mandatory", return -EINVAL); PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table->count >= 1, "VMCLK dependency table has to have is missing. This table is mandatory", return -EINVAL); /* Initialize Sclk DPM table based on allow Sclk values*/ data->dpm_table.sclk_table.count = 0; for (i = 0; i < allowed_vdd_sclk_table->count; i++) { if (i == 0 || data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count-1].value != allowed_vdd_sclk_table->entries[i].clk) { data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].value = allowed_vdd_sclk_table->entries[i].clk; data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].enabled = (i == 0) ? 1 : 0; data->dpm_table.sclk_table.count++; } } PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table != NULL, "MCLK dependency table is missing. This table is mandatory", return -EINVAL); /* Initialize Mclk DPM table based on allow Mclk values */ data->dpm_table.mclk_table.count = 0; for (i = 0; i < allowed_vdd_mclk_table->count; i++) { if (i == 0 || data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count-1].value != allowed_vdd_mclk_table->entries[i].clk) { data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].value = allowed_vdd_mclk_table->entries[i].clk; data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].enabled = (i == 0) ? 1 : 0; data->dpm_table.mclk_table.count++; } } /* Initialize Vddc DPM table based on allow Vddc values. And populate corresponding std values. */ for (i = 0; i < allowed_vdd_sclk_table->count; i++) { data->dpm_table.vddc_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].v; data->dpm_table.vddc_table.dpm_levels[i].param1 = std_voltage_table->entries[i].Leakage; /* param1 is for corresponding std voltage */ data->dpm_table.vddc_table.dpm_levels[i].enabled = 1; } data->dpm_table.vddc_table.count = allowed_vdd_sclk_table->count; allowed_vdd_mclk_table = hwmgr->dyn_state.vddci_dependency_on_mclk; if (NULL != allowed_vdd_mclk_table) { /* Initialize Vddci DPM table based on allow Mclk values */ for (i = 0; i < allowed_vdd_mclk_table->count; i++) { data->dpm_table.vddci_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].v; data->dpm_table.vddci_table.dpm_levels[i].enabled = 1; } data->dpm_table.vddci_table.count = allowed_vdd_mclk_table->count; } allowed_vdd_mclk_table = hwmgr->dyn_state.mvdd_dependency_on_mclk; if (NULL != allowed_vdd_mclk_table) { /* * Initialize MVDD DPM table based on allow Mclk * values */ for (i = 0; i < allowed_vdd_mclk_table->count; i++) { data->dpm_table.mvdd_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].v; data->dpm_table.mvdd_table.dpm_levels[i].enabled = 1; } data->dpm_table.mvdd_table.count = allowed_vdd_mclk_table->count; } return 0; } static int smu7_setup_dpm_tables_v1(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); uint32_t i; struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table; struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table; if (table_info == NULL) return -EINVAL; dep_sclk_table = table_info->vdd_dep_on_sclk; dep_mclk_table = table_info->vdd_dep_on_mclk; PP_ASSERT_WITH_CODE(dep_sclk_table != NULL, "SCLK dependency table is missing.", return -EINVAL); PP_ASSERT_WITH_CODE(dep_sclk_table->count >= 1, "SCLK dependency table count is 0.", return -EINVAL); PP_ASSERT_WITH_CODE(dep_mclk_table != NULL, "MCLK dependency table is missing.", return -EINVAL); PP_ASSERT_WITH_CODE(dep_mclk_table->count >= 1, "MCLK dependency table count is 0", return -EINVAL); /* Initialize Sclk DPM table based on allow Sclk values */ data->dpm_table.sclk_table.count = 0; for (i = 0; i < dep_sclk_table->count; i++) { if (i == 0 || data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count - 1].value != dep_sclk_table->entries[i].clk) { data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].value = dep_sclk_table->entries[i].clk; data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].enabled = (i == 0) ? true : false; data->dpm_table.sclk_table.count++; } } if (hwmgr->platform_descriptor.overdriveLimit.engineClock == 0) hwmgr->platform_descriptor.overdriveLimit.engineClock = dep_sclk_table->entries[i-1].clk; /* Initialize Mclk DPM table based on allow Mclk values */ data->dpm_table.mclk_table.count = 0; for (i = 0; i < dep_mclk_table->count; i++) { if (i == 0 || data->dpm_table.mclk_table.dpm_levels [data->dpm_table.mclk_table.count - 1].value != dep_mclk_table->entries[i].clk) { data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].value = dep_mclk_table->entries[i].clk; data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].enabled = (i == 0) ? true : false; data->dpm_table.mclk_table.count++; } } if (hwmgr->platform_descriptor.overdriveLimit.memoryClock == 0) hwmgr->platform_descriptor.overdriveLimit.memoryClock = dep_mclk_table->entries[i-1].clk; return 0; } static int smu7_odn_initial_default_setting(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct smu7_odn_dpm_table *odn_table = &(data->odn_dpm_table); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); uint32_t i; struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table; struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table; struct phm_odn_performance_level *entries; if (table_info == NULL) return -EINVAL; dep_sclk_table = table_info->vdd_dep_on_sclk; dep_mclk_table = table_info->vdd_dep_on_mclk; odn_table->odn_core_clock_dpm_levels.num_of_pl = data->golden_dpm_table.sclk_table.count; entries = odn_table->odn_core_clock_dpm_levels.entries; for (i=0; igolden_dpm_table.sclk_table.count; i++) { entries[i].clock = data->golden_dpm_table.sclk_table.dpm_levels[i].value; entries[i].enabled = true; entries[i].vddc = dep_sclk_table->entries[i].vddc; } smu_get_voltage_dependency_table_ppt_v1(dep_sclk_table, (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dependency_on_sclk)); odn_table->odn_memory_clock_dpm_levels.num_of_pl = data->golden_dpm_table.mclk_table.count; entries = odn_table->odn_memory_clock_dpm_levels.entries; for (i=0; igolden_dpm_table.mclk_table.count; i++) { entries[i].clock = data->golden_dpm_table.mclk_table.dpm_levels[i].value; entries[i].enabled = true; entries[i].vddc = dep_mclk_table->entries[i].vddc; } smu_get_voltage_dependency_table_ppt_v1(dep_mclk_table, (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dependency_on_mclk)); return 0; } static void smu7_setup_voltage_range_from_vbios(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table; struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); uint32_t min_vddc = 0; uint32_t max_vddc = 0; if (!table_info) return; dep_sclk_table = table_info->vdd_dep_on_sclk; atomctrl_get_voltage_range(hwmgr, &max_vddc, &min_vddc); if (min_vddc == 0 || min_vddc > 2000 || min_vddc > dep_sclk_table->entries[0].vddc) min_vddc = dep_sclk_table->entries[0].vddc; if (max_vddc == 0 || max_vddc > 2000 || max_vddc < dep_sclk_table->entries[dep_sclk_table->count-1].vddc) max_vddc = dep_sclk_table->entries[dep_sclk_table->count-1].vddc; data->odn_dpm_table.min_vddc = min_vddc; data->odn_dpm_table.max_vddc = max_vddc; } static void smu7_check_dpm_table_updated(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct smu7_odn_dpm_table *odn_table = &(data->odn_dpm_table); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); uint32_t i; struct phm_ppt_v1_clock_voltage_dependency_table *dep_table; struct phm_ppt_v1_clock_voltage_dependency_table *odn_dep_table; if (table_info == NULL) return; for (i = 0; i < data->dpm_table.sclk_table.count; i++) { if (odn_table->odn_core_clock_dpm_levels.entries[i].clock != data->dpm_table.sclk_table.dpm_levels[i].value) { data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK; break; } } for (i = 0; i < data->dpm_table.mclk_table.count; i++) { if (odn_table->odn_memory_clock_dpm_levels.entries[i].clock != data->dpm_table.mclk_table.dpm_levels[i].value) { data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK; break; } } dep_table = table_info->vdd_dep_on_mclk; odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dependency_on_mclk); for (i = 0; i < dep_table->count; i++) { if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) { data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_VDDC | DPMTABLE_OD_UPDATE_MCLK; return; } } dep_table = table_info->vdd_dep_on_sclk; odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dependency_on_sclk); for (i = 0; i < dep_table->count; i++) { if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) { data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_VDDC | DPMTABLE_OD_UPDATE_SCLK; return; } } if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_VDDC) { data->need_update_smu7_dpm_table &= ~DPMTABLE_OD_UPDATE_VDDC; data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_OD_UPDATE_MCLK; } } static int smu7_setup_default_dpm_tables(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); smu7_reset_dpm_tables(hwmgr); if (hwmgr->pp_table_version == PP_TABLE_V1) smu7_setup_dpm_tables_v1(hwmgr); else if (hwmgr->pp_table_version == PP_TABLE_V0) smu7_setup_dpm_tables_v0(hwmgr); smu7_setup_default_pcie_table(hwmgr); /* save a copy of the default DPM table */ memcpy(&(data->golden_dpm_table), &(data->dpm_table), sizeof(struct smu7_dpm_table)); /* initialize ODN table */ if (hwmgr->od_enabled) { if (data->odn_dpm_table.max_vddc) { smu7_check_dpm_table_updated(hwmgr); } else { smu7_setup_voltage_range_from_vbios(hwmgr); smu7_odn_initial_default_setting(hwmgr); } } return 0; } static int smu7_enable_vrhot_gpio_interrupt(struct pp_hwmgr *hwmgr) { if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_RegulatorHot)) return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableVRHotGPIOInterrupt); return 0; } static int smu7_enable_sclk_control(struct pp_hwmgr *hwmgr) { PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, SCLK_PWRMGT_OFF, 0); return 0; } static int smu7_enable_ulv(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); if (data->ulv_supported) return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableULV); return 0; } static int smu7_disable_ulv(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); if (data->ulv_supported) return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DisableULV); return 0; } static int smu7_enable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr) { if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) { if (smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MASTER_DeepSleep_ON)) PP_ASSERT_WITH_CODE(false, "Attempt to enable Master Deep Sleep switch failed!", return -EINVAL); } else { if (smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MASTER_DeepSleep_OFF)) { PP_ASSERT_WITH_CODE(false, "Attempt to disable Master Deep Sleep switch failed!", return -EINVAL); } } return 0; } static int smu7_disable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr) { if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) { if (smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MASTER_DeepSleep_OFF)) { PP_ASSERT_WITH_CODE(false, "Attempt to disable Master Deep Sleep switch failed!", return -EINVAL); } } return 0; } static int smu7_disable_sclk_vce_handshake(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); uint32_t soft_register_value = 0; uint32_t handshake_disables_offset = data->soft_regs_start + smum_get_offsetof(hwmgr, SMU_SoftRegisters, HandshakeDisables); soft_register_value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, handshake_disables_offset); soft_register_value |= SMU7_VCE_SCLK_HANDSHAKE_DISABLE; cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, handshake_disables_offset, soft_register_value); return 0; } static int smu7_disable_handshake_uvd(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); uint32_t soft_register_value = 0; uint32_t handshake_disables_offset = data->soft_regs_start + smum_get_offsetof(hwmgr, SMU_SoftRegisters, HandshakeDisables); soft_register_value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, handshake_disables_offset); soft_register_value |= smum_get_mac_definition(hwmgr, SMU_UVD_MCLK_HANDSHAKE_DISABLE); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, handshake_disables_offset, soft_register_value); return 0; } static int smu7_enable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); /* enable SCLK dpm */ if (!data->sclk_dpm_key_disabled) { if (hwmgr->chip_id == CHIP_VEGAM) smu7_disable_sclk_vce_handshake(hwmgr); PP_ASSERT_WITH_CODE( (0 == smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DPM_Enable)), "Failed to enable SCLK DPM during DPM Start Function!", return -EINVAL); } /* enable MCLK dpm */ if (0 == data->mclk_dpm_key_disabled) { if (!(hwmgr->feature_mask & PP_UVD_HANDSHAKE_MASK)) smu7_disable_handshake_uvd(hwmgr); PP_ASSERT_WITH_CODE( (0 == smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_Enable)), "Failed to enable MCLK DPM during DPM Start Function!", return -EINVAL); if (hwmgr->chip_family != CHIP_VEGAM) PHM_WRITE_FIELD(hwmgr->device, MC_SEQ_CNTL_3, CAC_EN, 0x1); if (hwmgr->chip_family == AMDGPU_FAMILY_CI) { cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d30, 0x5); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d3c, 0x5); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d80, 0x100005); udelay(10); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d30, 0x400005); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d3c, 0x400005); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d80, 0x500005); } else { cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x5); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x5); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_CPL_CNTL, 0x100005); udelay(10); if (hwmgr->chip_id == CHIP_VEGAM) { cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x400009); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x400009); } else { cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x400005); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x400005); } cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_CPL_CNTL, 0x500005); } } return 0; } static int smu7_start_dpm(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); /*enable general power management */ PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, GLOBAL_PWRMGT_EN, 1); /* enable sclk deep sleep */ PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, DYNAMIC_PM_EN, 1); /* prepare for PCIE DPM */ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, data->soft_regs_start + smum_get_offsetof(hwmgr, SMU_SoftRegisters, VoltageChangeTimeout), 0x1000); PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE, SWRST_COMMAND_1, RESETLC, 0x0); if (hwmgr->chip_family == AMDGPU_FAMILY_CI) cgs_write_register(hwmgr->device, 0x1488, (cgs_read_register(hwmgr->device, 0x1488) & ~0x1)); if (smu7_enable_sclk_mclk_dpm(hwmgr)) { pr_err("Failed to enable Sclk DPM and Mclk DPM!"); return -EINVAL; } /* enable PCIE dpm */ if (0 == data->pcie_dpm_key_disabled) { PP_ASSERT_WITH_CODE( (0 == smum_send_msg_to_smc(hwmgr, PPSMC_MSG_PCIeDPM_Enable)), "Failed to enable pcie DPM during DPM Start Function!", return -EINVAL); } if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_Falcon_QuickTransition)) { PP_ASSERT_WITH_CODE((0 == smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableACDCGPIOInterrupt)), "Failed to enable AC DC GPIO Interrupt!", ); } return 0; } static int smu7_disable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); /* disable SCLK dpm */ if (!data->sclk_dpm_key_disabled) { PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr), "Trying to disable SCLK DPM when DPM is disabled", return 0); smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DPM_Disable); } /* disable MCLK dpm */ if (!data->mclk_dpm_key_disabled) { PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr), "Trying to disable MCLK DPM when DPM is disabled", return 0); smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_Disable); } return 0; } static int smu7_stop_dpm(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); /* disable general power management */ PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, GLOBAL_PWRMGT_EN, 0); /* disable sclk deep sleep */ PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, DYNAMIC_PM_EN, 0); /* disable PCIE dpm */ if (!data->pcie_dpm_key_disabled) { PP_ASSERT_WITH_CODE( (smum_send_msg_to_smc(hwmgr, PPSMC_MSG_PCIeDPM_Disable) == 0), "Failed to disable pcie DPM during DPM Stop Function!", return -EINVAL); } smu7_disable_sclk_mclk_dpm(hwmgr); PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr), "Trying to disable voltage DPM when DPM is disabled", return 0); smum_send_msg_to_smc(hwmgr, PPSMC_MSG_Voltage_Cntl_Disable); return 0; } static void smu7_set_dpm_event_sources(struct pp_hwmgr *hwmgr, uint32_t sources) { bool protection; enum DPM_EVENT_SRC src; switch (sources) { default: pr_err("Unknown throttling event sources."); /* fall through */ case 0: protection = false; /* src is unused */ break; case (1 << PHM_AutoThrottleSource_Thermal): protection = true; src = DPM_EVENT_SRC_DIGITAL; break; case (1 << PHM_AutoThrottleSource_External): protection = true; src = DPM_EVENT_SRC_EXTERNAL; break; case (1 << PHM_AutoThrottleSource_External) | (1 << PHM_AutoThrottleSource_Thermal): protection = true; src = DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL; break; } /* Order matters - don't enable thermal protection for the wrong source. */ if (protection) { PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_THERMAL_CTRL, DPM_EVENT_SRC, src); PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, !phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ThermalController)); } else PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 1); } static int smu7_enable_auto_throttle_source(struct pp_hwmgr *hwmgr, PHM_AutoThrottleSource source) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); if (!