/* * Copyright 2018 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD */ #include #include #include #include #include #include "dm_services.h" #include "amdgpu.h" #include "amdgpu_dm.h" #include "amdgpu_dm_irq.h" #include "amdgpu_pm.h" #include "dm_pp_smu.h" #include "amdgpu_smu.h" bool dm_pp_apply_display_requirements( const struct dc_context *ctx, const struct dm_pp_display_configuration *pp_display_cfg) { struct amdgpu_device *adev = ctx->driver_context; struct smu_context *smu = &adev->smu; int i; if (adev->pm.dpm_enabled) { memset(&adev->pm.pm_display_cfg, 0, sizeof(adev->pm.pm_display_cfg)); adev->pm.pm_display_cfg.cpu_cc6_disable = pp_display_cfg->cpu_cc6_disable; adev->pm.pm_display_cfg.cpu_pstate_disable = pp_display_cfg->cpu_pstate_disable; adev->pm.pm_display_cfg.cpu_pstate_separation_time = pp_display_cfg->cpu_pstate_separation_time; adev->pm.pm_display_cfg.nb_pstate_switch_disable = pp_display_cfg->nb_pstate_switch_disable; adev->pm.pm_display_cfg.num_display = pp_display_cfg->display_count; adev->pm.pm_display_cfg.num_path_including_non_display = pp_display_cfg->display_count; adev->pm.pm_display_cfg.min_core_set_clock = pp_display_cfg->min_engine_clock_khz/10; adev->pm.pm_display_cfg.min_core_set_clock_in_sr = pp_display_cfg->min_engine_clock_deep_sleep_khz/10; adev->pm.pm_display_cfg.min_mem_set_clock = pp_display_cfg->min_memory_clock_khz/10; adev->pm.pm_display_cfg.min_dcef_deep_sleep_set_clk = pp_display_cfg->min_engine_clock_deep_sleep_khz/10; adev->pm.pm_display_cfg.min_dcef_set_clk = pp_display_cfg->min_dcfclock_khz/10; adev->pm.pm_display_cfg.multi_monitor_in_sync = pp_display_cfg->all_displays_in_sync; adev->pm.pm_display_cfg.min_vblank_time = pp_display_cfg->avail_mclk_switch_time_us; adev->pm.pm_display_cfg.display_clk = pp_display_cfg->disp_clk_khz/10; adev->pm.pm_display_cfg.dce_tolerable_mclk_in_active_latency = pp_display_cfg->avail_mclk_switch_time_in_disp_active_us; adev->pm.pm_display_cfg.crtc_index = pp_display_cfg->crtc_index; adev->pm.pm_display_cfg.line_time_in_us = pp_display_cfg->line_time_in_us; adev->pm.pm_display_cfg.vrefresh = pp_display_cfg->disp_configs[0].v_refresh; adev->pm.pm_display_cfg.crossfire_display_index = -1; adev->pm.pm_display_cfg.min_bus_bandwidth = 0; for (i = 0; i < pp_display_cfg->display_count; i++) { const struct dm_pp_single_disp_config *dc_cfg = &pp_display_cfg->disp_configs[i]; adev->pm.pm_display_cfg.displays[i].controller_id = dc_cfg->pipe_idx + 1; } if (adev->powerplay.pp_funcs && adev->powerplay.pp_funcs->display_configuration_change) adev->powerplay.pp_funcs->display_configuration_change( adev->powerplay.pp_handle, &adev->pm.pm_display_cfg); else smu_display_configuration_change(smu, &adev->pm.pm_display_cfg); amdgpu_pm_compute_clocks(adev); } return true; } static void get_default_clock_levels( enum dm_pp_clock_type clk_type, struct dm_pp_clock_levels *clks) { uint32_t disp_clks_in_khz[6] = { 300000, 400000, 496560, 626090, 685720, 757900 }; uint32_t sclks_in_khz[6] = { 300000, 360000, 423530, 514290, 626090, 720000 }; uint32_t mclks_in_khz[2] = { 333000, 800000 }; switch (clk_type) { case