// SPDX-License-Identifier: GPL-2.0-or-later /* * Driver for IDT Versaclock 5 * * Copyright (C) 2017 Marek Vasut */ /* * Possible optimizations: * - Use spread spectrum * - Use integer divider in FOD if applicable */ #include #include #include #include #include #include #include #include #include #include #include #include /* VersaClock5 registers */ #define VC5_OTP_CONTROL 0x00 /* Factory-reserved register block */ #define VC5_RSVD_DEVICE_ID 0x01 #define VC5_RSVD_ADC_GAIN_7_0 0x02 #define VC5_RSVD_ADC_GAIN_15_8 0x03 #define VC5_RSVD_ADC_OFFSET_7_0 0x04 #define VC5_RSVD_ADC_OFFSET_15_8 0x05 #define VC5_RSVD_TEMPY 0x06 #define VC5_RSVD_OFFSET_TBIN 0x07 #define VC5_RSVD_GAIN 0x08 #define VC5_RSVD_TEST_NP 0x09 #define VC5_RSVD_UNUSED 0x0a #define VC5_RSVD_BANDGAP_TRIM_UP 0x0b #define VC5_RSVD_BANDGAP_TRIM_DN 0x0c #define VC5_RSVD_CLK_R_12_CLK_AMP_4 0x0d #define VC5_RSVD_CLK_R_34_CLK_AMP_4 0x0e #define VC5_RSVD_CLK_AMP_123 0x0f /* Configuration register block */ #define VC5_PRIM_SRC_SHDN 0x10 #define VC5_PRIM_SRC_SHDN_EN_XTAL BIT(7) #define VC5_PRIM_SRC_SHDN_EN_CLKIN BIT(6) #define VC5_PRIM_SRC_SHDN_EN_DOUBLE_XTAL_FREQ BIT(3) #define VC5_PRIM_SRC_SHDN_SP BIT(1) #define VC5_PRIM_SRC_SHDN_EN_GBL_SHDN BIT(0) #define VC5_VCO_BAND 0x11 #define VC5_XTAL_X1_LOAD_CAP 0x12 #define VC5_XTAL_X2_LOAD_CAP 0x13 #define VC5_REF_DIVIDER 0x15 #define VC5_REF_DIVIDER_SEL_PREDIV2 BIT(7) #define VC5_REF_DIVIDER_REF_DIV(n) ((n) & 0x3f) #define VC5_VCO_CTRL_AND_PREDIV 0x16 #define VC5_VCO_CTRL_AND_PREDIV_BYPASS_PREDIV BIT(7) #define VC5_FEEDBACK_INT_DIV 0x17 #define VC5_FEEDBACK_INT_DIV_BITS 0x18 #define VC5_FEEDBACK_FRAC_DIV(n) (0x19 + (n)) #define VC5_RC_CONTROL0 0x1e #define VC5_RC_CONTROL1 0x1f /* These registers are named "Unused Factory Reserved Registers" */ #define VC5_RESERVED_X0(idx) (0x20 + ((idx) * 0x10)) #define VC5_RESERVED_X0_BYPASS_SYNC BIT(7) /* bypass_sync bit */ /* Output divider control for divider 1,2,3,4 */ #define VC5_OUT_DIV_CONTROL(idx) (0x21 + ((idx) * 0x10)) #define VC5_OUT_DIV_CONTROL_RESET BIT(7) #define VC5_OUT_DIV_CONTROL_SELB_NORM BIT(3) #define VC5_OUT_DIV_CONTROL_SEL_EXT BIT(2) #define VC5_OUT_DIV_CONTROL_INT_MODE BIT(1) #define VC5_OUT_DIV_CONTROL_EN_FOD BIT(0) #define VC5_OUT_DIV_FRAC(idx, n) (0x22 + ((idx) * 0x10) + (n)) #define VC5_OUT_DIV_FRAC4_OD_SCEE BIT(1) #define VC5_OUT_DIV_STEP_SPREAD(idx, n) (0x26 + ((idx) * 0x10) + (n)) #define VC5_OUT_DIV_SPREAD_MOD(idx, n) (0x29 + ((idx) * 0x10) + (n)) #define VC5_OUT_DIV_SKEW_INT(idx, n) (0x2b + ((idx) * 0x10) + (n)) #define VC5_OUT_DIV_INT(idx, n) (0x2d + ((idx) * 0x10) + (n)) #define VC5_OUT_DIV_SKEW_FRAC(idx) (0x2f + ((idx) * 0x10)) /* Clock control register for clock 1,2 */ #define VC5_CLK_OUTPUT_CFG(idx, n) (0x60 + ((idx) * 0x2) + (n)) #define VC5_CLK_OUTPUT_CFG0_CFG_SHIFT 5 #define VC5_CLK_OUTPUT_CFG0_CFG_MASK GENMASK(7, VC5_CLK_OUTPUT_CFG0_CFG_SHIFT) #define VC5_CLK_OUTPUT_CFG0_CFG_LVPECL (VC5_LVPECL) #define VC5_CLK_OUTPUT_CFG0_CFG_CMOS (VC5_CMOS) #define VC5_CLK_OUTPUT_CFG0_CFG_HCSL33 (VC5_HCSL33) #define VC5_CLK_OUTPUT_CFG0_CFG_LVDS (VC5_LVDS) #define VC5_CLK_OUTPUT_CFG0_CFG_CMOS2 (VC5_CMOS2) #define VC5_CLK_OUTPUT_CFG0_CFG_CMOSD (VC5_CMOSD) #define VC5_CLK_OUTPUT_CFG0_CFG_HCSL25 (VC5_HCSL25) #define VC5_CLK_OUTPUT_CFG0_PWR_SHIFT 3 #define VC5_CLK_OUTPUT_CFG0_PWR_MASK GENMASK(4, VC5_CLK_OUTPUT_CFG0_PWR_SHIFT) #define VC5_CLK_OUTPUT_CFG0_PWR_18 (0<regmap, VC5_PRIM_SRC_SHDN, &src); if (ret) return 0; src &= mask; if (src == VC5_PRIM_SRC_SHDN_EN_XTAL) return 0; if (src == VC5_PRIM_SRC_SHDN_EN_CLKIN) return 1; dev_warn(&vc5->client->dev, "Invalid clock input configuration (%02x)\n", src); return 0; } static int vc5_mux_set_parent(struct clk_hw *hw, u8 index) { struct vc5_driver_data *vc5 = container_of(hw, struct vc5_driver_data, clk_mux); const u8 mask = VC5_PRIM_SRC_SHDN_EN_XTAL | VC5_PRIM_SRC_SHDN_EN_CLKIN; u8 src; if ((index > 1) || !vc5->clk_mux_ins) return -EINVAL; if (vc5->clk_mux_ins == (VC5_MUX_IN_CLKIN | VC5_MUX_IN_XIN)) { if (index == 0) src = VC5_PRIM_SRC_SHDN_EN_XTAL; if (index == 1) src = VC5_PRIM_SRC_SHDN_EN_CLKIN; } else { if (index != 0) return -EINVAL; if (vc5->clk_mux_ins == VC5_MUX_IN_XIN) src = VC5_PRIM_SRC_SHDN_EN_XTAL; else if (vc5->clk_mux_ins == VC5_MUX_IN_CLKIN) src = VC5_PRIM_SRC_SHDN_EN_CLKIN; else /* Invalid; should have been caught by vc5_probe() */ return -EINVAL; } return regmap_update_bits(vc5->regmap, VC5_PRIM_SRC_SHDN, mask, src); } static const struct clk_ops vc5_mux_ops = { .determine_rate = clk_hw_determine_rate_no_reparent, .set_parent = vc5_mux_set_parent, .get_parent = vc5_mux_get_parent, }; static unsigned long vc5_dbl_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct vc5_driver_data *vc5 = container_of(hw, struct vc5_driver_data, clk_mul); unsigned int premul; int ret; ret = regmap_read(vc5->regmap, VC5_PRIM_SRC_SHDN, &premul); if (ret) return 0; if (premul & VC5_PRIM_SRC_SHDN_EN_DOUBLE_XTAL_FREQ) parent_rate *= 2; return parent_rate; } static long vc5_dbl_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate) { if ((*parent_rate == rate) || ((*parent_rate * 2) == rate)) return rate; else return -EINVAL; } static int vc5_dbl_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct vc5_driver_data *vc5 = container_of(hw, struct vc5_driver_data, clk_mul); u32 mask; if ((parent_rate * 2) == rate) mask = VC5_PRIM_SRC_SHDN_EN_DOUBLE_XTAL_FREQ; else mask = 0; return regmap_update_bits(vc5->regmap, VC5_PRIM_SRC_SHDN, VC5_PRIM_SRC_SHDN_EN_DOUBLE_XTAL_FREQ, mask); } static const struct clk_ops vc5_dbl_ops = { .recalc_rate = vc5_dbl_recalc_rate, .round_rate = vc5_dbl_round_rate, .set_rate = vc5_dbl_set_rate, }; static unsigned long vc5_pfd_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct vc5_driver_data *vc5 = container_of(hw, struct vc5_driver_data, clk_pfd); unsigned int prediv, div; int ret; ret = regmap_read(vc5->regmap, VC5_VCO_CTRL_AND_PREDIV, &prediv); if (ret) return 0; /* The bypass_prediv is set, PLL fed from Ref_in directly. */ if (prediv & VC5_VCO_CTRL_AND_PREDIV_BYPASS_PREDIV) return parent_rate; ret = regmap_read(vc5->regmap, VC5_REF_DIVIDER, &div); if (ret) return 0; /* The Sel_prediv2 is set, PLL fed from prediv2 (Ref_in / 2) */ if (div & VC5_REF_DIVIDER_SEL_PREDIV2) return parent_rate / 2; else return parent_rate / VC5_REF_DIVIDER_REF_DIV(div); } static long vc5_pfd_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate) { unsigned long idiv; /* PLL cannot operate with input clock above 50 MHz. */ if (rate > 50000000) return -EINVAL; /* CLKIN within range of PLL input, feed directly to PLL. */ if (*parent_rate <= 50000000) return *parent_rate; idiv = DIV_ROUND_UP(*parent_rate, rate); if (idiv > 127) return -EINVAL; return *parent_rate / idiv; } static int vc5_pfd_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct vc5_driver_data *vc5 = container_of(hw, struct vc5_driver_data, clk_pfd); unsigned long idiv; int ret; u8 div; /* CLKIN within range of PLL input, feed directly to PLL. */ if (parent_rate <= 50000000) { ret = regmap_set_bits(vc5->regmap, VC5_VCO_CTRL_AND_PREDIV, VC5_VCO_CTRL_AND_PREDIV_BYPASS_PREDIV); if (ret) return ret; return regmap_update_bits(vc5->regmap, VC5_REF_DIVIDER, 0xff, 0x00); } idiv = DIV_ROUND_UP(parent_rate, rate); /* We have dedicated div-2 predivider. */ if (idiv == 2) div = VC5_REF_DIVIDER_SEL_PREDIV2; else div = VC5_REF_DIVIDER_REF_DIV(idiv); ret = regmap_update_bits(vc5->regmap, VC5_REF_DIVIDER, 0xff, div); if (ret) return ret; return regmap_clear_bits(vc5->regmap, VC5_VCO_CTRL_AND_PREDIV, VC5_VCO_CTRL_AND_PREDIV_BYPASS_PREDIV); } static const struct clk_ops vc5_pfd_ops = { .recalc_rate = vc5_pfd_recalc_rate, .round_rate = vc5_pfd_round_rate, .set_rate = vc5_pfd_set_rate, }; /* * VersaClock5 PLL/VCO */ static unsigned long vc5_pll_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct vc5_hw_data *hwdata = container_of(hw, struct vc5_hw_data, hw); struct vc5_driver_data *vc5 = hwdata->vc5; u32 div_int, div_frc; u8 