(data->active_auto_throttle_sources & (1 << source))) { data->active_auto_throttle_sources |= 1 << source; smu7_set_dpm_event_sources(hwmgr, data->active_auto_throttle_sources); } return 0; } static int smu7_enable_thermal_auto_throttle(struct pp_hwmgr *hwmgr) { return smu7_enable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal); } static int smu7_disable_auto_throttle_source(struct pp_hwmgr *hwmgr, PHM_AutoThrottleSource source) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); if (data->active_auto_throttle_sources & (1 << source)) { data->active_auto_throttle_sources &= ~(1 << source); smu7_set_dpm_event_sources(hwmgr, data->active_auto_throttle_sources); } return 0; } static int smu7_disable_thermal_auto_throttle(struct pp_hwmgr *hwmgr) { return smu7_disable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal); } static int smu7_pcie_performance_request(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); data->pcie_performance_request = true; return 0; } static int smu7_enable_dpm_tasks(struct pp_hwmgr *hwmgr) { int tmp_result = 0; int result = 0; if (smu7_voltage_control(hwmgr)) { tmp_result = smu7_enable_voltage_control(hwmgr); PP_ASSERT_WITH_CODE(tmp_result == 0, "Failed to enable voltage control!", result = tmp_result); tmp_result = smu7_construct_voltage_tables(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to construct voltage tables!", result = tmp_result); } smum_initialize_mc_reg_table(hwmgr); if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EngineSpreadSpectrumSupport)) PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, 1); if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ThermalController)) PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 0); tmp_result = smu7_program_static_screen_threshold_parameters(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to program static screen threshold parameters!", result = tmp_result); tmp_result = smu7_enable_display_gap(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to enable display gap!", result = tmp_result); tmp_result = smu7_program_voting_clients(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to program voting clients!", result = tmp_result); tmp_result = smum_process_firmware_header(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to process firmware header!", result = tmp_result); if (hwmgr->chip_id != CHIP_VEGAM) { tmp_result = smu7_initial_switch_from_arbf0_to_f1(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to initialize switch from ArbF0 to F1!", result = tmp_result); } result = smu7_setup_default_dpm_tables(hwmgr); PP_ASSERT_WITH_CODE(0 == result, "Failed to setup default DPM tables!", return result); tmp_result = smum_init_smc_table(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to initialize SMC table!", result = tmp_result); tmp_result = smu7_enable_vrhot_gpio_interrupt(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to enable VR hot GPIO interrupt!", result = tmp_result); smum_send_msg_to_smc(hwmgr, (PPSMC_Msg)PPSMC_NoDisplay); tmp_result = smu7_enable_sclk_control(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to enable SCLK control!", result = tmp_result); tmp_result = smu7_enable_smc_voltage_controller(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to enable voltage control!", result = tmp_result); tmp_result = smu7_enable_ulv(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to enable ULV!", result = tmp_result); tmp_result = smu7_enable_deep_sleep_master_switch(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to enable deep sleep master switch!", result = tmp_result); tmp_result = smu7_enable_didt_config(hwmgr); PP_ASSERT_WITH_CODE((tmp_result == 0), "Failed to enable deep sleep master switch!", result = tmp_result); tmp_result = smu7_start_dpm(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to start DPM!", result = tmp_result); tmp_result = smu7_enable_smc_cac(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to enable SMC CAC!", result = tmp_result); tmp_result = smu7_enable_power_containment(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to enable power containment!", result = tmp_result); tmp_result = smu7_power_control_set_level(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to power control set level!", result = tmp_result); tmp_result = smu7_enable_thermal_auto_throttle(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to enable thermal auto throttle!", result = tmp_result); tmp_result = smu7_pcie_performance_request(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "pcie performance request failed!", result = tmp_result); return 0; } static int smu7_avfs_control(struct pp_hwmgr *hwmgr, bool enable) { if (!hwmgr->avfs_supported) return 0; if (enable) { if (!PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, FEATURE_STATUS, AVS_ON)) { PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc( hwmgr, PPSMC_MSG_EnableAvfs), "Failed to enable AVFS!", return -EINVAL); } } else if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, FEATURE_STATUS, AVS_ON)) { PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc( hwmgr, PPSMC_MSG_DisableAvfs), "Failed to disable AVFS!", return -EINVAL); } return 0; } static int smu7_update_avfs(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); if (!hwmgr->avfs_supported) return 0; if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_VDDC) { smu7_avfs_control(hwmgr, false); } else if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) { smu7_avfs_control(hwmgr, false); smu7_avfs_control(hwmgr, true); } else { smu7_avfs_control(hwmgr, true); } return 0; } int smu7_disable_dpm_tasks(struct pp_hwmgr *hwmgr) { int tmp_result, result = 0; if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ThermalController)) PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 1); tmp_result = smu7_disable_power_containment(hwmgr); PP_ASSERT_WITH_CODE((tmp_result == 0), "Failed to disable power containment!", result = tmp_result); tmp_result = smu7_disable_smc_cac(hwmgr); PP_ASSERT_WITH_CODE((tmp_result == 0), "Failed to disable SMC CAC!", result = tmp_result); tmp_result = smu7_disable_didt_config(hwmgr); PP_ASSERT_WITH_CODE((tmp_result == 0), "Failed to disable DIDT!", result = tmp_result); PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_SPLL_SPREAD_SPECTRUM, SSEN, 0); PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, 0); tmp_result = smu7_disable_thermal_auto_throttle(hwmgr); PP_ASSERT_WITH_CODE((tmp_result == 0), "Failed to disable thermal auto throttle!", result = tmp_result); tmp_result = smu7_avfs_control(hwmgr, false); PP_ASSERT_WITH_CODE((tmp_result == 0), "Failed to disable AVFS!", result = tmp_result); tmp_result = smu7_stop_dpm(hwmgr); PP_ASSERT_WITH_CODE((tmp_result == 0), "Failed to stop DPM!", result = tmp_result); tmp_result = smu7_disable_deep_sleep_master_switch(hwmgr); PP_ASSERT_WITH_CODE((tmp_result == 0), "Failed to disable deep sleep master switch!", result = tmp_result); tmp_result = smu7_disable_ulv(hwmgr); PP_ASSERT_WITH_CODE((tmp_result == 0), "Failed to disable ULV!", result = tmp_result); tmp_result = smu7_clear_voting_clients(hwmgr); PP_ASSERT_WITH_CODE((tmp_result == 0), "Failed to clear voting clients!", result = tmp_result); tmp_result = smu7_reset_to_default(hwmgr); PP_ASSERT_WITH_CODE((tmp_result == 0), "Failed to reset to default!", result = tmp_result); tmp_result = smu7_force_switch_to_arbf0(hwmgr); PP_ASSERT_WITH_CODE((tmp_result == 0), "Failed to force to switch arbf0!", result = tmp_result); return result; } int smu7_reset_asic_tasks(struct pp_hwmgr *hwmgr) { return 0; } static void smu7_init_dpm_defaults(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); struct amdgpu_device *adev = hwmgr->adev; data->dll_default_on = false; data->mclk_dpm0_activity_target = 0xa; data->vddc_vddgfx_delta = 300; data->static_screen_threshold = SMU7_STATICSCREENTHRESHOLD_DFLT; data->static_screen_threshold_unit = SMU7_STATICSCREENTHRESHOLDUNIT_DFLT; data->voting_rights_clients[0] = SMU7_VOTINGRIGHTSCLIENTS_DFLT0; data->voting_rights_clients[1]= SMU7_VOTINGRIGHTSCLIENTS_DFLT1; data->voting_rights_clients[2] = SMU7_VOTINGRIGHTSCLIENTS_DFLT2; data->voting_rights_clients[3]= SMU7_VOTINGRIGHTSCLIENTS_DFLT3; data->voting_rights_clients[4]= SMU7_VOTINGRIGHTSCLIENTS_DFLT4; data->voting_rights_clients[5]= SMU7_VOTINGRIGHTSCLIENTS_DFLT5; data->voting_rights_clients[6]= SMU7_VOTINGRIGHTSCLIENTS_DFLT6; data->voting_rights_clients[7]= SMU7_VOTINGRIGHTSCLIENTS_DFLT7; data->mclk_dpm_key_disabled = hwmgr->feature_mask & PP_MCLK_DPM_MASK ? false : true; data->sclk_dpm_key_disabled = hwmgr->feature_mask & PP_SCLK_DPM_MASK ? false : true; data->pcie_dpm_key_disabled = hwmgr->feature_mask & PP_PCIE_DPM_MASK ? false : true; /* need to set voltage control types before EVV patching */ data->voltage_control = SMU7_VOLTAGE_CONTROL_NONE; data->vddci_control = SMU7_VOLTAGE_CONTROL_NONE; data->mvdd_control = SMU7_VOLTAGE_CONTROL_NONE; data->enable_tdc_limit_feature = true; data->enable_pkg_pwr_tracking_feature = true; data->force_pcie_gen = PP_PCIEGenInvalid; data->ulv_supported = hwmgr->feature_mask & PP_ULV_MASK ? true : false; data->current_profile_setting.bupdate_sclk = 1; data->current_profile_setting.sclk_up_hyst = 0; data->current_profile_setting.sclk_down_hyst = 100; data->current_profile_setting.sclk_activity = SMU7_SCLK_TARGETACTIVITY_DFLT; data->current_profile_setting.bupdate_mclk = 1; data->current_profile_setting.mclk_up_hyst = 0; data->current_profile_setting.mclk_down_hyst = 100; data->current_profile_setting.mclk_activity = SMU7_MCLK_TARGETACTIVITY_DFLT; hwmgr->workload_mask = 1 << hwmgr->workload_prority[PP_SMC_POWER_PROFILE_FULLSCREEN3D]; hwmgr->power_profile_mode = PP_SMC_POWER_PROFILE_FULLSCREEN3D; hwmgr->default_power_profile_mode = PP_SMC_POWER_PROFILE_FULLSCREEN3D; if (hwmgr->chip_id == CHIP_POLARIS12 || hwmgr->is_kicker) { uint8_t tmp1, tmp2; uint16_t tmp3 = 0; atomctrl_get_svi2_info(hwmgr, VOLTAGE_TYPE_VDDC, &tmp1, &tmp2, &tmp3); tmp3 = (tmp3 >> 5) & 0x3; data->vddc_phase_shed_control = ((tmp3 << 1) | (tmp3 >> 1)) & 0x3; } else if (hwmgr->chip_family == AMDGPU_FAMILY_CI) { data->vddc_phase_shed_control = 1; } else { data->vddc_phase_shed_control = 0; } if (hwmgr->chip_id == CHIP_HAWAII) { data->thermal_temp_setting.temperature_low = 94500; data->thermal_temp_setting.temperature_high = 95000; data->thermal_temp_setting.temperature_shutdown = 104000; } else { data->thermal_temp_setting.temperature_low = 99500; data->thermal_temp_setting.temperature_high = 100000; data->thermal_temp_setting.temperature_shutdown = 104000; } data->fast_watermark_threshold = 100; if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr, VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2)) data->voltage_control = SMU7_VOLTAGE_CONTROL_BY_SVID2; else if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr, VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_GPIO_LUT)) data->voltage_control = SMU7_VOLTAGE_CONTROL_BY_GPIO; if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ControlVDDGFX)) { if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr, VOLTAGE_TYPE_VDDGFX, VOLTAGE_OBJ_SVID2)) { data->vdd_gfx_control = SMU7_VOLTAGE_CONTROL_BY_SVID2; } } if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EnableMVDDControl)) { if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr, VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT)) data->mvdd_control = SMU7_VOLTAGE_CONTROL_BY_GPIO; else if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr, VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2)) data->mvdd_control = SMU7_VOLTAGE_CONTROL_BY_SVID2; } if (SMU7_VOLTAGE_CONTROL_NONE == data->vdd_gfx_control) phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ControlVDDGFX); if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ControlVDDCI)) { if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr, VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT)) data->vddci_control = SMU7_VOLTAGE_CONTROL_BY_GPIO; else if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr, VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_SVID2)) data->vddci_control = SMU7_VOLTAGE_CONTROL_BY_SVID2; } if (data->mvdd_control == SMU7_VOLTAGE_CONTROL_NONE) phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EnableMVDDControl); if (data->vddci_control == SMU7_VOLTAGE_CONTROL_NONE) phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ControlVDDCI); if ((hwmgr->pp_table_version != PP_TABLE_V0) && (hwmgr->feature_mask & PP_CLOCK_STRETCH_MASK) && (table_info->cac_dtp_table->usClockStretchAmount != 0)) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ClockStretcher); data->pcie_gen_performance.max = PP_PCIEGen1; data->pcie_gen_performance.min = PP_PCIEGen3; data->pcie_gen_power_saving.max = PP_PCIEGen1; data->pcie_gen_power_saving.min = PP_PCIEGen3; data->pcie_lane_performance.max = 0; data->pcie_lane_performance.min = 16; data->pcie_lane_power_saving.max = 0; data->pcie_lane_power_saving.min = 16; if (adev->pg_flags & AMD_PG_SUPPORT_UVD) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_UVDPowerGating); if (adev->pg_flags & AMD_PG_SUPPORT_VCE) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_VCEPowerGating); } /** * Get Leakage VDDC based on leakage ID. * * @param hwmgr the address of the powerplay hardware manager. * @return always 0 */ static int smu7_get_evv_voltages(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); uint16_t vv_id; uint16_t vddc = 0; uint16_t vddgfx = 0; uint16_t i, j; uint32_t sclk = 0; struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)hwmgr->pptable; struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table = NULL; for (i = 0; i < SMU7_MAX_LEAKAGE_COUNT; i++) { vv_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i; if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) { if ((hwmgr->pp_table_version == PP_TABLE_V1) && !phm_get_sclk_for_voltage_evv(hwmgr, table_info->vddgfx_lookup_table, vv_id, &sclk)) { if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ClockStretcher)) { sclk_table = table_info->vdd_dep_on_sclk; for (j = 1; j < sclk_table->count; j++) { if (sclk_table->entries[j].clk == sclk && sclk_table->entries[j].cks_enable == 0) { sclk += 5000; break; } } } if (0 == atomctrl_get_voltage_evv_on_sclk (hwmgr, VOLTAGE_TYPE_VDDGFX, sclk, vv_id, &vddgfx)) { /* need to make sure vddgfx is less than 2v or else, it could burn the ASIC. */ PP_ASSERT_WITH_CODE((vddgfx < 2000 && vddgfx != 0), "Invalid VDDGFX value!", return -EINVAL); /* the voltage should not be zero nor equal to leakage ID */ if (vddgfx != 0 && vddgfx != vv_id) { data->vddcgfx_leakage.actual_voltage[data->vddcgfx_leakage.count] = vddgfx; data->vddcgfx_leakage.leakage_id[data->vddcgfx_leakage.count] = vv_id; data->vddcgfx_leakage.count++; } } else { pr_info("Error retrieving EVV voltage value!\n"); } } } else { if ((hwmgr->pp_table_version == PP_TABLE_V0) || !phm_get_sclk_for_voltage_evv(hwmgr, table_info->vddc_lookup_table, vv_id, &sclk)) { if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ClockStretcher)) { if (table_info == NULL) return -EINVAL; sclk_table = table_info->vdd_dep_on_sclk; for (j = 1; j < sclk_table->count; j++) { if (sclk_table->entries[j].clk == sclk && sclk_table->entries[j].cks_enable == 0) { sclk += 5000; break; } } } if (phm_get_voltage_evv_on_sclk(hwmgr, VOLTAGE_TYPE_VDDC, sclk, vv_id, &vddc) == 0) { if (vddc >= 2000 || vddc == 0) return -EINVAL; } else { pr_debug("failed to retrieving EVV voltage!