/* * Copyright 2016 Broadcom * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License, version 2, as * published by the Free Software Foundation (the "GPL"). * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License version 2 (GPLv2) for more details. * * You should have received a copy of the GNU General Public License * version 2 (GPLv2) along with this source code. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "util.h" #include "cipher.h" #include "spu.h" #include "spum.h" #include "spu2.h" /* ================= Device Structure ================== */ struct device_private iproc_priv; /* ==================== Parameters ===================== */ int flow_debug_logging; module_param(flow_debug_logging, int, 0644); MODULE_PARM_DESC(flow_debug_logging, "Enable Flow Debug Logging"); int packet_debug_logging; module_param(packet_debug_logging, int, 0644); MODULE_PARM_DESC(packet_debug_logging, "Enable Packet Debug Logging"); int debug_logging_sleep; module_param(debug_logging_sleep, int, 0644); MODULE_PARM_DESC(debug_logging_sleep, "Packet Debug Logging Sleep"); /* * The value of these module parameters is used to set the priority for each * algo type when this driver registers algos with the kernel crypto API. * To use a priority other than the default, set the priority in the insmod or * modprobe. Changing the module priority after init time has no effect. * * The default priorities are chosen to be lower (less preferred) than ARMv8 CE * algos, but more preferred than generic software algos. */ static int cipher_pri = 150; module_param(cipher_pri, int, 0644); MODULE_PARM_DESC(cipher_pri, "Priority for cipher algos"); static int hash_pri = 100; module_param(hash_pri, int, 0644); MODULE_PARM_DESC(hash_pri, "Priority for hash algos"); static int aead_pri = 150; module_param(aead_pri, int, 0644); MODULE_PARM_DESC(aead_pri, "Priority for AEAD algos"); /* A type 3 BCM header, expected to precede the SPU header for SPU-M. * Bits 3 and 4 in the first byte encode the channel number (the dma ringset). * 0x60 - ring 0 * 0x68 - ring 1 * 0x70 - ring 2 * 0x78 - ring 3 */ char BCMHEADER[] = { 0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x28 }; /* * Some SPU hw does not use BCM header on SPU messages. So BCM_HDR_LEN * is set dynamically after reading SPU type from device tree. */ #define BCM_HDR_LEN iproc_priv.bcm_hdr_len /* min and max time to sleep before retrying when mbox queue is full. usec */ #define MBOX_SLEEP_MIN 800 #define MBOX_SLEEP_MAX 1000 /** * select_channel() - Select a SPU channel to handle a crypto request. Selects * channel in round robin order. * * Return: channel index */ static u8 select_channel(void) { u8 chan_idx = atomic_inc_return(&iproc_priv.next_chan); return chan_idx % iproc_priv.spu.num_chan; } /** * spu_ablkcipher_rx_sg_create() - Build up the scatterlist of buffers used to * receive a SPU response message for an ablkcipher request. Includes buffers to * catch SPU message headers and the response data. * @mssg: mailbox message containing the receive sg * @rctx: crypto request context * @rx_frag_num: number of scatterlist elements required to hold the * SPU response message * @chunksize: Number of bytes of response data expected * @stat_pad_len: Number of bytes required to pad the STAT field to * a 4-byte boundary * * The scatterlist that gets allocated here is freed in spu_chunk_cleanup() * when the request completes, whether the request is handled successfully or * there is an error. * * Returns: * 0 if successful * < 0 if an error */ static int spu_ablkcipher_rx_sg_create(struct brcm_message *mssg, struct iproc_reqctx_s *rctx, u8 rx_frag_num, unsigned int chunksize, u32 stat_pad_len) { struct spu_hw *spu = &iproc_priv.spu; struct scatterlist *sg; /* used to build sgs in mbox message */ struct iproc_ctx_s *ctx = rctx->ctx; u32 datalen; /* Number of bytes of response data expected */ mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist), rctx->gfp); if (!mssg->spu.dst) return -ENOMEM; sg = mssg->spu.dst; sg_init_table(sg, rx_frag_num); /* Space for SPU message header */ sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len); /* If XTS tweak in payload, add buffer to receive encrypted tweak */ if ((ctx->cipher.mode == CIPHER_MODE_XTS) && spu->spu_xts_tweak_in_payload()) sg_set_buf(sg++, rctx->msg_buf.c.supdt_tweak, SPU_XTS_TWEAK_SIZE); /* Copy in each dst sg entry from request, up to chunksize */ datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip, rctx->dst_nents, chunksize); if (datalen < chunksize) { pr_err("%s(): failed to copy dst sg to mbox msg. chunksize %u, datalen %u", __func__, chunksize, datalen); return -EFAULT; } if (ctx->cipher.alg == CIPHER_ALG_RC4) /* Add buffer to catch 260-byte SUPDT field for RC4 */ sg_set_buf(sg++, rctx->msg_buf.c.supdt_tweak, SPU_SUPDT_LEN); if (stat_pad_len) sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len); memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN); sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len()); return 0; } /** * spu_ablkcipher_tx_sg_create() - Build up the scatterlist of buffers used to * send a SPU request message for an ablkcipher request. Includes SPU message * headers and the request data. * @mssg: mailbox message containing the transmit sg * @rctx: crypto request context * @tx_frag_num: number of scatterlist elements required to construct the * SPU request message * @chunksize: Number of bytes of request data * @pad_len: Number of pad bytes * * The scatterlist that gets allocated here is freed in spu_chunk_cleanup() * when the request completes, whether the request is handled successfully or * there is an error. * * Returns: * 0 if successful * < 0 if an error */ static int spu_ablkcipher_tx_sg_create(struct brcm_message *mssg, struct iproc_reqctx_s *rctx, u8 tx_frag_num, unsigned int chunksize, u32 pad_len) { struct spu_hw *spu = &iproc_priv.spu; struct scatterlist *sg; /* used to build sgs in mbox message */ struct iproc_ctx_s *ctx = rctx->ctx; u32 datalen; /* Number of bytes of response data expected */ u32 stat_len; mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist), rctx->gfp); if (unlikely(!mssg->spu.src)) return -ENOMEM; sg = mssg->spu.src; sg_init_table(sg, tx_frag_num); sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr, BCM_HDR_LEN + ctx->spu_req_hdr_len); /* if XTS tweak in payload, copy from IV (where crypto API puts it) */ if ((ctx->cipher.mode == CIPHER_MODE_XTS) && spu->spu_xts_tweak_in_payload()) sg_set_buf(sg++, rctx->msg_buf.iv_ctr, SPU_XTS_TWEAK_SIZE); /* Copy in each src sg entry from request, up to chunksize */ datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip, rctx->src_nents, chunksize); if (unlikely(datalen < chunksize)) { pr_err("%s(): failed to copy src sg to mbox msg", __func__); return -EFAULT; } if (pad_len) sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len); stat_len = spu->spu_tx_status_len(); if (stat_len) { memset(rctx->msg_buf.tx_stat, 0, stat_len); sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len); } return 0; } static int mailbox_send_message(struct brcm_message *mssg, u32 flags, u8 chan_idx) { int err; int retry_cnt = 0; struct device *dev = &(iproc_priv.pdev->dev); err = mbox_send_message(iproc_priv.mbox[chan_idx], mssg); if (flags & CRYPTO_TFM_REQ_MAY_SLEEP) { while ((err == -ENOBUFS) && (retry_cnt < SPU_MB_RETRY_MAX)) { /* * Mailbox queue is full. Since MAY_SLEEP is set, assume * not in atomic context and we can wait and try again. */ retry_cnt++; usleep_range(MBOX_SLEEP_MIN, MBOX_SLEEP_MAX); err = mbox_send_message(iproc_priv.mbox[chan_idx], mssg); atomic_inc(&iproc_priv.mb_no_spc); } } if (err < 0) { atomic_inc(&iproc_priv.mb_send_fail); return err; } /* Check error returned by mailbox controller */ err = mssg->error; if (unlikely(err < 0)) { dev_err(dev, "message error %d", err); /* Signal txdone for mailbox channel */ } /* Signal txdone for mailbox channel */ mbox_client_txdone(iproc_priv.mbox[chan_idx], err); return err; } /** * handle_ablkcipher_req() - Submit as much of a block cipher request as fits in * a single SPU request message, starting at the current position in the request * data. * @rctx: Crypto request context * * This may be called on the crypto API thread, or, when a request is so large * it must be broken into multiple SPU messages, on the thread used to invoke * the response callback. When requests are broken into multiple SPU * messages, we assume subsequent messages depend on previous results, and * thus always wait for previous results before submitting the next message. * Because requests are submitted in lock step like this, there is no need * to synchronize access to request data structures. * * Return: -EINPROGRESS: request has been accepted and result will be returned * asynchronously * Any other value indicates an error */ static int handle_ablkcipher_req(struct iproc_reqctx_s *rctx) { struct spu_hw *spu = &iproc_priv.spu; struct crypto_async_request *areq = rctx->parent; struct ablkcipher_request *req = container_of(areq, struct ablkcipher_request, base); struct iproc_ctx_s *ctx = rctx->ctx; struct spu_cipher_parms cipher_parms; int err = 0; unsigned int chunksize = 0; /* Num bytes of request to submit */ int remaining = 0; /* Bytes of request still to process */ int chunk_start; /* Beginning of data for current SPU msg */ /* IV or ctr value to use in this SPU msg */ u8 local_iv_ctr[MAX_IV_SIZE]; u32 stat_pad_len; /* num bytes to align status field */ u32 pad_len; /* total length of all padding */ bool update_key = false; struct brcm_message *mssg; /* mailbox message */ /* number of entries in src and dst sg in mailbox message. */ u8 rx_frag_num = 2; /* response header and STATUS */ u8 tx_frag_num = 1; /* request header */ flow_log("%s\n", __func__); cipher_parms.alg = ctx->cipher.alg; cipher_parms.mode = ctx->cipher.mode; cipher_parms.type = ctx->cipher_type; cipher_parms.key_len = ctx->enckeylen; cipher_parms.key_buf = ctx->enckey; cipher_parms.iv_buf = local_iv_ctr; cipher_parms.iv_len = rctx->iv_ctr_len; mssg = &rctx->mb_mssg; chunk_start = rctx->src_sent; remaining = rctx->total_todo - chunk_start; /* determine the chunk we are breaking off and update the indexes */ if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) && (remaining > ctx->max_payload)) chunksize = ctx->max_payload; else chunksize = remaining; rctx->src_sent += chunksize; rctx->total_sent = rctx->src_sent; /* Count number of sg entries to be included in this request */ rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize); rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize); if ((ctx->cipher.mode == CIPHER_MODE_CBC) && rctx->is_encrypt && chunk_start) /* * Encrypting non-first first chunk. Copy last block of * previous result to IV for this chunk. */ sg_copy_part_to_buf(req->dst, rctx->msg_buf.iv_ctr, rctx->iv_ctr_len, chunk_start - rctx->iv_ctr_len); if (rctx->iv_ctr_len) { /* get our local copy of the iv */ __builtin_memcpy(local_iv_ctr, rctx->msg_buf.iv_ctr, rctx->iv_ctr_len); /* generate the next IV if possible */ if ((ctx->cipher.mode == CIPHER_MODE_CBC) && !rctx->is_encrypt) { /* * CBC Decrypt: next IV is the last ciphertext block in * this chunk */ sg_copy_part_to_buf(req->src, rctx->msg_buf.iv_ctr, rctx->iv_ctr_len, rctx->src_sent - rctx->iv_ctr_len); } else if (ctx->cipher.mode == CIPHER_MODE_CTR) { /* * The SPU hardware increments the counter once for * each AES block of 16 bytes. So update the counter * for the next chunk, if there is one. Note that for * this chunk, the counter has already been copied to * local_iv_ctr. We can assume a block size of 16, * because we only support CTR mode for AES, not for * any other cipher alg. */ add_to_ctr(rctx->msg_buf.iv_ctr, chunksize >> 4); } } if (ctx->cipher.alg == CIPHER_ALG_RC4) { rx_frag_num++; if (chunk_start) { /* * for non-first RC4 chunks, use SUPDT from previous * response as key for this chunk. */ cipher_parms.key_buf = rctx->msg_buf.c.supdt_tweak; update_key = true; cipher_parms.type = CIPHER_TYPE_UPDT; } else if (!rctx->is_encrypt) { /* * First RC4 chunk. For decrypt, key in pre-built msg * header may have been changed if encrypt required * multiple chunks. So revert the key to the * ctx->enckey value. */ update_key = true; cipher_parms.type = CIPHER_TYPE_INIT; } } if (ctx->max_payload == SPU_MAX_PAYLOAD_INF) flow_log("max_payload infinite\n"); else flow_log("max_payload %u\n", ctx->max_payload); flow_log("sent:%u start:%u remains:%u size:%u\n", rctx->src_sent, chunk_start, remaining, chunksize); /* Copy SPU header template created at setkey time */ memcpy(rctx->msg_buf.bcm_spu_req_hdr, ctx->bcm_spu_req_hdr, sizeof(rctx->msg_buf.bcm_spu_req_hdr)); /* * Pass SUPDT field as key. Key field in finish() call is only used * when update_key has been set above for RC4. Will be ignored in * all other cases. */ spu->spu_cipher_req_finish(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN, ctx->spu_req_hdr_len, !(rctx->is_encrypt), &cipher_parms, update_key, chunksize); atomic64_add(chunksize, &iproc_priv.bytes_out); stat_pad_len = spu->spu_wordalign_padlen(chunksize); if (stat_pad_len) rx_frag_num++; pad_len = stat_pad_len; if (pad_len) { tx_frag_num++; spu->spu_request_pad(rctx->msg_buf.spu_req_pad, 0, 0, ctx->auth.alg, ctx->auth.mode, rctx->total_sent, stat_pad_len); } spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN, ctx->spu_req_hdr_len); packet_log("payload:\n"); dump_sg(rctx->src_sg, rctx->src_skip, chunksize); packet_dump(" pad: ", rctx->msg_buf.spu_req_pad, pad_len); /* * Build mailbox message containing SPU request msg and rx buffers * to catch response message */ memset(mssg, 0, sizeof(*mssg)); mssg->type = BRCM_MESSAGE_SPU; mssg->ctx = rctx; /* Will be returned in response */ /* Create rx scatterlist to catch result */ rx_frag_num += rctx->dst_nents; if ((ctx->cipher.mode == CIPHER_MODE_XTS) && spu->spu_xts_tweak_in_payload()) rx_frag_num++; /* extra sg to insert tweak */ err = spu_ablkcipher_rx_sg_create(mssg, rctx, rx_frag_num, chunksize, stat_pad_len); if (err) return err; /* Create tx scatterlist containing SPU request message */ tx_frag_num += rctx->src_nents; if (spu->spu_tx_status_len()) tx_frag_num++; if ((ctx->cipher.mode == CIPHER_MODE_XTS) && spu->spu_xts_tweak_in_payload()) tx_frag_num++; /* extra sg to insert tweak */ err = spu_ablkcipher_tx_sg_create(mssg, rctx, tx_frag_num, chunksize, pad_len); if (err) return err; err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx); if (unlikely(err < 0)) return err; return -EINPROGRESS; } /** * handle_ablkcipher_resp() - Process a block cipher SPU response. Updates the * total received count for the request and updates global stats. * @rctx: Crypto request context */ static void handle_ablkcipher_resp(struct iproc_reqctx_s *rctx) { struct spu_hw *spu = &iproc_priv.spu; #ifdef DEBUG struct crypto_async_request *areq = rctx->parent; struct ablkcipher_request *req = ablkcipher_request_cast(areq); #endif struct iproc_ctx_s *ctx = rctx->ctx; u32 payload_len; /* See how much data was returned */ payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr); /* * In XTS mode, the first SPU_XTS_TWEAK_SIZE bytes may be the * encrypted tweak ("i") value; we don't count those. */ if ((ctx->cipher.mode == CIPHER_MODE_XTS) && spu->spu_xts_tweak_in_payload() && (payload_len >= SPU_XTS_TWEAK_SIZE)) payload_len -= SPU_XTS_TWEAK_SIZE; atomic64_add(payload_len, &iproc_priv.bytes_in); flow_log("%s() offset: %u, bd_len: %u BD:\n", __func__, rctx->total_received, payload_len); dump_sg(req->dst, rctx->total_received, payload_len); if (ctx->cipher.alg == CIPHER_ALG_RC4) packet_dump(" supdt ", rctx->msg_buf.c.supdt_tweak, SPU_SUPDT_LEN); rctx->total_received += payload_len; if (rctx->total_received == rctx->total_todo) { atomic_inc(&iproc_priv.op_counts[SPU_OP_CIPHER]); atomic_inc( &iproc_priv.cipher_cnt[ctx->cipher.alg][ctx->cipher.mode]); } } /** * spu_ahash_rx_sg_create() - Build up the scatterlist of buffers used to * receive a SPU response message for an ahash request. * @mssg: mailbox message containing the receive sg * @rctx: crypto request context * @rx_frag_num: number of scatterlist elements required to hold the * SPU response message * @digestsize: length of hash digest, in bytes * @stat_pad_len: Number of bytes required to pad the STAT field to * a 4-byte boundary * * The scatterlist that gets allocated here is freed in spu_chunk_cleanup() * when the request completes, whether the request is handled successfully or * there is an error. * * Return: * 0 if successful * < 0 if an error */ static int spu_ahash_rx_sg_create(struct brcm_message *mssg, struct iproc_reqctx_s *rctx, u8 rx_frag_num, unsigned int digestsize, u32 stat_pad_len) { struct spu_hw *spu = &iproc_priv.spu; struct scatterlist *sg; /* used to build sgs in mbox message */ struct iproc_ctx_s *ctx = rctx->ctx; mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist), rctx->gfp); if (!mssg->spu.dst) return -ENOMEM; sg = mssg->spu.dst; sg_init_table(sg, rx_frag_num); /* Space for SPU message header */ sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len); /* Space for digest */ sg_set_buf(sg++, rctx->msg_buf.digest, digestsize); if (stat_pad_len) sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len); memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN); sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len()); return 0; } /** * spu_ahash_tx_sg_create() - Build up the scatterlist of buffers used to send * a SPU request message for an ahash request. Includes SPU message headers and * the request data. * @mssg: mailbox message containing the transmit sg * @rctx: crypto request context * @tx_frag_num: number of scatterlist elements required to construct the * SPU request message * @spu_hdr_len: length in bytes of SPU message header * @hash_carry_len: Number of bytes of data carried over from previous req * @new_data_len: Number of bytes of new request data * @pad_len: Number of pad bytes * * The scatterlist that gets allocated here is freed in spu_chunk_cleanup() * when the request completes, whether the request is handled successfully or * there is an error. * * Return: * 0 if successful * < 0 if an error */ static int spu_ahash_tx_sg_create(struct brcm_message *mssg, struct iproc_reqctx_s *rctx, u8 tx_frag_num, u32 spu_hdr_len, unsigned int hash_carry_len, unsigned int new_data_len, u32 pad_len) { struct spu_hw *spu = &iproc_priv.spu; struct scatterlist *sg; /* used to build sgs in mbox message */ u32 datalen; /* Number of bytes of response data expected */ u32 stat_len; mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist), rctx->gfp); if (!mssg->spu.src) return -ENOMEM; sg = mssg->spu.src; sg_init_table(sg, tx_frag_num); sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr, BCM_HDR_LEN + spu_hdr_len); if (hash_carry_len) sg_set_buf(sg++, rctx->hash_carry, hash_carry_len); if (new_data_len) { /* Copy in each src sg entry from request, up to chunksize */ datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip, rctx->src_nents, new_data_len); if (datalen < new_data_len) { pr_err("%s(): failed to copy src sg to mbox msg", __func__); return -EFAULT; } } if (pad_len) sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len); stat_len = spu->spu_tx_status_len(); if (stat_len) { memset(rctx->msg_buf.tx_stat, 0, stat_len); sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len); } return 0; } /** * handle_ahash_req() - Process an asynchronous hash request from the crypto * API. * @rctx: Crypto request context * * Builds a SPU request message embedded in a mailbox message and submits the * mailbox message on a selected mailbox channel. The SPU request message is * constructed as a scatterlist, including entries from the crypto API's * src scatterlist to avoid copying the data to be hashed. This function is * called either on the thread from the crypto API, or, in the case that the * crypto API request is too large to fit in a single SPU request message, * on the thread that invokes the receive callback with a response message. * Because some operations require the response from one chunk before the next * chunk can be submitted, we always wait for the response for the previous * chunk before submitting the next chunk. Because requests are submitted in * lock step like this, there is no need to synchronize access to request data * structures. * * Return: * -EINPROGRESS: request has been submitted to SPU and response will be * returned asynchronously * -EAGAIN: non-final request included a small amount of data, which for * efficiency we did not submit to the SPU, but instead stored * to be submitted to the SPU with the next part of the request * other: an error code */ static int handle_ahash_req(struct iproc_reqctx_s *rctx) { struct spu_hw *spu = &iproc_priv.spu; struct crypto_async_request *areq = rctx->parent; struct ahash_request *req = ahash_request_cast(areq); struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); struct crypto_tfm *tfm = crypto_ahash_tfm(ahash); unsigned int blocksize = crypto_tfm_alg_blocksize(tfm); struct iproc_ctx_s *ctx = rctx->ctx; /* number of bytes still to be hashed in this req */ unsigned int nbytes_to_hash = 0; int err = 0; unsigned int chunksize = 0; /* length of hash carry + new data */ /* * length of new data, not from hash carry, to be submitted in * this hw request */ unsigned int new_data_len; unsigned int __maybe_unused chunk_start = 0; u32 db_size; /* Length of data field, incl gcm and hash padding */ int pad_len = 0; /* total pad len, including gcm, hash, stat padding */ u32 data_pad_len = 0; /* length of GCM/CCM padding */ u32 stat_pad_len = 0; /* length of padding to align STATUS word */ struct brcm_message *mssg; /* mailbox message */ struct spu_request_opts req_opts; struct spu_cipher_parms cipher_parms; struct spu_hash_parms hash_parms; struct spu_aead_parms aead_parms; unsigned int local_nbuf; u32 spu_hdr_len; unsigned int digestsize; u16 rem = 0; /* * number of entries in src and dst sg. Always includes SPU msg header. * rx always includes a buffer to catch digest and STATUS. */ u8 rx_frag_num = 3; u8 tx_frag_num = 1; flow_log("total_todo %u, total_sent %u\n", rctx->total_todo, rctx->total_sent); memset(&req_opts, 0, sizeof(req_opts)); memset(&cipher_parms, 0, sizeof(cipher_parms)); memset(&hash_parms, 0, sizeof(hash_parms)); memset(&aead_parms, 0, sizeof(aead_parms)); req_opts.bd_suppress = true; hash_parms.alg = ctx->auth.alg; hash_parms.mode = ctx->auth.mode; hash_parms.type = HASH_TYPE_NONE; hash_parms.key_buf = (u8 *)ctx->authkey; hash_parms.key_len = ctx->authkeylen; /* * For hash algorithms below assignment looks bit odd but * it's needed for AES-XCBC and AES-CMAC hash algorithms * to differentiate between 128, 192, 256 bit key values. * Based on the key values, hash algorithm is selected. * For example for 128 bit key, hash algorithm is AES-128. */ cipher_parms.type = ctx->cipher_type; mssg = &rctx->mb_mssg; chunk_start = rctx->src_sent; /* * Compute the amount remaining to hash. This may include data * carried over from previous requests. */ nbytes_to_hash = rctx->total_todo - rctx->total_sent; chunksize = nbytes_to_hash; if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) && (chunksize > ctx->max_payload)) chunksize = ctx->max_payload; /* * If this is not a final request and the request data is not a multiple * of a full block, then simply park the extra data and prefix it to the * data for the next request. */ if (!rctx->is_final) { u8 *dest = rctx->hash_carry + rctx->hash_carry_len; u16 new_len; /* len of data to add to hash carry */ rem = chunksize % blocksize; /* remainder */ if (rem) { /* chunksize not a multiple of blocksize */ chunksize -= rem; if (chunksize == 0) { /* Don't have a full block to submit to hw */ new_len = rem - rctx->hash_carry_len; sg_copy_part_to_buf(req->src, dest, new_len, rctx->src_sent); rctx->hash_carry_len = rem; flow_log("Exiting with hash carry len: %u\n", rctx->hash_carry_len); packet_dump(" buf: ", rctx->hash_carry, rctx->hash_carry_len); return -EAGAIN; } } } /* if we have hash carry, then prefix it to the data in this request */ local_nbuf = rctx->hash_carry_len; rctx->hash_carry_len = 0; if (local_nbuf) tx_frag_num++; new_data_len = chunksize - local_nbuf; /* Count number of sg entries to be used in this request */ rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, new_data_len); /* AES hashing keeps key size in type field, so need to copy it here */ if (hash_parms.alg == HASH_ALG_AES) hash_parms.type = (enum hash_type)cipher_parms.type; else hash_parms.type = spu->spu_hash_type(rctx->total_sent); digestsize = spu->spu_digest_size(ctx->digestsize, ctx->auth.alg, hash_parms.type); hash_parms.digestsize = digestsize; /* update the indexes */ rctx->total_sent += chunksize; /* if you sent a prebuf then that wasn't from this req->src */ rctx->src_sent += new_data_len; if ((rctx->total_sent == rctx->total_todo) && rctx->is_final) hash_parms.pad_len = spu->spu_hash_pad_len(hash_parms.alg, hash_parms.mode, chunksize, blocksize); /* * If a non-first chunk, then include the digest returned from the * previous chunk so that hw can add to it (except for AES types). */ if ((hash_parms.type == HASH_TYPE_UPDT) && (hash_parms.alg != HASH_ALG_AES)) { hash_parms.key_buf = rctx->incr_hash; hash_parms.key_len = digestsize; } atomic64_add(chunksize, &iproc_priv.bytes_out); flow_log("%s() final: %u nbuf: %u ", __func__, rctx->is_final, local_nbuf); if (ctx->max_payload == SPU_MAX_PAYLOAD_INF) flow_log("max_payload infinite\n"); else flow_log("max_payload %u\n", ctx->max_payload); flow_log("chunk_start: %u chunk_size: %u\n", chunk_start, chunksize); /* Prepend SPU header with type 3 BCM header */ memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN); hash_parms.prebuf_len = local_nbuf; spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN, &req_opts, &cipher_parms, &hash_parms, &aead_parms, new_data_len); if (spu_hdr_len == 0) { pr_err("Failed to create SPU request header\n"); return -EFAULT; } /* * Determine total length of padding required. Put all padding in one * buffer. */ data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, chunksize); db_size = spu_real_db_size(0, 0, local_nbuf, new_data_len, 0, 0, hash_parms.pad_len); if (spu->spu_tx_status_len()) stat_pad_len = spu->spu_wordalign_padlen(db_size); if (stat_pad_len) rx_frag_num++; pad_len = hash_parms.pad_len + data_pad_len + stat_pad_len; if (pad_len) { tx_frag_num++; spu->spu_request_pad(rctx->msg_buf.spu_req_pad, data_pad_len, hash_parms.pad_len, ctx->auth.alg, ctx->auth.mode, rctx->total_sent, stat_pad_len); } spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN, spu_hdr_len); packet_dump(" prebuf: ", rctx->hash_carry, local_nbuf); flow_log("Data:\n"); dump_sg(rctx->src_sg, rctx->src_skip, new_data_len); packet_dump(" pad: ", rctx->msg_buf.spu_req_pad, pad_len); /* * Build mailbox message containing SPU request msg and rx buffers * to catch response message */ memset(mssg, 0, sizeof(*mssg)); mssg->type = BRCM_MESSAGE_SPU; mssg->ctx = rctx; /* Will be returned in response */ /* Create rx scatterlist to catch result */ err = spu_ahash_rx_sg_create(mssg, rctx, rx_frag_num, digestsize, stat_pad_len); if (err) return err; /* Create tx scatterlist containing SPU request message */ tx_frag_num += rctx->src_nents; if (spu->spu_tx_status_len()) tx_frag_num++; err = spu_ahash_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len, local_nbuf, new_data_len, pad_len); if (err) return err; err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx); if (unlikely(err < 0)) return err; return -EINPROGRESS; } /** * spu_hmac_outer_hash() - Request synchonous software compute of the outer hash * for an HMAC request. * @req: The HMAC request from the crypto API * @ctx: The session context * * Return: 0 if synchronous hash operation successful * -EINVAL if the hash algo is unrecognized * any other value indicates an error */ static int spu_hmac_outer_hash(struct ahash_request *req, struct iproc_ctx_s *ctx) { struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); unsigned int blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash)); int rc; switch (ctx->auth.alg) { case HASH_ALG_MD5: rc = do_shash("md5", req->result, ctx->opad, blocksize, req->result, ctx->digestsize, NULL, 0); break; case HASH_ALG_SHA1: rc = do_shash("sha1", req->result, ctx->opad, blocksize, req->result, ctx->digestsize, NULL, 0); break; case HASH_ALG_SHA224: rc = do_shash("sha224", req->result, ctx->opad, blocksize, req->result, ctx->digestsize, NULL, 0); break; case HASH_ALG_SHA256: rc = do_shash("sha256", req->result, ctx->opad, blocksize, req->result, ctx->digestsize, NULL, 0); break; case HASH_ALG_SHA384: rc = do_shash("sha384", req->result, ctx->opad, blocksize, req->result, ctx->digestsize, NULL, 0); break; case HASH_ALG_SHA512: rc = do_shash("sha512", req->result, ctx->opad, blocksize, req->result, ctx->digestsize, NULL, 0); break; default: pr_err("%s() Error : unknown hmac type\n", __func__); rc = -EINVAL; } return rc; } /** * ahash_req_done() - Process a hash result from the SPU hardware. * @rctx: Crypto request context * * Return: 0 if successful * < 0 if an error */ static int ahash_req_done(struct iproc_reqctx_s *rctx) { struct spu_hw *spu = &iproc_priv.spu; struct crypto_async_request *areq = rctx->parent; struct ahash_request *req = ahash_request_cast(areq); struct iproc_ctx_s *ctx = rctx->ctx; int err; memcpy(req->result, rctx->msg_buf.digest, ctx->digestsize); if (spu->spu_type == SPU_TYPE_SPUM) { /* byte swap the output from the UPDT function to network byte * order */ if (ctx->auth.alg == HASH_ALG_MD5) { __swab32s((u32 *)req->result); __swab32s(((u32 *)req->result) + 1); __swab32s(((u32 *)req->result) + 2); __swab32s(((u32 *)req->result) + 3); __swab32s(((u32 *)req->result) + 4); } } flow_dump(" digest ", req->result, ctx->digestsize); /* if this an HMAC then do the outer hash */ if (rctx->is_sw_hmac) { err = spu_hmac_outer_hash(req, ctx); if (err < 0) return err; flow_dump(" hmac: ", req->result, ctx->digestsize); } if (rctx->is_sw_hmac || ctx->auth.mode == HASH_MODE_HMAC) { atomic_inc(&iproc_priv.op_counts[SPU_OP_HMAC]); atomic_inc(&iproc_priv.hmac_cnt[ctx->auth.alg]); } else { atomic_inc(&iproc_priv.op_counts[SPU_OP_HASH]); atomic_inc(&iproc_priv.hash_cnt[ctx->auth.alg]); } return 0; } /** * handle_ahash_resp() - Process a SPU response message for a hash request. * Checks if the entire crypto API request has been processed, and if so, * invokes post processing on the result. * @rctx: Crypto request context */ static void handle_ahash_resp(struct iproc_reqctx_s *rctx) { struct iproc_ctx_s *ctx = rctx->ctx; #ifdef DEBUG struct crypto_async_request *areq = rctx->parent; struct ahash_request *req = ahash_request_cast(areq); struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); unsigned int blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash)); #endif /* * Save hash to use as input to next op if incremental. Might be copying * too much, but that's easier than figuring out actual digest size here */ memcpy(rctx->incr_hash, rctx->msg_buf.digest, MAX_DIGEST_SIZE); flow_log("%s() blocksize:%u digestsize:%u\n", __func__, blocksize, ctx->digestsize); atomic64_add(ctx->digestsize, &iproc_priv.bytes_in); if (rctx->is_final && (rctx->total_sent == rctx->total_todo)) ahash_req_done(rctx); } /** * spu_aead_rx_sg_create() - Build up the scatterlist of buffers used to receive * a SPU response message for an AEAD request. Includes buffers to catch SPU * message headers and the response data. * @mssg: mailbox message containing the receive sg * @rctx: crypto request context * @rx_frag_num: number of scatterlist elements required to hold the * SPU response message * @assoc_len: Length of associated data included in the crypto request * @ret_iv_len: Length of IV returned in response * @resp_len: Number of bytes of response data expected to be written to * dst buffer from crypto API * @digestsize: Length of hash digest, in bytes * @stat_pad_len: Number of bytes required to pad the STAT field to * a 4-byte boundary * * The scatterlist that gets allocated here is freed in spu_chunk_cleanup() * when the request completes, whether the request is handled successfully or * there is an error. * * Returns: * 0 if successful * < 0 if an error */ static int spu_aead_rx_sg_create(struct brcm_message *mssg, struct aead_request *req, struct iproc_reqctx_s *rctx, u8 rx_frag_num, unsigned int assoc_len, u32 ret_iv_len, unsigned int resp_len, unsigned int digestsize, u32 stat_pad_len) { struct spu_hw *spu = &iproc_priv.spu; struct scatterlist *sg; /* used to build sgs in mbox message */ struct iproc_ctx_s *ctx = rctx->ctx; u32 datalen; /* Number of bytes of response data expected */ u32 assoc_buf_len; u8 data_padlen = 0; if (ctx->is_rfc4543) { /* RFC4543: only pad after data, not after AAD */ data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, assoc_len + resp_len); assoc_buf_len = assoc_len; } else { data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, resp_len); assoc_buf_len = spu->spu_assoc_resp_len(ctx->cipher.mode, assoc_len, ret_iv_len, rctx->is_encrypt); } if (ctx->cipher.mode == CIPHER_MODE_CCM) /* ICV (after data) must be in the next 32-bit word for CCM */ data_padlen += spu->spu_wordalign_padlen(assoc_buf_len + resp_len + data_padlen); if (data_padlen) /* have to catch gcm pad in separate buffer */ rx_frag_num++; mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist), rctx->gfp); if (!mssg->spu.dst) return -ENOMEM; sg = mssg->spu.dst; sg_init_table(sg, rx_frag_num); /* Space for SPU message header */ sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len); if (assoc_buf_len) { /* * Don't write directly to req->dst, because SPU may pad the * assoc data in the response */ memset(rctx->msg_buf.a.resp_aad, 0, assoc_buf_len); sg_set_buf(sg++, rctx->msg_buf.a.resp_aad, assoc_buf_len); } if (resp_len) { /* * Copy in each dst sg entry from request, up to chunksize. * dst sg catches just the data. digest caught in separate buf. */ datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip, rctx->dst_nents, resp_len); if (datalen < (resp_len)) { pr_err("%s(): failed to copy dst sg to mbox msg. expected len %u, datalen %u", __func__, resp_len, datalen); return -EFAULT; } } /* If GCM/CCM data is padded, catch padding in separate buffer */ if (data_padlen) { memset(rctx->msg_buf.a.gcmpad, 0, data_padlen); sg_set_buf(sg++, rctx->msg_buf.a.gcmpad, data_padlen); } /* Always catch ICV in separate buffer */ sg_set_buf(sg++, rctx->msg_buf.digest, digestsize); flow_log("stat_pad_len %u\n", stat_pad_len); if (stat_pad_len) { memset(rctx->msg_buf.rx_stat_pad, 0, stat_pad_len); sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len); } memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN); sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len()); return 0; } /** * spu_aead_tx_sg_create() - Build up the scatterlist of buffers used to send a * SPU request message for an AEAD request. Includes SPU message headers and the * request data. * @mssg: mailbox message containing the transmit sg * @rctx: crypto request context * @tx_frag_num: number of scatterlist elements required to construct the * SPU request message * @spu_hdr_len: length of SPU message header in bytes * @assoc: crypto API associated data scatterlist * @assoc_len: length of associated data * @assoc_nents: number of scatterlist entries containing assoc data * @aead_iv_len: length of AEAD IV, if included * @chunksize: Number of bytes of request data * @aad_pad_len: Number of bytes of padding at end of AAD. For GCM/CCM. * @pad_len: Number of pad bytes * @incl_icv: If true, write separate ICV buffer after data and * any padding * * The scatterlist that gets allocated here is freed in spu_chunk_cleanup() * when the request completes, whether the request is handled successfully or * there is an error. * * Return: * 0 if successful * < 0 if an error */ static int spu_aead_tx_sg_create(struct brcm_message *mssg, struct iproc_reqctx_s *rctx, u8 tx_frag_num, u32 spu_hdr_len, struct scatterlist *assoc, unsigned int assoc_len, int assoc_nents, unsigned int aead_iv_len, unsigned int chunksize, u32 aad_pad_len, u32 pad_len, bool incl_icv) { struct spu_hw *spu = &iproc_priv.spu; struct scatterlist *sg; /* used to build sgs in mbox message */ struct scatterlist *assoc_sg = assoc; struct iproc_ctx_s *ctx = rctx->ctx; u32 datalen; /* Number of bytes of data to write */ u32 written; /* Number of bytes of data written */ u32 assoc_offset = 0; u32 stat_len; mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist), rctx->gfp); if (!mssg->spu.src) return -ENOMEM; sg = mssg->spu.src; sg_init_table(sg, tx_frag_num); sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr, BCM_HDR_LEN + spu_hdr_len); if (assoc_len) { /* Copy in each associated data sg entry from request */ written = spu_msg_sg_add(&sg, &assoc_sg, &assoc_offset, assoc_nents, assoc_len); if (written < assoc_len) { pr_err("%s(): failed to copy assoc sg to mbox msg", __func__); return -EFAULT; } } if (aead_iv_len) sg_set_buf(sg++, rctx->msg_buf.iv_ctr, aead_iv_len); if (aad_pad_len) { memset(rctx->msg_buf.a.req_aad_pad, 0, aad_pad_len); sg_set_buf(sg++, rctx->msg_buf.a.req_aad_pad, aad_pad_len); } datalen = chunksize; if ((chunksize > ctx->digestsize) && incl_icv) datalen -= ctx->digestsize; if (datalen) { /* For aead, a single msg should consume the entire src sg */ written = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip, rctx->src_nents, datalen); if (written < datalen) { pr_err("%s(): failed to copy src sg to mbox msg", __func__); return -EFAULT; } } if (pad_len) { memset(rctx->msg_buf.spu_req_pad, 0, pad_len); sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len); } if (incl_icv) sg_set_buf(sg++, rctx->msg_buf.digest, ctx->digestsize); stat_len = spu->spu_tx_status_len(); if (stat_len) { memset(rctx->msg_buf.tx_stat, 0, stat_len); sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len); } return 0; } /** * handle_aead_req() - Submit a SPU request message for the next chunk of the * current AEAD request. * @rctx: Crypto request context * * Unlike other operation types, we assume the length of the request fits in * a single SPU request message. aead_enqueue() makes sure this is true. * Comments for other op types regarding threads applies here as well. * * Unlike incremental hash ops, where the spu returns the entire hash for * truncated algs like sha-224, the SPU returns just the truncated hash in * response to aead requests. So digestsize is always ctx->digestsize here. * * Return: -EINPROGRESS: crypto request has been accepted and result will be * returned asynchronously * Any other value indicates an error */ static int handle_aead_req(struct iproc_reqctx_s *rctx) { struct spu_hw *spu = &iproc_priv.spu; struct crypto_async_request *areq = rctx->parent; struct aead_request *req = container_of(areq, struct aead_request, base); struct iproc_ctx_s *ctx = rctx->ctx; int err; unsigned int chunksize; unsigned int resp_len; u32 spu_hdr_len; u32 db_size; u32 stat_pad_len; u32 pad_len; struct brcm_message *mssg; /* mailbox message */ struct spu_request_opts req_opts; struct spu_cipher_parms cipher_parms; struct spu_hash_parms hash_parms; struct spu_aead_parms aead_parms; int assoc_nents = 0; bool incl_icv = false; unsigned int digestsize = ctx->digestsize; /* number of entries in src and dst sg. Always includes SPU msg header. */ u8 rx_frag_num = 2; /* and STATUS */ u8 tx_frag_num = 1; /* doing the whole thing at once */ chunksize = rctx->total_todo; flow_log("%s: chunksize %u\n", __func__, chunksize); memset(&req_opts, 0, sizeof(req_opts)); memset(&hash_parms, 0, sizeof(hash_parms)); memset(&aead_parms, 0, sizeof(aead_parms)); req_opts.is_inbound = !(rctx->is_encrypt); req_opts.auth_first = ctx->auth_first; req_opts.is_aead = true; req_opts.is_esp = ctx->is_esp; cipher_parms.alg = ctx->cipher.alg; cipher_parms.mode = ctx->cipher.mode; cipher_parms.type = ctx->cipher_type; cipher_parms.key_buf = ctx->enckey; cipher_parms.key_len = ctx->enckeylen; cipher_parms.iv_buf = rctx->msg_buf.iv_ctr; cipher_parms.iv_len = rctx->iv_ctr_len; hash_parms.alg = ctx->auth.alg; hash_parms.mode = ctx->auth.mode; hash_parms.type = HASH_TYPE_NONE; hash_parms.key_buf = (u8 *)ctx->authkey; hash_parms.key_len = ctx->authkeylen; hash_parms.digestsize = digestsize; if ((ctx->auth.alg == HASH_ALG_SHA224) && (ctx->authkeylen < SHA224_DIGEST_SIZE)) hash_parms.key_len = SHA224_DIGEST_SIZE; aead_parms.assoc_size = req->assoclen; if (ctx->is_esp && !ctx->is_rfc4543) { /* * 8-byte IV is included assoc data in request. SPU2 * expects AAD to include just SPI and seqno. So * subtract off the IV len. */ aead_parms.assoc_size -= GCM_RFC4106_IV_SIZE; if (rctx->is_encrypt) { aead_parms.return_iv = true; aead_parms.ret_iv_len = GCM_RFC4106_IV_SIZE; aead_parms.ret_iv_off = GCM_ESP_SALT_SIZE; } } else { aead_parms.ret_iv_len = 0; } /* * Count number of sg entries from the crypto API request that are to * be included in this mailbox message. For dst sg, don't count space * for digest. Digest gets caught in a separate buffer and copied back * to dst sg when processing response. */ rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize); rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize); if (aead_parms.assoc_size) assoc_nents = spu_sg_count(rctx->assoc, 0, aead_parms.assoc_size); mssg = &rctx->mb_mssg; rctx->total_sent = chunksize; rctx->src_sent = chunksize; if (spu->spu_assoc_resp_len(ctx->cipher.mode, aead_parms.assoc_size, aead_parms.ret_iv_len, rctx->is_encrypt)) rx_frag_num++; aead_parms.iv_len = spu->spu_aead_ivlen(ctx->cipher.mode, rctx->iv_ctr_len); if (ctx->auth.alg == HASH_ALG_AES) hash_parms.type = (enum hash_type)ctx->cipher_type; /* General case AAD padding (CCM and RFC4543 special cases below) */ aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, aead_parms.assoc_size); /* General case data padding (CCM decrypt special case below) */ aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, chunksize); if (ctx->cipher.mode == CIPHER_MODE_CCM) { /* * for CCM, AAD len + 2 (rather than AAD len) needs to be * 128-bit aligned */ aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len( ctx->cipher.mode, aead_parms.assoc_size + 2); /* * And when decrypting CCM, need to pad without including * size of ICV which is tacked on to end of chunk */ if (!rctx->is_encrypt) aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, chunksize - digestsize); /* CCM also requires software to rewrite portions of IV: */ spu->spu_ccm_update_iv(digestsize, &cipher_parms, req->assoclen, chunksize, rctx->is_encrypt, ctx->is_esp); } if (ctx->is_rfc4543) { /* * RFC4543: data is included in AAD, so don't pad after AAD * and pad data based on both AAD + data size */ aead_parms.aad_pad_len = 0; if (!rctx->is_encrypt) aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len( ctx->cipher.mode, aead_parms.assoc_size + chunksize - digestsize); else aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len( ctx->cipher.mode, aead_parms.assoc_size + chunksize); req_opts.is_rfc4543 = true; } if (spu_req_incl_icv(ctx->cipher.mode, rctx->is_encrypt)) { incl_icv = true; tx_frag_num++; /* Copy ICV from end of src scatterlist to digest buf */ sg_copy_part_to_buf(req->src, rctx->msg_buf.digest, digestsize, req->assoclen + rctx->total_sent - digestsize); } atomic64_add(chunksize, &iproc_priv.bytes_out); flow_log("%s()-sent chunksize:%u\n", __func__, chunksize); /* Prepend SPU header with type 3 BCM header */ memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN); spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN, &req_opts, &cipher_parms, &hash_parms, &aead_parms, chunksize); /* Determine total length of padding. Put all padding in one buffer. */ db_size = spu_real_db_size(aead_parms.assoc_size, aead_parms.iv_len, 0, chunksize, aead_parms.aad_pad_len, aead_parms.data_pad_len, 0); stat_pad_len = spu->spu_wordalign_padlen(db_size); if (stat_pad_len) rx_frag_num++; pad_len = aead_parms.data_pad_len + stat_pad_len; if (pad_len) { tx_frag_num++; spu->spu_request_pad(rctx->msg_buf.spu_req_pad, aead_parms.data_pad_len, 0, ctx->auth.alg, ctx->auth.mode, rctx->total_sent, stat_pad_len); } spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN, spu_hdr_len); dump_sg(rctx->assoc, 0, aead_parms.assoc_size); packet_dump(" aead iv: ", rctx->msg_buf.iv_ctr, aead_parms.iv_len); packet_log("BD:\n"); dump_sg(rctx->src_sg, rctx->src_skip, chunksize); packet_dump(" pad: ", rctx->msg_buf.spu_req_pad, pad_len); /* * Build mailbox message containing SPU request msg and rx buffers * to catch response message */ memset(mssg, 0, sizeof(*mssg)); mssg->type = BRCM_MESSAGE_SPU; mssg->ctx = rctx; /* Will be returned in response */ /* Create rx scatterlist to catch result */ rx_frag_num += rctx->dst_nents; resp_len = chunksize; /* * Always catch ICV in separate buffer. Have to for GCM/CCM because of * padding. Have to for SHA-224 and other truncated SHAs because SPU * sends entire digest back. */ rx_frag_num++; if (((ctx->cipher.mode == CIPHER_MODE_GCM) || (ctx->cipher.mode == CIPHER_MODE_CCM)) && !rctx->is_encrypt) { /* * Input is ciphertxt plus ICV, but ICV not incl * in output. */ resp_len -= ctx->digestsize; if (resp_len == 0) /* no rx frags to catch output data */ rx_frag_num -= rctx->dst_nents; } err = spu_aead_rx_sg_create(mssg, req, rctx, rx_frag_num, aead_parms.assoc_size, aead_parms.ret_iv_len, resp_len, digestsize, stat_pad_len); if (err) return err; /* Create tx scatterlist containing SPU request message */ tx_frag_num += rctx->src_nents; tx_frag_num += assoc_nents; if (aead_parms.aad_pad_len) tx_frag_num++; if (aead_parms.iv_len) tx_frag_num++; if (spu->spu_tx_status_len()) tx_frag_num++; err = spu_aead_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len, rctx->assoc, aead_parms.assoc_size, assoc_nents, aead_parms.iv_len, chunksize, aead_parms.aad_pad_len, pad_len, incl_icv); if (err) return err; err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx); if (unlikely(err < 0)) return err; return -EINPROGRESS; } /** * handle_aead_resp() - Process a SPU response message for an AEAD request. * @rctx: Crypto request context */ static void handle_aead_resp(struct iproc_reqctx_s *rctx) { struct spu_hw *spu = &iproc_priv.spu; struct crypto_async_request *areq = rctx->parent; struct aead_request *req = container_of(areq, struct aead_request, base); struct iproc_ctx_s *ctx = rctx->ctx; u32 payload_len; unsigned int icv_offset; u32 result_len; /* See how much data was returned */ payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr); flow_log("payload_len %u\n", payload_len); /* only count payload */ atomic64_add(payload_len, &iproc_priv.bytes_in); if (req->assoclen) packet_dump(" assoc_data ", rctx->msg_buf.a.resp_aad, req->assoclen); /* * Copy the ICV back to the destination * buffer. In decrypt case, SPU gives us back the digest, but crypto * API doesn't expect ICV in dst buffer. */ result_len = req->cryptlen; if (rctx->is_encrypt) { icv_offset = req->assoclen + rctx->total_sent; packet_dump(" ICV: ", rctx->msg_buf.digest, ctx->digestsize); flow_log("copying ICV to dst sg at offset %u\n", icv_offset); sg_copy_part_from_buf(req->dst, rctx->msg_buf.digest, ctx->digestsize, icv_offset); result_len += ctx->digestsize; } packet_log("response data: "); dump_sg(req->dst, req->assoclen, result_len); atomic_inc(&iproc_priv.op_counts[SPU_OP_AEAD]); if (ctx->cipher.alg == CIPHER_ALG_AES) { if (ctx->cipher.mode == CIPHER_MODE_CCM) atomic_inc(&iproc_priv.aead_cnt[AES_CCM]); else if (ctx->cipher.mode == CIPHER_MODE_GCM) atomic_inc(&iproc_priv.aead_cnt[AES_GCM]); else atomic_inc(&iproc_priv.aead_cnt[AUTHENC]); } else { atomic_inc(&iproc_priv.aead_cnt[AUTHENC]); } } /** * spu_chunk_cleanup() - Do cleanup after processing one chunk of a request * @rctx: request context * * Mailbox scatterlists are allocated for each chunk. So free them after * processing each chunk. */ static void spu_chunk_cleanup(struct iproc_reqctx_s *rctx) { /* mailbox message used to tx request */ struct brcm_message *mssg = &rctx->mb_mssg; kfree(mssg->spu.src); kfree(mssg->spu.dst); memset(mssg, 0, sizeof(struct brcm_message)); } /** * finish_req() - Used to invoke the complete callback from the requester when * a request has been handled asynchronously. * @rctx: Request context * @err: Indicates whether the request was successful or not * * Ensures that cleanup has been done for request */ static void finish_req(struct iproc_reqctx_s *rctx, int err) { struct crypto_async_request *areq = rctx->parent; flow_log("%s() err:%d\n\n", __func__, err); /* No harm done if already called */ spu_chunk_cleanup(rctx); if (areq) areq->complete(areq, err); } /** * spu_rx_callback() - Callback from mailbox framework with a SPU response. * @cl: mailbox client structure for SPU driver * @msg: mailbox message containing SPU response */ static void spu_rx_callback(struct mbox_client *cl, void *msg) { struct spu_hw *spu = &iproc_priv.spu; struct brcm_message *mssg = msg; struct iproc_reqctx_s *rctx; int err = 0; rctx = mssg->ctx; if (unlikely(!rctx)) { /* This is fatal */ pr_err("%s(): no request context", __func__); err = -EFAULT; goto cb_finish; } /* process the SPU status */ err = spu->spu_status_process(rctx->msg_buf.rx_stat); if (err != 0) { if (err == SPU_INVALID_ICV) atomic_inc(&iproc_priv.bad_icv); err = -EBADMSG; goto cb_finish; } /* Process the SPU response message */ switch (rctx->ctx->alg->type) { case CRYPTO_ALG_TYPE_ABLKCIPHER: handle_ablkcipher_resp(rctx); break; case CRYPTO_ALG_TYPE_AHASH: handle_ahash_resp(rctx); break; case CRYPTO_ALG_TYPE_AEAD: handle_aead_resp(rctx); break; default: err = -EINVAL; goto cb_finish; } /* * If this response does not complete the request, then send the next * request chunk. */ if (rctx->total_sent < rctx->total_todo) { /* Deallocate anything specific to previous chunk */ spu_chunk_cleanup(rctx); switch (rctx->ctx->alg->type) { case CRYPTO_ALG_TYPE_ABLKCIPHER: err = handle_ablkcipher_req(rctx); break; case CRYPTO_ALG_TYPE_AHASH: err = handle_ahash_req(rctx); if (err == -EAGAIN) /* * we saved data in hash carry, but tell crypto * API we successfully completed request. */ err = 0; break; case CRYPTO_ALG_TYPE_AEAD: err = handle_aead_req(rctx); break; default: err = -EINVAL; } if (err == -EINPROGRESS) /* Successfully submitted request for next chunk */ return; } cb_finish: finish_req(rctx, err); } /* ==================== Kernel Cryptographic API ==================== */ /** * ablkcipher_enqueue() - Handle ablkcipher encrypt or decrypt request. * @req: Crypto API request * @encrypt: true if encrypting; false if decrypting * * Return: -EINPROGRESS if request accepted and result will be returned * asynchronously * < 0 if an error */ static int ablkcipher_enqueue(struct ablkcipher_request *req, bool encrypt) { struct iproc_reqctx_s *rctx = ablkcipher_request_ctx(req); struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req)); int err; flow_log("%s() enc:%u\n", __func__, encrypt); rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; rctx->parent = &req->base; rctx->is_encrypt = encrypt; rctx->bd_suppress = false; rctx->total_todo = req->nbytes; rctx->src_sent = 0; rctx->total_sent = 0; rctx->total_received = 0; rctx->ctx = ctx; /* Initialize current position in src and dst scatterlists */ rctx->src_sg = req->src; rctx->src_nents = 0; rctx->src_skip = 0; rctx->dst_sg = req->dst; rctx->dst_nents = 0; rctx->dst_skip = 0; if (ctx->cipher.mode == CIPHER_MODE_CBC || ctx->cipher.mode == CIPHER_MODE_CTR || ctx->cipher.mode == CIPHER_MODE_OFB || ctx->cipher.mode == CIPHER_MODE_XTS || ctx->cipher.mode == CIPHER_MODE_GCM || ctx->cipher.mode == CIPHER_MODE_CCM) { rctx->iv_ctr_len = crypto_ablkcipher_ivsize(crypto_ablkcipher_reqtfm(req)); memcpy(rctx->msg_buf.iv_ctr, req->info, rctx->iv_ctr_len); } else { rctx->iv_ctr_len = 0; } /* Choose a SPU to process this request */ rctx->chan_idx = select_channel(); err = handle_ablkcipher_req(rctx); if (err != -EINPROGRESS) /* synchronous result */ spu_chunk_cleanup(rctx); return err; } static int des_setkey(struct crypto_ablkcipher *cipher, const u8 *key, unsigned int keylen) { struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher); u32 tmp[DES_EXPKEY_WORDS]; if (keylen == DES_KEY_SIZE) { if (des_ekey(tmp, key) == 0) { if (crypto_ablkcipher_get_flags(cipher) & CRYPTO_TFM_REQ_WEAK_KEY) { u32 flags = CRYPTO_TFM_RES_WEAK_KEY; crypto_ablkcipher_set_flags(cipher, flags); return -EINVAL; } } ctx->cipher_type = CIPHER_TYPE_DES; } else { crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); return -EINVAL; } return 0; } static int threedes_setkey(struct crypto_ablkcipher *cipher, const u8 *key, unsigned int keylen) { struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher); if (keylen == (DES_KEY_SIZE * 3)) { const u32 *K = (const u32 *)key; u32 flags = CRYPTO_TFM_RES_BAD_KEY_SCHED; if (!((K[0] ^ K[2]) | (K[1] ^ K[3])) || !((K[2] ^ K[4]) | (K[3] ^ K[5]))) { crypto_ablkcipher_set_flags(cipher, flags); return -EINVAL; } ctx->cipher_type = CIPHER_TYPE_3DES; } else { crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); return -EINVAL; } return 0; } static int aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key, unsigned int keylen) { struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher); if (ctx->cipher.mode == CIPHER_MODE_XTS) /* XTS includes two keys of equal length */ keylen = keylen / 2; switch (keylen) { case AES_KEYSIZE_128: ctx->cipher_type = CIPHER_TYPE_AES128; break; case AES_KEYSIZE_192: ctx->cipher_type = CIPHER_TYPE_AES192; break; case AES_KEYSIZE_256: ctx->cipher_type = CIPHER_TYPE_AES256; break; default: crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); return -EINVAL; } WARN_ON((ctx->max_payload != SPU_MAX_PAYLOAD_INF) && ((ctx->max_payload % AES_BLOCK_SIZE) != 0)); return 0; } static int rc4_setkey(struct crypto_ablkcipher *cipher, const u8 *key, unsigned int keylen) { struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher); int i; ctx->enckeylen = ARC4_MAX_KEY_SIZE + ARC4_STATE_SIZE; ctx->enckey[0] = 0x00; /* 0x00 */ ctx->enckey[1] = 0x00; /* i */ ctx->enckey[2] = 0x00; /* 0x00 */ ctx->enckey[3] = 0x00; /* j */ for (i = 0; i < ARC4_MAX_KEY_SIZE; i++) ctx->enckey[i + ARC4_STATE_SIZE] = key[i % keylen]; ctx->cipher_type = CIPHER_TYPE_INIT; return 0; } static int ablkcipher_setkey(struct crypto_ablkcipher *cipher, const u8 *key, unsigned int keylen) { struct spu_hw *spu = &iproc_priv.spu; struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher); struct spu_cipher_parms cipher_parms; u32 alloc_len = 0; int err; flow_log("ablkcipher_setkey() keylen: %d\n", keylen); flow_dump(" key: ", key, keylen); switch (ctx->cipher.alg) { case CIPHER_ALG_DES: err = des_setkey(cipher, key, keylen); break; case CIPHER_ALG_3DES: err = threedes_setkey(cipher, key, keylen); break; case CIPHER_ALG_AES: err = aes_setkey(cipher, key, keylen); break; case CIPHER_ALG_RC4: err = rc4_setkey(cipher, key, keylen); break; default: pr_err("%s() Error: unknown cipher alg\n", __func__); err = -EINVAL; } if (err) return err; /* RC4 already populated ctx->enkey */ if (ctx->cipher.alg != CIPHER_ALG_RC4) { memcpy(ctx->enckey, key, keylen); ctx->enckeylen = keylen; } /* SPU needs XTS keys in the reverse order the crypto API presents */ if ((ctx->cipher.alg == CIPHER_ALG_AES) && (ctx->cipher.mode == CIPHER_MODE_XTS)) { unsigned int xts_keylen = keylen / 2; memcpy(ctx->enckey, key + xts_keylen, xts_keylen); memcpy(ctx->enckey + xts_keylen, key, xts_keylen); } if (spu->spu_type == SPU_TYPE_SPUM) alloc_len = BCM_HDR_LEN + SPU_HEADER_ALLOC_LEN; else if (spu->spu_type == SPU_TYPE_SPU2) alloc_len = BCM_HDR_LEN + SPU2_HEADER_ALLOC_LEN; memset(ctx->bcm_spu_req_hdr, 0, alloc_len); cipher_parms.iv_buf = NULL; cipher_parms.iv_len = crypto_ablkcipher_ivsize(cipher); flow_log("%s: iv_len %u\n", __func__, cipher_parms.iv_len); cipher_parms.alg = ctx->cipher.alg; cipher_parms.mode = ctx->cipher.mode; cipher_parms.type = ctx->cipher_type; cipher_parms.key_buf = ctx->enckey; cipher_parms.key_len = ctx->enckeylen; /* Prepend SPU request message with BCM header */ memcpy(ctx->bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN); ctx->spu_req_hdr_len = spu->spu_cipher_req_init(ctx->bcm_spu_req_hdr + BCM_HDR_LEN, &cipher_parms); ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, ctx->enckeylen, false); atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_CIPHER]); return 0; } static int ablkcipher_encrypt(struct ablkcipher_request *req) { flow_log("ablkcipher_encrypt() nbytes:%u\n", req->nbytes); return ablkcipher_enqueue(req, true); } static int ablkcipher_decrypt(struct ablkcipher_request *req) { flow_log("ablkcipher_decrypt() nbytes:%u\n", req->nbytes); return ablkcipher_enqueue(req, false); } static int ahash_enqueue(struct ahash_request *req) { struct iproc_reqctx_s *rctx = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); int err = 0; const char *alg_name; flow_log("ahash_enqueue() nbytes:%u\n", req->nbytes); rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; rctx->parent = &req->base; rctx->ctx = ctx; rctx->bd_suppress = true; memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message)); /* Initialize position in src scatterlist */ rctx->src_sg = req->src; rctx->src_skip = 0; rctx->src_nents = 0; rctx->dst_sg = NULL; rctx->dst_skip = 0; rctx->dst_nents = 0; /* SPU2 hardware does not compute hash of zero length data */ if ((rctx->is_final == 1) && (rctx->total_todo == 0) && (iproc_priv.spu.spu_type == SPU_TYPE_SPU2)) { alg_name = crypto_tfm_alg_name(crypto_ahash_tfm(tfm)); flow_log("Doing %sfinal %s zero-len hash request in software\n", rctx->is_final ? "" : "non-", alg_name); err = do_shash((unsigned char *)alg_name, req->result, NULL, 0, NULL, 0, ctx->authkey, ctx->authkeylen); if (err < 0) flow_log("Hash request failed with error %d\n", err); return err; } /* Choose a SPU to process this request */ rctx->chan_idx = select_channel(); err = handle_ahash_req(rctx); if (err != -EINPROGRESS) /* synchronous result */ spu_chunk_cleanup(rctx); if (err == -EAGAIN) /* * we saved data in hash carry, but tell crypto API * we successfully completed request. */ err = 0; return err; } static int __ahash_init(struct ahash_request *req) { struct spu_hw *spu = &iproc_priv.spu; struct iproc_reqctx_s *rctx = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); flow_log("%s()\n", __func__); /* Initialize the context */ rctx->hash_carry_len = 0; rctx->is_final = 0; rctx->total_todo = 0; rctx->src_sent = 0; rctx->total_sent = 0; rctx->total_received = 0; ctx->digestsize = crypto_ahash_digestsize(tfm); /* If we add a hash whose digest is larger, catch it here. */ WARN_ON(ctx->digestsize > MAX_DIGEST_SIZE); rctx->is_sw_hmac = false; ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, 0, true); return 0; } /** * spu_no_incr_hash() - Determine whether incremental hashing is supported. * @ctx: Crypto session context * * SPU-2 does not support incremental hashing (we'll have to revisit and * condition based on chip revision or device tree entry if future versions do * support incremental hash) * * SPU-M also doesn't support incremental hashing of AES-XCBC * * Return: true if incremental hashing is not supported * false otherwise */ bool spu_no_incr_hash(struct iproc_ctx_s *ctx) { struct spu_hw *spu = &iproc_priv.spu; if (spu->spu_type == SPU_TYPE_SPU2) return true; if ((ctx->auth.alg == HASH_ALG_AES) && (ctx->auth.mode == HASH_MODE_XCBC)) return true; /* Otherwise, incremental hashing is supported */ return false; } static int ahash_init(struct ahash_request *req) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); const char *alg_name; struct crypto_shash *hash; int ret; gfp_t gfp; if (spu_no_incr_hash(ctx)) { /* * If we get an incremental hashing request and it's not * supported by the hardware, we need to handle it in software * by calling synchronous hash functions. */ alg_name = crypto_tfm_alg_name(crypto_ahash_tfm(tfm)); hash = crypto_alloc_shash(alg_name, 0, 0); if (IS_ERR(hash)) { ret = PTR_ERR(hash); goto err; } gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; ctx->shash = kmalloc(sizeof(*ctx->shash) + crypto_shash_descsize(hash), gfp); if (!ctx->shash) { ret = -ENOMEM; goto err_hash; } ctx->shash->tfm = hash; ctx->shash->flags = 0; /* Set the key using data we already have from setkey */ if (ctx->authkeylen > 0) { ret = crypto_shash_setkey(hash, ctx->authkey, ctx->authkeylen); if (ret) goto err_shash; } /* Initialize hash w/ this key and other params */ ret = crypto_shash_init(ctx->shash); if (ret) goto err_shash; } else { /* Otherwise call the internal function which uses SPU hw */ ret = __ahash_init(req); } return ret; err_shash: kfree(ctx->shash); err_hash: crypto_free_shash(hash); err: return ret; } static int __ahash_update(struct ahash_request *req) { struct iproc_reqctx_s *rctx = ahash_request_ctx(req); flow_log("ahash_update() nbytes:%u\n", req->nbytes); if (!req->nbytes) return 0; rctx->total_todo += req->nbytes; rctx->src_sent = 0; return ahash_enqueue(req); } static int ahash_update(struct ahash_request *req) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); u8 *tmpbuf; int ret; int nents; gfp_t gfp; if (spu_no_incr_hash(ctx)) { /* * If we get an incremental hashing request and it's not * supported by the hardware, we need to handle it in software * by calling synchronous hash functions. */ if (req->src) nents = sg_nents(req->src); else return -EINVAL; /* Copy data from req scatterlist to tmp buffer */ gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; tmpbuf = kmalloc(req->nbytes, gfp); if (!tmpbuf) return -ENOMEM; if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) != req->nbytes) { kfree(tmpbuf); return -EINVAL; } /* Call synchronous update */ ret = crypto_shash_update(ctx->shash, tmpbuf, req->nbytes); kfree(tmpbuf); } else { /* Otherwise call the internal function which uses SPU hw */ ret = __ahash_update(req); } return ret; } static int __ahash_final(struct ahash_request *req) { struct iproc_reqctx_s *rctx = ahash_request_ctx(req); flow_log("ahash_final() nbytes:%u\n", req->nbytes); rctx->is_final = 1; return ahash_enqueue(req); } static