fb[5]; regmap_bulk_read(vc5->regmap, VC5_FEEDBACK_INT_DIV, fb, 5); div_int = (fb[0] << 4) | (fb[1] >> 4); div_frc = (fb[2] << 16) | (fb[3] << 8) | fb[4]; /* The PLL divider has 12 integer bits and 24 fractional bits */ return (parent_rate * div_int) + ((parent_rate * div_frc) >> 24); } static long vc5_pll_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate) { struct vc5_hw_data *hwdata = container_of(hw, struct vc5_hw_data, hw); struct vc5_driver_data *vc5 = hwdata->vc5; u32 div_int; u64 div_frc; rate = clamp(rate, VC5_PLL_VCO_MIN, vc5->chip_info->vco_max); /* Determine integer part, which is 12 bit wide */ div_int = rate / *parent_rate; if (div_int > 0xfff) rate = *parent_rate * 0xfff; /* Determine best fractional part, which is 24 bit wide */ div_frc = rate % *parent_rate; div_frc *= BIT(24) - 1; do_div(div_frc, *parent_rate); hwdata->div_int = div_int; hwdata->div_frc = (u32)div_frc; return (*parent_rate * div_int) + ((*parent_rate * div_frc) >> 24); } static int vc5_pll_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct vc5_hw_data *hwdata = container_of(hw, struct vc5_hw_data, hw); struct vc5_driver_data *vc5 = hwdata->vc5; u8 fb[5]; fb[0] = hwdata->div_int >> 4; fb[1] = hwdata->div_int << 4; fb[2] = hwdata->div_frc >> 16; fb[3] = hwdata->div_frc >> 8; fb[4] = hwdata->div_frc; return regmap_bulk_write(vc5->regmap, VC5_FEEDBACK_INT_DIV, fb, 5); } static const struct clk_ops vc5_pll_ops = { .recalc_rate = vc5_pll_recalc_rate, .round_rate = vc5_pll_round_rate, .set_rate = vc5_pll_set_rate, }; static unsigned long vc5_fod_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct vc5_hw_data *hwdata = container_of(hw, struct vc5_hw_data, hw); struct vc5_driver_data *vc5 = hwdata->vc5; /* VCO frequency is divided by two before entering FOD */ u32 f_in = parent_rate / 2; u32 div_int, div_frc; u8 od_int[2]; u8 od_frc[4]; regmap_bulk_read(vc5->regmap, VC5_OUT_DIV_INT(hwdata->num, 0), od_int, 2); regmap_bulk_read(vc5->regmap, VC5_OUT_DIV_FRAC(hwdata->num, 0), od_frc, 4); div_int = (od_int[0] << 4) | (od_int[1] >> 4); div_frc = (od_frc[0] << 22) | (od_frc[1] << 14) | (od_frc[2] << 6) | (od_frc[3] >> 2); /* Avoid division by zero if the output is not configured. */ if (div_int == 0 && div_frc == 0) return 0; /* The PLL divider has 12 integer bits and 30 fractional bits */ return div64_u64((u64)f_in << 24ULL, ((u64)div_int << 24ULL) + div_frc); } static long vc5_fod_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate) { struct vc5_hw_data *hwdata = container_of(hw, struct vc5_hw_data, hw); /* VCO frequency is divided by two before entering FOD */ u32 f_in = *parent_rate / 2; u32 div_int; u64 div_frc; /* Determine integer part, which is 12 bit wide */ div_int = f_in / rate; /* * WARNING: The clock chip does not output signal if the integer part * of the divider is 0xfff and fractional part is non-zero. * Clamp the divider at 0xffe to keep the code simple. */ if (div_int > 0xffe) { div_int = 0xffe; rate = f_in / div_int; } /* Determine best fractional part, which is 30 bit wide */ div_frc = f_in % rate; div_frc <<= 24; do_div(div_frc, rate); hwdata->div_int = div_int; hwdata->div_frc = (u32)div_frc; return div64_u64((u64)f_in << 24ULL, ((u64)div_int << 24ULL) + div_frc); } static int vc5_fod_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct vc5_hw_data *hwdata = container_of(hw, struct vc5_hw_data, hw); struct vc5_driver_data *vc5 = hwdata->vc5; u8 data[14] = { hwdata->div_frc >> 22, hwdata->div_frc >> 14, hwdata->div_frc >> 6, hwdata->div_frc << 2, 0, 0, 0, 0, 0, 0, 0, hwdata->div_int >> 4, hwdata->div_int << 4, 0 }; int ret; ret = regmap_bulk_write(vc5->regmap, VC5_OUT_DIV_FRAC(hwdata->num, 0), data, 14); if (ret) return ret; /* * Toggle magic bit in undocumented register for unknown reason. * This is what the IDT timing commander tool does and the chip * datasheet somewhat implies this is needed, but the register * and the bit is not documented. */ ret = regmap_clear_bits(vc5->regmap, VC5_GLOBAL_REGISTER, VC5_GLOBAL_REGISTER_GLOBAL_RESET); if (ret) return ret; return regmap_set_bits(vc5->regmap, VC5_GLOBAL_REGISTER, VC5_GLOBAL_REGISTER_GLOBAL_RESET); } static const struct clk_ops vc5_fod_ops = { .recalc_rate = vc5_fod_recalc_rate, .round_rate = vc5_fod_round_rate, .set_rate = vc5_fod_set_rate, }; static int vc5_clk_out_prepare(struct clk_hw *hw) { struct vc5_out_data *hwdata = container_of(hw, struct vc5_out_data, hw); struct vc5_driver_data *vc5 = hwdata->vc5; const u8 mask = VC5_OUT_DIV_CONTROL_SELB_NORM | VC5_OUT_DIV_CONTROL_SEL_EXT | VC5_OUT_DIV_CONTROL_EN_FOD; unsigned int src; int ret; /* * When enabling a FOD, all currently enabled FODs are briefly * stopped in order to synchronize all of them. This causes a clock * disruption to any unrelated chips that might be already using * other clock outputs. Bypass the sync feature to avoid the issue, * which is possible on the VersaClock 6E family via reserved * registers. */ if (vc5->chip_info->flags & VC5_HAS_BYPASS_SYNC_BIT) { ret = regmap_set_bits(vc5->regmap, VC5_RESERVED_X0(hwdata->num), VC5_RESERVED_X0_BYPASS_SYNC); if (ret) return ret; } /* * If the input mux is disabled, enable it first and * select source from matching FOD. */ ret = regmap_read(vc5->regmap, VC5_OUT_DIV_CONTROL(hwdata->num), &src); if (ret) return ret; if ((src & mask) == 0) { src = VC5_OUT_DIV_CONTROL_RESET | VC5_OUT_DIV_CONTROL_EN_FOD; ret = regmap_update_bits(vc5->regmap, VC5_OUT_DIV_CONTROL(hwdata->num), mask | VC5_OUT_DIV_CONTROL_RESET, src); if (ret) return ret; } /* Enable the clock buffer */ ret = regmap_set_bits(vc5->regmap, VC5_CLK_OUTPUT_CFG(hwdata->num, 1), VC5_CLK_OUTPUT_CFG1_EN_CLKBUF); if (ret) return ret; if (hwdata->clk_output_cfg0_mask) { dev_dbg(&vc5->client->dev, "Update output %d mask 0x%0X val 0x%0X\n", hwdata->num, hwdata->clk_output_cfg0_mask, hwdata->clk_output_cfg0); ret = regmap_update_bits(vc5->regmap, VC5_CLK_OUTPUT_CFG(hwdata->num, 0), hwdata->clk_output_cfg0_mask, hwdata->clk_output_cfg0); if (ret) return ret; } return 0; } static void vc5_clk_out_unprepare(struct clk_hw *hw) { struct vc5_out_data *hwdata = container_of(hw, struct vc5_out_data, hw); struct vc5_driver_data *vc5 = hwdata->vc5; /* Disable the clock buffer */ regmap_clear_bits(vc5->regmap, VC5_CLK_OUTPUT_CFG(hwdata->num, 1), VC5_CLK_OUTPUT_CFG1_EN_CLKBUF); } static unsigned char vc5_clk_out_get_parent(struct clk_hw *hw) { struct vc5_out_data *hwdata = container_of(hw, struct vc5_out_data, hw); struct vc5_driver_data *vc5 = hwdata->vc5; const u8 mask = VC5_OUT_DIV_CONTROL_SELB_NORM | VC5_OUT_DIV_CONTROL_SEL_EXT | VC5_OUT_DIV_CONTROL_EN_FOD; const u8 fodclkmask = VC5_OUT_DIV_CONTROL_SELB_NORM | VC5_OUT_DIV_CONTROL_EN_FOD; const u8 extclk = VC5_OUT_DIV_CONTROL_SELB_NORM | VC5_OUT_DIV_CONTROL_SEL_EXT; unsigned int src; int ret; ret = regmap_read(vc5->regmap, VC5_OUT_DIV_CONTROL(hwdata->num), &src); if (ret) return 0; src &= mask; if (src == 0) /* Input mux set to DISABLED */ return 0; if ((src & fodclkmask) == VC5_OUT_DIV_CONTROL_EN_FOD) return 0; if (src == extclk) return 1; dev_warn(&vc5->client->dev, "Invalid clock output configuration (%02x)\n", src); return 0; } static int vc5_clk_out_set_parent(struct clk_hw *hw, u8 index) { struct vc5_out_data *hwdata = container_of(hw, struct vc5_out_data, hw); struct vc5_driver_data *vc5 = hwdata->vc5; const u8 mask = VC5_OUT_DIV_CONTROL_RESET | VC5_OUT_DIV_CONTROL_SELB_NORM | VC5_OUT_DIV_CONTROL_SEL_EXT | VC5_OUT_DIV_CONTROL_EN_FOD; const u8 extclk = VC5_OUT_DIV_CONTROL_SELB_NORM | VC5_OUT_DIV_CONTROL_SEL_EXT; u8 src = VC5_OUT_DIV_CONTROL_RESET; if (index == 0) src |= VC5_OUT_DIV_CONTROL_EN_FOD; else src |= extclk; return regmap_update_bits(vc5->regmap, VC5_OUT_DIV_CONTROL(hwdata->num), mask, src); } static const struct clk_ops vc5_clk_out_ops = { .prepare = vc5_clk_out_prepare, .unprepare = vc5_clk_out_unprepare, .determine_rate = clk_hw_determine_rate_no_reparent, .set_parent = vc5_clk_out_set_parent, .get_parent = vc5_clk_out_get_parent, }; static struct clk_hw *vc5_of_clk_get(struct of_phandle_args *clkspec, void *data) { struct vc5_driver_data *vc5 = data; unsigned int idx = clkspec->args[0]; if (idx >= vc5->chip_info->clk_out_cnt) return ERR_PTR(-EINVAL); return &vc5->clk_out[idx].hw; } static int vc5_map_index_to_output(const enum vc5_model model, const unsigned int n) { switch (model) { case IDT_VC5_5P49V5933: return (n == 0) ? 