\n"); continue; } /* the voltage should not be zero nor equal to leakage ID */ if (vddc != 0 && vddc != vv_id) { data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = (uint16_t)(vddc); data->vddc_leakage.leakage_id[data->vddc_leakage.count] = vv_id; data->vddc_leakage.count++; } } } } return 0; } /** * Change virtual leakage voltage to actual value. * * @param hwmgr the address of the powerplay hardware manager. * @param pointer to changing voltage * @param pointer to leakage table */ static void smu7_patch_ppt_v1_with_vdd_leakage(struct pp_hwmgr *hwmgr, uint16_t *voltage, struct smu7_leakage_voltage *leakage_table) { uint32_t index; /* search for leakage voltage ID 0xff01 ~ 0xff08 */ for (index = 0; index < leakage_table->count; index++) { /* if this voltage matches a leakage voltage ID */ /* patch with actual leakage voltage */ if (leakage_table->leakage_id[index] == *voltage) { *voltage = leakage_table->actual_voltage[index]; break; } } if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0) pr_err("Voltage value looks like a Leakage ID but it's not patched \n"); } /** * Patch voltage lookup table by EVV leakages. * * @param hwmgr the address of the powerplay hardware manager. * @param pointer to voltage lookup table * @param pointer to leakage table * @return always 0 */ static int smu7_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr, phm_ppt_v1_voltage_lookup_table *lookup_table, struct smu7_leakage_voltage *leakage_table) { uint32_t i; for (i = 0; i < lookup_table->count; i++) smu7_patch_ppt_v1_with_vdd_leakage(hwmgr, &lookup_table->entries[i].us_vdd, leakage_table); return 0; } static int smu7_patch_clock_voltage_limits_with_vddc_leakage( struct pp_hwmgr *hwmgr, struct smu7_leakage_voltage *leakage_table, uint16_t *vddc) { struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); smu7_patch_ppt_v1_with_vdd_leakage(hwmgr, (uint16_t *)vddc, leakage_table); hwmgr->dyn_state.max_clock_voltage_on_dc.vddc = table_info->max_clock_voltage_on_dc.vddc; return 0; } static int smu7_patch_voltage_dependency_tables_with_lookup_table( struct pp_hwmgr *hwmgr) { uint8_t entry_id; uint8_t voltage_id; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table = table_info->vdd_dep_on_sclk; struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table = table_info->vdd_dep_on_mclk; struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = table_info->mm_dep_table; if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) { for (entry_id = 0; entry_id < sclk_table->count; ++entry_id) { voltage_id = sclk_table->entries[entry_id].vddInd; sclk_table->entries[entry_id].vddgfx = table_info->vddgfx_lookup_table->entries[voltage_id].us_vdd; } } else { for (entry_id = 0; entry_id < sclk_table->count; ++entry_id) { voltage_id = sclk_table->entries[entry_id].vddInd; sclk_table->entries[entry_id].vddc = table_info->vddc_lookup_table->entries[voltage_id].us_vdd; } } for (entry_id = 0; entry_id < mclk_table->count; ++entry_id) { voltage_id = mclk_table->entries[entry_id].vddInd; mclk_table->entries[entry_id].vddc = table_info->vddc_lookup_table->entries[voltage_id].us_vdd; } for (entry_id = 0; entry_id < mm_table->count; ++entry_id) { voltage_id = mm_table->entries[entry_id].vddcInd; mm_table->entries[entry_id].vddc = table_info->vddc_lookup_table->entries[voltage_id].us_vdd; } return 0; } static int phm_add_voltage(struct pp_hwmgr *hwmgr, phm_ppt_v1_voltage_lookup_table *look_up_table, phm_ppt_v1_voltage_lookup_record *record) { uint32_t i; PP_ASSERT_WITH_CODE((NULL != look_up_table), "Lookup Table empty.", return -EINVAL); PP_ASSERT_WITH_CODE((0 != look_up_table->count), "Lookup Table empty.", return -EINVAL); i = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDGFX); PP_ASSERT_WITH_CODE((i >= look_up_table->count), "Lookup Table is full.", return -EINVAL); /* This is to avoid entering duplicate calculated records. */ for (i = 0; i < look_up_table->count; i++) { if (look_up_table->entries[i].us_vdd == record->us_vdd) { if (look_up_table->entries[i].us_calculated == 1) return 0; break; } } look_up_table->entries[i].us_calculated = 1; look_up_table->entries[i].us_vdd = record->us_vdd; look_up_table->entries[i].us_cac_low = record->us_cac_low; look_up_table->entries[i].us_cac_mid = record->us_cac_mid; look_up_table->entries[i].us_cac_high = record->us_cac_high; /* Only increment the count when we're appending, not replacing duplicate entry. */ if (i == look_up_table->count) look_up_table->count++; return 0; } static int smu7_calc_voltage_dependency_tables(struct pp_hwmgr *hwmgr) { uint8_t entry_id; struct phm_ppt_v1_voltage_lookup_record v_record; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); phm_ppt_v1_clock_voltage_dependency_table *sclk_table = pptable_info->vdd_dep_on_sclk; phm_ppt_v1_clock_voltage_dependency_table *mclk_table = pptable_info->vdd_dep_on_mclk; if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) { for (entry_id = 0; entry_id < sclk_table->count; ++entry_id) { if (sclk_table->entries[entry_id].vdd_offset & (1 << 15)) v_record.us_vdd = sclk_table->entries[entry_id].vddgfx + sclk_table->entries[entry_id].vdd_offset - 0xFFFF; else v_record.us_vdd = sclk_table->entries[entry_id].vddgfx + sclk_table->entries[entry_id].vdd_offset; sclk_table->entries[entry_id].vddc = v_record.us_cac_low = v_record.us_cac_mid = v_record.us_cac_high = v_record.us_vdd; phm_add_voltage(hwmgr, pptable_info->vddc_lookup_table, &v_record); } for (entry_id = 0; entry_id < mclk_table->count; ++entry_id) { if (mclk_table->entries[entry_id].vdd_offset & (1 << 15)) v_record.us_vdd = mclk_table->entries[entry_id].vddc + mclk_table->entries[entry_id].vdd_offset - 0xFFFF; else v_record.us_vdd = mclk_table->entries[entry_id].vddc + mclk_table->entries[entry_id].vdd_offset; mclk_table->entries[entry_id].vddgfx = v_record.us_cac_low = v_record.us_cac_mid = v_record.us_cac_high = v_record.us_vdd; phm_add_voltage(hwmgr, pptable_info->vddgfx_lookup_table, &v_record); } } return 0; } static int smu7_calc_mm_voltage_dependency_table(struct pp_hwmgr *hwmgr) { uint8_t entry_id; struct phm_ppt_v1_voltage_lookup_record v_record; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table; if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) { for (entry_id = 0; entry_id < mm_table->count; entry_id++) { if (mm_table->entries[entry_id].vddgfx_offset & (1 << 15)) v_record.us_vdd = mm_table->entries[entry_id].vddc + mm_table->entries[entry_id].vddgfx_offset - 0xFFFF; else v_record.us_vdd = mm_table->entries[entry_id].vddc + mm_table->entries[entry_id].vddgfx_offset; /* Add the calculated VDDGFX to the VDDGFX lookup table */ mm_table->entries[entry_id].vddgfx = v_record.us_cac_low = v_record.us_cac_mid = v_record.us_cac_high = v_record.us_vdd; phm_add_voltage(hwmgr, pptable_info->vddgfx_lookup_table, &v_record); } } return 0; } static int smu7_sort_lookup_table(struct pp_hwmgr *hwmgr, struct phm_ppt_v1_voltage_lookup_table *lookup_table) { uint32_t table_size, i, j; struct phm_ppt_v1_voltage_lookup_record tmp_voltage_lookup_record; table_size = lookup_table->count; PP_ASSERT_WITH_CODE(0 != lookup_table->count, "Lookup table is empty", return -EINVAL); /* Sorting voltages */ for (i = 0; i < table_size - 1; i++) { for (j = i + 1; j > 0; j--) { if (lookup_table->entries[j].us_vdd < lookup_table->entries[j - 1].us_vdd) { tmp_voltage_lookup_record = lookup_table->entries[j - 1]; lookup_table->entries[j - 1] = lookup_table->entries[j]; lookup_table->entries[j] = tmp_voltage_lookup_record; } } } return 0; } static int smu7_complete_dependency_tables(struct pp_hwmgr *hwmgr) { int result = 0; int tmp_result; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) { tmp_result = smu7_patch_lookup_table_with_leakage(hwmgr, table_info->vddgfx_lookup_table, &(data->vddcgfx_leakage)); if (tmp_result != 0) result = tmp_result; smu7_patch_ppt_v1_with_vdd_leakage(hwmgr, &table_info->max_clock_voltage_on_dc.vddgfx, &(data->vddcgfx_leakage)); } else { tmp_result = smu7_patch_lookup_table_with_leakage(hwmgr, table_info->vddc_lookup_table, &(data->vddc_leakage)); if (tmp_result) result = tmp_result; tmp_result = smu7_patch_clock_voltage_limits_with_vddc_leakage(hwmgr, &(data->vddc_leakage), &table_info->max_clock_voltage_on_dc.vddc); if (tmp_result) result = tmp_result; } tmp_result = smu7_patch_voltage_dependency_tables_with_lookup_table(hwmgr); if (tmp_result) result = tmp_result; tmp_result = smu7_calc_voltage_dependency_tables(hwmgr); if (tmp_result) result = tmp_result; tmp_result = smu7_calc_mm_voltage_dependency_table(hwmgr); if (tmp_result) result = tmp_result; tmp_result = smu7_sort_lookup_table(hwmgr, table_info->vddgfx_lookup_table); if (tmp_result) result = tmp_result; tmp_result = smu7_sort_lookup_table(hwmgr, table_info->vddc_lookup_table); if (tmp_result) result = tmp_result; return result; } static int smu7_set_private_data_based_on_pptable_v1(struct pp_hwmgr *hwmgr) { struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table = table_info->vdd_dep_on_sclk; struct phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table = table_info->vdd_dep_on_mclk; PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table != NULL, "VDD dependency on SCLK table is missing.", return -EINVAL); PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1, "VDD dependency on SCLK table has to have is missing.", return -EINVAL); PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table != NULL, "VDD dependency on MCLK table is missing", return -EINVAL); PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1, "VDD dependency on MCLK table has to have is missing.", return -EINVAL); table_info->max_clock_voltage_on_ac.sclk = allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk; table_info->max_clock_voltage_on_ac.mclk = allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk; table_info->max_clock_voltage_on_ac.vddc = allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc; table_info->max_clock_voltage_on_ac.vddci = allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci; hwmgr->dyn_state.max_clock_voltage_on_ac.sclk = table_info->max_clock_voltage_on_ac.sclk; hwmgr->dyn_state.max_clock_voltage_on_ac.mclk = table_info->max_clock_voltage_on_ac.mclk; hwmgr->dyn_state.max_clock_voltage_on_ac.vddc = table_info->max_clock_voltage_on_ac.vddc; hwmgr->dyn_state.max_clock_voltage_on_ac.vddci = table_info->max_clock_voltage_on_ac.vddci; return 0; } static int smu7_patch_voltage_workaround(struct pp_hwmgr *hwmgr) { struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table; struct phm_ppt_v1_voltage_lookup_table *lookup_table; uint32_t i; uint32_t hw_revision, sub_vendor_id, sub_sys_id; struct amdgpu_device *adev = hwmgr->adev; if (table_info != NULL) { dep_mclk_table = table_info->vdd_dep_on_mclk; lookup_table = table_info->vddc_lookup_table; } else return 0; hw_revision = adev->pdev->revision; sub_sys_id = adev->pdev->subsystem_device; sub_vendor_id = adev->pdev->subsystem_vendor; if (hwmgr->chip_id == CHIP_POLARIS10 && hw_revision == 0xC7 && ((sub_sys_id == 0xb37 && sub_vendor_id == 0x1002) || (sub_sys_id == 0x4a8 && sub_vendor_id == 0x1043) || (sub_sys_id == 0x9480 && sub_vendor_id == 0x1682))) { if (lookup_table->entries[dep_mclk_table->entries[dep_mclk_table->count-1].vddInd].us_vdd >= 1000) return 0; for (i = 0; i < lookup_table->count; i++) { if (lookup_table->entries[i].us_vdd < 0xff01 && lookup_table->entries[i].us_vdd >= 1000) { dep_mclk_table->entries[dep_mclk_table->count-1].vddInd = (uint8_t) i; return 0; } } } return 0; } static int smu7_thermal_parameter_init(struct pp_hwmgr *hwmgr) { struct pp_atomctrl_gpio_pin_assignment gpio_pin_assignment; uint32_t temp_reg; struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_PCC_GPIO_PINID, &gpio_pin_assignment)) { temp_reg = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCNB_PWRMGT_CNTL); switch (gpio_pin_assignment.uc_gpio_pin_bit_shift) { case 0: temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x1); break; case 1: temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x2); break; case 2: temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW, 0x1); break; case 3: temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, FORCE_NB_PS1, 0x1); break; case 4: temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, DPM_ENABLED, 0x1); break; default: break; } cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCNB_PWRMGT_CNTL, temp_reg); } if (table_info == NULL) return 0; if (table_info->cac_dtp_table->usDefaultTargetOperatingTemp != 0 && hwmgr->thermal_controller.advanceFanControlParameters.ucFanControlMode) { hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMMinLimit = (uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit; hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMMaxLimit = (uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM; hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMStep = 1; hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMMaxLimit = 100; hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMMinLimit = (uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit; hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMStep = 1; table_info->cac_dtp_table->usDefaultTargetOperatingTemp = (table_info->cac_dtp_table->usDefaultTargetOperatingTemp >= 50) ? (table_info->cac_dtp_table->usDefaultTargetOperatingTemp - 50) : 0; table_info->cac_dtp_table->usOperatingTempMaxLimit = table_info->cac_dtp_table->usDefaultTargetOperatingTemp; table_info->cac_dtp_table->usOperatingTempStep = 1; table_info->cac_dtp_table->usOperatingTempHyst = 1; hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanPWM = hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM; hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM = hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanRPM; hwmgr->dyn_state.cac_dtp_table->usOperatingTempMinLimit = table_info->cac_dtp_table->usOperatingTempMinLimit; hwmgr->dyn_state.cac_dtp_table->usOperatingTempMaxLimit = table_info->cac_dtp_table->usOperatingTempMaxLimit; hwmgr->dyn_state.cac_dtp_table->usDefaultTargetOperatingTemp = table_info->cac_dtp_table->usDefaultTargetOperatingTemp; hwmgr->dyn_state.cac_dtp_table->usOperatingTempStep = table_info->cac_dtp_table->usOperatingTempStep; hwmgr->dyn_state.cac_dtp_table->usTargetOperatingTemp = table_info->cac_dtp_table->usTargetOperatingTemp; if (hwmgr->feature_mask & PP_OD_FUZZY_FAN_CONTROL_MASK) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ODFuzzyFanControlSupport); } return 0; } /** * Change virtual leakage voltage to actual value. * * @param hwmgr the address of the powerplay hardware manager. * @param pointer to changing voltage * @param pointer to leakage table */ static void smu7_patch_ppt_v0_with_vdd_leakage(struct pp_hwmgr *hwmgr, uint32_t *voltage, struct smu7_leakage_voltage *leakage_table) { uint32_t index; /* search for leakage voltage ID 0xff01 ~ 0xff08 */ for (index = 0; index < leakage_table->count; index++) { /* if this voltage matches a leakage voltage ID */ /* patch with actual leakage voltage */ if (leakage_table->leakage_id[index] == *voltage) { *voltage = leakage_table->actual_voltage[index]; break; } } if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0) pr_err("Voltage value looks like a Leakage ID but it's not patched \n"); } static int smu7_patch_vddc(struct pp_hwmgr *hwmgr, struct phm_clock_voltage_dependency_table *tab) { uint16_t i; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); if (tab) for (i = 0; i < tab->count; i++) smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v, &data->vddc_leakage); return 0; } static int smu7_patch_vddci(struct pp_hwmgr *hwmgr, struct phm_clock_voltage_dependency_table *tab) { uint16_t i; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); if (tab) for (i = 0; i < tab->count; i++) smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v, &data->vddci_leakage); return 0; } static int smu7_patch_vce_vddc(struct pp_hwmgr *hwmgr, struct phm_vce_clock_voltage_dependency_table *tab) { uint16_t i; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); if (tab) for (i = 0; i < tab->count; i++) smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v, &data->vddc_leakage); return 