DM_PP_CLOCK_TYPE_DISPLAY_CLK: clks->num_levels = 6; memmove(clks->clocks_in_khz, disp_clks_in_khz, sizeof(disp_clks_in_khz)); break; case DM_PP_CLOCK_TYPE_ENGINE_CLK: clks->num_levels = 6; memmove(clks->clocks_in_khz, sclks_in_khz, sizeof(sclks_in_khz)); break; case DM_PP_CLOCK_TYPE_MEMORY_CLK: clks->num_levels = 2; memmove(clks->clocks_in_khz, mclks_in_khz, sizeof(mclks_in_khz)); break; default: clks->num_levels = 0; break; } } static enum amd_pp_clock_type dc_to_pp_clock_type( enum dm_pp_clock_type dm_pp_clk_type) { enum amd_pp_clock_type amd_pp_clk_type = 0; switch (dm_pp_clk_type) { case DM_PP_CLOCK_TYPE_DISPLAY_CLK: amd_pp_clk_type = amd_pp_disp_clock; break; case DM_PP_CLOCK_TYPE_ENGINE_CLK: amd_pp_clk_type = amd_pp_sys_clock; break; case DM_PP_CLOCK_TYPE_MEMORY_CLK: amd_pp_clk_type = amd_pp_mem_clock; break; case DM_PP_CLOCK_TYPE_DCEFCLK: amd_pp_clk_type = amd_pp_dcef_clock; break; case DM_PP_CLOCK_TYPE_DCFCLK: amd_pp_clk_type = amd_pp_dcf_clock; break; case DM_PP_CLOCK_TYPE_PIXELCLK: amd_pp_clk_type = amd_pp_pixel_clock; break; case DM_PP_CLOCK_TYPE_FCLK: amd_pp_clk_type = amd_pp_f_clock; break; case DM_PP_CLOCK_TYPE_DISPLAYPHYCLK: amd_pp_clk_type = amd_pp_phy_clock; break; case DM_PP_CLOCK_TYPE_DPPCLK: amd_pp_clk_type = amd_pp_dpp_clock; break; default: DRM_ERROR("DM_PPLIB: invalid clock type: %d!\n", dm_pp_clk_type); break; } return amd_pp_clk_type; } static enum dm_pp_clocks_state pp_to_dc_powerlevel_state( enum PP_DAL_POWERLEVEL max_clocks_state) { switch (max_clocks_state) { case PP_DAL_POWERLEVEL_0: return DM_PP_CLOCKS_DPM_STATE_LEVEL_0; case PP_DAL_POWERLEVEL_1: return DM_PP_CLOCKS_DPM_STATE_LEVEL_1; case PP_DAL_POWERLEVEL_2: return DM_PP_CLOCKS_DPM_STATE_LEVEL_2; case PP_DAL_POWERLEVEL_3: return DM_PP_CLOCKS_DPM_STATE_LEVEL_3; case PP_DAL_POWERLEVEL_4: return DM_PP_CLOCKS_DPM_STATE_LEVEL_4; case PP_DAL_POWERLEVEL_5: return DM_PP_CLOCKS_DPM_STATE_LEVEL_5; case PP_DAL_POWERLEVEL_6: return DM_PP_CLOCKS_DPM_STATE_LEVEL_6; case PP_DAL_POWERLEVEL_7: return DM_PP_CLOCKS_DPM_STATE_LEVEL_7; default: DRM_ERROR("DM_PPLIB: invalid powerlevel state: %d!\n", max_clocks_state); return DM_PP_CLOCKS_STATE_INVALID; } } static void pp_to_dc_clock_levels( const struct amd_pp_clocks *pp_clks, struct dm_pp_clock_levels *dc_clks, enum dm_pp_clock_type dc_clk_type) { uint32_t i; if (pp_clks->count > DM_PP_MAX_CLOCK_LEVELS) { DRM_INFO("DM_PPLIB: Warning: %s clock: number of levels %d exceeds maximum of %d!\n", DC_DECODE_PP_CLOCK_TYPE(dc_clk_type), pp_clks->count, DM_PP_MAX_CLOCK_LEVELS); dc_clks->num_levels = DM_PP_MAX_CLOCK_LEVELS; } else dc_clks->num_levels = pp_clks->count; DRM_INFO("DM_PPLIB: values for %s clock\n", DC_DECODE_PP_CLOCK_TYPE(dc_clk_type)); for (i = 0; i < dc_clks->num_levels; i++) { DRM_INFO("DM_PPLIB:\t %d\n", pp_clks->clock[i]); dc_clks->clocks_in_khz[i] = pp_clks->clock[i]; } } static void pp_to_dc_clock_levels_with_latency( const struct pp_clock_levels_with_latency *pp_clks, struct dm_pp_clock_levels_with_latency *clk_level_info, enum dm_pp_clock_type dc_clk_type) { uint32_t i; if (pp_clks->num_levels > DM_PP_MAX_CLOCK_LEVELS) { DRM_INFO("DM_PPLIB: Warning: %s clock: number of levels %d exceeds maximum of %d!