int ahash_final(struct ahash_request *req) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); int ret; if (spu_no_incr_hash(ctx)) { /* * If we get an incremental hashing request and it's not * supported by the hardware, we need to handle it in software * by calling synchronous hash functions. */ ret = crypto_shash_final(ctx->shash, req->result); /* Done with hash, can deallocate it now */ crypto_free_shash(ctx->shash->tfm); kfree(ctx->shash); } else { /* Otherwise call the internal function which uses SPU hw */ ret = __ahash_final(req); } return ret; } static int __ahash_finup(struct ahash_request *req) { struct iproc_reqctx_s *rctx = ahash_request_ctx(req); flow_log("ahash_finup() nbytes:%u\n", req->nbytes); rctx->total_todo += req->nbytes; rctx->src_sent = 0; rctx->is_final = 1; return ahash_enqueue(req); } static int ahash_finup(struct ahash_request *req) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); u8 *tmpbuf; int ret; int nents; gfp_t gfp; if (spu_no_incr_hash(ctx)) { /* * If we get an incremental hashing request and it's not * supported by the hardware, we need to handle it in software * by calling synchronous hash functions. */ if (req->src) { nents = sg_nents(req->src); } else { ret = -EINVAL; goto ahash_finup_exit; } /* Copy data from req scatterlist to tmp buffer */ gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; tmpbuf = kmalloc(req->nbytes, gfp); if (!tmpbuf) { ret = -ENOMEM; goto ahash_finup_exit; } if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) != req->nbytes) { ret = -EINVAL; goto ahash_finup_free; } /* Call synchronous update */ ret = crypto_shash_finup(ctx->shash, tmpbuf, req->nbytes, req->result); } else { /* Otherwise call the internal function which uses SPU hw */ return __ahash_finup(req); } ahash_finup_free: kfree(tmpbuf); ahash_finup_exit: /* Done with hash, can deallocate it now */ crypto_free_shash(ctx->shash->tfm); kfree(ctx->shash); return ret; } static int ahash_digest(struct ahash_request *req) { int err = 0; flow_log("ahash_digest() nbytes:%u\n", req->nbytes); /* whole thing at once */ err = __ahash_init(req); if (!err) err = __ahash_finup(req); return err; } static int ahash_setkey(struct crypto_ahash *ahash, const u8 *key, unsigned int keylen) { struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash); flow_log("%s() ahash:%p key:%p keylen:%u\n", __func__, ahash, key, keylen); flow_dump(" key: ", key, keylen); if (ctx->auth.alg == HASH_ALG_AES) { switch (keylen) { case AES_KEYSIZE_128: ctx->cipher_type = CIPHER_TYPE_AES128; break; case AES_KEYSIZE_192: ctx->cipher_type = CIPHER_TYPE_AES192; break; case AES_KEYSIZE_256: ctx->cipher_type = CIPHER_TYPE_AES256; break; default: pr_err("%s() Error: Invalid key length\n", __func__); return -EINVAL; } } else { pr_err("%s() Error: unknown hash alg\n", __func__); return -EINVAL; } memcpy(ctx->authkey, key, keylen); ctx->authkeylen = keylen; return 0; } static int ahash_export(struct ahash_request *req, void *out) { const struct iproc_reqctx_s *rctx = ahash_request_ctx(req); struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)out; spu_exp->total_todo = rctx->total_todo; spu_exp->total_sent = rctx->total_sent; spu_exp->is_sw_hmac = rctx->is_sw_hmac; memcpy(spu_exp->hash_carry, rctx->hash_carry, sizeof(rctx->hash_carry)); spu_exp->hash_carry_len = rctx->hash_carry_len; memcpy(spu_exp->incr_hash, rctx->incr_hash, sizeof(rctx->incr_hash)); return 0; } static int ahash_import(struct ahash_request *req, const void *in) { struct iproc_reqctx_s *rctx = ahash_request_ctx(req); struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)in; rctx->total_todo = spu_exp->total_todo; rctx->total_sent = spu_exp->total_sent; rctx->is_sw_hmac = spu_exp->is_sw_hmac; memcpy(rctx->hash_carry, spu_exp->hash_carry, sizeof(rctx->hash_carry)); rctx->hash_carry_len = spu_exp->hash_carry_len; memcpy(rctx->incr_hash, spu_exp->incr_hash, sizeof(rctx->incr_hash)); return 0; } static int ahash_hmac_setkey(struct crypto_ahash *ahash, const u8 *key, unsigned int keylen) { struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash); unsigned int blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash)); unsigned int digestsize = crypto_ahash_digestsize(ahash); unsigned int index; int rc; flow_log("%s() ahash:%p key:%p keylen:%u blksz:%u digestsz:%u\n", __func__, ahash, key, keylen, blocksize, digestsize); flow_dump(" key: ", key, keylen); if (keylen > blocksize) { switch (ctx->auth.alg) { case HASH_ALG_MD5: rc = do_shash("md5", ctx->authkey, key, keylen, NULL, 0, NULL, 0); break; case HASH_ALG_SHA1: rc = do_shash("sha1", ctx->authkey, key, keylen, NULL, 0, NULL, 0); break; case HASH_ALG_SHA224: rc = do_shash("sha224", ctx->authkey, key, keylen, NULL, 0, NULL, 0); break; case HASH_ALG_SHA256: rc = do_shash("sha256", ctx->authkey, key, keylen, NULL, 0, NULL, 0); break; case HASH_ALG_SHA384: rc = do_shash("sha384", ctx->authkey, key, keylen, NULL, 0, NULL, 0); break; case HASH_ALG_SHA512: rc = do_shash("sha512", ctx->authkey, key, keylen, NULL, 0, NULL, 0); break; case HASH_ALG_SHA3_224: rc = do_shash("sha3-224", ctx->authkey, key, keylen, NULL, 0, NULL, 0); break; case HASH_ALG_SHA3_256: rc = do_shash("sha3-256", ctx->authkey, key, keylen, NULL, 0, NULL, 0); break; case HASH_ALG_SHA3_384: rc = do_shash("sha3-384", ctx->authkey, key, keylen, NULL, 0, NULL, 0); break; case HASH_ALG_SHA3_512: rc = do_shash("sha3-512", ctx->authkey, key, keylen, NULL, 0, NULL, 0); break; default: pr_err("%s() Error: unknown hash alg\n", __func__); return -EINVAL; } if (rc < 0) { pr_err("%s() Error %d computing shash for %s\n", __func__, rc, hash_alg_name[ctx->auth.alg]); return rc; } ctx->authkeylen = digestsize; flow_log(" keylen > digestsize... hashed\n"); flow_dump(" newkey: ", ctx->authkey, ctx->authkeylen); } else { memcpy(ctx->authkey, key, keylen); ctx->authkeylen = keylen; } /* * Full HMAC operation in SPUM is not verified, * So keeping the generation of IPAD, OPAD and * outer hashing in software. */ if (iproc_priv.spu.spu_type == SPU_TYPE_SPUM) { memcpy(ctx->ipad, ctx->authkey, ctx->authkeylen); memset(ctx->ipad + ctx->authkeylen, 0, blocksize - ctx->authkeylen); ctx->authkeylen = 0; memcpy(ctx->opad, ctx->ipad, blocksize); for (index = 0; index < blocksize; index++) { ctx->ipad[index] ^= HMAC_IPAD_VALUE; ctx->opad[index] ^= HMAC_OPAD_VALUE; } flow_dump(" ipad: ", ctx->ipad, blocksize); flow_dump(" opad: ", ctx->opad, blocksize); } ctx->digestsize = digestsize; atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_HMAC]); return 0; } static int ahash_hmac_init(struct ahash_request *req) { struct iproc_reqctx_s *rctx = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); unsigned int blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); flow_log("ahash_hmac_init()\n"); /* init the context as a hash */ ahash_init(req); if (!spu_no_incr_hash(ctx)) { /* SPU-M can do incr hashing but needs sw for outer HMAC */ rctx->is_sw_hmac = true; ctx->auth.mode = HASH_MODE_HASH; /* start with a prepended ipad */ memcpy(rctx->hash_carry, ctx->ipad, blocksize); rctx->hash_carry_len = blocksize; rctx->total_todo += blocksize; } return 0; } static int ahash_hmac_update(struct ahash_request *req) { flow_log("ahash_hmac_update() nbytes:%u\n", req->nbytes); if (!req->nbytes) return 0; return ahash_update(req); } static int ahash_hmac_final(struct ahash_request *req) { flow_log("ahash_hmac_final() nbytes:%u\n", req->nbytes); return ahash_final(req); } static int ahash_hmac_finup(struct ahash_request *req) { flow_log("ahash_hmac_finupl() nbytes:%u\n", req->nbytes); return ahash_finup(req); } static int ahash_hmac_digest(struct ahash_request *req) { struct iproc_reqctx_s *rctx = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); unsigned int blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); flow_log("ahash_hmac_digest() nbytes:%u\n", req->nbytes); /* Perform initialization and then call finup */ __ahash_init(req); if (iproc_priv.spu.spu_type == SPU_TYPE_SPU2) { /* * SPU2 supports full HMAC implementation in the * hardware, need not to generate IPAD, OPAD and * outer hash in software. * Only for hash key len > hash block size, SPU2 * expects to perform hashing on the key, shorten * it to digest size and feed it as hash key. */ rctx->is_sw_hmac = false; ctx->auth.mode = HASH_MODE_HMAC; } else { rctx->is_sw_hmac = true; ctx->auth.mode = HASH_MODE_HASH; /* start with a prepended ipad */ memcpy(rctx->hash_carry, ctx->ipad, blocksize); rctx->hash_carry_len = blocksize; rctx->total_todo += blocksize; } return __ahash_finup(req); } /* aead helpers */ static int aead_need_fallback(struct aead_request *req) { struct iproc_reqctx_s *rctx = aead_request_ctx(req); struct spu_hw *spu = &iproc_priv.spu; struct crypto_aead *aead = crypto_aead_reqtfm(req); struct iproc_ctx_s *ctx = crypto_aead_ctx(aead); u32 payload_len; /* * SPU hardware cannot handle the AES-GCM/CCM case where plaintext * and AAD are both 0 bytes long. So use fallback in this case. */ if (((ctx->cipher.mode == CIPHER_MODE_GCM) || (ctx->cipher.mode == CIPHER_MODE_CCM)) && (req->assoclen == 0)) { if ((rctx->is_encrypt && (req->cryptlen == 0)) || (!rctx->is_encrypt && (req->cryptlen == ctx->digestsize))) { flow_log("AES GCM/CCM needs fallback for 0 len req\n"); return 1; } } /* SPU-M hardware only supports CCM digest size of 8, 12, or 16 bytes */ if ((ctx->cipher.mode == CIPHER_MODE_CCM) && (spu->spu_type == SPU_TYPE_SPUM) && (ctx->digestsize != 8) && (ctx->digestsize != 12) && (ctx->digestsize != 16)) { flow_log("%s() AES CCM needs fallback for digest size %d\n", __func__, ctx->digestsize); return 1; } /* * SPU-M on NSP has an issue where AES-CCM hash is not correct * when AAD size is 0 */ if ((ctx->cipher.mode == CIPHER_MODE_CCM) && (spu->spu_subtype == SPU_SUBTYPE_SPUM_NSP) && (req->assoclen == 0)) { flow_log("%s() AES_CCM needs fallback for 0 len AAD on NSP\n", __func__); return 1; } payload_len = req->cryptlen; if (spu->spu_type == SPU_TYPE_SPUM) payload_len += req->assoclen; flow_log("%s() payload len: %u\n", __func__, payload_len); if (ctx->max_payload == SPU_MAX_PAYLOAD_INF) return 0; else return payload_len > ctx->max_payload; } static void aead_complete(struct crypto_async_request *areq, int err) { struct aead_request *req = container_of(areq, struct aead_request, base); struct iproc_reqctx_s *rctx = aead_request_ctx(req); struct crypto_aead *aead = crypto_aead_reqtfm(req); flow_log("%s() err:%d\n", __func__, err); areq->tfm = crypto_aead_tfm(aead); areq->complete = rctx->old_complete; areq->data = rctx->old_data; areq->complete(areq, err); } static int aead_do_fallback(struct aead_request *req, bool is_encrypt) { struct crypto_aead *aead = crypto_aead_reqtfm(req); struct crypto_tfm *tfm = crypto_aead_tfm(aead); struct iproc_reqctx_s *rctx = aead_request_ctx(req); struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm); int err; u32 req_flags; flow_log("%s() enc:%u\n", __func__, is_encrypt); if (ctx->fallback_cipher) { /* Store the cipher tfm and then use the fallback tfm */ rctx->old_tfm = tfm; aead_request_set_tfm(req, ctx->fallback_cipher); /* * Save the callback and chain ourselves in, so we can restore * the tfm */ rctx->old_complete = req->base.complete; rctx->old_data = req->base.data; req_flags = aead_request_flags(req); aead_request_set_callback(req, req_flags, aead_complete, req); err = is_encrypt ? crypto_aead_encrypt(req) : crypto_aead_decrypt(req); if (err == 0) { /* * fallback was synchronous (did not return * -EINPROGRESS). So restore request state here. */ aead_request_set_callback(req, req_flags, rctx->old_complete, req); req->base.data = rctx->old_data; aead_request_set_tfm(req, aead); flow_log("%s() fallback completed successfully\n\n", __func__); } } else { err = -EINVAL; } return err; } static int aead_enqueue(struct aead_request *req, bool is_encrypt) { struct iproc_reqctx_s *rctx = aead_request_ctx(req); struct crypto_aead *aead = crypto_aead_reqtfm(req); struct iproc_ctx_s *ctx = crypto_aead_ctx(aead); int err; flow_log("%s() enc:%u\n", __func__, is_encrypt); if (req->assoclen > MAX_ASSOC_SIZE) { pr_err ("%s() Error: associated data too long. (%u > %u bytes)\n", __func__, req->assoclen, MAX_ASSOC_SIZE); return -EINVAL; } rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; rctx->parent = &req->base; rctx->is_encrypt = is_encrypt; rctx->bd_suppress = false; rctx->total_todo = req->cryptlen; rctx->src_sent = 0; rctx->total_sent = 0; rctx->total_received = 0; rctx->is_sw_hmac = false; rctx->ctx = ctx; memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message)); /* assoc data is at start of src sg */ rctx->assoc = req->src; /* * Init current position in src scatterlist to be after assoc data. * src_skip set to buffer offset where data begins. (Assoc data could * end in the middle of a buffer.) */ if (spu_sg_at_offset(req->src, req->assoclen, &rctx->src_sg, &rctx->src_skip) < 0) { pr_err("%s() Error: Unable to find start of src data\n", __func__); return -EINVAL; } rctx->src_nents = 0; rctx->dst_nents = 0; if (req->dst == req->src) { rctx->dst_sg = rctx->src_sg; rctx->dst_skip = rctx->src_skip; } else { /* * Expect req->dst to have room for assoc data followed by * output data and ICV, if encrypt. So initialize dst_sg * to point beyond assoc len offset. */ if (spu_sg_at_offset(req->dst, req->assoclen, &rctx->dst_sg, &rctx->dst_skip) < 0) { pr_err("%s() Error: Unable to find start of dst data\n", __func__); return -EINVAL; } } if (ctx->cipher.mode == CIPHER_MODE_CBC || ctx->cipher.mode == CIPHER_MODE_CTR || ctx->cipher.mode == CIPHER_MODE_OFB || ctx->cipher.mode == CIPHER_MODE_XTS || ctx->cipher.mode == CIPHER_MODE_GCM) { rctx->iv_ctr_len = ctx->salt_len + crypto_aead_ivsize(crypto_aead_reqtfm(req)); } else if (ctx->cipher.mode == CIPHER_MODE_CCM) { rctx->iv_ctr_len = CCM_AES_IV_SIZE; } else { rctx->iv_ctr_len = 0; } rctx->hash_carry_len = 0; flow_log(" src sg: %p\n", req->src); flow_log(" rctx->src_sg: %p, src_skip %u\n", rctx->src_sg, rctx->src_skip); flow_log(" assoc: %p, assoclen %u\n", rctx->assoc, req->assoclen); flow_log(" dst sg: %p\n", req->dst); flow_log(" rctx->dst_sg: %p, dst_skip %u\n", rctx->dst_sg, rctx->dst_skip); flow_log(" iv_ctr_len:%u\n", rctx->iv_ctr_len); flow_dump(" iv: ", req->iv, rctx->iv_ctr_len); flow_log(" authkeylen:%u\n", ctx->authkeylen); flow_log(" is_esp: %s\n", ctx->is_esp ? "yes" : "no"); if (ctx->max_payload == SPU_MAX_PAYLOAD_INF) flow_log(" max_payload infinite"); else flow_log(" max_payload: %u\n", ctx->max_payload); if (unlikely(aead_need_fallback(req))) return aead_do_fallback(req, is_encrypt); /* * Do memory allocations for request after fallback check, because if we * do fallback, we won't call finish_req() to dealloc. */ if (rctx->iv_ctr_len) { if (ctx->salt_len) memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset, ctx->salt, ctx->salt_len); memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset + ctx->salt_len, req->iv, rctx->iv_ctr_len - ctx->salt_len - ctx->salt_offset); } rctx->chan_idx = select_channel(); err = handle_aead_req(rctx); if (err != -EINPROGRESS) /* synchronous result */ spu_chunk_cleanup(rctx); return err; } static int aead_authenc_setkey(struct crypto_aead *cipher, const u8 *key, unsigned int keylen) { struct spu_hw *spu = &iproc_priv.spu; struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher); struct crypto_tfm *tfm = crypto_aead_tfm(cipher); struct crypto_authenc_keys keys; int ret; flow_log("%s() aead:%p key:%p keylen:%u\n", __func__, cipher, key, keylen); flow_dump(" key: ", key, keylen); ret = crypto_authenc_extractkeys(&keys, key, keylen); if (ret) goto badkey; if (keys.enckeylen > MAX_KEY_SIZE || keys.authkeylen > MAX_KEY_SIZE) goto badkey; ctx->enckeylen = keys.enckeylen; ctx->authkeylen = keys.authkeylen; memcpy(ctx->enckey, keys.enckey, keys.enckeylen); /* May end up padding auth key. So make sure it's zeroed. */ memset(ctx->authkey, 0, sizeof(ctx->authkey)); memcpy(ctx->authkey, keys.authkey, keys.authkeylen); switch (ctx->alg->cipher_info.alg) { case CIPHER_ALG_DES: if (ctx->enckeylen == DES_KEY_SIZE) { u32 tmp[DES_EXPKEY_WORDS]; u32 flags = CRYPTO_TFM_RES_WEAK_KEY; if (des_ekey(tmp, keys.enckey) == 0) { if (crypto_aead_get_flags(cipher) & CRYPTO_TFM_REQ_WEAK_KEY) { crypto_aead_set_flags(cipher, flags); return -EINVAL; } } ctx->cipher_type = CIPHER_TYPE_DES; } else { goto badkey; } break; case CIPHER_ALG_3DES: if (ctx->enckeylen == (DES_KEY_SIZE * 3)) { const u32 *K = (const u32 *)keys.enckey; u32 flags = CRYPTO_TFM_RES_BAD_KEY_SCHED; if (!