0 : 3; case IDT_VC5_5P49V5923: case IDT_VC5_5P49V5925: case IDT_VC5_5P49V5935: case IDT_VC6_5P49V6901: case IDT_VC6_5P49V6965: case IDT_VC6_5P49V6975: default: return n; } } static int vc5_update_mode(struct device_node *np_output, struct vc5_out_data *clk_out) { u32 value; if (!of_property_read_u32(np_output, "idt,mode", &value)) { clk_out->clk_output_cfg0_mask |= VC5_CLK_OUTPUT_CFG0_CFG_MASK; switch (value) { case VC5_CLK_OUTPUT_CFG0_CFG_LVPECL: case VC5_CLK_OUTPUT_CFG0_CFG_CMOS: case VC5_CLK_OUTPUT_CFG0_CFG_HCSL33: case VC5_CLK_OUTPUT_CFG0_CFG_LVDS: case VC5_CLK_OUTPUT_CFG0_CFG_CMOS2: case VC5_CLK_OUTPUT_CFG0_CFG_CMOSD: case VC5_CLK_OUTPUT_CFG0_CFG_HCSL25: clk_out->clk_output_cfg0 |= value << VC5_CLK_OUTPUT_CFG0_CFG_SHIFT; break; default: return -EINVAL; } } return 0; } static int vc5_update_power(struct device_node *np_output, struct vc5_out_data *clk_out) { u32 value; if (!of_property_read_u32(np_output, "idt,voltage-microvolt", &value)) { clk_out->clk_output_cfg0_mask |= VC5_CLK_OUTPUT_CFG0_PWR_MASK; switch (value) { case 1800000: clk_out->clk_output_cfg0 |= VC5_CLK_OUTPUT_CFG0_PWR_18; break; case 2500000: clk_out->clk_output_cfg0 |= VC5_CLK_OUTPUT_CFG0_PWR_25; break; case 3300000: clk_out->clk_output_cfg0 |= VC5_CLK_OUTPUT_CFG0_PWR_33; break; default: return -EINVAL; } } return 0; } static int vc5_map_cap_value(u32 femtofarads) { int mapped_value; /* * The datasheet explicitly states 9000 - 25000 with 0.5pF * steps, but the Programmer's guide shows the steps are 0.430pF. * After getting feedback from Renesas, the .5pF steps were the * goal, but 430nF was the actual values. * Because of this, the actual range goes to 22760 instead of 25000 */ if (femtofarads < 9000 || femtofarads > 22760) return -EINVAL; /* * The Programmer's guide shows XTAL[5:0] but in reality, * XTAL[0] and XTAL[1] are both LSB which makes the math * strange. With clarfication from Renesas, setting the * values should be simpler by ignoring XTAL[0] */ mapped_value = DIV_ROUND_CLOSEST(femtofarads - 9000, 430); /* * Since the calculation ignores XTAL[0], there is one * special case where mapped_value = 32. In reality, this means * the real mapped value should be 111111b. In other cases, * the mapped_value needs to be shifted 1 to the left. */ if (mapped_value > 31) mapped_value = 0x3f; else mapped_value <<= 1; return mapped_value; } static int vc5_update_cap_load(struct device_node *node, struct vc5_driver_data *vc5) { u32 value; int mapped_value; int ret; if (of_property_read_u32(node, "idt,xtal-load-femtofarads", &value)) return 0; mapped_value = vc5_map_cap_value(value); if (mapped_value < 0) return mapped_value; /* * The mapped_value is really the high 6 bits of * VC5_XTAL_X1_LOAD_CAP and VC5_XTAL_X2_LOAD_CAP, so * shift the value 2 places. */ ret = regmap_update_bits(vc5->regmap, VC5_XTAL_X1_LOAD_CAP, ~0x03, mapped_value << 2); if (ret) return ret; return regmap_update_bits(vc5->regmap, VC5_XTAL_X2_LOAD_CAP, ~0x03, mapped_value << 2); } static int vc5_update_slew(struct device_node *np_output, struct vc5_out_data *clk_out) { u32 value; if (!of_property_read_u32(np_output, "idt,slew-percent", &value)) { clk_out->clk_output_cfg0_mask |= VC5_CLK_OUTPUT_CFG0_SLEW_MASK; switch (value) { case 80: clk_out->clk_output_cfg0 |= VC5_CLK_OUTPUT_CFG0_SLEW_80; break; case 85: clk_out->clk_output_cfg0 |= VC5_CLK_OUTPUT_CFG0_SLEW_85; break; case 90: clk_out->clk_output_cfg0 |= VC5_CLK_OUTPUT_CFG0_SLEW_90; break; case 100: clk_out->clk_output_cfg0 |= VC5_CLK_OUTPUT_CFG0_SLEW_100; break; default: return -EINVAL; } } return 0; } static int