\n", DC_DECODE_PP_CLOCK_TYPE(dc_clk_type), pp_clks->num_levels, DM_PP_MAX_CLOCK_LEVELS); clk_level_info->num_levels = DM_PP_MAX_CLOCK_LEVELS; } else clk_level_info->num_levels = pp_clks->num_levels; DRM_DEBUG("DM_PPLIB: values for %s clock\n", DC_DECODE_PP_CLOCK_TYPE(dc_clk_type)); for (i = 0; i < clk_level_info->num_levels; i++) { DRM_DEBUG("DM_PPLIB:\t %d in kHz\n", pp_clks->data[i].clocks_in_khz); clk_level_info->data[i].clocks_in_khz = pp_clks->data[i].clocks_in_khz; clk_level_info->data[i].latency_in_us = pp_clks->data[i].latency_in_us; } } static void pp_to_dc_clock_levels_with_voltage( const struct pp_clock_levels_with_voltage *pp_clks, struct dm_pp_clock_levels_with_voltage *clk_level_info, enum dm_pp_clock_type dc_clk_type) { uint32_t i; if (pp_clks->num_levels > DM_PP_MAX_CLOCK_LEVELS) { DRM_INFO("DM_PPLIB: Warning: %s clock: number of levels %d exceeds maximum of %d!\n", DC_DECODE_PP_CLOCK_TYPE(dc_clk_type), pp_clks->num_levels, DM_PP_MAX_CLOCK_LEVELS); clk_level_info->num_levels = DM_PP_MAX_CLOCK_LEVELS; } else clk_level_info->num_levels = pp_clks->num_levels; DRM_INFO("DM_PPLIB: values for %s clock\n", DC_DECODE_PP_CLOCK_TYPE(dc_clk_type)); for (i = 0; i < clk_level_info->num_levels; i++) { DRM_INFO("DM_PPLIB:\t %d in kHz\n", pp_clks->data[i].clocks_in_khz); clk_level_info->data[i].clocks_in_khz = pp_clks->data[i].clocks_in_khz; clk_level_info->data[i].voltage_in_mv = pp_clks->data[i].voltage_in_mv; } } bool dm_pp_get_clock_levels_by_type( const struct dc_context *ctx, enum dm_pp_clock_type clk_type, struct dm_pp_clock_levels *dc_clks) { struct amdgpu_device *adev = ctx->driver_context; void *pp_handle = adev->powerplay.pp_handle; struct amd_pp_clocks pp_clks = { 0 }; struct amd_pp_simple_clock_info validation_clks = { 0 }; uint32_t i; if (adev->powerplay.pp_funcs && adev->powerplay.pp_funcs->get_clock_by_type) { if (adev->powerplay.pp_funcs->get_clock_by_type(pp_handle, dc_to_pp_clock_type(clk_type), &pp_clks)) { /* Error in pplib. Provide default values. */ return true; } } else if (adev->smu.funcs && adev->smu.funcs->get_clock_by_type) { if (smu_get_clock_by_type(&adev->smu, dc_to_pp_clock_type(clk_type), &pp_clks)) { get_default_clock_levels(clk_type, dc_clks); return true; } } pp_to_dc_clock_levels(&pp_clks, dc_clks, clk_type); if (adev->powerplay.pp_funcs && adev->powerplay.pp_funcs->get_display_mode_validation_clocks) { if (adev->powerplay.pp_funcs->get_display_mode_validation_clocks( pp_handle, &validation_clks)) { /* Error in pplib. Provide default values. */ DRM_INFO("DM_PPLIB: Warning: using default validation clocks!\n"); validation_clks.engine_max_clock = 72000; validation_clks.memory_max_clock = 80000; validation_clks.level = 0; } } else if (adev->smu.funcs && adev->smu.funcs->get_max_high_clocks) { if (smu_get_max_high_clocks(&adev->smu, &validation_clks)) { DRM_INFO("DM_PPLIB: Warning: using default validation clocks!