((K[0] ^ K[2]) | (K[1] ^ K[3])) || !((K[2] ^ K[4]) | (K[3] ^ K[5]))) { crypto_aead_set_flags(cipher, flags); return -EINVAL; } ctx->cipher_type = CIPHER_TYPE_3DES; } else { crypto_aead_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); return -EINVAL; } break; case CIPHER_ALG_AES: switch (ctx->enckeylen) { case AES_KEYSIZE_128: ctx->cipher_type = CIPHER_TYPE_AES128; break; case AES_KEYSIZE_192: ctx->cipher_type = CIPHER_TYPE_AES192; break; case AES_KEYSIZE_256: ctx->cipher_type = CIPHER_TYPE_AES256; break; default: goto badkey; } break; case CIPHER_ALG_RC4: ctx->cipher_type = CIPHER_TYPE_INIT; break; default: pr_err("%s() Error: Unknown cipher alg\n", __func__); return -EINVAL; } flow_log(" enckeylen:%u authkeylen:%u\n", ctx->enckeylen, ctx->authkeylen); flow_dump(" enc: ", ctx->enckey, ctx->enckeylen); flow_dump(" auth: ", ctx->authkey, ctx->authkeylen); /* setkey the fallback just in case we needto use it */ if (ctx->fallback_cipher) { flow_log(" running fallback setkey()\n"); ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK; ctx->fallback_cipher->base.crt_flags |= tfm->crt_flags & CRYPTO_TFM_REQ_MASK; ret = crypto_aead_setkey(ctx->fallback_cipher, key, keylen); if (ret) { flow_log(" fallback setkey() returned:%d\n", ret); tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK; tfm->crt_flags |= (ctx->fallback_cipher->base.crt_flags & CRYPTO_TFM_RES_MASK); } } ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, ctx->enckeylen, false); atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]); return ret; badkey: ctx->enckeylen = 0; ctx->authkeylen = 0; ctx->digestsize = 0; crypto_aead_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); return -EINVAL; } static int aead_gcm_ccm_setkey(struct crypto_aead *cipher, const u8 *key, unsigned int keylen) { struct spu_hw *spu = &iproc_priv.spu; struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher); struct crypto_tfm *tfm = crypto_aead_tfm(cipher); int ret = 0; flow_log("%s() keylen:%u\n", __func__, keylen); flow_dump(" key: ", key, keylen); if (!ctx->is_esp) ctx->digestsize = keylen; ctx->enckeylen = keylen; ctx->authkeylen = 0; memcpy(ctx->enckey, key, ctx->enckeylen); switch (ctx->enckeylen) { case AES_KEYSIZE_128: ctx->cipher_type = CIPHER_TYPE_AES128; break; case AES_KEYSIZE_192: ctx->cipher_type = CIPHER_TYPE_AES192; break; case AES_KEYSIZE_256: ctx->cipher_type = CIPHER_TYPE_AES256; break; default: goto badkey; } flow_log(" enckeylen:%u authkeylen:%u\n", ctx->enckeylen, ctx->authkeylen); flow_dump(" enc: ", ctx->enckey, ctx->enckeylen); flow_dump(" auth: ", ctx->authkey, ctx->authkeylen); /* setkey the fallback just in case we need to use it */ if (ctx->fallback_cipher) { flow_log(" running fallback setkey()\n"); ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK; ctx->fallback_cipher->base.crt_flags |= tfm->crt_flags & CRYPTO_TFM_REQ_MASK; ret = crypto_aead_setkey(ctx->fallback_cipher, key, keylen + ctx->salt_len); if (ret) { flow_log(" fallback setkey() returned:%d\n", ret); tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK; tfm->crt_flags |= (ctx->fallback_cipher->base.crt_flags & CRYPTO_TFM_RES_MASK); } } ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, ctx->enckeylen, false); atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]); flow_log(" enckeylen:%u authkeylen:%u\n", ctx->enckeylen, ctx->authkeylen); return ret; badkey: ctx->enckeylen = 0; ctx->authkeylen = 0; ctx->digestsize = 0; crypto_aead_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); return -EINVAL; } /** * aead_gcm_esp_setkey() - setkey() operation for ESP variant of GCM AES. * @cipher: AEAD structure * @key: Key followed by 4 bytes of salt * @keylen: Length of key plus salt, in bytes * * Extracts salt from key and stores it to be prepended to IV on each request. * Digest is always 16 bytes * * Return: Value from generic gcm setkey. */ static int aead_gcm_esp_setkey(struct crypto_aead *cipher, const u8 *key, unsigned int keylen) { struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher); flow_log("%s\n", __func__); ctx->salt_len = GCM_ESP_SALT_SIZE; ctx->salt_offset = GCM_ESP_SALT_OFFSET; memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE); keylen -= GCM_ESP_SALT_SIZE; ctx->digestsize = GCM_ESP_DIGESTSIZE; ctx->is_esp = true; flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE); return aead_gcm_ccm_setkey(cipher, key, keylen); } /** * rfc4543_gcm_esp_setkey() - setkey operation for RFC4543 variant of GCM/GMAC. * cipher: AEAD structure * key: Key followed by 4 bytes of salt * keylen: Length of key plus salt, in bytes * * Extracts salt from key and stores it to be prepended to IV on each request. * Digest is always 16 bytes * * Return: Value from generic gcm setkey. */ static int rfc4543_gcm_esp_setkey(struct crypto_aead *cipher, const u8 *key, unsigned int keylen) { struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher); flow_log("%s\n", __func__); ctx->salt_len = GCM_ESP_SALT_SIZE; ctx->salt_offset = GCM_ESP_SALT_OFFSET; memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE); keylen -= GCM_ESP_SALT_SIZE; ctx->digestsize = GCM_ESP_DIGESTSIZE; ctx->is_esp = true; ctx->is_rfc4543 = true; flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE); return aead_gcm_ccm_setkey(cipher, key, keylen); } /** * aead_ccm_esp_setkey() - setkey() operation for ESP variant of CCM AES. * @cipher: AEAD structure * @key: Key followed by 4 bytes of salt * @keylen: Length of key plus salt, in bytes * * Extracts salt from key and stores it to be prepended to IV on each request. * Digest is always 16 bytes * * Return: Value from generic ccm setkey. */ static int aead_ccm_esp_setkey(struct crypto_aead *cipher, const u8 *key, unsigned int keylen) { struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher); flow_log("%s\n", __func__); ctx->salt_len = CCM_ESP_SALT_SIZE; ctx->salt_offset = CCM_ESP_SALT_OFFSET; memcpy(ctx->salt, key + keylen - CCM_ESP_SALT_SIZE, CCM_ESP_SALT_SIZE); keylen -= CCM_ESP_SALT_SIZE; ctx->is_esp = true; flow_dump("salt: ", ctx->salt, CCM_ESP_SALT_SIZE); return aead_gcm_ccm_setkey(cipher, key, keylen); } static int aead_setauthsize(struct crypto_aead *cipher, unsigned int authsize) { struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher); int ret = 0; flow_log("%s() authkeylen:%u authsize:%u\n", __func__, ctx->authkeylen, authsize); ctx->digestsize = authsize; /* setkey the fallback just in case we needto use it */ if (ctx->fallback_cipher) { flow_log(" running fallback setauth()\n"); ret = crypto_aead_setauthsize(ctx->fallback_cipher, authsize); if (ret) flow_log(" fallback setauth() returned:%d\n", ret); } return ret; } static int aead_encrypt(struct aead_request *req) { flow_log("%s() cryptlen:%u %08x\n", __func__, req->cryptlen, req->cryptlen); dump_sg(req->src, 0, req->cryptlen + req->assoclen); flow_log(" assoc_len:%u\n", req->assoclen); return aead_enqueue(req, true); } static int aead_decrypt(struct aead_request *req) { flow_log("%s() cryptlen:%u\n", __func__, req->cryptlen); dump_sg(req->src, 0, req->cryptlen + req->assoclen); flow_log(" assoc_len:%u\n", req->assoclen); return aead_enqueue(req, false); } /* ==================== Supported Cipher Algorithms ==================== */ static struct iproc_alg_s driver_algs[] = { { .type = CRYPTO_ALG_TYPE_AEAD, .alg.aead = { .base = { .cra_name = "gcm(aes)", .cra_driver_name = "gcm-aes-iproc", .cra_blocksize = AES_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_NEED_FALLBACK }, .setkey = aead_gcm_ccm_setkey, .ivsize = GCM_AES_IV_SIZE, .maxauthsize = AES_BLOCK_SIZE, }, .cipher_info = { .alg = CIPHER_ALG_AES, .mode = CIPHER_MODE_GCM, }, .auth_info = { .alg = HASH_ALG_AES, .mode = HASH_MODE_GCM, }, .auth_first = 0, }, { .type = CRYPTO_ALG_TYPE_AEAD, .alg.aead = { .base = { .cra_name = "ccm(aes)", .cra_driver_name = "ccm-aes-iproc", .cra_blocksize = AES_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_NEED_FALLBACK }, .setkey = aead_gcm_ccm_setkey, .ivsize = CCM_AES_IV_SIZE, .maxauthsize = AES_BLOCK_SIZE, }, .cipher_info = { .alg = CIPHER_ALG_AES, .mode = CIPHER_MODE_CCM, }, .auth_info = { .alg = HASH_ALG_AES, .mode = HASH_MODE_CCM, }, .auth_first = 0, }, { .type = CRYPTO_ALG_TYPE_AEAD, .alg.aead = { .base = { .cra_name = "rfc4106(gcm(aes))", .cra_driver_name = "gcm-aes-esp-iproc", .cra_blocksize = AES_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_NEED_FALLBACK }, .setkey = aead_gcm_esp_setkey, .ivsize = GCM_RFC4106_IV_SIZE, .maxauthsize = AES_BLOCK_SIZE, }, .cipher_info = { .alg = CIPHER_ALG_AES, .mode = CIPHER_MODE_GCM, }, .auth_info = { .alg = HASH_ALG_AES, .mode = HASH_MODE_GCM, }, .auth_first = 0, }, { .type = CRYPTO_ALG_TYPE_AEAD, .alg.aead = { .base = { .cra_name = "rfc4309(ccm(aes))", .cra_driver_name = "ccm-aes-esp-iproc", .cra_blocksize = AES_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_NEED_FALLBACK }, .setkey = aead_ccm_esp_setkey, .ivsize = CCM_AES_IV_SIZE, .maxauthsize = AES_BLOCK_SIZE, }, .cipher_info = { .alg = CIPHER_ALG_AES, .mode = CIPHER_MODE_CCM, }, .auth_info = { .alg = HASH_ALG_AES, .mode = HASH_MODE_CCM, }, .auth_first = 0, }, { .type = CRYPTO_ALG_TYPE_AEAD, .alg.aead = { .base = { .cra_name = "rfc4543(gcm(aes))", .cra_driver_name = "gmac-aes-esp-iproc", .cra_blocksize = AES_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_NEED_FALLBACK }, .setkey = rfc4543_gcm_esp_setkey, .ivsize = GCM_RFC4106_IV_SIZE, .maxauthsize = AES_BLOCK_SIZE, }, .cipher_info = { .alg = CIPHER_ALG_AES, .mode = CIPHER_MODE_GCM, }, .auth_info = { .alg = HASH_ALG_AES, .mode = HASH_MODE_GCM, }, .auth_first = 0, }, { .type = CRYPTO_ALG_TYPE_AEAD, .alg.aead = { .base = { .cra_name = "authenc(hmac(md5),cbc(aes))", .cra_driver_name = "authenc-hmac-md5-cbc-aes-iproc", .cra_blocksize = AES_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC }, .setkey = aead_authenc_setkey, .ivsize = AES_BLOCK_SIZE, .maxauthsize = MD5_DIGEST_SIZE, }, .cipher_info = { .alg = CIPHER_ALG_AES, .mode = CIPHER_MODE_CBC, }, .auth_info = { .alg = HASH_ALG_MD5, .mode = HASH_MODE_HMAC, }, .auth_first = 0, }, { .type = CRYPTO_ALG_TYPE_AEAD, .alg.aead = { .base = { .cra_name = "authenc(hmac(sha1),cbc(aes))", .cra_driver_name = "authenc-hmac-sha1-cbc-aes-iproc", .cra_blocksize = AES_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC }, .setkey = aead_authenc_setkey, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, }, .cipher_info = { .alg = CIPHER_ALG_AES, .mode = CIPHER_MODE_CBC, }, .auth_info = { .alg = HASH_ALG_SHA1, .mode = HASH_MODE_HMAC, }, .auth_first = 0, }, { .type = CRYPTO_ALG_TYPE_AEAD, .alg.aead = { .base = { .cra_name = "authenc(hmac(sha256),cbc(aes))", .cra_driver_name = "authenc-hmac-sha256-cbc-aes-iproc", .cra_blocksize = AES_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC }, .setkey = aead_authenc_setkey, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, }, .cipher_info = { .alg = CIPHER_ALG_AES, .mode = CIPHER_MODE_CBC, }, .auth_info = { .alg = HASH_ALG_SHA256, .mode = HASH_MODE_HMAC, }, .auth_first = 0, }, { .type = CRYPTO_ALG_TYPE_AEAD, .alg.aead = { .base = { .cra_name = "authenc(hmac(md5),cbc(des))", .cra_driver_name = "authenc-hmac-md5-cbc-des-iproc", .cra_blocksize = DES_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC }, .setkey = aead_authenc_setkey, .ivsize = DES_BLOCK_SIZE, .maxauthsize = MD5_DIGEST_SIZE, }, .cipher_info = { .alg = CIPHER_ALG_DES, .mode = CIPHER_MODE_CBC, }, .auth_info = { .alg = HASH_ALG_MD5, .mode = HASH_MODE_HMAC, }, .auth_first = 0, }, { .type = CRYPTO_ALG_TYPE_AEAD, .alg.aead = { .base = { .cra_name = "authenc(hmac(sha1),cbc(des))", .cra_driver_name = "authenc-hmac-sha1-cbc-des-iproc", .cra_blocksize = DES_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC }, .setkey = aead_authenc_setkey, .ivsize = DES_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, }, .cipher_info = { .alg = CIPHER_ALG_DES, .mode = CIPHER_MODE_CBC, }, .auth_info = { .alg = HASH_ALG_SHA1, .mode = HASH_MODE_HMAC, }, .auth_first = 0, }, { .type = CRYPTO_ALG_TYPE_AEAD, .alg.aead = { .base = { .cra_name = "authenc(hmac(sha224),cbc(des))", .cra_driver_name = "authenc-hmac-sha224-cbc-des-iproc", .cra_blocksize = DES_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC }, .setkey = aead_authenc_setkey, .ivsize = DES_BLOCK_SIZE, .maxauthsize = SHA224_DIGEST_SIZE, }, .cipher_info = { .alg = CIPHER_ALG_DES, .mode = CIPHER_MODE_CBC, }, .auth_info = { .alg = HASH_ALG_SHA224, .mode = HASH_MODE_HMAC, }, .auth_first = 0, }, { .type = CRYPTO_ALG_TYPE_AEAD, .alg.aead = { .base = { .cra_name = "authenc(hmac(sha256),cbc(des))", .cra_driver_name = "authenc-hmac-sha256-cbc-des-iproc", .cra_blocksize = DES_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC }, .setkey = aead_authenc_setkey, .ivsize = DES_BLOCK_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, }, .cipher_info = { .alg = CIPHER_ALG_DES, .mode = CIPHER_MODE_CBC, }, .auth_info = { .alg = HASH_ALG_SHA256, .mode = HASH_MODE_HMAC, }, .auth_first = 0, }, { .type = CRYPTO_ALG_TYPE_AEAD, .alg.aead = { .base = { .cra_name = "authenc(hmac(sha384),cbc(des))", .cra_driver_name = "authenc-hmac-sha384-cbc-des-iproc", .cra_blocksize = DES_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC }, .setkey = aead_authenc_setkey, .ivsize = DES_BLOCK_SIZE, .maxauthsize = SHA384_DIGEST_SIZE, }, .cipher_info = { .alg = CIPHER_ALG_DES, .mode = CIPHER_MODE_CBC, }, .auth_info = { .alg = HASH_ALG_SHA384, .mode = HASH_MODE_HMAC, }, .auth_first = 0, }, { .type = CRYPTO_ALG_TYPE_AEAD, .alg.aead = { .base = { .cra_name = "authenc(hmac(sha512),cbc(des))", .cra_driver_name = "authenc-hmac-sha512-cbc-des-iproc", .cra_blocksize = DES_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC }, .setkey = aead_authenc_setkey, .ivsize = DES_BLOCK_SIZE, .maxauthsize = SHA512_DIGEST_SIZE, }, .cipher_info = { .alg = CIPHER_ALG_DES, .mode = CIPHER_MODE_CBC, }, .auth_info = { .alg = HASH_ALG_SHA512, .mode = HASH_MODE_HMAC, }, .auth_first = 0, }, { .type = CRYPTO_ALG_TYPE_AEAD, .alg.aead = { .base = { .cra_name = "authenc(hmac(md5),cbc(des3_ede))", .cra_driver_name = "authenc-hmac-md5-cbc-des3-iproc", .cra_blocksize = DES3_EDE_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC }, .setkey = aead_authenc_setkey, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = MD5_DIGEST_SIZE, }, .cipher_info = { .alg = CIPHER_ALG_3DES, .mode = CIPHER_MODE_CBC, }, .auth_info = { .alg = HASH_ALG_MD5, .mode = HASH_MODE_HMAC, }, .auth_first = 0, }, { .type = CRYPTO_ALG_TYPE_AEAD, .alg.aead = { .base = { .cra_name = "authenc(hmac(sha1),cbc(des3_ede))", .cra_driver_name = "authenc-hmac-sha1-cbc-des3-iproc", .cra_blocksize = DES3_EDE_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC }, .setkey = aead_authenc_setkey, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, }, .cipher_info = { .alg = CIPHER_ALG_3DES, .mode = CIPHER_MODE_CBC, }, .auth_info = { .alg = HASH_ALG_SHA1, .mode = HASH_MODE_HMAC, }, .auth_first = 0, }, { .type = CRYPTO_ALG_TYPE_AEAD, .alg.aead = { .base = { .cra_name = "authenc(hmac(sha224),cbc(des3_ede))", .cra_driver_name = "authenc-hmac-sha224-cbc-des3-iproc", .cra_blocksize = DES3_EDE_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC }, .setkey = aead_authenc_setkey, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA224_DIGEST_SIZE, }, .cipher_info = { .alg = CIPHER_ALG_3DES, .mode = CIPHER_MODE_CBC, }, .auth_info = { .alg = HASH_ALG_SHA224, .mode = HASH_MODE_HMAC, }, .auth_first = 0, }, { .type = CRYPTO_ALG_TYPE_AEAD, .alg.aead = { .base = { .cra_name = "authenc(hmac(sha256),cbc(des3_ede))", .cra_driver_name = "authenc-hmac-sha256-cbc-des3-iproc", .cra_blocksize = DES3_EDE_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC }, .setkey = aead_authenc_setkey, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, }, .cipher_info = { .alg = CIPHER_ALG_3DES, .mode = CIPHER_MODE_CBC, }, .auth_info = { .alg = HASH_ALG_SHA256, .mode = HASH_MODE_HMAC, }, .auth_first = 0, }, { .type = CRYPTO_ALG_TYPE_AEAD, .alg.aead = { .base = { .cra_name = "authenc(hmac(sha384),cbc(des3_ede))", .cra_driver_name = "authenc-hmac-sha384-cbc-des3-iproc", .cra_blocksize = DES3_EDE_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC }, .setkey = aead_authenc_setkey, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA384_DIGEST_SIZE, }, .cipher_info = { .alg = CIPHER_ALG_3DES, .mode = CIPHER_MODE_CBC, }, .auth_info = { .alg = HASH_ALG_SHA384, .mode = HASH_MODE_HMAC, }, .auth_first = 0, }, { .type = CRYPTO_ALG_TYPE_AEAD, .alg.aead = { .base = { .cra_name = "authenc(hmac(sha512),cbc(des3_ede))", .cra_driver_name = "authenc-hmac-sha512-cbc-des3-iproc", .cra_blocksize = DES3_EDE_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC }, .setkey = aead_authenc_setkey, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA512_DIGEST_SIZE, }, .cipher_info = { .alg = CIPHER_ALG_3DES, .mode = CIPHER_MODE_CBC, }, .auth_info = { .alg = HASH_ALG_SHA512, .mode = HASH_MODE_HMAC, }, .auth_first = 0, }, /* ABLKCIPHER algorithms. */ { .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .alg.crypto = { .cra_name = "ecb(arc4)", .cra_driver_name = "ecb-arc4-iproc", .cra_blocksize = ARC4_BLOCK_SIZE, .cra_ablkcipher = { .min_keysize = ARC4_MIN_KEY_SIZE, .max_keysize = ARC4_MAX_KEY_SIZE, .ivsize = 0, } }, .cipher_info = { .alg = CIPHER_ALG_RC4, .mode = CIPHER_MODE_NONE, }, .auth_info = { .alg = HASH_ALG_NONE, .mode = HASH_MODE_NONE, }, }, { .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .alg.crypto = { .cra_name = "ofb(des)", .cra_driver_name = "ofb-des-iproc", .cra_blocksize = DES_BLOCK_SIZE, .cra_ablkcipher = { .min_keysize = DES_KEY_SIZE, .max_keysize = DES_KEY_SIZE, .ivsize = DES_BLOCK_SIZE, } }, .cipher_info = { .alg = CIPHER_ALG_DES, .mode = CIPHER_MODE_OFB, }, .auth_info = { .alg = HASH_ALG_NONE, .mode = HASH_MODE_NONE, }, }, { .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .alg.crypto = { .cra_name = "cbc(des)", .cra_driver_name = "cbc-des-iproc", .cra_blocksize = DES_BLOCK_SIZE, .cra_ablkcipher = { .min_keysize = DES_KEY_SIZE, .max_keysize = DES_KEY_SIZE, .ivsize = DES_BLOCK_SIZE, } }, .cipher_info = { .alg = CIPHER_ALG_DES, .mode = CIPHER_MODE_CBC, }, .auth_info = { .alg = HASH_ALG_NONE, .mode = HASH_MODE_NONE, }, }, { .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .alg.crypto = { .cra_name = "ecb(des)", .cra_driver_name = "ecb-des-iproc", .cra_blocksize = DES_BLOCK_SIZE, .cra_ablkcipher = { .min_keysize = DES_KEY_SIZE, .max_keysize = DES_KEY_SIZE, .ivsize = 0, } }, .cipher_info = { .alg = CIPHER_ALG_DES, .mode = CIPHER_MODE_ECB, }, .auth_info = { .alg = HASH_ALG_NONE, .mode = HASH_MODE_NONE, }, }, { .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .alg.crypto = { .cra_name = "ofb(des3_ede)", .cra_driver_name = "ofb-des3-iproc", .cra_blocksize = DES3_EDE_BLOCK_SIZE, .cra_ablkcipher = { .min_keysize = DES3_EDE_KEY_SIZE, .max_keysize = DES3_EDE_KEY_SIZE, .ivsize = DES3_EDE_BLOCK_SIZE, } }, .cipher_info = { .alg = CIPHER_ALG_3DES, .mode = CIPHER_MODE_OFB, }, .auth_info = { .alg = HASH_ALG_NONE, .mode = HASH_MODE_NONE, }, }, { .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .alg.crypto = { .cra_name = "cbc(des3_ede)", .cra_driver_name = "cbc-des3-iproc", .cra_blocksize = DES3_EDE_BLOCK_SIZE, .cra_ablkcipher = { .min_keysize = DES3_EDE_KEY_SIZE, .max_keysize = DES3_EDE_KEY_SIZE, .ivsize = DES3_EDE_BLOCK_SIZE, } }, .cipher_info = { .alg = CIPHER_ALG_3DES, .mode = CIPHER_MODE_CBC, }, .auth_info = { .alg = HASH_ALG_NONE, .mode = HASH_MODE_NONE, }, }, { .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .alg.crypto = { .cra_name = "ecb(des3_ede)", .cra_driver_name = "ecb-des3-iproc", .cra_blocksize = DES3_EDE_BLOCK_SIZE, .cra_ablkcipher = { .min_keysize = DES3_EDE_KEY_SIZE, .max_keysize = DES3_EDE_KEY_SIZE, .ivsize = 0, } }, .cipher_info = { .alg = CIPHER_ALG_3DES, .mode = CIPHER_MODE_ECB, }, .auth_info = { .alg = HASH_ALG_NONE, .mode = HASH_MODE_NONE, }, }, { .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .alg.crypto = { .cra_name = "ofb(aes)", .cra_driver_name = "ofb-aes-iproc", .cra_blocksize = AES_BLOCK_SIZE, .cra_ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, } }, .cipher_info = { .alg = CIPHER_ALG_AES, .mode = CIPHER_MODE_OFB, }, .auth_info = { .alg = HASH_ALG_NONE, .mode = HASH_MODE_NONE, }, }, { .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .alg.crypto = { .cra_name = "cbc(aes)", .cra_driver_name = "cbc-aes-iproc", .cra_blocksize = AES_BLOCK_SIZE, .cra_ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, } }, .cipher_info = { .alg = CIPHER_ALG_AES, .mode = CIPHER_MODE_CBC, }, .auth_info = { .alg = HASH_ALG_NONE, .mode = HASH_MODE_NONE, }, }, { .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .alg.crypto = { .cra_name = "ecb(aes)", .cra_driver_name = "ecb-aes-iproc", .cra_blocksize = AES_BLOCK_SIZE, .cra_ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = 0, } }, .cipher_info = { .alg = CIPHER_ALG_AES, .mode = CIPHER_MODE_ECB, }, .auth_info = { .alg = HASH_ALG_NONE, .mode = HASH_MODE_NONE, }, }, { .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .alg.crypto = { .cra_name = "ctr(aes)", .cra_driver_name = "ctr-aes-iproc", .cra_blocksize = AES_BLOCK_SIZE, .cra_ablkcipher = { /* .geniv = "chainiv", */ .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, } }, .cipher_info = { .alg = CIPHER_ALG_AES, .mode = CIPHER_MODE_CTR, }, .auth_info = { .alg = HASH_ALG_NONE, .mode = HASH_MODE_NONE, }, }, { .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .alg.crypto = { .cra_name = "xts(aes)", .cra_driver_name = "xts-aes-iproc", .cra_blocksize = AES_BLOCK_SIZE, .cra_ablkcipher = { .min_keysize = 2 * AES_MIN_KEY_SIZE, .max_keysize = 2 * AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, } }, .cipher_info = { .alg = CIPHER_ALG_AES, .mode = CIPHER_MODE_XTS, }, .auth_info = { .alg = HASH_ALG_NONE, .mode = HASH_MODE_NONE, }, }, /* AHASH algorithms. */ { .type = CRYPTO_ALG_TYPE_AHASH, .alg.hash = { .halg.digestsize = MD5_DIGEST_SIZE, .halg.base = { .cra_name = "md5", .cra_driver_name = "md5-iproc", .cra_blocksize = MD5_BLOCK_WORDS * 4, .cra_flags = CRYPTO_ALG_ASYNC, } }, .cipher_info = { .alg = CIPHER_ALG_NONE, .mode = CIPHER_MODE_NONE, }, .auth_info = { .alg = HASH_ALG_MD5, .mode = HASH_MODE_HASH, }, }, { .type = CRYPTO_ALG_TYPE_AHASH, .alg.hash = { .halg.digestsize = MD5_DIGEST_SIZE, .halg.base = { .cra_name = "hmac(md5)", .cra_driver_name = "hmac-md5-iproc", .cra_blocksize = MD5_BLOCK_WORDS * 4, } }, .cipher_info = { .alg = CIPHER_ALG_NONE, .mode = CIPHER_MODE_NONE, }, .auth_info = { .alg = HASH_ALG_MD5, .mode = HASH_MODE_HMAC, }, }, {.type = CRYPTO_ALG_TYPE_AHASH, .alg.hash = { .halg.digestsize = SHA1_DIGEST_SIZE, .halg.base = { .cra_name = "sha1", .cra_driver_name = "sha1-iproc", .cra_blocksize = SHA1_BLOCK_SIZE, } }, .cipher_info = { .alg = CIPHER_ALG_NONE, .mode = CIPHER_MODE_NONE, }, .auth_info = { .alg = HASH_ALG_SHA1, .mode = HASH_MODE_HASH, }, }, {.type = CRYPTO_ALG_TYPE_AHASH, .alg.hash = { .halg.digestsize = SHA1_DIGEST_SIZE, .halg.base = { .cra_name = "hmac(sha1)", .cra_driver_name = "hmac-sha1-iproc", .cra_blocksize = SHA1_BLOCK_SIZE, } }, .cipher_info = { .alg = CIPHER_ALG_NONE, .mode = CIPHER_MODE_NONE, }, .auth_info = { .alg = HASH_ALG_SHA1, .mode = HASH_MODE_HMAC, }, }, {.type = CRYPTO_ALG_TYPE_AHASH, .alg.hash = { .halg.digestsize = SHA224_DIGEST_SIZE, .halg.base = { .cra_name = "sha224", .cra_driver_name = "sha224-iproc", .cra_blocksize = SHA224_BLOCK_SIZE, } }, .cipher_info = { .alg = CIPHER_ALG_NONE, .mode = CIPHER_MODE_NONE, }, .auth_info = { .alg = HASH_ALG_SHA224, .mode = HASH_MODE_HASH, }, }, {.type = CRYPTO_ALG_TYPE_AHASH, .alg.hash = { .halg.digestsize = SHA224_DIGEST_SIZE, .halg.base = { .cra_name = "hmac(sha224)", .cra_driver_name = "hmac-sha224-iproc", .cra_blocksize = SHA224_BLOCK_SIZE, } }, .cipher_info = { .alg = CIPHER_ALG_NONE, .mode = CIPHER_MODE_NONE, }, .auth_info = { .alg = HASH_ALG_SHA224, .mode = HASH_MODE_HMAC, }, }, {.type = CRYPTO_ALG_TYPE_AHASH, .alg.hash = { .halg.digestsize = SHA256_DIGEST_SIZE, .halg.base = { .cra_name = "sha256", .cra_driver_name = "sha256-iproc", .cra_blocksize = SHA256_BLOCK_SIZE, } }, .cipher_info = { .alg = CIPHER_ALG_NONE, .mode = CIPHER_MODE_NONE, }, .auth_info = { .alg = HASH_ALG_SHA256, .mode = HASH_MODE_HASH, }, }, {.type = CRYPTO_ALG_TYPE_AHASH, .alg.hash = { .halg.digestsize = SHA256_DIGEST_SIZE, .halg.base = { .cra_name = "hmac(sha256)", .cra_driver_name = "hmac-sha256-iproc", .cra_blocksize = SHA256_BLOCK_SIZE, } }, .cipher_info = { .alg = CIPHER_ALG_NONE, .mode = CIPHER_MODE_NONE, }, .auth_info = { .alg = HASH_ALG_SHA256, .mode = HASH_MODE_HMAC, }, }, { .type = CRYPTO_ALG_TYPE_AHASH, .alg.hash = { .halg.digestsize = SHA384_DIGEST_SIZE, .halg.base = { .cra_name = "sha384", .cra_driver_name = "sha384-iproc", .cra_blocksize = SHA384_BLOCK_SIZE, } }, .cipher_info = { .alg = CIPHER_ALG_NONE, .mode = CIPHER_MODE_NONE, }, .auth_info = { .alg = HASH_ALG_SHA384, .mode = HASH_MODE_HASH, }, }, { .type = CRYPTO_ALG_TYPE_AHASH, .alg.hash = { .halg.digestsize = SHA384_DIGEST_SIZE, .halg.base = { .cra_name = "hmac(sha384)", .cra_driver_name = "hmac-sha384-iproc", .cra_blocksize = SHA384_BLOCK_SIZE, } }, .cipher_info = { .alg = CIPHER_ALG_NONE, .mode = CIPHER_MODE_NONE, }, .auth_info = { .alg = HASH_ALG_SHA384, .mode = HASH_MODE_HMAC, }, }, { .type = CRYPTO_ALG_TYPE_AHASH, .alg.hash = { .halg.digestsize = SHA512_DIGEST_SIZE, .halg.base = { .cra_name = "sha512", .cra_driver_name = "sha512-iproc", .cra_blocksize = SHA512_BLOCK_SIZE, } }, .cipher_info = { .alg = CIPHER_ALG_NONE, .mode = CIPHER_MODE_NONE, }, .auth_info = { .alg = HASH_ALG_SHA512, .mode = HASH_MODE_HASH, }, }, { .type = CRYPTO_ALG_TYPE_AHASH, .alg.hash = { .halg.digestsize = SHA512_DIGEST_SIZE, .halg.base = { .cra_name = "hmac(sha512)", .cra_driver_name = "hmac-sha512-iproc", .cra_blocksize = SHA512_BLOCK_SIZE, } }, .cipher_info = { .alg = CIPHER_ALG_NONE, .mode = CIPHER_MODE_NONE, }, .auth_info = { .alg = HASH_ALG_SHA512, .mode = HASH_MODE_HMAC, }, }, { .type = CRYPTO_ALG_TYPE_AHASH, .alg.hash = { .halg.digestsize = SHA3_224_DIGEST_SIZE, .halg.base = { .cra_name = "sha3-224", .cra_driver_name = "sha3-224-iproc", .cra_blocksize = SHA3_224_BLOCK_SIZE, } }, .cipher_info = { .alg = CIPHER_ALG_NONE, .mode = CIPHER_MODE_NONE, }, .auth_info = { .alg = HASH_ALG_SHA3_224, .mode = HASH_MODE_HASH, }, }, { .type = CRYPTO_ALG_TYPE_AHASH, .alg.hash = { .halg.digestsize = SHA3_224_DIGEST_SIZE, .halg.base = { .cra_name = "hmac(sha3-224)", .cra_driver_name = "hmac-sha3-224-iproc", .cra_blocksize = SHA3_224_BLOCK_SIZE, } }, .cipher_info = { .alg = CIPHER_ALG_NONE, .mode = CIPHER_MODE_NONE, }, .auth_info = { .alg = HASH_ALG_SHA3_224, .mode = HASH_MODE_HMAC }, }, { .type = CRYPTO_ALG_TYPE_AHASH, .alg.hash = { .halg.digestsize = SHA3_256_DIGEST_SIZE, .halg.base = { .cra_name = "sha3-256", .cra_driver_name = "sha3-256-iproc", .cra_blocksize = SHA3_256_BLOCK_SIZE, } }, .cipher_info = { .alg = CIPHER_ALG_NONE, .mode = CIPHER_MODE_NONE, }, .auth_info = { .alg = HASH_ALG_SHA3_256, .mode = HASH_MODE_HASH, }, }, { .type = CRYPTO_ALG_TYPE_AHASH, .alg.hash = { .halg.digestsize = SHA3_256_DIGEST_SIZE, .halg.base = { .cra_name = "hmac(sha3-256)", .cra_driver_name = "hmac-sha3-256-iproc", .cra_blocksize = SHA3_256_BLOCK_SIZE, } }, .cipher_info = { .alg = CIPHER_ALG_NONE, .mode = CIPHER_MODE_NONE, }, .auth_info = { .alg = HASH_ALG_SHA3_256, .mode = HASH_MODE_HMAC, }, }, { .type = CRYPTO_ALG_TYPE_AHASH, .alg.hash = { .halg.digestsize = SHA3_384_DIGEST_SIZE, .halg.base = { .cra_name = "sha3-384", .cra_driver_name = "sha3-384-iproc", .cra_blocksize = SHA3_224_BLOCK_SIZE, } }, .cipher_info = { .alg = CIPHER_ALG_NONE, .mode = CIPHER_MODE_NONE, }, .auth_info = { .alg = HASH_ALG_SHA3_384, .mode = HASH_MODE_HASH, }, }, { .type = CRYPTO_ALG_TYPE_AHASH, .alg.hash = { .halg.digestsize = SHA3_384_DIGEST_SIZE, .halg.base = { .cra_name = "hmac(sha3-384)", .cra_driver_name = "hmac-sha3-384-iproc", .cra_blocksize = SHA3_384_BLOCK_SIZE, } }, .cipher_info = { .alg = CIPHER_ALG_NONE, .mode = CIPHER_MODE_NONE, }, .auth_info = { .alg = HASH_ALG_SHA3_384, .mode = HASH_MODE_HMAC, }, }, { .type = CRYPTO_ALG_TYPE_AHASH, .alg.hash = { .halg.digestsize = SHA3_512_DIGEST_SIZE, .halg.base = { .cra_name = "sha3-512", .cra_driver_name = "sha3-512-iproc", .cra_blocksize = SHA3_512_BLOCK_SIZE, } }, .cipher_info = { .alg = CIPHER_ALG_NONE, .mode = CIPHER_MODE_NONE, }, .auth_info = { .alg = HASH_ALG_SHA3_512, .mode = HASH_MODE_HASH, }, }, { .type = CRYPTO_ALG_TYPE_AHASH, .alg.hash = { .halg.digestsize = SHA3_512_DIGEST_SIZE, .halg.base = { .cra_name = "hmac(sha3-512)", .cra_driver_name = "hmac-sha3-512-iproc", .cra_blocksize = SHA3_512_BLOCK_SIZE, } }, .cipher_info = { .alg = CIPHER_ALG_NONE, .mode = CIPHER_MODE_NONE, }, .auth_info = { .alg = HASH_ALG_SHA3_512, .mode = HASH_MODE_HMAC, }, }, { .type = CRYPTO_ALG_TYPE_AHASH, .alg.hash = { .halg.digestsize = AES_BLOCK_SIZE, .halg.base = { .cra_name = "xcbc(aes)", .cra_driver_name = "xcbc-aes-iproc", .cra_blocksize = AES_BLOCK_SIZE, } }, .cipher_info = { .alg = CIPHER_ALG_NONE, .mode = CIPHER_MODE_NONE, }, .auth_info = { .alg = HASH_ALG_AES, .mode = HASH_MODE_XCBC, }, }, { .type = CRYPTO_ALG_TYPE_AHASH, .alg.hash = { .halg.digestsize = AES_BLOCK_SIZE, .halg.base = { .cra_name = "cmac(aes)", .cra_driver_name = "cmac-aes-iproc", .cra_blocksize = AES_BLOCK_SIZE, } }, .cipher_info = { .alg = CIPHER_ALG_NONE, .mode = CIPHER_MODE_NONE, }, .auth_info = { .alg = HASH_ALG_AES, .mode = HASH_MODE_CMAC, }, }, }; static int generic_cra_init(struct crypto_tfm *tfm, struct iproc_alg_s *cipher_alg) { struct spu_hw *spu = &iproc_priv.spu; struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm); unsigned int blocksize = crypto_tfm_alg_blocksize(tfm); flow_log("%s()\n", __func__); ctx->alg = cipher_alg; ctx->cipher = cipher_alg->cipher_info; ctx->auth = cipher_alg->auth_info; ctx->auth_first = cipher_alg->auth_first; ctx->max_payload = spu->spu_ctx_max_payload(ctx->cipher.alg, ctx->cipher.mode, blocksize); ctx->fallback_cipher = NULL; ctx->enckeylen = 0; ctx->authkeylen = 0; atomic_inc(&iproc_priv.stream_count); atomic_inc(&iproc_priv.session_count); return 0; } static int ablkcipher_cra_init(struct crypto_tfm *tfm) { struct crypto_alg *alg = tfm->__crt_alg; struct iproc_alg_s *cipher_alg; flow_log("%s()\n", __func__); tfm->crt_ablkcipher.reqsize = sizeof(struct iproc_reqctx_s); cipher_alg = container_of(alg, struct iproc_alg_s, alg.crypto); return generic_cra_init(tfm, cipher_alg); } static int ahash_cra_init(struct crypto_tfm *tfm) { int err; struct crypto_alg *alg = tfm->__crt_alg; struct iproc_alg_s *cipher_alg; cipher_alg = container_of(__crypto_ahash_alg(alg), struct iproc_alg_s, alg.hash); err = generic_cra_init(tfm, cipher_alg); flow_log("%s()\n", __func__); /* * export state size has to be < 512 bytes. So don't include msg bufs * in state size. */ crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), sizeof(struct iproc_reqctx_s)); return err; } static int aead_cra_init(struct crypto_aead *aead) { struct crypto_tfm *tfm = crypto_aead_tfm(aead); struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm); struct crypto_alg *alg = tfm->__crt_alg; struct aead_alg *aalg = container_of(alg, struct aead_alg, base); struct iproc_alg_s *cipher_alg = container_of(aalg, struct iproc_alg_s, alg.aead); int err = generic_cra_init(tfm, cipher_alg); flow_log("%s()\n", __func__); crypto_aead_set_reqsize(aead, sizeof(struct iproc_reqctx_s)); ctx->is_esp = false; ctx->salt_len = 0; ctx->salt_offset = 0; /* random first IV */ get_random_bytes(ctx->iv, MAX_IV_SIZE); flow_dump(" iv: ", ctx->iv, MAX_IV_SIZE); if (!err) { if (alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK) { flow_log("%s() creating fallback cipher\n", __func__); ctx->fallback_cipher = crypto_alloc_aead(alg->cra_name, 0, CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK); if (IS_ERR(ctx->fallback_cipher)) { pr_err("%s() Error: failed to allocate fallback for %s\n", __func__, alg->cra_name); return PTR_ERR(ctx->fallback_cipher); } } } return err; } static void generic_cra_exit(struct crypto_tfm *tfm) { atomic_dec(&iproc_priv.session_count); } static void aead_cra_exit(struct crypto_aead *aead) { struct crypto_tfm *tfm = crypto_aead_tfm(aead); struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm); generic_cra_exit(tfm); if (ctx->fallback_cipher) { crypto_free_aead(ctx->fallback_cipher); ctx->fallback_cipher = NULL; } } /** * spu_functions_register() - Specify hardware-specific SPU functions based on * SPU type read from device tree. * @dev: device structure * @spu_type: SPU hardware generation * @spu_subtype: SPU hardware version */ static void spu_functions_register(struct device *dev, enum spu_spu_type spu_type, enum spu_spu_subtype spu_subtype) { struct spu_hw *spu = &iproc_priv.spu; if (spu_type == SPU_TYPE_SPUM) { dev_dbg(dev, "Registering SPUM functions"); spu->spu_dump_msg_hdr = spum_dump_msg_hdr; spu->spu_payload_length = spum_payload_length; spu->spu_response_hdr_len = spum_response_hdr_len; spu->spu_hash_pad_len = spum_hash_pad_len; spu->spu_gcm_ccm_pad_len = spum_gcm_ccm_pad_len; spu->spu_assoc_resp_len = spum_assoc_resp_len; spu->spu_aead_ivlen = spum_aead_ivlen; spu->spu_hash_type = spum_hash_type; spu->spu_digest_size = spum_digest_size; spu->spu_create_request = spum_create_request; spu->spu_cipher_req_init = spum_cipher_req_init; spu->spu_cipher_req_finish = spum_cipher_req_finish; spu->spu_request_pad = spum_request_pad; spu->spu_tx_status_len = spum_tx_status_len; spu->spu_rx_status_len = spum_rx_status_len; spu->spu_status_process = spum_status_process; spu->spu_xts_tweak_in_payload = spum_xts_tweak_in_payload; spu->spu_ccm_update_iv = spum_ccm_update_iv; spu->spu_wordalign_padlen = spum_wordalign_padlen; if (spu_subtype == SPU_SUBTYPE_SPUM_NS2) spu->spu_ctx_max_payload = spum_ns2_ctx_max_payload; else spu->spu_ctx_max_payload = spum_nsp_ctx_max_payload; } else { dev_dbg(dev, "Registering SPU2 functions"); spu->spu_dump_msg_hdr = spu2_dump_msg_hdr; spu->spu_ctx_max_payload = spu2_ctx_max_payload; spu->spu_payload_length = spu2_payload_length; spu->spu_response_hdr_len = spu2_response_hdr_len; spu->spu_hash_pad_len = spu2_hash_pad_len; spu->spu_gcm_ccm_pad_len = spu2_gcm_ccm_pad_len; spu->spu_assoc_resp_len = spu2_assoc_resp_len; spu->spu_aead_ivlen = spu2_aead_ivlen; spu->spu_hash_type = spu2_hash_type; spu->spu_digest_size = spu2_digest_size; spu->spu_create_request = spu2_create_request; spu->spu_cipher_req_init = spu2_cipher_req_init; spu->spu_cipher_req_finish = spu2_cipher_req_finish; spu->spu_request_pad = spu2_request_pad; spu->spu_tx_status_len = spu2_tx_status_len; spu->spu_rx_status_len = spu2_rx_status_len; spu->spu_status_process = spu2_status_process; spu->spu_xts_tweak_in_payload = spu2_xts_tweak_in_payload; spu->spu_ccm_update_iv = spu2_ccm_update_iv; spu->spu_wordalign_padlen = spu2_wordalign_padlen; } } /** * spu_mb_init() - Initialize mailbox client. Request ownership of a mailbox * channel for the SPU being probed. * @dev: SPU driver device structure * * Return: 0 if successful * < 0 otherwise */ static int spu_mb_init(struct device *dev) { struct mbox_client *mcl = &iproc_priv.mcl; int err, i; iproc_priv.mbox = devm_kcalloc(dev, iproc_priv.spu.num_chan, sizeof(struct mbox_chan *), GFP_KERNEL); if (!iproc_priv.mbox) return -ENOMEM; mcl->dev = dev; mcl->tx_block = false; mcl->tx_tout = 0; mcl->knows_txdone = true; mcl->rx_callback = spu_rx_callback; mcl->tx_done = NULL; for (i = 0; i < iproc_priv.spu.num_chan; i++) { iproc_priv.mbox[i] = mbox_request_channel(mcl, i); if (IS_ERR(iproc_priv.mbox[i])) { err = (int)PTR_ERR(iproc_priv.mbox[i]); dev_err(dev, "Mbox channel %d request failed with err %d", i, err); iproc_priv.mbox[i] = NULL; goto free_channels; } } return 0; free_channels: for (i = 0; i < iproc_priv.spu.num_chan; i++) { if (iproc_priv.mbox[i]) mbox_free_channel(iproc_priv.mbox[i]); } return err; } static void spu_mb_release(struct platform_device *pdev) { int i; for (i = 0; i < iproc_priv.spu.num_chan; i++) mbox_free_channel(iproc_priv.mbox[i]); } static void spu_counters_init(void) { int i; int j; atomic_set(&iproc_priv.session_count, 0); atomic_set(&iproc_priv.stream_count, 0); atomic_set(&iproc_priv.next_chan, (int)iproc_priv.spu.num_chan); atomic64_set(&iproc_priv.bytes_in, 0); atomic64_set(&iproc_priv.bytes_out, 0); for (i = 0; i < SPU_OP_NUM; i++) { atomic_set(&iproc_priv.op_counts[i], 0); atomic_set(&iproc_priv.setkey_cnt[i], 0); } for (i = 0; i < CIPHER_ALG_LAST; i++) for (j = 0; j < CIPHER_MODE_LAST; j++) atomic_set(&iproc_priv.cipher_cnt[i][j], 0); for (i = 0; i < HASH_ALG_LAST; i++) { atomic_set(&iproc_priv.hash_cnt[i], 0); atomic_set(&iproc_priv.hmac_cnt[i], 0); } for (i = 0; i < AEAD_TYPE_LAST; i++) atomic_set(&iproc_priv.aead_cnt[i], 0); atomic_set(&iproc_priv.mb_no_spc, 0); atomic_set(&iproc_priv.mb_send_fail, 0); atomic_set(&iproc_priv.bad_icv, 0); } static int spu_register_ablkcipher(struct iproc_alg_s *driver_alg) { struct spu_hw *spu = &iproc_priv.spu; struct crypto_alg *crypto = &driver_alg->alg.crypto; int err; /* SPU2 does not support RC4 */ if ((driver_alg->cipher_info.alg == CIPHER_ALG_RC4) && (spu->spu_type == SPU_TYPE_SPU2)) return 0; crypto->cra_module = THIS_MODULE; crypto->cra_priority = cipher_pri; crypto->cra_alignmask = 0; crypto->cra_ctxsize = sizeof(struct iproc_ctx_s); INIT_LIST_HEAD(&crypto->cra_list); crypto->cra_init = ablkcipher_cra_init; crypto->cra_exit = generic_cra_exit; crypto->cra_type = &crypto_ablkcipher_type; crypto->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY; crypto->cra_ablkcipher.setkey = ablkcipher_setkey; crypto->cra_ablkcipher.encrypt = ablkcipher_encrypt; crypto->cra_ablkcipher.decrypt = ablkcipher_decrypt; err = crypto_register_alg(crypto); /* Mark alg as having been registered, if successful */ if (err == 0) driver_alg->registered = true; pr_debug(" registered ablkcipher %s\n", crypto->cra_driver_name); return err; } static int spu_register_ahash(struct iproc_alg_s *driver_alg) { struct spu_hw *spu = &iproc_priv.spu; struct ahash_alg *hash = &driver_alg->alg.hash; int err; /* AES-XCBC is the only AES hash type currently supported on SPU-M */ if ((driver_alg->auth_info.alg == HASH_ALG_AES) && (driver_alg->auth_info.mode != HASH_MODE_XCBC) && (spu->spu_type == SPU_TYPE_SPUM)) return 0; /* SHA3 algorithm variants are not registered for SPU-M or SPU2. */ if ((driver_alg->auth_info.alg >= HASH_ALG_SHA3_224) && (spu->spu_subtype != SPU_SUBTYPE_SPU2_V2)) return 0; hash->halg.base.cra_module = THIS_MODULE; hash->halg.base.cra_priority = hash_pri; hash->halg.base.cra_alignmask = 0; hash->halg.base.cra_ctxsize = sizeof(struct iproc_ctx_s); hash->halg.base.cra_init = ahash_cra_init; hash->halg.base.cra_exit = generic_cra_exit; hash->halg.base.cra_flags = CRYPTO_ALG_ASYNC; hash->halg.statesize = sizeof(struct spu_hash_export_s); if (driver_alg->auth_info.mode != HASH_MODE_HMAC) { hash->init = ahash_init; hash->update = ahash_update; hash->final = ahash_final; hash->finup = ahash_finup; hash->digest = ahash_digest; if ((driver_alg->auth_info.alg == HASH_ALG_AES) && ((driver_alg->auth_info.mode == HASH_MODE_XCBC) || (driver_alg->auth_info.mode == HASH_MODE_CMAC))) { hash->setkey = ahash_setkey; } } else { hash->setkey = ahash_hmac_setkey; hash->init = ahash_hmac_init; hash->update = ahash_hmac_update; hash->final = ahash_hmac_final; hash->finup = ahash_hmac_finup; hash->digest = ahash_hmac_digest; } hash->export = ahash_export; hash->import = ahash_import; err = crypto_register_ahash(hash); /* Mark alg as having been registered, if successful */ if (err == 0) driver_alg->registered = true; pr_debug(" registered ahash %s\n", hash->halg.base.cra_driver_name); return err; } static int spu_register_aead(struct iproc_alg_s *driver_alg) { struct aead_alg *aead = &driver_alg->alg.aead; int err; aead->base.cra_module = THIS_MODULE; aead->base.cra_priority = aead_pri; aead->base.cra_alignmask = 0; aead->base.cra_ctxsize = sizeof(struct iproc_ctx_s); INIT_LIST_HEAD(&aead->base.cra_list); aead->base.cra_flags |= CRYPTO_ALG_ASYNC; /* setkey set in alg initialization */ aead->setauthsize = aead_setauthsize; aead->encrypt = aead_encrypt; aead->decrypt = aead_decrypt; aead->init = aead_cra_init; aead->exit = aead_cra_exit; err = crypto_register_aead(aead); /* Mark alg as having been registered, if successful */ if (err == 0) driver_alg->registered = true; pr_debug(" registered aead %s\n", aead->base.cra_driver_name); return err; } /* register crypto algorithms the device supports */ static int spu_algs_register(struct device *dev) { int i, j; int err; for (i = 0; i < ARRAY_SIZE(driver_algs); i++) { switch (driver_algs[i].type) { case CRYPTO_ALG_TYPE_ABLKCIPHER: err = spu_register_ablkcipher(&driver_algs[i]); break; case CRYPTO_ALG_TYPE_AHASH: err = spu_register_ahash(&driver_algs[i]); break; case CRYPTO_ALG_TYPE_AEAD: err = spu_register_aead(&driver_algs[i]); break; default: dev_err(dev, "iproc-crypto: unknown alg type: %d", driver_algs[i].type); err = -EINVAL; } if (err) { dev_err(dev, "alg registration failed with error %d\n", err); goto err_algs; } } return 0; err_algs: for (j = 0; j < i; j++) { /* Skip any algorithm not registered */ if (!driver_algs[j].registered) continue; switch (driver_algs[j].type) { case CRYPTO_ALG_TYPE_ABLKCIPHER: crypto_unregister_alg(&driver_algs[j].alg.crypto); driver_algs[j].registered = false; break; case CRYPTO_ALG_TYPE_AHASH: crypto_unregister_ahash(&driver_algs[j].alg.hash); driver_algs[j].registered = false; break; case CRYPTO_ALG_TYPE_AEAD: crypto_unregister_aead(&driver_algs[j].alg.aead); driver_algs[j].registered = false; break; } } return err; } /* ==================== Kernel Platform API ==================== */ static struct spu_type_subtype spum_ns2_types = { SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NS2 }; static struct spu_type_subtype spum_nsp_types = { SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NSP }; static struct spu_type_subtype spu2_types = { SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V1 }; static struct spu_type_subtype spu2_v2_types = { SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V2 }; static const struct of_device_id bcm_spu_dt_ids[] = { { .compatible = "brcm,spum-crypto", .data = &spum_ns2_types, }, { .compatible = "brcm,spum-nsp-crypto", .data = &spum_nsp_types, }, { .compatible = "brcm,spu2-crypto", .data = &spu2_types, }, { .compatible = "brcm,spu2-v2-crypto", .data = &spu2_v2_types, }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, bcm_spu_dt_ids); static int spu_dt_read(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct spu_hw *spu = &iproc_priv.spu; struct resource *spu_ctrl_regs; const struct spu_type_subtype *matched_spu_type; struct device_node *dn = pdev->dev.of_node; int err, i; /* Count number of mailbox channels */ spu->num_chan = of_count_phandle_with_args(dn, "mboxes", "#mbox-cells"); matched_spu_type = of_device_get_match_data(dev); if (!matched_spu_type) { dev_err(&pdev->dev, "Failed to match device\n"); return -ENODEV; } spu->spu_type = matched_spu_type->type; spu->spu_subtype = matched_spu_type->subtype; i = 0; for (i = 0; (i < MAX_SPUS) && ((spu_ctrl_regs = platform_get_resource(pdev, IORESOURCE_MEM, i)) != NULL); i++) { spu->reg_vbase[i] = devm_ioremap_resource(dev, spu_ctrl_regs); if (IS_ERR(spu->reg_vbase[i])) { err = PTR_ERR(spu->reg_vbase[i]); dev_err(&pdev->dev, "Failed to map registers: %d\n", err); spu->reg_vbase[i] = NULL; return err; } } spu->num_spu = i; dev_dbg(dev, "Device has %d SPUs", spu->num_spu); return 0; } int bcm_spu_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct spu_hw *spu = &iproc_priv.spu; int err = 0; iproc_priv.pdev = pdev; platform_set_drvdata(iproc_priv.pdev, &iproc_priv); err = spu_dt_read(pdev); if (err < 0) goto failure; err = spu_mb_init(&pdev->dev); if (err < 0) goto failure; if (spu->spu_type == SPU_TYPE_SPUM) iproc_priv.bcm_hdr_len = 8; else if (spu->spu_type == SPU_TYPE_SPU2) iproc_priv.bcm_hdr_len = 0; spu_functions_register(&pdev->dev, spu->spu_type, spu->spu_subtype); spu_counters_init(); spu_setup_debugfs(); err = spu_algs_register(dev); if (err < 0) goto fail_reg; return 0; fail_reg: spu_free_debugfs(); failure: spu_mb_release(pdev); dev_err(dev, "%s failed with error %d.\n", __func__, err); return err; } int bcm_spu_remove(struct platform_device *pdev) { int i; struct device *dev = &pdev->dev; char *cdn; for (i = 0; i < ARRAY_SIZE(driver_algs); i++) { /* * Not all algorithms were registered, depending on whether * hardware is SPU or SPU2. So here we make sure to skip * those algorithms that were not previously registered. */ if (!driver_algs[i].registered) continue; switch (driver_algs[i].type) { case CRYPTO_ALG_TYPE_ABLKCIPHER: crypto_unregister_alg(&driver_algs[i].alg.crypto); dev_dbg(dev, " unregistered cipher %s\n", driver_algs[i].alg.crypto.cra_driver_name); driver_algs[i].registered = false; break; case CRYPTO_ALG_TYPE_AHASH: crypto_unregister_ahash(&driver_algs[i].alg.hash); cdn = driver_algs[i].alg.hash.halg.base.cra_driver_name; dev_dbg(dev, " unregistered hash %s\n", cdn); driver_algs[i].registered = false; break; case CRYPTO_ALG_TYPE_AEAD: crypto_unregister_aead(&driver_algs[i].alg.aead); dev_dbg(dev, " unregistered aead %s\n", driver_algs[i].alg.aead.base.cra_driver_name); driver_algs[i].registered = false; break; } } spu_free_debugfs(); spu_mb_release(pdev); return 0; } /* ===== Kernel Module API ===== */ static struct platform_driver bcm_spu_pdriver = { .driver = { .name = "brcm-spu-crypto", .of_match_table = of_match_ptr(bcm_spu_dt_ids), }, .probe = bcm_spu_probe, .remove = bcm_spu_remove, }; module_platform_driver(bcm_spu_pdriver); MODULE_AUTHOR("Rob Rice "); MODULE_DESCRIPTION("Broadcom symmetric crypto offload driver"); MODULE_LICENSE("GPL v2");