0; } static int smu7_patch_uvd_vddc(struct pp_hwmgr *hwmgr, struct phm_uvd_clock_voltage_dependency_table *tab) { uint16_t i; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); if (tab) for (i = 0; i < tab->count; i++) smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v, &data->vddc_leakage); return 0; } static int smu7_patch_vddc_shed_limit(struct pp_hwmgr *hwmgr, struct phm_phase_shedding_limits_table *tab) { uint16_t i; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); if (tab) for (i = 0; i < tab->count; i++) smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].Voltage, &data->vddc_leakage); return 0; } static int smu7_patch_samu_vddc(struct pp_hwmgr *hwmgr, struct phm_samu_clock_voltage_dependency_table *tab) { uint16_t i; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); if (tab) for (i = 0; i < tab->count; i++) smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v, &data->vddc_leakage); return 0; } static int smu7_patch_acp_vddc(struct pp_hwmgr *hwmgr, struct phm_acp_clock_voltage_dependency_table *tab) { uint16_t i; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); if (tab) for (i = 0; i < tab->count; i++) smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v, &data->vddc_leakage); return 0; } static int smu7_patch_limits_vddc(struct pp_hwmgr *hwmgr, struct phm_clock_and_voltage_limits *tab) { uint32_t vddc, vddci; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); if (tab) { vddc = tab->vddc; smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &vddc, &data->vddc_leakage); tab->vddc = vddc; vddci = tab->vddci; smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &vddci, &data->vddci_leakage); tab->vddci = vddci; } return 0; } static int smu7_patch_cac_vddc(struct pp_hwmgr *hwmgr, struct phm_cac_leakage_table *tab) { uint32_t i; uint32_t vddc; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); if (tab) { for (i = 0; i < tab->count; i++) { vddc = (uint32_t)(tab->entries[i].Vddc); smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &vddc, &data->vddc_leakage); tab->entries[i].Vddc = (uint16_t)vddc; } } return 0; } static int smu7_patch_dependency_tables_with_leakage(struct pp_hwmgr *hwmgr) { int tmp; tmp = smu7_patch_vddc(hwmgr, hwmgr->dyn_state.vddc_dependency_on_sclk); if (tmp) return -EINVAL; tmp = smu7_patch_vddc(hwmgr, hwmgr->dyn_state.vddc_dependency_on_mclk); if (tmp) return -EINVAL; tmp = smu7_patch_vddc(hwmgr, hwmgr->dyn_state.vddc_dep_on_dal_pwrl); if (tmp) return -EINVAL; tmp = smu7_patch_vddci(hwmgr, hwmgr->dyn_state.vddci_dependency_on_mclk); if (tmp) return -EINVAL; tmp = smu7_patch_vce_vddc(hwmgr, hwmgr->dyn_state.vce_clock_voltage_dependency_table); if (tmp) return -EINVAL; tmp = smu7_patch_uvd_vddc(hwmgr, hwmgr->dyn_state.uvd_clock_voltage_dependency_table); if (tmp) return -EINVAL; tmp = smu7_patch_samu_vddc(hwmgr, hwmgr->dyn_state.samu_clock_voltage_dependency_table); if (tmp) return -EINVAL; tmp = smu7_patch_acp_vddc(hwmgr, hwmgr->dyn_state.acp_clock_voltage_dependency_table); if (tmp) return -EINVAL; tmp = smu7_patch_vddc_shed_limit(hwmgr, hwmgr->dyn_state.vddc_phase_shed_limits_table); if (tmp) return -EINVAL; tmp = smu7_patch_limits_vddc(hwmgr, &hwmgr->dyn_state.max_clock_voltage_on_ac); if (tmp) return -EINVAL; tmp = smu7_patch_limits_vddc(hwmgr, &hwmgr->dyn_state.max_clock_voltage_on_dc); if (tmp) return -EINVAL; tmp = smu7_patch_cac_vddc(hwmgr, hwmgr->dyn_state.cac_leakage_table); if (tmp) return -EINVAL; return 0; } static int smu7_set_private_data_based_on_pptable_v0(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct phm_clock_voltage_dependency_table *allowed_sclk_vddc_table = hwmgr->dyn_state.vddc_dependency_on_sclk; struct phm_clock_voltage_dependency_table *allowed_mclk_vddc_table = hwmgr->dyn_state.vddc_dependency_on_mclk; struct phm_clock_voltage_dependency_table *allowed_mclk_vddci_table = hwmgr->dyn_state.vddci_dependency_on_mclk; PP_ASSERT_WITH_CODE(allowed_sclk_vddc_table != NULL, "VDDC dependency on SCLK table is missing. This table is mandatory", return -EINVAL); PP_ASSERT_WITH_CODE(allowed_sclk_vddc_table->count >= 1, "VDDC dependency on SCLK table has to have is missing. This table is mandatory", return -EINVAL); PP_ASSERT_WITH_CODE(allowed_mclk_vddc_table != NULL, "VDDC dependency on MCLK table is missing. This table is mandatory", return -EINVAL); PP_ASSERT_WITH_CODE(allowed_mclk_vddc_table->count >= 1, "VDD dependency on MCLK table has to have is missing. This table is mandatory", return -EINVAL); data->min_vddc_in_pptable = (uint16_t)allowed_sclk_vddc_table->entries[0].v; data->max_vddc_in_pptable = (uint16_t)allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].v; hwmgr->dyn_state.max_clock_voltage_on_ac.sclk = allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].clk; hwmgr->dyn_state.max_clock_voltage_on_ac.mclk = allowed_mclk_vddc_table->entries[allowed_mclk_vddc_table->count - 1].clk; hwmgr->dyn_state.max_clock_voltage_on_ac.vddc = allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].v; if (allowed_mclk_vddci_table != NULL && allowed_mclk_vddci_table->count >= 1) { data->min_vddci_in_pptable = (uint16_t)allowed_mclk_vddci_table->entries[0].v; data->max_vddci_in_pptable = (uint16_t)allowed_mclk_vddci_table->entries[allowed_mclk_vddci_table->count - 1].v; } if (hwmgr->dyn_state.vddci_dependency_on_mclk != NULL && hwmgr->dyn_state.vddci_dependency_on_mclk->count >= 1) hwmgr->dyn_state.max_clock_voltage_on_ac.vddci = hwmgr->dyn_state.vddci_dependency_on_mclk->entries[hwmgr->dyn_state.vddci_dependency_on_mclk->count - 1].v; return 0; } static int smu7_hwmgr_backend_fini(struct pp_hwmgr *hwmgr) { kfree(hwmgr->dyn_state.vddc_dep_on_dal_pwrl); hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL; kfree(hwmgr->backend); hwmgr->backend = NULL; return 0; } static int smu7_get_elb_voltages(struct pp_hwmgr *hwmgr) { uint16_t virtual_voltage_id, vddc, vddci, efuse_voltage_id; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); int i; if (atomctrl_get_leakage_id_from_efuse(hwmgr, &efuse_voltage_id) == 0) { for (i = 0; i < SMU7_MAX_LEAKAGE_COUNT; i++) { virtual_voltage_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i; if (atomctrl_get_leakage_vddc_base_on_leakage(hwmgr, &vddc, &vddci, virtual_voltage_id, efuse_voltage_id) == 0) { if (vddc != 0 && vddc != virtual_voltage_id) { data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = vddc; data->vddc_leakage.leakage_id[data->vddc_leakage.count] = virtual_voltage_id; data->vddc_leakage.count++; } if (vddci != 0 && vddci != virtual_voltage_id) { data->vddci_leakage.actual_voltage[data->vddci_leakage.count] = vddci; data->vddci_leakage.leakage_id[data->vddci_leakage.count] = virtual_voltage_id; data->vddci_leakage.count++; } } } } return 0; } static int smu7_hwmgr_backend_init(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data; int result = 0; data = kzalloc(sizeof(struct smu7_hwmgr), GFP_KERNEL); if (data == NULL) return -ENOMEM; hwmgr->backend = data; smu7_patch_voltage_workaround(hwmgr); smu7_init_dpm_defaults(hwmgr); /* Get leakage voltage based on leakage ID. */ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EVV)) { result = smu7_get_evv_voltages(hwmgr); if (result) { pr_info("Get EVV Voltage Failed. Abort Driver loading!\n"); return -EINVAL; } } else { smu7_get_elb_voltages(hwmgr); } if (hwmgr->pp_table_version == PP_TABLE_V1) { smu7_complete_dependency_tables(hwmgr); smu7_set_private_data_based_on_pptable_v1(hwmgr); } else if (hwmgr->pp_table_version == PP_TABLE_V0) { smu7_patch_dependency_tables_with_leakage(hwmgr); smu7_set_private_data_based_on_pptable_v0(hwmgr); } /* Initalize Dynamic State Adjustment Rule Settings */ result = phm_initializa_dynamic_state_adjustment_rule_settings(hwmgr); if (0 == result) { struct amdgpu_device *adev = hwmgr->adev; data->is_tlu_enabled = false; hwmgr->platform_descriptor.hardwareActivityPerformanceLevels = SMU7_MAX_HARDWARE_POWERLEVELS; hwmgr->platform_descriptor.hardwarePerformanceLevels = 2; hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50; data->pcie_gen_cap = adev->pm.pcie_gen_mask; if (data->pcie_gen_cap & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3) data->pcie_spc_cap = 20; data->pcie_lane_cap = adev->pm.pcie_mlw_mask; hwmgr->platform_descriptor.vbiosInterruptId = 0x20000400; /* IRQ_SOURCE1_SW_INT */ /* The true clock step depends on the frequency, typically 4.5 or 9 MHz. Here we use 5. */ hwmgr->platform_descriptor.clockStep.engineClock = 500; hwmgr->platform_descriptor.clockStep.memoryClock = 500; smu7_thermal_parameter_init(hwmgr); } else { /* Ignore return value in here, we are cleaning up a mess. */ smu7_hwmgr_backend_fini(hwmgr); } return 0; } static int smu7_force_dpm_highest(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); uint32_t level, tmp; if (!data->pcie_dpm_key_disabled) { if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) { level = 0; tmp = data->dpm_level_enable_mask.pcie_dpm_enable_mask; while (tmp >>= 1) level++; if (level) smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_PCIeDPM_ForceLevel, level); } } if (!data->sclk_dpm_key_disabled) { if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) { level = 0; tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask; while (tmp >>= 1) level++; if (level) smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SCLKDPM_SetEnabledMask, (1 << level)); } } if (!data->mclk_dpm_key_disabled) { if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) { level = 0; tmp = data->dpm_level_enable_mask.mclk_dpm_enable_mask; while (tmp >>= 1) level++; if (level) smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_MCLKDPM_SetEnabledMask, (1 << level)); } } return 0; } static int smu7_upload_dpm_level_enable_mask(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); if (hwmgr->pp_table_version == PP_TABLE_V1) phm_apply_dal_min_voltage_request(hwmgr); /* TO DO for v0 iceland and Ci*/ if (!data->sclk_dpm_key_disabled) { if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SCLKDPM_SetEnabledMask, data->dpm_level_enable_mask.sclk_dpm_enable_mask); } if (!data->mclk_dpm_key_disabled) { if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_MCLKDPM_SetEnabledMask, data->dpm_level_enable_mask.mclk_dpm_enable_mask); } return 0; } static int smu7_unforce_dpm_levels(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); if (!smum_is_dpm_running(hwmgr)) return -EINVAL; if (!data->pcie_dpm_key_disabled) { smum_send_msg_to_smc(hwmgr, PPSMC_MSG_PCIeDPM_UnForceLevel); } return smu7_upload_dpm_level_enable_mask(hwmgr); } static int smu7_force_dpm_lowest(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); uint32_t level; if (!data->sclk_dpm_key_disabled) if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) { level = phm_get_lowest_enabled_level(hwmgr, data->dpm_level_enable_mask.sclk_dpm_enable_mask); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SCLKDPM_SetEnabledMask, (1 << level)); } if (!data->mclk_dpm_key_disabled) { if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) { level = phm_get_lowest_enabled_level(hwmgr, data->dpm_level_enable_mask.mclk_dpm_enable_mask); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_MCLKDPM_SetEnabledMask, (1 << level)); } } if (!data->pcie_dpm_key_disabled) { if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) { level = phm_get_lowest_enabled_level(hwmgr, data->dpm_level_enable_mask.pcie_dpm_enable_mask); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_PCIeDPM_ForceLevel, (level)); } } return 0; } static int smu7_get_profiling_clk(struct pp_hwmgr *hwmgr, enum amd_dpm_forced_level level, uint32_t *sclk_mask, uint32_t *mclk_mask, uint32_t *pcie_mask) { uint32_t percentage; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct smu7_dpm_table *golden_dpm_table = &data->golden_dpm_table; int32_t tmp_mclk; int32_t tmp_sclk; int32_t count; if (golden_dpm_table->mclk_table.count < 1) return -EINVAL; percentage = 100 * golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count - 1].value / golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 1].value; if (golden_dpm_table->mclk_table.count == 1) { percentage = 70; tmp_mclk = golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 1].value; *mclk_mask = golden_dpm_table->mclk_table.count - 1; } else { tmp_mclk = golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 2].value; *mclk_mask = golden_dpm_table->mclk_table.count - 2; } tmp_sclk = tmp_mclk * percentage / 100; if (hwmgr->pp_table_version == PP_TABLE_V0) { for (count = hwmgr->dyn_state.vddc_dependency_on_sclk->count-1; count >= 0; count--) { if (tmp_sclk >= hwmgr->dyn_state.vddc_dependency_on_sclk->entries[count].clk) { tmp_sclk = hwmgr->dyn_state.vddc_dependency_on_sclk->entries[count].clk; *sclk_mask = count; break; } } if (count < 0 || level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) { *sclk_mask = 0; tmp_sclk = hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].clk; } if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) *sclk_mask = hwmgr->dyn_state.vddc_dependency_on_sclk->count-1; } else if (hwmgr->pp_table_version == PP_TABLE_V1) { struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); for (count = table_info->vdd_dep_on_sclk->count-1; count >= 0; count--) { if (tmp_sclk >= table_info->vdd_dep_on_sclk->entries[count].clk) { tmp_sclk = table_info->vdd_dep_on_sclk->entries[count].clk; *sclk_mask = count; break; } } if (count < 0 || level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) { *sclk_mask = 0; tmp_sclk = table_info->vdd_dep_on_sclk->entries[0].clk; } if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) *sclk_mask = table_info->vdd_dep_on_sclk->count - 1; } if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) *mclk_mask = 0; else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) *mclk_mask = golden_dpm_table->mclk_table.count - 1; *pcie_mask = data->dpm_table.pcie_speed_table.count - 1; hwmgr->pstate_sclk = tmp_sclk; hwmgr->pstate_mclk = tmp_mclk; return 0; } static int smu7_force_dpm_level(struct pp_hwmgr *hwmgr, enum amd_dpm_forced_level level) { int ret = 0; uint32_t sclk_mask = 0; uint32_t mclk_mask = 0; uint32_t pcie_mask = 0; if (hwmgr->pstate_sclk == 0) smu7_get_profiling_clk(hwmgr, level, &sclk_mask, &mclk_mask, &pcie_mask); switch (level) { case AMD_DPM_FORCED_LEVEL_HIGH: ret = smu7_force_dpm_highest(hwmgr); break; case AMD_DPM_FORCED_LEVEL_LOW: ret = smu7_force_dpm_lowest(hwmgr); break; case AMD_DPM_FORCED_LEVEL_AUTO: ret = smu7_unforce_dpm_levels(hwmgr); break; case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD: case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK: case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK: case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK: ret = smu7_get_profiling_clk(hwmgr, level, &sclk_mask, &mclk_mask, &pcie_mask); if (ret) return ret; smu7_force_clock_level(hwmgr, PP_SCLK, 1<dpm_level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) smu7_fan_ctrl_set_fan_speed_percent(hwmgr, 100); else if (level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) smu7_fan_ctrl_reset_fan_speed_to_default(hwmgr); } return ret; } static int smu7_get_power_state_size(struct pp_hwmgr *hwmgr) { return sizeof(struct smu7_power_state); } static int smu7_vblank_too_short(struct pp_hwmgr *hwmgr, uint32_t vblank_time_us) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); uint32_t switch_limit_us; switch (hwmgr->chip_id) { case CHIP_POLARIS10: case CHIP_POLARIS11: case CHIP_POLARIS12: switch_limit_us = data->is_memory_gddr5 ? 190 : 150; break; case CHIP_VEGAM: switch_limit_us = 30; break; default: switch_limit_us = data->is_memory_gddr5 ? 