\n"); validation_clks.engine_max_clock = 72000; validation_clks.memory_max_clock = 80000; validation_clks.level = 0; } } DRM_INFO("DM_PPLIB: Validation clocks:\n"); DRM_INFO("DM_PPLIB: engine_max_clock: %d\n", validation_clks.engine_max_clock); DRM_INFO("DM_PPLIB: memory_max_clock: %d\n", validation_clks.memory_max_clock); DRM_INFO("DM_PPLIB: level : %d\n", validation_clks.level); /* Translate 10 kHz to kHz. */ validation_clks.engine_max_clock *= 10; validation_clks.memory_max_clock *= 10; /* Determine the highest non-boosted level from the Validation Clocks */ if (clk_type == DM_PP_CLOCK_TYPE_ENGINE_CLK) { for (i = 0; i < dc_clks->num_levels; i++) { if (dc_clks->clocks_in_khz[i] > validation_clks.engine_max_clock) { /* This clock is higher the validation clock. * Than means the previous one is the highest * non-boosted one. */ DRM_INFO("DM_PPLIB: reducing engine clock level from %d to %d\n", dc_clks->num_levels, i); dc_clks->num_levels = i > 0 ? i : 1; break; } } } else if (clk_type == DM_PP_CLOCK_TYPE_MEMORY_CLK) { for (i = 0; i < dc_clks->num_levels; i++) { if (dc_clks->clocks_in_khz[i] > validation_clks.memory_max_clock) { DRM_INFO("DM_PPLIB: reducing memory clock level from %d to %d\n", dc_clks->num_levels, i); dc_clks->num_levels = i > 0 ? i : 1; break; } } } return true; } bool dm_pp_get_clock_levels_by_type_with_latency( const struct dc_context *ctx, enum dm_pp_clock_type clk_type, struct dm_pp_clock_levels_with_latency *clk_level_info) { struct amdgpu_device *adev = ctx->driver_context; void *pp_handle = adev->powerplay.pp_handle; struct pp_clock_levels_with_latency pp_clks = { 0 }; const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; int ret; if (pp_funcs && pp_funcs->get_clock_by_type_with_latency) { ret = pp_funcs->get_clock_by_type_with_latency(pp_handle, dc_to_pp_clock_type(clk_type), &pp_clks); if (ret) return false; } else if (adev->smu.ppt_funcs && adev->smu.ppt_funcs->get_clock_by_type_with_latency) { if (smu_get_clock_by_type_with_latency(&adev->smu, dc_to_pp_clock_type(clk_type), &pp_clks)) return false; } pp_to_dc_clock_levels_with_latency(&pp_clks, clk_level_info, clk_type); return true; } bool dm_pp_get_clock_levels_by_type_with_voltage( const struct dc_context *ctx, enum dm_pp_clock_type clk_type, struct dm_pp_clock_levels_with_voltage *clk_level_info) { struct amdgpu_device *adev = ctx->driver_context; void *pp_handle = adev->powerplay.pp_handle; struct pp_clock_levels_with_voltage pp_clk_info = {0}; const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; int ret; if (pp_funcs && pp_funcs->get_clock_by_type_with_voltage) { ret = pp_funcs->get_clock_by_type_with_voltage(pp_handle, dc_to_pp_clock_type(clk_type), &pp_clk_info); if (ret) return false; } else if (adev->smu.ppt_funcs && adev->smu.ppt_funcs->get_clock_by_type_with_voltage) { if (smu_get_clock_by_type_with_voltage(&adev->smu, dc_to_pp_clock_type(clk_type), &pp_clk_info)) return false; } pp_to_dc_clock_levels_with_voltage(&pp_clk_info, clk_level_info, clk_type); return true; } bool dm_pp_notify_wm_clock_changes( const struct dc_context *ctx, struct dm_pp_wm_sets_with_clock_ranges *wm_with_clock_ranges) { /* TODO: to be implemented */ return false; } bool dm_pp_apply_power_level_change_request( const struct dc_context *ctx, struct dm_pp_power_level_change_request *level_change_req) { /* TODO: to be implemented */ return false; } bool dm_pp_apply_clock_for_voltage_request( const struct dc_context *ctx, struct dm_pp_clock_for_voltage_req *clock_for_voltage_req) { struct amdgpu_device *adev = ctx->driver_context; struct pp_display_clock_request pp_clock_request = {0}; int ret = 0; pp_clock_request.clock_type = dc_to_pp_clock_type(clock_for_voltage_req->clk_type); pp_clock_request.clock_freq_in_khz = clock_for_voltage_req->clocks_in_khz; if (!pp_clock_request.clock_type) return false; if (adev->powerplay.pp_funcs && adev->powerplay.pp_funcs->display_clock_voltage_request) ret = adev->powerplay.pp_funcs->display_clock_voltage_request( adev->powerplay.pp_handle, &pp_clock_request); else if (adev->smu.funcs && adev->smu.funcs->display_clock_voltage_request) ret = smu_display_clock_voltage_request(&adev->smu, &pp_clock_request); if (ret) return false; return true; } bool dm_pp_get_static_clocks( const struct dc_context *ctx, struct dm_pp_static_clock_info *static_clk_info) { struct amdgpu_device *adev = ctx->driver_context; struct amd_pp_clock_info pp_clk_info = {0}; int ret = 0; if (adev->powerplay.pp_funcs && adev->powerplay.pp_funcs->get_current_clocks) ret = adev->powerplay.pp_funcs->get_current_clocks( adev->powerplay.pp_handle, &pp_clk_info); else if (adev->smu.funcs) ret = smu_get_current_clocks(&adev->smu, &pp_clk_info); if (ret) return false; static_clk_info->max_clocks_state = pp_to_dc_powerlevel_state(pp_clk_info.max_clocks_state); static_clk_info->max_mclk_khz = pp_clk_info.max_memory_clock * 10; static_clk_info->max_sclk_khz = pp_clk_info.max_engine_clock * 10; return true; } void pp_rv_set_wm_ranges(struct pp_smu *pp, struct pp_smu_wm_range_sets *ranges) { const struct dc_context *ctx = pp->dm; struct amdgpu_device *adev = ctx->driver_context; void *pp_handle = adev->powerplay.pp_handle; const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; struct dm_pp_wm_sets_with_clock_ranges_soc15 wm_with_clock_ranges; struct dm_pp_clock_range_for_dmif_wm_set_soc15 *wm_dce_clocks = wm_with_clock_ranges.wm_dmif_clocks_ranges; struct dm_pp_clock_range_for_mcif_wm_set_soc15 *wm_soc_clocks = wm_with_clock_ranges.wm_mcif_clocks_ranges; int32_t i; wm_with_clock_ranges.num_wm_dmif_sets = ranges->num_reader_wm_sets; wm_with_clock_ranges.num_wm_mcif_sets = ranges->num_writer_wm_sets; for (i = 0; i < wm_with_clock_ranges.num_wm_dmif_sets; i++) { if (ranges->reader_wm_sets[i].wm_inst > 3) wm_dce_clocks[i].wm_set_id = WM_SET_A; else wm_dce_clocks[i].wm_set_id = ranges->reader_wm_sets[i].wm_inst; wm_dce_clocks[i].wm_max_dcfclk_clk_in_khz = ranges->reader_wm_sets[i].max_drain_clk_mhz * 1000; wm_dce_clocks[i].wm_min_dcfclk_clk_in_khz = ranges->reader_wm_sets[i].min_drain_clk_mhz * 1000; wm_dce_clocks[i].wm_max_mem_clk_in_khz = ranges->reader_wm_sets[i].max_fill_clk_mhz * 1000; wm_dce_clocks[i].wm_min_mem_clk_in_khz = ranges->reader_wm_sets[i].min_fill_clk_mhz * 1000; } for (i = 0; i < wm_with_clock_ranges.num_wm_mcif_sets; i++) { if (ranges->writer_wm_sets[i].wm_inst > 3) wm_soc_clocks[i].wm_set_id = WM_SET_A; else wm_soc_clocks[i].wm_set_id = ranges->writer_wm_sets[i].wm_inst; wm_soc_clocks[i].wm_max_socclk_clk_in_khz = ranges->writer_wm_sets[i].max_fill_clk_mhz * 1000; wm_soc_clocks[i].wm_min_socclk_clk_in_khz = ranges->writer_wm_sets[i].min_fill_clk_mhz * 1000; wm_soc_clocks[i].wm_max_mem_clk_in_khz = ranges->writer_wm_sets[i].max_drain_clk_mhz * 1000; wm_soc_clocks[i].wm_min_mem_clk_in_khz = ranges->writer_wm_sets[i].min_drain_clk_mhz * 1000; } if (pp_funcs && pp_funcs->set_watermarks_for_clocks_ranges) pp_funcs->set_watermarks_for_clocks_ranges(pp_handle, &wm_with_clock_ranges); else if (adev->smu.funcs && adev->smu.funcs->set_watermarks_for_clock_ranges) smu_set_watermarks_for_clock_ranges(&adev->smu, &wm_with_clock_ranges); } void pp_rv_set_pme_wa_enable(struct pp_smu *pp) { const struct dc_context *ctx = pp->dm; struct amdgpu_device *adev = ctx->driver_context; void *pp_handle = adev->powerplay.pp_handle; const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; if (pp_funcs && pp_funcs->notify_smu_enable_pwe) pp_funcs->notify_smu_enable_pwe(pp_handle); else if (adev->smu.funcs) smu_notify_smu_enable_pwe(&adev->smu); } void pp_rv_set_active_display_count(struct pp_smu *pp, int count) { const struct dc_context *ctx = pp->dm; struct amdgpu_device *adev = ctx->driver_context; void *pp_handle = adev->powerplay.pp_handle; const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; if (!pp_funcs || !pp_funcs->set_active_display_count) return; pp_funcs->set_active_display_count(pp_handle, count); } void pp_rv_set_min_deep_sleep_dcfclk(struct pp_smu *pp, int clock) { const struct dc_context *ctx = pp->dm; struct amdgpu_device *adev = ctx->driver_context; void *pp_handle = adev->powerplay.pp_handle; const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; if (!pp_funcs || !pp_funcs->set_min_deep_sleep_dcefclk) return; pp_funcs->set_min_deep_sleep_dcefclk(pp_handle, clock); } void pp_rv_set_hard_min_dcefclk_by_freq(struct pp_smu *pp, int clock) { const struct dc_context *ctx = pp->dm; struct amdgpu_device *adev = ctx->driver_context; void *pp_handle = adev->powerplay.pp_handle; const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; if (!pp_funcs || !pp_funcs->set_hard_min_dcefclk_by_freq) return; pp_funcs->set_hard_min_dcefclk_by_freq(pp_handle, clock); } void pp_rv_set_hard_min_fclk_by_freq(struct pp_smu *pp, int mhz) { const struct dc_context *ctx = pp->dm; struct amdgpu_device *adev = ctx->driver_context; void *pp_handle = adev->powerplay.pp_handle; const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; if (!pp_funcs || !pp_funcs->set_hard_min_fclk_by_freq) return; pp_funcs->set_hard_min_fclk_by_freq(pp_handle, mhz); } void dm_pp_get_funcs( struct dc_context *ctx, struct pp_smu_funcs *funcs) { funcs->rv_funcs.pp_smu.dm = ctx; funcs->rv_funcs.set_wm_ranges = pp_rv_set_wm_ranges; funcs->rv_funcs.set_pme_wa_enable = pp_rv_set_pme_wa_enable; funcs->rv_funcs.set_display_count = pp_rv_set_active_display_count; funcs->rv_funcs.set_min_deep_sleep_dcfclk = pp_rv_set_min_deep_sleep_dcfclk; funcs->rv_funcs.set_hard_min_dcfclk_by_freq = pp_rv_set_hard_min_dcefclk_by_freq; funcs->rv_funcs.set_hard_min_fclk_by_freq = pp_rv_set_hard_min_fclk_by_freq; }