vc5_get_output_config(struct i2c_client *client, struct vc5_out_data *clk_out) { struct device_node *np_output; char *child_name; int ret = 0; child_name = kasprintf(GFP_KERNEL, "OUT%d", clk_out->num + 1); if (!child_name) return -ENOMEM; np_output = of_get_child_by_name(client->dev.of_node, child_name); kfree(child_name); if (!np_output) return 0; ret = vc5_update_mode(np_output, clk_out); if (ret) goto output_error; ret = vc5_update_power(np_output, clk_out); if (ret) goto output_error; ret = vc5_update_slew(np_output, clk_out); output_error: if (ret) { dev_err(&client->dev, "Invalid clock output configuration OUT%d\n", clk_out->num + 1); } of_node_put(np_output); return ret; } static const struct of_device_id clk_vc5_of_match[]; static int vc5_probe(struct i2c_client *client) { unsigned int oe, sd, src_mask = 0, src_val = 0; struct vc5_driver_data *vc5; struct clk_init_data init; const char *parent_names[2]; unsigned int n, idx = 0; int ret; vc5 = devm_kzalloc(&client->dev, sizeof(*vc5), GFP_KERNEL); if (!vc5) return -ENOMEM; i2c_set_clientdata(client, vc5); vc5->client = client; vc5->chip_info = i2c_get_match_data(client); vc5->pin_xin = devm_clk_get(&client->dev, "xin"); if (PTR_ERR(vc5->pin_xin) == -EPROBE_DEFER) return -EPROBE_DEFER; vc5->pin_clkin = devm_clk_get(&client->dev, "clkin"); if (PTR_ERR(vc5->pin_clkin) == -EPROBE_DEFER) return -EPROBE_DEFER; vc5->regmap = devm_regmap_init_i2c(client, &vc5_regmap_config); if (IS_ERR(vc5->regmap)) return dev_err_probe(&client->dev, PTR_ERR(vc5->regmap), "failed to allocate register map\n"); ret = of_property_read_u32(client->dev.of_node, "idt,shutdown", &sd); if (!ret) { src_mask |= VC5_PRIM_SRC_SHDN_EN_GBL_SHDN; if (sd) src_val |= VC5_PRIM_SRC_SHDN_EN_GBL_SHDN; } else if (ret != -EINVAL) { return dev_err_probe(&client->dev, ret, "could not read idt,shutdown\n"); } ret = of_property_read_u32(client->dev.of_node, "idt,output-enable-active", &oe); if (!ret) { src_mask |= VC5_PRIM_SRC_SHDN_SP; if (oe) src_val |= VC5_PRIM_SRC_SHDN_SP; } else if (ret != -EINVAL) { return dev_err_probe(&client->dev, ret, "could not read idt,output-enable-active\n"); } ret = regmap_update_bits(vc5->regmap, VC5_PRIM_SRC_SHDN, src_mask, src_val); if (ret) return ret; /* Register clock input mux */ memset(&init, 0, sizeof(init)); if (!IS_ERR(vc5->pin_xin)) { vc5->clk_mux_ins |= VC5_MUX_IN_XIN; parent_names[init.num_parents++] = __clk_get_name(vc5->pin_xin); } else if (vc5->chip_info->flags & VC5_HAS_INTERNAL_XTAL) { vc5->pin_xin = clk_register_fixed_rate(&client->dev, "internal-xtal", NULL, 0, 25000000); if (IS_ERR(vc5->pin_xin)) return PTR_ERR(vc5->pin_xin); vc5->clk_mux_ins |= VC5_MUX_IN_XIN; parent_names[init.num_parents++] = __clk_get_name(vc5->pin_xin); } if (!IS_ERR(vc5->pin_clkin)) { vc5->clk_mux_ins |= VC5_MUX_IN_CLKIN; parent_names[init.num_parents++] = __clk_get_name(vc5->pin_clkin); } if (!init.num_parents) return dev_err_probe(&client->dev, -EINVAL, "no input clock specified!\n"); /* Configure Optional Loading Capacitance for external XTAL */ if (!(vc5->chip_info->flags & VC5_HAS_INTERNAL_XTAL)) { ret = vc5_update_cap_load(client->dev.of_node, vc5); if (ret) goto err_clk_register; } init.name = kasprintf(GFP_KERNEL, "%pOFn.mux", client->dev.of_node); if (!init.name) { ret = -ENOMEM; goto err_clk; } init.ops = &vc5_mux_ops; init.flags = 0; init.parent_names = parent_names; vc5->clk_mux.init = &init; ret = devm_clk_hw_register(&client->dev, &vc5->clk_mux); if (ret) goto err_clk_register; kfree(init.name); /* clock framework made a copy of the name */ if (vc5->chip_info->flags & VC5_HAS_PFD_FREQ_DBL) { /* Register frequency doubler */ memset(&init, 0, sizeof(init)); init.name = kasprintf(GFP_KERNEL, "%pOFn.dbl", client->dev.of_node); if (!init.name) { ret = -ENOMEM; goto err_clk; } init.ops = &vc5_dbl_ops; init.flags = CLK_SET_RATE_PARENT; init.parent_names = parent_names; parent_names[0] = clk_hw_get_name(&vc5->clk_mux); init.num_parents = 1; vc5->clk_mul.init = &init; ret = devm_clk_hw_register(&client->dev, &vc5->clk_mul); if (ret) goto err_clk_register; kfree(init.name); /* clock framework made a copy of the name */ } /* Register PFD */ memset(&init, 0, sizeof(init)); init.name = kasprintf(GFP_KERNEL, "%pOFn.pfd", client->dev.of_node); if (!init.name) { ret = -ENOMEM; goto err_clk; } init.ops = &vc5_pfd_ops; init.flags = CLK_SET_RATE_PARENT; init.parent_names = parent_names; if (vc5->chip_info->flags & VC5_HAS_PFD_FREQ_DBL) parent_names[0] = clk_hw_get_name(&vc5->clk_mul); else parent_names[0] = clk_hw_get_name(&vc5->clk_mux); init.num_parents = 1; vc5->clk_pfd.init = &init; ret = devm_clk_hw_register(&client->dev, &vc5->clk_pfd); if (ret) goto err_clk_register; kfree(init.name); /* clock framework made a copy of the name */ /* Register PLL */ memset(&init, 0, sizeof(init)); init.name = kasprintf(GFP_KERNEL, "%pOFn.pll", client->dev.of_node); if (!init.name) { ret = -ENOMEM; goto err_clk; } init.ops = &vc5_pll_ops; init.flags = CLK_SET_RATE_PARENT; init.parent_names = parent_names; parent_names[0] = clk_hw_get_name(&vc5->clk_pfd); init.num_parents = 1; vc5->clk_pll.num = 0; vc5->clk_pll.vc5 = vc5; vc5->clk_pll.hw.init = &init; ret = devm_clk_hw_register(&client->dev, &vc5->clk_pll.hw); if (ret) goto err_clk_register; kfree(init.name); /* clock framework made a copy of the name */ /* Register FODs */ for (n = 0; n < vc5->chip_info->clk_fod_cnt; n++) { idx = vc5_map_index_to_output(vc5->chip_info->model, n); memset(&init, 0, sizeof(init)); init.name = kasprintf(GFP_KERNEL, "%pOFn.fod%d", client->dev.of_node, idx); if (!init.name) { ret = -ENOMEM; goto err_clk; } init.ops = &vc5_fod_ops; init.flags = CLK_SET_RATE_PARENT; init.parent_names = parent_names; parent_names[0] = clk_hw_get_name(&vc5->clk_pll.hw); init.num_parents = 1; vc5->clk_fod[n].num = idx; vc5->clk_fod[n].vc5 = vc5; vc5->clk_fod[n].hw.init = &init; ret = devm_clk_hw_register(&client->dev, &vc5->clk_fod[n].hw); if (ret) goto err_clk_register; kfree(init.name); /* clock framework made a copy of the name */ } /* Register MUX-connected OUT0_I2C_SELB output */ memset(&init, 0, sizeof(init)); init.name = kasprintf(GFP_KERNEL, "%pOFn.out0_sel_i2cb", client->dev.of_node); if (!init.name) { ret = -ENOMEM; goto err_clk; } init.ops = &vc5_clk_out_ops; init.flags = CLK_SET_RATE_PARENT; init.parent_names = parent_names; parent_names[0] = clk_hw_get_name(&vc5->clk_mux); init.num_parents = 1; vc5->clk_out[0].num = idx; vc5->clk_out[0].vc5 = vc5; vc5->clk_out[0].hw.init = &init; ret = devm_clk_hw_register(&client->dev, &vc5->clk_out[0].hw); if (ret) goto err_clk_register; kfree(init.name); /* clock framework made a copy of the name */ /* Register FOD-connected OUTx outputs */ for (n = 1; n < vc5->chip_info->clk_out_cnt; n++) { idx = vc5_map_index_to_output(vc5->chip_info->model, n - 1); parent_names[0] = clk_hw_get_name(&vc5->clk_fod[idx].hw); if (n == 1) parent_names[1] = clk_hw_get_name(&vc5->clk_mux); else parent_names[1] = clk_hw_get_name(&vc5->clk_out[n - 1].hw); memset(&init, 0, sizeof(init)); init.name = kasprintf(GFP_KERNEL, "%pOFn.out%d", client->dev.of_node, idx + 1); if (!init.name) { ret = -ENOMEM; goto err_clk; } init.ops = &vc5_clk_out_ops; init.flags = CLK_SET_RATE_PARENT; init.parent_names = parent_names; init.num_parents = 2; vc5->clk_out[n].num = idx; vc5->clk_out[n].vc5 = vc5; vc5->clk_out[n].hw.init = &init; ret = devm_clk_hw_register(&client->dev, &vc5->clk_out[n].hw); if (ret) goto err_clk_register; kfree(init.name); /* clock framework made a copy of the name */ /* Fetch Clock Output configuration from DT (if specified) */ ret = vc5_get_output_config(client, &vc5->clk_out[n]); if (ret) goto err_clk; } ret = of_clk_add_hw_provider(client->dev.of_node, vc5_of_clk_get, vc5); if (ret) { dev_err_probe(&client->dev, ret, "unable to add clk provider\n"); goto err_clk; } return 0; err_clk_register: dev_err_probe(&client->dev, ret, "unable to register %s\n", init.name); kfree(init.name); /* clock framework made a