450 : 150; break; } if (vblank_time_us < switch_limit_us) return true; else return false; } static int smu7_apply_state_adjust_rules(struct pp_hwmgr *hwmgr, struct pp_power_state *request_ps, const struct pp_power_state *current_ps) { struct amdgpu_device *adev = hwmgr->adev; struct smu7_power_state *smu7_ps = cast_phw_smu7_power_state(&request_ps->hardware); uint32_t sclk; uint32_t mclk; struct PP_Clocks minimum_clocks = {0}; bool disable_mclk_switching; bool disable_mclk_switching_for_frame_lock; const struct phm_clock_and_voltage_limits *max_limits; uint32_t i; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); int32_t count; int32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0; data->battery_state = (PP_StateUILabel_Battery == request_ps->classification.ui_label); PP_ASSERT_WITH_CODE(smu7_ps->performance_level_count == 2, "VI should always have 2 performance levels", ); max_limits = adev->pm.ac_power ? &(hwmgr->dyn_state.max_clock_voltage_on_ac) : &(hwmgr->dyn_state.max_clock_voltage_on_dc); /* Cap clock DPM tables at DC MAX if it is in DC. */ if (!adev->pm.ac_power) { for (i = 0; i < smu7_ps->performance_level_count; i++) { if (smu7_ps->performance_levels[i].memory_clock > max_limits->mclk) smu7_ps->performance_levels[i].memory_clock = max_limits->mclk; if (smu7_ps->performance_levels[i].engine_clock > max_limits->sclk) smu7_ps->performance_levels[i].engine_clock = max_limits->sclk; } } minimum_clocks.engineClock = hwmgr->display_config->min_core_set_clock; minimum_clocks.memoryClock = hwmgr->display_config->min_mem_set_clock; if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) { max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac); stable_pstate_sclk = (max_limits->sclk * 75) / 100; for (count = table_info->vdd_dep_on_sclk->count - 1; count >= 0; count--) { if (stable_pstate_sclk >= table_info->vdd_dep_on_sclk->entries[count].clk) { stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[count].clk; break; } } if (count < 0) stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk; stable_pstate_mclk = max_limits->mclk; minimum_clocks.engineClock = stable_pstate_sclk; minimum_clocks.memoryClock = stable_pstate_mclk; } disable_mclk_switching_for_frame_lock = phm_cap_enabled( hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DisableMclkSwitchingForFrameLock); if (hwmgr->display_config->num_display == 0) disable_mclk_switching = false; else disable_mclk_switching = ((1 < hwmgr->display_config->num_display) || disable_mclk_switching_for_frame_lock || smu7_vblank_too_short(hwmgr, hwmgr->display_config->min_vblank_time)); sclk = smu7_ps->performance_levels[0].engine_clock; mclk = smu7_ps->performance_levels[0].memory_clock; if (disable_mclk_switching) mclk = smu7_ps->performance_levels [smu7_ps->performance_level_count - 1].memory_clock; if (sclk < minimum_clocks.engineClock) sclk = (minimum_clocks.engineClock > max_limits->sclk) ? max_limits->sclk : minimum_clocks.engineClock; if (mclk < minimum_clocks.memoryClock) mclk = (minimum_clocks.memoryClock > max_limits->mclk) ? max_limits->mclk : minimum_clocks.memoryClock; smu7_ps->performance_levels[0].engine_clock = sclk; smu7_ps->performance_levels[0].memory_clock = mclk; smu7_ps->performance_levels[1].engine_clock = (smu7_ps->performance_levels[1].engine_clock >= smu7_ps->performance_levels[0].engine_clock) ? smu7_ps->performance_levels[1].engine_clock : smu7_ps->performance_levels[0].engine_clock; if (disable_mclk_switching) { if (mclk < smu7_ps->performance_levels[1].memory_clock) mclk = smu7_ps->performance_levels[1].memory_clock; smu7_ps->performance_levels[0].memory_clock = mclk; smu7_ps->performance_levels[1].memory_clock = mclk; } else { if (smu7_ps->performance_levels[1].memory_clock < smu7_ps->performance_levels[0].memory_clock) smu7_ps->performance_levels[1].memory_clock = smu7_ps->performance_levels[0].memory_clock; } if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) { for (i = 0; i < smu7_ps->performance_level_count; i++) { smu7_ps->performance_levels[i].engine_clock = stable_pstate_sclk; smu7_ps->performance_levels[i].memory_clock = stable_pstate_mclk; smu7_ps->performance_levels[i].pcie_gen = data->pcie_gen_performance.max; smu7_ps->performance_levels[i].pcie_lane = data->pcie_gen_performance.max; } } return 0; } static uint32_t smu7_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low) { struct pp_power_state *ps; struct smu7_power_state *smu7_ps; if (hwmgr == NULL) return -EINVAL; ps = hwmgr->request_ps; if (ps == NULL) return -EINVAL; smu7_ps = cast_phw_smu7_power_state(&ps->hardware); if (low) return smu7_ps->performance_levels[0].memory_clock; else return smu7_ps->performance_levels [smu7_ps->performance_level_count-1].memory_clock; } static uint32_t smu7_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low) { struct pp_power_state *ps; struct smu7_power_state *smu7_ps; if (hwmgr == NULL) return -EINVAL; ps = hwmgr->request_ps; if (ps == NULL) return -EINVAL; smu7_ps = cast_phw_smu7_power_state(&ps->hardware); if (low) return smu7_ps->performance_levels[0].engine_clock; else return smu7_ps->performance_levels [smu7_ps->performance_level_count-1].engine_clock; } static int smu7_dpm_patch_boot_state(struct pp_hwmgr *hwmgr, struct pp_hw_power_state *hw_ps) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct smu7_power_state *ps = (struct smu7_power_state *)hw_ps; ATOM_FIRMWARE_INFO_V2_2 *fw_info; uint16_t size; uint8_t frev, crev; int index = GetIndexIntoMasterTable(DATA, FirmwareInfo); /* First retrieve the Boot clocks and VDDC from the firmware info table. * We assume here that fw_info is unchanged if this call fails. */ fw_info = (ATOM_FIRMWARE_INFO_V2_2 *)smu_atom_get_data_table(hwmgr->adev, index, &size, &frev, &crev); if (!fw_info) /* During a test, there is no firmware info table. */ return 0; /* Patch the state. */ data->vbios_boot_state.sclk_bootup_value = le32_to_cpu(fw_info->ulDefaultEngineClock); data->vbios_boot_state.mclk_bootup_value = le32_to_cpu(fw_info->ulDefaultMemoryClock); data->vbios_boot_state.mvdd_bootup_value = le16_to_cpu(fw_info->usBootUpMVDDCVoltage); data->vbios_boot_state.vddc_bootup_value = le16_to_cpu(fw_info->usBootUpVDDCVoltage); data->vbios_boot_state.vddci_bootup_value = le16_to_cpu(fw_info->usBootUpVDDCIVoltage); data->vbios_boot_state.pcie_gen_bootup_value = smu7_get_current_pcie_speed(hwmgr); data->vbios_boot_state.pcie_lane_bootup_value = (uint16_t)smu7_get_current_pcie_lane_number(hwmgr); /* set boot power state */ ps->performance_levels[0].memory_clock = data->vbios_boot_state.mclk_bootup_value; ps->performance_levels[0].engine_clock = data->vbios_boot_state.sclk_bootup_value; ps->performance_levels[0].pcie_gen = data->vbios_boot_state.pcie_gen_bootup_value; ps->performance_levels[0].pcie_lane = data->vbios_boot_state.pcie_lane_bootup_value; return 0; } static int smu7_get_number_of_powerplay_table_entries(struct pp_hwmgr *hwmgr) { int result; unsigned long ret = 0; if (hwmgr->pp_table_version == PP_TABLE_V0) { result = pp_tables_get_num_of_entries(hwmgr, &ret); return result ? 0 : ret; } else if (hwmgr->pp_table_version == PP_TABLE_V1) { result = get_number_of_powerplay_table_entries_v1_0(hwmgr); return result; } return 0; } static int smu7_get_pp_table_entry_callback_func_v1(struct pp_hwmgr *hwmgr, void *state, struct pp_power_state *power_state, void *pp_table, uint32_t classification_flag) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct smu7_power_state *smu7_power_state = (struct smu7_power_state *)(&(power_state->hardware)); struct smu7_performance_level *performance_level; ATOM_Tonga_State *state_entry = (ATOM_Tonga_State *)state; ATOM_Tonga_POWERPLAYTABLE *powerplay_table = (ATOM_Tonga_POWERPLAYTABLE *)pp_table; PPTable_Generic_SubTable_Header *sclk_dep_table = (PPTable_Generic_SubTable_Header *) (((unsigned long)powerplay_table) + le16_to_cpu(powerplay_table->usSclkDependencyTableOffset)); ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table = (ATOM_Tonga_MCLK_Dependency_Table *) (((unsigned long)powerplay_table) + le16_to_cpu(powerplay_table->usMclkDependencyTableOffset)); /* The following fields are not initialized here: id orderedList allStatesList */ power_state->classification.ui_label = (le16_to_cpu(state_entry->usClassification) & ATOM_PPLIB_CLASSIFICATION_UI_MASK) >> ATOM_PPLIB_CLASSIFICATION_UI_SHIFT; power_state->classification.flags = classification_flag; /* NOTE: There is a classification2 flag in BIOS that is not being used right now */ power_state->classification.temporary_state = false; power_state->classification.to_be_deleted = false; power_state->validation.disallowOnDC = (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) & ATOM_Tonga_DISALLOW_ON_DC)); power_state->pcie.lanes = 0; power_state->display.disableFrameModulation = false; power_state->display.limitRefreshrate = false; power_state->display.enableVariBright = (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) & ATOM_Tonga_ENABLE_VARIBRIGHT)); power_state->validation.supportedPowerLevels = 0; power_state->uvd_clocks.VCLK = 0; power_state->uvd_clocks.DCLK = 0; power_state->temperatures.min = 0; power_state->temperatures.max = 0; performance_level = &(smu7_power_state->performance_levels [smu7_power_state->performance_level_count++]); PP_ASSERT_WITH_CODE( (smu7_power_state->performance_level_count < smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_GRAPHICS)), "Performance levels exceeds SMC limit!", return -EINVAL); PP_ASSERT_WITH_CODE( (smu7_power_state->performance_level_count <= hwmgr->platform_descriptor.hardwareActivityPerformanceLevels), "Performance levels exceeds Driver limit!", return -EINVAL); /* Performance levels are arranged from low to high. */ performance_level->memory_clock = mclk_dep_table->entries [state_entry->ucMemoryClockIndexLow].ulMclk; if (sclk_dep_table->ucRevId == 0) performance_level->engine_clock = ((ATOM_Tonga_SCLK_Dependency_Table *)sclk_dep_table)->entries [state_entry->ucEngineClockIndexLow].ulSclk; else if (sclk_dep_table->ucRevId == 1) performance_level->engine_clock = ((ATOM_Polaris_SCLK_Dependency_Table *)sclk_dep_table)->entries [state_entry->ucEngineClockIndexLow].ulSclk; performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap, state_entry->ucPCIEGenLow); performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap, state_entry->ucPCIELaneLow); performance_level = &(smu7_power_state->performance_levels [smu7_power_state->performance_level_count++]); performance_level->memory_clock = mclk_dep_table->entries [state_entry->ucMemoryClockIndexHigh].ulMclk; if (sclk_dep_table->ucRevId == 0) performance_level->engine_clock = ((ATOM_Tonga_SCLK_Dependency_Table *)sclk_dep_table)->entries [state_entry->ucEngineClockIndexHigh].ulSclk; else if (sclk_dep_table->ucRevId == 1) performance_level->engine_clock = ((ATOM_Polaris_SCLK_Dependency_Table *)sclk_dep_table)->entries [state_entry->ucEngineClockIndexHigh].ulSclk; performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap, state_entry->ucPCIEGenHigh); performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap, state_entry->ucPCIELaneHigh); return 0; } static int smu7_get_pp_table_entry_v1(struct pp_hwmgr *hwmgr, unsigned long entry_index, struct pp_power_state *state) { int result; struct smu7_power_state *ps; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table = table_info->vdd_dep_on_mclk; state->hardware.magic = PHM_VIslands_Magic; ps = (struct smu7_power_state *)(&state->hardware); result = get_powerplay_table_entry_v1_0(hwmgr, entry_index, state, smu7_get_pp_table_entry_callback_func_v1); /* This is the earliest time we have all the dependency table and the VBIOS boot state * as PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot state * if there is only one VDDCI/MCLK level, check if it's the same as VBIOS boot state */ if (dep_mclk_table != NULL && dep_mclk_table->count == 1) { if (dep_mclk_table->entries[0].clk != data->vbios_boot_state.mclk_bootup_value) pr_debug("Single MCLK entry VDDCI/MCLK dependency table " "does not match VBIOS boot MCLK level"); if (dep_mclk_table->entries[0].vddci != data->vbios_boot_state.vddci_bootup_value) pr_debug("Single VDDCI entry VDDCI/MCLK dependency table " "does not match VBIOS boot VDDCI level"); } /* set DC compatible flag if this state supports DC */ if (!state->validation.disallowOnDC) ps->dc_compatible = true; if (state->classification.flags & PP_StateClassificationFlag_ACPI) data->acpi_pcie_gen = ps->performance_levels[0].pcie_gen; ps->uvd_clks.vclk = state->uvd_clocks.VCLK; ps->uvd_clks.dclk = state->uvd_clocks.DCLK; if (!result) { uint32_t i; switch (state->classification.ui_label) { case PP_StateUILabel_Performance: data->use_pcie_performance_levels = true; for (i = 0; i < ps->performance_level_count; i++) { if (data->pcie_gen_performance.max < ps->performance_levels[i].pcie_gen) data->pcie_gen_performance.max = ps->performance_levels[i].pcie_gen; if (data->pcie_gen_performance.min > ps->performance_levels[i].pcie_gen) data->pcie_gen_performance.min = ps->performance_levels[i].pcie_gen; if (data->pcie_lane_performance.max < ps->performance_levels[i].pcie_lane) data->pcie_lane_performance.max = ps->performance_levels[i].pcie_lane; if (data->pcie_lane_performance.min > ps->performance_levels[i].pcie_lane) data->pcie_lane_performance.min = ps->performance_levels[i].pcie_lane; } break; case PP_StateUILabel_Battery: data->use_pcie_power_saving_levels = true; for (i = 0; i < ps->performance_level_count; i++) { if (data->pcie_gen_power_saving.max < ps->performance_levels[i].pcie_gen) data->pcie_gen_power_saving.max = ps->performance_levels[i].pcie_gen; if (data->pcie_gen_power_saving.min > ps->performance_levels[i].pcie_gen) data->pcie_gen_power_saving.min = ps->performance_levels[i].pcie_gen; if (data->pcie_lane_power_saving.max < ps->performance_levels[i].pcie_lane) data->pcie_lane_power_saving.max = ps->performance_levels[i].pcie_lane; if (data->pcie_lane_power_saving.min > ps->performance_levels[i].pcie_lane) data->pcie_lane_power_saving.min = ps->performance_levels[i].pcie_lane; } break; default: break; } } return 0; } static int smu7_get_pp_table_entry_callback_func_v0(struct pp_hwmgr *hwmgr, struct pp_hw_power_state *power_state, unsigned int index, const void *clock_info) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct smu7_power_state *ps = cast_phw_smu7_power_state(power_state); const ATOM_PPLIB_CI_CLOCK_INFO *visland_clk_info = clock_info; struct smu7_performance_level *performance_level; uint32_t engine_clock, memory_clock; uint16_t pcie_gen_from_bios; engine_clock = visland_clk_info->ucEngineClockHigh << 16 | visland_clk_info->usEngineClockLow; memory_clock = visland_clk_info->ucMemoryClockHigh << 16 | visland_clk_info->usMemoryClockLow; if (!(data->mc_micro_code_feature & DISABLE_MC_LOADMICROCODE) && memory_clock > data->highest_mclk) data->highest_mclk = memory_clock; PP_ASSERT_WITH_CODE( (ps->performance_level_count < smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_GRAPHICS)), "Performance levels exceeds SMC limit!", return -EINVAL); PP_ASSERT_WITH_CODE( (ps->performance_level_count < hwmgr->platform_descriptor.hardwareActivityPerformanceLevels), "Performance levels exceeds Driver limit, Skip!", return 0); performance_level = &(ps->performance_levels [ps->performance_level_count++]); /* Performance levels are arranged from low to high. */ performance_level->memory_clock = memory_clock; performance_level->engine_clock = engine_clock; pcie_gen_from_bios = visland_clk_info->ucPCIEGen; performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap, pcie_gen_from_bios); performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap, visland_clk_info->usPCIELane); return 0; } static int smu7_get_pp_table_entry_v0(struct pp_hwmgr *hwmgr, unsigned long entry_index, struct pp_power_state *state) { int result; struct smu7_power_state *ps; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct phm_clock_voltage_dependency_table *dep_mclk_table = hwmgr->dyn_state.vddci_dependency_on_mclk; memset(&state->hardware, 0x00, sizeof(struct pp_hw_power_state)); state->hardware.magic = PHM_VIslands_Magic; ps = (struct smu7_power_state *)(&state->hardware); result = pp_tables_get_entry(hwmgr, entry_index, state, smu7_get_pp_table_entry_callback_func_v0); /* * This is the earliest time we have all the dependency table * and the VBIOS boot state as * PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot * state if there is only one VDDCI/MCLK level, check if it's * the same as VBIOS boot state */ if (dep_mclk_table != NULL && dep_mclk_table->count == 1) { if (dep_mclk_table->entries[0].clk != data->vbios_boot_state.mclk_bootup_value) pr_debug("Single MCLK entry VDDCI/MCLK dependency table " "does not match VBIOS boot MCLK level"); if (dep_mclk_table->entries[0].v != data->vbios_boot_state.vddci_bootup_value) pr_debug("Single VDDCI entry VDDCI/MCLK dependency table " "does not match VBIOS boot VDDCI level"); } /* set DC compatible flag if this state supports DC */ if (!state->validation.disallowOnDC) ps->dc_compatible = true; if (state->classification.flags & PP_StateClassificationFlag_ACPI) data->acpi_pcie_gen = ps->performance_levels[0].pcie_gen; ps->uvd_clks.vclk = state->uvd_clocks.VCLK; ps->uvd_clks.dclk = state->uvd_clocks.DCLK; if (!result) { uint32_t i; switch (state->classification.ui_label) { case PP_StateUILabel_Performance: data->use_pcie_performance_levels = true; for (i = 0; i < ps->performance_level_count; i++) { if (data->pcie_gen_performance.max < ps->performance_levels[i].pcie_gen) data->pcie_gen_performance.max = ps->performance_levels[i].pcie_gen; if (data->pcie_gen_performance.min > ps->performance_levels[i].pcie_gen) data->pcie_gen_performance.min = ps->performance_levels[i].pcie_gen; if (data->pcie_lane_performance.max < ps->performance_levels[i].pcie_lane) data->pcie_lane_performance.max = ps->performance_levels[i].pcie_lane; if (data->pcie_lane_performance.min > ps->performance_levels[i].pcie_lane) data->pcie_lane_performance.min = ps->performance_levels[i].pcie_lane; } break; case PP_StateUILabel_Battery: data->use_pcie_power_saving_levels = true; for (i = 0; i < ps->performance_level_count; i++) { if (data->pcie_gen_power_saving.max < ps->performance_levels[i].pcie_gen) data->pcie_gen_power_saving.max = ps->performance_levels[i].pcie_gen; if (data->pcie_gen_power_saving.min > ps->performance_levels[i].pcie_gen) data->pcie_gen_power_saving.min = ps->performance_levels[i].pcie_gen; if (data->pcie_lane_power_saving.max < ps->performance_levels[i].pcie_lane) data->pcie_lane_power_saving.max = ps->performance_levels[i].pcie_lane; if (data->pcie_lane_power_saving.min > ps->performance_levels[i].pcie_lane) data->pcie_lane_power_saving.min = ps->performance_levels[i].pcie_lane; } break; default: break; } } return 0; } static int smu7_get_pp_table_entry(struct pp_hwmgr *hwmgr, unsigned long entry_index, struct pp_power_state *state) { if (hwmgr->pp_table_version == PP_TABLE_V0) return smu7_get_pp_table_entry_v0(hwmgr, entry_index, state); else if (hwmgr->pp_table_version == PP_TABLE_V1) return smu7_get_pp_table_entry_v1(hwmgr, entry_index, state); return 0; } static int smu7_get_gpu_power(struct pp_hwmgr *hwmgr, u32 *query) { struct amdgpu_device *adev = hwmgr->adev; int i; u32 tmp = 0; if (!query) return -EINVAL; /* * PPSMC_MSG_GetCurrPkgPwr is not supported on: * - Hawaii * - Bonaire * - Fiji * - Tonga */ if ((adev->asic_type != CHIP_HAWAII) && (adev->asic_type != CHIP_BONAIRE) && (adev->asic_type != CHIP_FIJI) && (adev->asic_type != CHIP_TONGA)) { smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetCurrPkgPwr, 0); tmp = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0); *query = tmp; if (tmp != 0) return 0; } smum_send_msg_to_smc(hwmgr, PPSMC_MSG_PmStatusLogStart); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixSMU_PM_STATUS_95, 0); for (i = 0; i < 10; i++) { mdelay(500); smum_send_msg_to_smc(hwmgr, PPSMC_MSG_PmStatusLogSample); tmp = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixSMU_PM_STATUS_95); if (tmp != 0) break; } *query = tmp; return 0; } static int smu7_read_sensor(struct pp_hwmgr *hwmgr, int idx, void *value, int *size) { uint32_t sclk, mclk, activity_percent; uint32_t offset, val_vid; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); /* size must be at least 4 bytes for all sensors */ if (*size < 4) return -EINVAL; switch (idx) { case AMDGPU_PP_SENSOR_GFX_SCLK: smum_send_msg_to_smc(hwmgr, PPSMC_MSG_API_GetSclkFrequency); sclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0); *((uint32_t *)value) = sclk; *size = 4; return 0; case AMDGPU_PP_SENSOR_GFX_MCLK: smum_send_msg_to_smc(hwmgr, PPSMC_MSG_API_GetMclkFrequency); mclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0); *((uint32_t *)value) = mclk; *size = 4; return 0; case AMDGPU_PP_SENSOR_GPU_LOAD: offset = data->soft_regs_start + smum_get_offsetof(hwmgr, SMU_SoftRegisters, AverageGraphicsActivity); activity_percent = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset); activity_percent += 0x80; activity_percent >>= 8; *((uint32_t *)value) = activity_percent > 100 ? 100 : activity_percent; *size = 4; return 0; case AMDGPU_PP_SENSOR_GPU_TEMP: *((uint32_t *)value) = smu7_thermal_get_temperature(hwmgr); *size = 4; return 0; case AMDGPU_PP_SENSOR_UVD_POWER: *((uint32_t *)value) = data->uvd_power_gated ? 0 : 1; *size = 4; return 0; case AMDGPU_PP_SENSOR_VCE_POWER: *((uint32_t *)value) = data->vce_power_gated ? 0 : 1; *size = 4; return 0; case AMDGPU_PP_SENSOR_GPU_POWER: return smu7_get_gpu_power(hwmgr, (uint32_t *)value); case AMDGPU_PP_SENSOR_VDDGFX: if ((data->vr_config & 0xff) == 0x2) val_vid = PHM_READ_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_SVI2_STATUS, PLANE2_VID); else val_vid = PHM_READ_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_SVI2_STATUS, PLANE1_VID); *((uint32_t *)value) = (uint32_t)convert_to_vddc(val_vid); return 0; default: return -EINVAL; } } static int smu7_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input) { const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input; const struct smu7_power_state *smu7_ps = cast_const_phw_smu7_power_state(states->pnew_state); struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table); uint32_t sclk = smu7_ps->performance_levels [smu7_ps->performance_level_count - 1].engine_clock; struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table); uint32_t mclk = smu7_ps->performance_levels [smu7_ps->performance_level_count - 1].memory_clock; struct PP_Clocks min_clocks = {0}; uint32_t i; for (i = 0; i < sclk_table->count; i++) { if (sclk == sclk_table->dpm_levels[i].value) break; } if (i >= sclk_table->count) data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK; else { /* TODO: Check SCLK in DAL's minimum clocks * in case DeepSleep divider update is required. */ if (data->display_timing.min_clock_in_sr != min_clocks.engineClockInSR && (min_clocks.engineClockInSR >= SMU7_MINIMUM_ENGINE_CLOCK || data->display_timing.min_clock_in_sr >= SMU7_MINIMUM_ENGINE_CLOCK)) data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_SCLK; } for (i = 0; i < mclk_table->count; i++) { if (mclk == mclk_table->dpm_levels[i].value) break; } if (i >= mclk_table->count) data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK; if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display) data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_MCLK; return 0; } static uint16_t smu7_get_maximum_link_speed(struct pp_hwmgr *hwmgr, const struct smu7_power_state *smu7_ps) { uint32_t i; uint32_t sclk, max_sclk = 0; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct smu7_dpm_table *dpm_table = &data->dpm_table; for (i = 0; i < smu7_ps->performance_level_count; i++) { sclk = smu7_ps->performance_levels[i].engine_clock; if (max_sclk < sclk) max_sclk = sclk; } for (i = 0; i < dpm_table->sclk_table.count; i++) { if (dpm_table->sclk_table.dpm_levels[i].value == max_sclk) return (uint16_t) ((i >= dpm_table->pcie_speed_table.count) ? dpm_table->pcie_speed_table.dpm_levels [dpm_table->pcie_speed_table.count - 1].value : dpm_table->pcie_speed_table.dpm_levels[i].value); } return 0; } static int smu7_request_link_speed_change_before_state_change( struct pp_hwmgr *hwmgr, const void *input) { const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); const struct smu7_power_state *smu7_nps = cast_const_phw_smu7_power_state(states->pnew_state); const struct smu7_power_state *polaris10_cps = cast_const_phw_smu7_power_state(states->pcurrent_state); uint16_t target_link_speed = smu7_get_maximum_link_speed(hwmgr, smu7_nps); uint16_t current_link_speed; if (data->force_pcie_gen == PP_PCIEGenInvalid) current_link_speed = smu7_get_maximum_link_speed(hwmgr, polaris10_cps); else current_link_speed = data->force_pcie_gen; data->force_pcie_gen = PP_PCIEGenInvalid; data->pspp_notify_required = false; if (target_link_speed > current_link_speed) { switch (target_link_speed) { #ifdef CONFIG_ACPI case PP_PCIEGen3: if (0 == amdgpu_acpi_pcie_performance_request(hwmgr->adev, PCIE_PERF_REQ_GEN3, false)) break; data->force_pcie_gen = PP_PCIEGen2; if (current_link_speed == PP_PCIEGen2) break; case PP_PCIEGen2: if (0 == amdgpu_acpi_pcie_performance_request(hwmgr->adev, PCIE_PERF_REQ_GEN2, false)) break; #endif default: data->force_pcie_gen = smu7_get_current_pcie_speed(hwmgr); break; } } else { if (target_link_speed < current_link_speed) data->pspp_notify_required = true; } return 0; } static int smu7_freeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); if (0 == data->need_update_smu7_dpm_table) return 0; if ((0 == data->sclk_dpm_key_disabled) && (data->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) { PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr), "Trying to freeze SCLK DPM when DPM is disabled", ); PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_FreezeLevel), "Failed to freeze SCLK DPM during FreezeSclkMclkDPM Function!", return -EINVAL); } if ((0 == data->mclk_dpm_key_disabled) && (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) { PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr), "Trying to freeze MCLK DPM when DPM is disabled", ); PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_FreezeLevel), "Failed to freeze MCLK DPM during FreezeSclkMclkDPM Function!", return -EINVAL); } return 0; } static int smu7_populate_and_upload_sclk_mclk_dpm_levels( struct pp_hwmgr *hwmgr, const void *input) { int result = 0; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct smu7_dpm_table *dpm_table = &data->dpm_table; uint32_t count; struct smu7_odn_dpm_table *odn_table = &(data->odn_dpm_table); struct phm_odn_clock_levels *odn_sclk_table = &(odn_table->odn_core_clock_dpm_levels); struct phm_odn_clock_levels *odn_mclk_table = &(odn_table->odn_memory_clock_dpm_levels); if (0 == data->need_update_smu7_dpm_table) return 0; if (hwmgr->od_enabled && data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) { for (count = 0; count < dpm_table->sclk_table.count; count++) { dpm_table->sclk_table.dpm_levels[count].enabled = odn_sclk_table->entries[count].enabled; dpm_table->sclk_table.dpm_levels[count].value = odn_sclk_table->entries[count].clock; } } if (hwmgr->od_enabled && data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK) { for (count = 0; count < dpm_table->mclk_table.count; count++) { dpm_table->mclk_table.dpm_levels[count].enabled = odn_mclk_table->entries[count].enabled; dpm_table->mclk_table.dpm_levels[count].value = odn_mclk_table->entries[count].clock; } } if (data->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK)) { result = smum_populate_all_graphic_levels(hwmgr); PP_ASSERT_WITH_CODE((0 == result), "Failed to populate SCLK during PopulateNewDPMClocksStates Function!", return result); } if (data->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_MCLK + DPMTABLE_UPDATE_MCLK)) { /*populate MCLK dpm table to SMU7 */ result = smum_populate_all_memory_levels(hwmgr); PP_ASSERT_WITH_CODE((0 == result), "Failed to populate MCLK during PopulateNewDPMClocksStates Function!", return result); } return result; } static int smu7_trim_single_dpm_states(struct pp_hwmgr *hwmgr, struct smu7_single_dpm_table *dpm_table, uint32_t low_limit, uint32_t high_limit) { uint32_t i; for (i = 0; i < dpm_table->count; i++) { /*skip the trim if od is enabled*/ if (!hwmgr->od_enabled && (dpm_table->dpm_levels[i].value < low_limit || dpm_table->dpm_levels[i].value > high_limit)) dpm_table->dpm_levels[i].enabled = false; else dpm_table->dpm_levels[i].enabled = true; } return 0; } static int smu7_trim_dpm_states(struct pp_hwmgr *hwmgr, const struct smu7_power_state *smu7_ps) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); uint32_t high_limit_count; PP_ASSERT_WITH_CODE((smu7_ps->performance_level_count >= 1), "power state did not have any performance level", return -EINVAL); high_limit_count = (1 == smu7_ps->performance_level_count) ? 0 : 1; smu7_trim_single_dpm_states(hwmgr, &(data->dpm_table.sclk_table), smu7_ps->performance_levels[0].engine_clock, smu7_ps->performance_levels[high_limit_count].engine_clock); smu7_trim_single_dpm_states(hwmgr, &(data->dpm_table.mclk_table), smu7_ps->performance_levels[0].memory_clock, smu7_ps->performance_levels[high_limit_count].memory_clock); return 0; } static int smu7_generate_dpm_level_enable_mask( struct pp_hwmgr *hwmgr, const void *input) { int result = 0; const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); const struct smu7_power_state *smu7_ps = cast_const_phw_smu7_power_state(states->pnew_state); result = smu7_trim_dpm_states(hwmgr, smu7_ps); if (result) return result; data->dpm_level_enable_mask.sclk_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&data->dpm_table.sclk_table); data->dpm_level_enable_mask.mclk_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&data->dpm_table.mclk_table); data->dpm_level_enable_mask.pcie_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&data->dpm_table.pcie_speed_table); return 0; } static int smu7_unfreeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); if (0 == data->need_update_smu7_dpm_table) return 0; if ((0 == data->sclk_dpm_key_disabled) && (data->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) { PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr), "Trying to Unfreeze SCLK DPM when DPM is disabled", ); PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_UnfreezeLevel), "Failed to unfreeze SCLK DPM during UnFreezeSclkMclkDPM Function!", return -EINVAL); } if ((0 == data->mclk_dpm_key_disabled) && (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) { PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr), "Trying to Unfreeze MCLK DPM when DPM is disabled", ); PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_UnfreezeLevel), "Failed to unfreeze MCLK DPM during UnFreezeSclkMclkDPM Function!", return -EINVAL); } data->need_update_smu7_dpm_table &= DPMTABLE_OD_UPDATE_VDDC; return 0; } static int smu7_notify_link_speed_change_after_state_change( struct pp_hwmgr *hwmgr, const void *input) { const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); const struct smu7_power_state *smu7_ps = cast_const_phw_smu7_power_state(states->pnew_state); uint16_t target_link_speed = smu7_get_maximum_link_speed(hwmgr, smu7_ps); uint8_t request; if (data->pspp_notify_required) { if (target_link_speed == PP_PCIEGen3) request = PCIE_PERF_REQ_GEN3; else if (target_link_speed == PP_PCIEGen2) request = PCIE_PERF_REQ_GEN2; else request = PCIE_PERF_REQ_GEN1; if (request == PCIE_PERF_REQ_GEN1 && smu7_get_current_pcie_speed(hwmgr) > 0) return 0; #ifdef CONFIG_ACPI if (amdgpu_acpi_pcie_performance_request(hwmgr->adev, request, false)) { if (PP_PCIEGen2 == target_link_speed) pr_info("PSPP request to switch to Gen2 from Gen3 Failed!"); else pr_info("PSPP request to switch to Gen1 from Gen2 Failed!"); } #endif } return 0; } static int smu7_notify_smc_display(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); if (hwmgr->feature_mask & PP_VBI_TIME_SUPPORT_MASK) { if (hwmgr->chip_id == CHIP_VEGAM) smum_send_msg_to_smc_with_parameter(hwmgr, (PPSMC_Msg)PPSMC_MSG_SetVBITimeout_VEGAM, data->frame_time_x2); else smum_send_msg_to_smc_with_parameter(hwmgr, (PPSMC_Msg)PPSMC_MSG_SetVBITimeout, data->frame_time_x2); } return (smum_send_msg_to_smc(hwmgr, (PPSMC_Msg)PPSMC_HasDisplay) == 0) ? 0 : -EINVAL; } static int smu7_set_power_state_tasks(struct pp_hwmgr *hwmgr, const void *input) { int tmp_result, result = 0; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); tmp_result = smu7_find_dpm_states_clocks_in_dpm_table(hwmgr, input); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to find DPM states clocks in DPM table!", result = tmp_result); if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PCIEPerformanceRequest)) { tmp_result = smu7_request_link_speed_change_before_state_change(hwmgr, input); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to request link speed change before state change!", result = tmp_result); } tmp_result = smu7_freeze_sclk_mclk_dpm(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to freeze SCLK MCLK DPM!", result = tmp_result); tmp_result = smu7_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to populate and upload SCLK MCLK DPM levels!", result = tmp_result); tmp_result = smu7_update_avfs(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to update avfs voltages!", result = tmp_result); tmp_result = smu7_generate_dpm_level_enable_mask(hwmgr, input); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to generate DPM level enabled mask!", result = tmp_result); tmp_result = smum_update_sclk_threshold(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to update SCLK threshold!", result = tmp_result); tmp_result = smu7_notify_smc_display(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to notify smc display settings!", result = tmp_result); tmp_result = smu7_unfreeze_sclk_mclk_dpm(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to unfreeze SCLK MCLK DPM!", result = tmp_result); tmp_result = smu7_upload_dpm_level_enable_mask(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to upload DPM level enabled mask!", result = tmp_result); if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PCIEPerformanceRequest)) { tmp_result = smu7_notify_link_speed_change_after_state_change(hwmgr, input); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to notify link speed change after state change!", result = tmp_result); } data->apply_optimized_settings = false; return result; } static int smu7_set_max_fan_pwm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_pwm) { hwmgr->thermal_controller. advanceFanControlParameters.usMaxFanPWM = us_max_fan_pwm; return smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetFanPwmMax, us_max_fan_pwm); } static int smu7_notify_smc_display_change(struct pp_hwmgr *hwmgr, bool has_display) { PPSMC_Msg msg = has_display ? (PPSMC_Msg)PPSMC_HasDisplay : (PPSMC_Msg)PPSMC_NoDisplay; return (smum_send_msg_to_smc(hwmgr, msg) == 0) ? 