copy of the name */ err_clk: if (vc5->chip_info->flags & VC5_HAS_INTERNAL_XTAL) clk_unregister_fixed_rate(vc5->pin_xin); return ret; } static void vc5_remove(struct i2c_client *client) { struct vc5_driver_data *vc5 = i2c_get_clientdata(client); of_clk_del_provider(client->dev.of_node); if (vc5->chip_info->flags & VC5_HAS_INTERNAL_XTAL) clk_unregister_fixed_rate(vc5->pin_xin); } static int __maybe_unused vc5_suspend(struct device *dev) { struct vc5_driver_data *vc5 = dev_get_drvdata(dev); regcache_cache_only(vc5->regmap, true); regcache_mark_dirty(vc5->regmap); return 0; } static int __maybe_unused vc5_resume(struct device *dev) { struct vc5_driver_data *vc5 = dev_get_drvdata(dev); int ret; regcache_cache_only(vc5->regmap, false); ret = regcache_sync(vc5->regmap); if (ret) dev_err(dev, "Failed to restore register map: %d\n", ret); return ret; } static const struct vc5_chip_info idt_5p49v5923_info = { .model = IDT_VC5_5P49V5923, .clk_fod_cnt = 2, .clk_out_cnt = 3, .flags = 0, .vco_max = 3000000000UL, }; static const struct vc5_chip_info idt_5p49v5925_info = { .model = IDT_VC5_5P49V5925, .clk_fod_cnt = 4, .clk_out_cnt = 5, .flags = 0, .vco_max = 3000000000UL, }; static const struct vc5_chip_info idt_5p49v5933_info = { .model = IDT_VC5_5P49V5933, .clk_fod_cnt = 2, .clk_out_cnt = 3, .flags = VC5_HAS_INTERNAL_XTAL, .vco_max = 3000000000UL, }; static const struct vc5_chip_info idt_5p49v5935_info = { .model = IDT_VC5_5P49V5935, .clk_fod_cnt = 4, .clk_out_cnt = 5, .flags = VC5_HAS_INTERNAL_XTAL, .vco_max = 3000000000UL, }; static const struct vc5_chip_info idt_5p49v60_info = { .model = IDT_VC6_5P49V60, .clk_fod_cnt = 4, .clk_out_cnt = 5, .flags = VC5_HAS_PFD_FREQ_DBL | VC5_HAS_BYPASS_SYNC_BIT, .vco_max = 2700000000UL, }; static const struct vc5_chip_info idt_5p49v6901_info = { .model = IDT_VC6_5P49V6901, .clk_fod_cnt = 4, .clk_out_cnt = 5, .flags = VC5_HAS_PFD_FREQ_DBL | VC5_HAS_BYPASS_SYNC_BIT, .vco_max = 3000000000UL, }; static const struct vc5_chip_info idt_5p49v6965_info = { .model = IDT_VC6_5P49V6965, .clk_fod_cnt = 4, .clk_out_cnt = 5, .flags = VC5_HAS_BYPASS_SYNC_BIT, .vco_max = 3000000000UL, }; static const struct vc5_chip_info idt_5p49v6975_info = { .model = IDT_VC6_5P49V6975, .clk_fod_cnt = 4, .clk_out_cnt = 5, .flags = VC5_HAS_BYPASS_SYNC_BIT | VC5_HAS_INTERNAL_XTAL, .vco_max = 3000000000UL, }; static const struct i2c_device_id vc5_id[] = { { "5p49v5923", .driver_data = (kernel_ulong_t)&idt_5p49v5923_info }, { "5p49v5925", .driver_data = (kernel_ulong_t)&idt_5p49v5925_info }, { "5p49v5933", .driver_data = (kernel_ulong_t)&idt_5p49v5933_info }, { "5p49v5935", .driver_data = (kernel_ulong_t)&idt_5p49v5935_info }, { "5p49v60", .driver_data = (kernel_ulong_t)&idt_5p49v60_info }, { "5p49v6901", .driver_data = (kernel_ulong_t)&idt_5p49v6901_info }, { "5p49v6965", .driver_data = (kernel_ulong_t)&idt_5p49v6965_info }, { "5p49v6975", .driver_data = (kernel_ulong_t)&idt_5p49v6975_info }, { } }; MODULE_DEVICE_TABLE(i2c, vc5_id); static const struct of_device_id clk_vc5_of_match[] = { { .compatible = "idt,5p49v5923", .data = &idt_5p49v5923_info }, { .compatible = "idt,5p49v5925", .data = &idt_5p49v5925_info }, { .compatible = "idt,5p49v5933", .data = &idt_5p49v5933_info }, { .compatible = "idt,5p49v5935", .data = &idt_5p49v5935_info }, { .compatible = "idt,5p49v60", .data = &idt_5p49v60_info }, { .compatible = "idt,5p49v6901", .data = &idt_5p49v6901_info }, { .compatible = "idt,5p49v6965", .data = &idt_5p49v6965_info }, { .compatible = "idt,5p49v6975", .data = &idt_5p49v6975_info }, { }, }; MODULE_DEVICE_TABLE(of, clk_vc5_of_match); static SIMPLE_DEV_PM_OPS(vc5_pm_ops, vc5_suspend, vc5_resume); static struct i2c_driver vc5_driver = { .driver = { .name = "vc5", .pm = &vc5_pm_ops, .of_match_table = clk_vc5_of_match, }, .probe = vc5_probe, .remove = vc5_remove, .id_table = vc5_id, }; module_i2c_driver(vc5_driver); MODULE_AUTHOR("Marek Vasut "); MODULE_DESCRIPTION("IDT VersaClock 5 driver"); MODULE_LICENSE("GPL");