0 : -1; } static int smu7_notify_smc_display_config_after_ps_adjustment(struct pp_hwmgr *hwmgr) { if (hwmgr->display_config->num_display > 1 && !hwmgr->display_config->multi_monitor_in_sync) smu7_notify_smc_display_change(hwmgr, false); return 0; } /** * Programs the display gap * * @param hwmgr the address of the powerplay hardware manager. * @return always OK */ static int smu7_program_display_gap(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); uint32_t display_gap = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL); uint32_t display_gap2; uint32_t pre_vbi_time_in_us; uint32_t frame_time_in_us; uint32_t ref_clock, refresh_rate; display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL, DISP_GAP, (hwmgr->display_config->num_display > 0) ? DISPLAY_GAP_VBLANK_OR_WM : DISPLAY_GAP_IGNORE); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL, display_gap); ref_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev); refresh_rate = hwmgr->display_config->vrefresh; if (0 == refresh_rate) refresh_rate = 60; frame_time_in_us = 1000000 / refresh_rate; pre_vbi_time_in_us = frame_time_in_us - 200 - hwmgr->display_config->min_vblank_time; data->frame_time_x2 = frame_time_in_us * 2 / 100; if (data->frame_time_x2 < 280) { pr_debug("%s: enforce minimal VBITimeout: %d -> 280\n", __func__, data->frame_time_x2); data->frame_time_x2 = 280; } display_gap2 = pre_vbi_time_in_us * (ref_clock / 100); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL2, display_gap2); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, data->soft_regs_start + smum_get_offsetof(hwmgr, SMU_SoftRegisters, PreVBlankGap), 0x64); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, data->soft_regs_start + smum_get_offsetof(hwmgr, SMU_SoftRegisters, VBlankTimeout), (frame_time_in_us - pre_vbi_time_in_us)); return 0; } static int smu7_display_configuration_changed_task(struct pp_hwmgr *hwmgr) { return smu7_program_display_gap(hwmgr); } /** * Set maximum target operating fan output RPM * * @param hwmgr: the address of the powerplay hardware manager. * @param usMaxFanRpm: max operating fan RPM value. * @return The response that came from the SMC. */ static int smu7_set_max_fan_rpm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_rpm) { hwmgr->thermal_controller. advanceFanControlParameters.usMaxFanRPM = us_max_fan_rpm; return smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetFanRpmMax, us_max_fan_rpm); } static const struct amdgpu_irq_src_funcs smu7_irq_funcs = { .process = phm_irq_process, }; static int smu7_register_irq_handlers(struct pp_hwmgr *hwmgr) { struct amdgpu_irq_src *source = kzalloc(sizeof(struct amdgpu_irq_src), GFP_KERNEL); if (!source) return -ENOMEM; source->funcs = &smu7_irq_funcs; amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev), AMDGPU_IH_CLIENTID_LEGACY, VISLANDS30_IV_SRCID_CG_TSS_THERMAL_LOW_TO_HIGH, source); amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev), AMDGPU_IH_CLIENTID_LEGACY, VISLANDS30_IV_SRCID_CG_TSS_THERMAL_HIGH_TO_LOW, source); /* Register CTF(GPIO_19) interrupt */ amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev), AMDGPU_IH_CLIENTID_LEGACY, VISLANDS30_IV_SRCID_GPIO_19, source); return 0; } static bool smu7_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); bool is_update_required = false; if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display) is_update_required = true; if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) { if (data->display_timing.min_clock_in_sr != hwmgr->display_config->min_core_set_clock_in_sr && (data->display_timing.min_clock_in_sr >= SMU7_MINIMUM_ENGINE_CLOCK || hwmgr->display_config->min_core_set_clock_in_sr >= SMU7_MINIMUM_ENGINE_CLOCK)) is_update_required = true; } return is_update_required; } static inline bool smu7_are_power_levels_equal(const struct smu7_performance_level *pl1, const struct smu7_performance_level *pl2) { return ((pl1->memory_clock == pl2->memory_clock) && (pl1->engine_clock == pl2->engine_clock) && (pl1->pcie_gen == pl2->pcie_gen) && (pl1->pcie_lane == pl2->pcie_lane)); } static int smu7_check_states_equal(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *pstate1, const struct pp_hw_power_state *pstate2, bool *equal) { const struct smu7_power_state *psa; const struct smu7_power_state *psb; int i; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); if (pstate1 == NULL || pstate2 == NULL || equal == NULL) return -EINVAL; psa = cast_const_phw_smu7_power_state(pstate1); psb = cast_const_phw_smu7_power_state(pstate2); /* If the two states don't even have the same number of performance levels they cannot be the same state. */ if (psa->performance_level_count != psb->performance_level_count) { *equal = false; return 0; } for (i = 0; i < psa->performance_level_count; i++) { if (!smu7_are_power_levels_equal(&(psa->performance_levels[i]), &(psb->performance_levels[i]))) { /* If we have found even one performance level pair that is different the states are different. */ *equal = false; return 0; } } /* If all performance levels are the same try to use the UVD clocks to break the tie.*/ *equal = ((psa->uvd_clks.vclk == psb->uvd_clks.vclk) && (psa->uvd_clks.dclk == psb->uvd_clks.dclk)); *equal &= ((psa->vce_clks.evclk == psb->vce_clks.evclk) && (psa->vce_clks.ecclk == psb->vce_clks.ecclk)); *equal &= (psa->sclk_threshold == psb->sclk_threshold); /* For OD call, set value based on flag */ *equal &= !(data->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_OD_UPDATE_MCLK | DPMTABLE_OD_UPDATE_VDDC)); return 0; } static int smu7_check_mc_firmware(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); uint32_t vbios_version; uint32_t tmp; /* Read MC indirect register offset 0x9F bits [3:0] to see * if VBIOS has already loaded a full version of MC ucode * or not. */ smu7_get_mc_microcode_version(hwmgr); vbios_version = hwmgr->microcode_version_info.MC & 0xf; data->need_long_memory_training = false; cgs_write_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_INDEX, ixMC_IO_DEBUG_UP_13); tmp = cgs_read_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_DATA); if (tmp & (1 << 23)) { data->mem_latency_high = MEM_LATENCY_HIGH; data->mem_latency_low = MEM_LATENCY_LOW; } else { data->mem_latency_high = 330; data->mem_latency_low = 330; } return 0; } static int smu7_read_clock_registers(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); data->clock_registers.vCG_SPLL_FUNC_CNTL = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL); data->clock_registers.vCG_SPLL_FUNC_CNTL_2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_2); data->clock_registers.vCG_SPLL_FUNC_CNTL_3 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_3); data->clock_registers.vCG_SPLL_FUNC_CNTL_4 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_4); data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_SPREAD_SPECTRUM); data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_SPREAD_SPECTRUM_2); data->clock_registers.vDLL_CNTL = cgs_read_register(hwmgr->device, mmDLL_CNTL); data->clock_registers.vMCLK_PWRMGT_CNTL = cgs_read_register(hwmgr->device, mmMCLK_PWRMGT_CNTL); data->clock_registers.vMPLL_AD_FUNC_CNTL = cgs_read_register(hwmgr->device, mmMPLL_AD_FUNC_CNTL); data->clock_registers.vMPLL_DQ_FUNC_CNTL = cgs_read_register(hwmgr->device, mmMPLL_DQ_FUNC_CNTL); data->clock_registers.vMPLL_FUNC_CNTL = cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL); data->clock_registers.vMPLL_FUNC_CNTL_1 = cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL_1); data->clock_registers.vMPLL_FUNC_CNTL_2 = cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL_2); data->clock_registers.vMPLL_SS1 = cgs_read_register(hwmgr->device, mmMPLL_SS1); data->clock_registers.vMPLL_SS2 = cgs_read_register(hwmgr->device, mmMPLL_SS2); return 0; } /** * Find out if memory is GDDR5. * * @param hwmgr the address of the powerplay hardware manager. * @return always 0 */ static int smu7_get_memory_type(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct amdgpu_device *adev = hwmgr->adev; data->is_memory_gddr5 = (adev->gmc.vram_type == AMDGPU_VRAM_TYPE_GDDR5); return 0; } /** * Enables Dynamic Power Management by SMC * * @param hwmgr the address of the powerplay hardware manager. * @return always 0 */ static int smu7_enable_acpi_power_management(struct pp_hwmgr *hwmgr) { PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, STATIC_PM_EN, 1); return 0; } /** * Initialize PowerGating States for different engines * * @param hwmgr the address of the powerplay hardware manager. * @return always 0 */ static int smu7_init_power_gate_state(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); data->uvd_power_gated = false; data->vce_power_gated = false; return 0; } static int smu7_init_sclk_threshold(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); data->low_sclk_interrupt_threshold = 0; return 0; } static int smu7_setup_asic_task(struct pp_hwmgr *hwmgr) { int tmp_result, result = 0; smu7_check_mc_firmware(hwmgr); tmp_result = smu7_read_clock_registers(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to read clock registers!", result = tmp_result); tmp_result = smu7_get_memory_type(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to get memory type!", result = tmp_result); tmp_result = smu7_enable_acpi_power_management(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to enable ACPI power management!", result = tmp_result); tmp_result = smu7_init_power_gate_state(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to init power gate state!", result = tmp_result); tmp_result = smu7_get_mc_microcode_version(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to get MC microcode version!", result = tmp_result); tmp_result = smu7_init_sclk_threshold(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to init sclk threshold!", result = tmp_result); return result; } static int smu7_force_clock_level(struct pp_hwmgr *hwmgr, enum pp_clock_type type, uint32_t mask) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); if (mask == 0) return -EINVAL; switch (type) { case PP_SCLK: if (!data->sclk_dpm_key_disabled) smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SCLKDPM_SetEnabledMask, data->dpm_level_enable_mask.sclk_dpm_enable_mask & mask); break; case PP_MCLK: if (!data->mclk_dpm_key_disabled) smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_MCLKDPM_SetEnabledMask, data->dpm_level_enable_mask.mclk_dpm_enable_mask & mask); break; case PP_PCIE: { uint32_t tmp = mask & data->dpm_level_enable_mask.pcie_dpm_enable_mask; if (!data->pcie_dpm_key_disabled) { if (fls(tmp) != ffs(tmp)) smum_send_msg_to_smc(hwmgr, PPSMC_MSG_PCIeDPM_UnForceLevel); else smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_PCIeDPM_ForceLevel, fls(tmp) - 1); } break; } default: break; } return 0; } static int smu7_print_clock_levels(struct pp_hwmgr *hwmgr, enum pp_clock_type type, char *buf) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table); struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table); struct smu7_single_dpm_table *pcie_table = &(data->dpm_table.pcie_speed_table); struct smu7_odn_dpm_table *odn_table = &(data->odn_dpm_table); struct phm_odn_clock_levels *odn_sclk_table = &(odn_table->odn_core_clock_dpm_levels); struct phm_odn_clock_levels *odn_mclk_table = &(odn_table->odn_memory_clock_dpm_levels); int i, now, size = 0; uint32_t clock, pcie_speed; switch (type) { case PP_SCLK: smum_send_msg_to_smc(hwmgr, PPSMC_MSG_API_GetSclkFrequency); clock = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0); for (i = 0; i < sclk_table->count; i++) { if (clock > sclk_table->dpm_levels[i].value) continue; break; } now = i; for (i = 0; i < sclk_table->count; i++) size += sprintf(buf + size, "%d: %uMhz %s\n", i, sclk_table->dpm_levels[i].value / 100, (i == now) ? "*" : ""); break; case PP_MCLK: smum_send_msg_to_smc(hwmgr, PPSMC_MSG_API_GetMclkFrequency); clock = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0); for (i = 0; i < mclk_table->count; i++) { if (clock > mclk_table->dpm_levels[i].value) continue; break; } now = i; for (i = 0; i < mclk_table->count; i++) size += sprintf(buf + size, "%d: %uMhz %s\n", i, mclk_table->dpm_levels[i].value / 100, (i == now) ? "*" : ""); break; case PP_PCIE: pcie_speed = smu7_get_current_pcie_speed(hwmgr); for (i = 0; i < pcie_table->count; i++) { if (pcie_speed != pcie_table->dpm_levels[i].value) continue; break; } now = i; for (i = 0; i < pcie_table->count; i++) size += sprintf(buf + size, "%d: %s %s\n", i, (pcie_table->dpm_levels[i].value == 0) ? "2.5GT/s, x8" : (pcie_table->dpm_levels[i].value == 1) ? "5.0GT/s, x16" : (pcie_table->dpm_levels[i].value == 2) ? "8.0GT/s, x16" : "", (i == now) ? "*" : ""); break; case OD_SCLK: if (hwmgr->od_enabled) { size = sprintf(buf, "%s:\n", "OD_SCLK"); for (i = 0; i < odn_sclk_table->num_of_pl; i++) size += sprintf(buf + size, "%d: %10uMHz %10umV\n", i, odn_sclk_table->entries[i].clock/100, odn_sclk_table->entries[i].vddc); } break; case OD_MCLK: if (hwmgr->od_enabled) { size = sprintf(buf, "%s:\n", "OD_MCLK"); for (i = 0; i < odn_mclk_table->num_of_pl; i++) size += sprintf(buf + size, "%d: %10uMHz %10umV\n", i, odn_mclk_table->entries[i].clock/100, odn_mclk_table->entries[i].vddc); } break; case OD_RANGE: if (hwmgr->od_enabled) { size = sprintf(buf, "%s:\n", "OD_RANGE"); size += sprintf(buf + size, "SCLK: %7uMHz %10uMHz\n", data->golden_dpm_table.sclk_table.dpm_levels[0].value/100, hwmgr->platform_descriptor.overdriveLimit.engineClock/100); size += sprintf(buf + size, "MCLK: %7uMHz %10uMHz\n", data->golden_dpm_table.mclk_table.dpm_levels[0].value/100, hwmgr->platform_descriptor.overdriveLimit.memoryClock/100); size += sprintf(buf + size, "VDDC: %7umV %11umV\n", data->odn_dpm_table.min_vddc, data->odn_dpm_table.max_vddc); } break; default: break; } return size; } static void smu7_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode) { switch (mode) { case AMD_FAN_CTRL_NONE: smu7_fan_ctrl_set_fan_speed_percent(hwmgr, 100); break; case AMD_FAN_CTRL_MANUAL: if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl)) smu7_fan_ctrl_stop_smc_fan_control(hwmgr); break; case AMD_FAN_CTRL_AUTO: if (!smu7_fan_ctrl_set_static_mode(hwmgr, mode)) smu7_fan_ctrl_start_smc_fan_control(hwmgr); break; default: break; } } static uint32_t smu7_get_fan_control_mode(struct pp_hwmgr *hwmgr) { return hwmgr->fan_ctrl_enabled ? AMD_FAN_CTRL_AUTO : AMD_FAN_CTRL_MANUAL; } static int smu7_get_sclk_od(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table); struct smu7_single_dpm_table *golden_sclk_table = &(data->golden_dpm_table.sclk_table); int value; value = (sclk_table->dpm_levels[sclk_table->count - 1].value - golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value) * 100 / golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value; return value; } static int smu7_set_sclk_od(struct pp_hwmgr *hwmgr, uint32_t value) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct smu7_single_dpm_table *golden_sclk_table = &(data->golden_dpm_table.sclk_table); struct pp_power_state *ps; struct smu7_power_state *smu7_ps; if (value > 20) value = 20; ps = hwmgr->request_ps; if (ps == NULL) return -EINVAL; smu7_ps = cast_phw_smu7_power_state(&ps->hardware); smu7_ps->performance_levels[smu7_ps->performance_level_count - 1].engine_clock = golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value * value / 100 + golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value; return 0; } static int smu7_get_mclk_od(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table); struct smu7_single_dpm_table *golden_mclk_table = &(data->golden_dpm_table.mclk_table); int value; value = (mclk_table->dpm_levels[mclk_table->count - 1].value - golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value) * 100 / golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value; return value; } static int smu7_set_mclk_od(struct pp_hwmgr *hwmgr, uint32_t value) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct smu7_single_dpm_table *golden_mclk_table = &(data->golden_dpm_table.mclk_table); struct pp_power_state *ps; struct smu7_power_state *smu7_ps; if (value > 20) value = 20; ps = hwmgr->request_ps; if (ps == NULL) return -EINVAL; smu7_ps = cast_phw_smu7_power_state(&ps->hardware); smu7_ps->performance_levels[smu7_ps->performance_level_count - 1].memory_clock = golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value * value / 100 + golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value; return 0; } static int smu7_get_sclks(struct pp_hwmgr *hwmgr, struct amd_pp_clocks *clocks) { struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)hwmgr->pptable; struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table = NULL; struct phm_clock_voltage_dependency_table *sclk_table; int i; if (hwmgr->pp_table_version == PP_TABLE_V1) { if (table_info == NULL || table_info->vdd_dep_on_sclk == NULL) return -EINVAL; dep_sclk_table = table_info->vdd_dep_on_sclk; for (i = 0; i < dep_sclk_table->count; i++) clocks->clock[i] = dep_sclk_table->entries[i].clk * 10; clocks->count = dep_sclk_table->count; } else if (hwmgr->pp_table_version == PP_TABLE_V0) { sclk_table = hwmgr->dyn_state.vddc_dependency_on_sclk; for (i = 0; i < sclk_table->count; i++) clocks->clock[i] = sclk_table->entries[i].clk * 10; clocks->count = sclk_table->count; } return 0; } static uint32_t smu7_get_mem_latency(struct pp_hwmgr *hwmgr, uint32_t clk) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); if (clk >= MEM_FREQ_LOW_LATENCY && clk < MEM_FREQ_HIGH_LATENCY) return data->mem_latency_high; else if (clk >= MEM_FREQ_HIGH_LATENCY) return data->mem_latency_low; else return MEM_LATENCY_ERR; } static int smu7_get_mclks(struct pp_hwmgr *hwmgr, struct amd_pp_clocks *clocks) { struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)hwmgr->pptable; struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table; int i; struct phm_clock_voltage_dependency_table *mclk_table; if (hwmgr->pp_table_version == PP_TABLE_V1) { if (table_info == NULL) return -EINVAL; dep_mclk_table = table_info->vdd_dep_on_mclk; for (i = 0; i < dep_mclk_table->count; i++) { clocks->clock[i] = dep_mclk_table->entries[i].clk * 10; clocks->latency[i] = smu7_get_mem_latency(hwmgr, dep_mclk_table->entries[i].clk); } clocks->count = dep_mclk_table->count; } else if (hwmgr->pp_table_version == PP_TABLE_V0) { mclk_table = hwmgr->dyn_state.vddc_dependency_on_mclk; for (i = 0; i < mclk_table->count; i++) clocks->clock[i] = mclk_table->entries[i].clk * 10; clocks->count = mclk_table->count; } return 0; } static int smu7_get_clock_by_type(struct pp_hwmgr *hwmgr, enum amd_pp_clock_type type, struct amd_pp_clocks *clocks) { switch (type) { case amd_pp_sys_clock: smu7_get_sclks(hwmgr, clocks); break; case amd_pp_mem_clock: smu7_get_mclks(hwmgr, clocks); break; default: return -EINVAL; } return 0; } static int smu7_notify_cac_buffer_info(struct pp_hwmgr *hwmgr, uint32_t virtual_addr_low, uint32_t virtual_addr_hi, uint32_t mc_addr_low, uint32_t mc_addr_hi, uint32_t size) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, data->soft_regs_start + smum_get_offsetof(hwmgr, SMU_SoftRegisters, DRAM_LOG_ADDR_H), mc_addr_hi); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, data->soft_regs_start + smum_get_offsetof(hwmgr, SMU_SoftRegisters, DRAM_LOG_ADDR_L), mc_addr_low); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, data->soft_regs_start + smum_get_offsetof(hwmgr, SMU_SoftRegisters, DRAM_LOG_PHY_ADDR_H), virtual_addr_hi); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, data->soft_regs_start + smum_get_offsetof(hwmgr, SMU_SoftRegisters, DRAM_LOG_PHY_ADDR_L), virtual_addr_low); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, data->soft_regs_start + smum_get_offsetof(hwmgr, SMU_SoftRegisters, DRAM_LOG_BUFF_SIZE), size); return 0; } static int smu7_get_max_high_clocks(struct pp_hwmgr *hwmgr, struct amd_pp_simple_clock_info *clocks) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table); struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table); if (clocks == NULL) return -EINVAL; clocks->memory_max_clock = mclk_table->count > 1 ? mclk_table->dpm_levels[mclk_table->count-1].value : mclk_table->dpm_levels[0].value; clocks->engine_max_clock = sclk_table->count > 1 ? sclk_table->dpm_levels[sclk_table->count-1].value : sclk_table->dpm_levels[0].value; return 0; } static int smu7_get_thermal_temperature_range(struct pp_hwmgr *hwmgr, struct PP_TemperatureRange *thermal_data) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)hwmgr->pptable; memcpy(thermal_data, &SMU7ThermalPolicy[0], sizeof(struct PP_TemperatureRange)); if (hwmgr->pp_table_version == PP_TABLE_V1) thermal_data->max = table_info->cac_dtp_table->usSoftwareShutdownTemp * PP_TEMPERATURE_UNITS_PER_CENTIGRADES; else if (hwmgr->pp_table_version == PP_TABLE_V0) thermal_data->max = data->thermal_temp_setting.temperature_shutdown * PP_TEMPERATURE_UNITS_PER_CENTIGRADES; return 0; } static bool smu7_check_clk_voltage_valid(struct pp_hwmgr *hwmgr, enum PP_OD_DPM_TABLE_COMMAND type, uint32_t clk, uint32_t voltage) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); if (voltage < data->odn_dpm_table.min_vddc || voltage > data->odn_dpm_table.max_vddc) { pr_info("OD voltage is out of range [%d - %d] mV\n", data->odn_dpm_table.min_vddc, data->odn_dpm_table.max_vddc); return false; } if (type == PP_OD_EDIT_SCLK_VDDC_TABLE) { if (data->golden_dpm_table.sclk_table.dpm_levels[0].value > clk || hwmgr->platform_descriptor.overdriveLimit.engineClock < clk) { pr_info("OD engine clock is out of range [%d - %d] MHz\n", data->golden_dpm_table.sclk_table.dpm_levels[0].value/100, hwmgr->platform_descriptor.overdriveLimit.engineClock/100); return false; } } else if (type == PP_OD_EDIT_MCLK_VDDC_TABLE) { if (data->golden_dpm_table.mclk_table.dpm_levels[0].value > clk || hwmgr->platform_descriptor.overdriveLimit.memoryClock < clk) { pr_info("OD memory clock is out of range [%d - %d] MHz\n", data->golden_dpm_table.mclk_table.dpm_levels[0].value/100, hwmgr->platform_descriptor.overdriveLimit.memoryClock/100); return false; } } else { return false; } return true; } static int smu7_odn_edit_dpm_table(struct pp_hwmgr *hwmgr, enum PP_OD_DPM_TABLE_COMMAND type, long *input, uint32_t size) { uint32_t i; struct phm_odn_clock_levels *podn_dpm_table_in_backend = NULL; struct smu7_odn_clock_voltage_dependency_table *podn_vdd_dep_in_backend = NULL; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); uint32_t input_clk; uint32_t input_vol; uint32_t input_level; PP_ASSERT_WITH_CODE(input, "NULL user input for clock and voltage", return -EINVAL); if (!hwmgr->od_enabled) { pr_info("OverDrive feature not enabled\n"); return -EINVAL; } if (PP_OD_EDIT_SCLK_VDDC_TABLE == type) { podn_dpm_table_in_backend = &data->odn_dpm_table.odn_core_clock_dpm_levels; podn_vdd_dep_in_backend = &data->odn_dpm_table.vdd_dependency_on_sclk; PP_ASSERT_WITH_CODE((podn_dpm_table_in_backend && podn_vdd_dep_in_backend), "Failed to get ODN SCLK and Voltage tables", return -EINVAL); } else if (PP_OD_EDIT_MCLK_VDDC_TABLE == type) { podn_dpm_table_in_backend = &data->odn_dpm_table.odn_memory_clock_dpm_levels; podn_vdd_dep_in_backend = &data->odn_dpm_table.vdd_dependency_on_mclk; PP_ASSERT_WITH_CODE((podn_dpm_table_in_backend && podn_vdd_dep_in_backend), "Failed to get ODN MCLK and Voltage tables", return -EINVAL); } else if (PP_OD_RESTORE_DEFAULT_TABLE == type) { smu7_odn_initial_default_setting(hwmgr); return 0; } else if (PP_OD_COMMIT_DPM_TABLE == type) { smu7_check_dpm_table_updated(hwmgr); return 0; } else { return -EINVAL; } for (i = 0; i < size; i += 3) { if (i + 3 > size || input[i] >= podn_dpm_table_in_backend->num_of_pl) { pr_info("invalid clock voltage input \n"); return 0; } input_level = input[i]; input_clk = input[i+1] * 100; input_vol = input[i+2]; if (smu7_check_clk_voltage_valid(hwmgr, type, input_clk, input_vol)) { podn_dpm_table_in_backend->entries[input_level].clock = input_clk; podn_vdd_dep_in_backend->entries[input_level].clk = input_clk; podn_dpm_table_in_backend->entries[input_level].vddc = input_vol; podn_vdd_dep_in_backend->entries[input_level].vddc = input_vol; } else { return -EINVAL; } } return 0; } static int smu7_get_power_profile_mode(struct pp_hwmgr *hwmgr, char *buf) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); uint32_t i, size = 0; uint32_t len; static const char *profile_name[6] = {"3D_FULL_SCREEN", "POWER_SAVING", "VIDEO", "VR", "COMPUTE", "CUSTOM"}; static const char *title[8] = {"NUM", "MODE_NAME", "SCLK_UP_HYST", "SCLK_DOWN_HYST", "SCLK_ACTIVE_LEVEL", "MCLK_UP_HYST", "MCLK_DOWN_HYST", "MCLK_ACTIVE_LEVEL"}; if (!buf) return -EINVAL; size += sprintf(buf + size, "%s %16s %16s %16s %16s %16s %16s %16s\n", title[0], title[1], title[2], title[3], title[4], title[5], title[6], title[7]); len = sizeof(smu7_profiling) / sizeof(struct profile_mode_setting); for (i = 0; i < len; i++) { if (i == hwmgr->power_profile_mode) { size += sprintf(buf + size, "%3d %14s %s: %8d %16d %16d %16d %16d %16d\n", i, profile_name[i], "*", data->current_profile_setting.sclk_up_hyst, data->current_profile_setting.sclk_down_hyst, data->current_profile_setting.sclk_activity, data->current_profile_setting.mclk_up_hyst, data->current_profile_setting.mclk_down_hyst, data->current_profile_setting.mclk_activity); continue; } if (smu7_profiling[i].bupdate_sclk) size += sprintf(buf + size, "%3d %16s: %8d %16d %16d ", i, profile_name[i], smu7_profiling[i].sclk_up_hyst, smu7_profiling[i].sclk_down_hyst, smu7_profiling[i].sclk_activity); else size += sprintf(buf + size, "%3d %16s: %8s %16s %16s ", i, profile_name[i], "-", "-", "-"); if (smu7_profiling[i].bupdate_mclk) size += sprintf(buf + size, "%16d %16d %16d\n", smu7_profiling[i].mclk_up_hyst, smu7_profiling[i].mclk_down_hyst, smu7_profiling[i].mclk_activity); else size += sprintf(buf + size, "%16s %16s %16s\n", "-", "-", "-"); } return size; } static void smu7_patch_compute_profile_mode(struct pp_hwmgr *hwmgr, enum PP_SMC_POWER_PROFILE requst) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); uint32_t tmp, level; if (requst == PP_SMC_POWER_PROFILE_COMPUTE) { if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) { level = 0; tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask; while (tmp >>= 1) level++; if (level > 0) smu7_force_clock_level(hwmgr, PP_SCLK, 3 << (level-1)); } } else if (hwmgr->power_profile_mode == PP_SMC_POWER_PROFILE_COMPUTE) { smu7_force_clock_level(hwmgr, PP_SCLK, data->dpm_level_enable_mask.sclk_dpm_enable_mask); } } static int smu7_set_power_profile_mode(struct pp_hwmgr *hwmgr, long *input, uint32_t size) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct profile_mode_setting tmp; enum PP_SMC_POWER_PROFILE mode; if (input == NULL) return -EINVAL; mode = input[size]; switch (mode) { case PP_SMC_POWER_PROFILE_CUSTOM: if (size < 8) return -EINVAL; tmp.bupdate_sclk = input[0]; tmp.sclk_up_hyst = input[1]; tmp.sclk_down_hyst = input[2]; tmp.sclk_activity = input[3]; tmp.bupdate_mclk = input[4]; tmp.mclk_up_hyst = input[5]; tmp.mclk_down_hyst = input[6]; tmp.mclk_activity = input[7]; if (!smum_update_dpm_settings(hwmgr, &tmp)) { memcpy(&data->current_profile_setting, &tmp, sizeof(struct profile_mode_setting)); hwmgr->power_profile_mode = mode; } break; case PP_SMC_POWER_PROFILE_FULLSCREEN3D: case PP_SMC_POWER_PROFILE_POWERSAVING: case PP_SMC_POWER_PROFILE_VIDEO: case PP_SMC_POWER_PROFILE_VR: case PP_SMC_POWER_PROFILE_COMPUTE: if (mode == hwmgr->power_profile_mode) return 0; memcpy(&tmp, &smu7_profiling[mode], sizeof(struct profile_mode_setting)); if (!smum_update_dpm_settings(hwmgr, &tmp)) { if (tmp.bupdate_sclk) { data->current_profile_setting.bupdate_sclk = tmp.bupdate_sclk; data->current_profile_setting.sclk_up_hyst = tmp.sclk_up_hyst; data->current_profile_setting.sclk_down_hyst = tmp.sclk_down_hyst; data->current_profile_setting.sclk_activity = tmp.sclk_activity; } if (tmp.bupdate_mclk) { data->current_profile_setting.bupdate_mclk = tmp.bupdate_mclk; data->current_profile_setting.mclk_up_hyst = tmp.mclk_up_hyst; data->current_profile_setting.mclk_down_hyst = tmp.mclk_down_hyst; data->current_profile_setting.mclk_activity = tmp.mclk_activity; } smu7_patch_compute_profile_mode(hwmgr, mode); hwmgr->power_profile_mode = mode; } break; default: return -EINVAL; } return 0; } static const struct pp_hwmgr_func smu7_hwmgr_funcs = { .backend_init = &smu7_hwmgr_backend_init, .backend_fini = &smu7_hwmgr_backend_fini, .asic_setup = &smu7_setup_asic_task, .dynamic_state_management_enable = &smu7_enable_dpm_tasks, .apply_state_adjust_rules = smu7_apply_state_adjust_rules, .force_dpm_level = &smu7_force_dpm_level, .power_state_set = smu7_set_power_state_tasks, .get_power_state_size = smu7_get_power_state_size, .get_mclk = smu7_dpm_get_mclk, .get_sclk = smu7_dpm_get_sclk, .patch_boot_state = smu7_dpm_patch_boot_state, .get_pp_table_entry = smu7_get_pp_table_entry, .get_num_of_pp_table_entries = smu7_get_number_of_powerplay_table_entries, .powerdown_uvd = smu7_powerdown_uvd, .powergate_uvd = smu7_powergate_uvd, .powergate_vce = smu7_powergate_vce, .disable_clock_power_gating = smu7_disable_clock_power_gating, .update_clock_gatings = smu7_update_clock_gatings, .notify_smc_display_config_after_ps_adjustment = smu7_notify_smc_display_config_after_ps_adjustment, .display_config_changed = smu7_display_configuration_changed_task, .set_max_fan_pwm_output = smu7_set_max_fan_pwm_output, .set_max_fan_rpm_output = smu7_set_max_fan_rpm_output, .stop_thermal_controller = smu7_thermal_stop_thermal_controller, .get_fan_speed_info = smu7_fan_ctrl_get_fan_speed_info, .get_fan_speed_percent = smu7_fan_ctrl_get_fan_speed_percent, .set_fan_speed_percent = smu7_fan_ctrl_set_fan_speed_percent, .reset_fan_speed_to_default = smu7_fan_ctrl_reset_fan_speed_to_default, .get_fan_speed_rpm = smu7_fan_ctrl_get_fan_speed_rpm, .set_fan_speed_rpm = smu7_fan_ctrl_set_fan_speed_rpm, .uninitialize_thermal_controller = smu7_thermal_ctrl_uninitialize_thermal_controller, .register_irq_handlers = smu7_register_irq_handlers, .check_smc_update_required_for_display_configuration = smu7_check_smc_update_required_for_display_configuration, .check_states_equal = smu7_check_states_equal, .set_fan_control_mode = smu7_set_fan_control_mode, .get_fan_control_mode = smu7_get_fan_control_mode, .force_clock_level = smu7_force_clock_level, .print_clock_levels = smu7_print_clock_levels, .powergate_gfx = smu7_powergate_gfx, .get_sclk_od = smu7_get_sclk_od, .set_sclk_od = smu7_set_sclk_od, .get_mclk_od = smu7_get_mclk_od, .set_mclk_od = smu7_set_mclk_od, .get_clock_by_type = smu7_get_clock_by_type, .read_sensor = smu7_read_sensor, .dynamic_state_management_disable = smu7_disable_dpm_tasks, .avfs_control = smu7_avfs_control, .disable_smc_firmware_ctf = smu7_thermal_disable_alert, .start_thermal_controller = smu7_start_thermal_controller, .notify_cac_buffer_info = smu7_notify_cac_buffer_info, .get_max_high_clocks = smu7_get_max_high_clocks, .get_thermal_temperature_range = smu7_get_thermal_temperature_range, .odn_edit_dpm_table = smu7_odn_edit_dpm_table, .set_power_limit = smu7_set_power_limit, .get_power_profile_mode = smu7_get_power_profile_mode, .set_power_profile_mode = smu7_set_power_profile_mode, }; uint8_t smu7_get_sleep_divider_id_from_clock(uint32_t clock, uint32_t clock_insr) { uint8_t i; uint32_t temp; uint32_t min = max(clock_insr, (uint32_t)SMU7_MINIMUM_ENGINE_CLOCK); PP_ASSERT_WITH_CODE((clock >= min), "Engine clock can't satisfy stutter requirement!", return 0); for (i = SMU7_MAX_DEEPSLEEP_DIVIDER_ID; ; i--) { temp = clock >> i; if (temp >= min || i == 0) break; } return i; } int smu7_init_function_pointers(struct pp_hwmgr *hwmgr) { int ret = 0; hwmgr->hwmgr_func = &smu7_hwmgr_funcs; if (hwmgr->pp_table_version == PP_TABLE_V0) hwmgr->pptable_func = &pptable_funcs; else if (hwmgr->pp_table_version == PP_TABLE_V1) hwmgr->pptable_func = &pptable_v1_0_funcs; return ret; }