// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2014 Intel Corporation * * Adjustable fractional divider clock implementation. * Uses rational best approximation algorithm. * * Output is calculated as * * rate = (m / n) * parent_rate (1) * * This is useful when we have a prescaler block which asks for * m (numerator) and n (denominator) values to be provided to satisfy * the (1) as much as possible. * * Since m and n have the limitation by a range, e.g. * * n >= 1, n < N_width, where N_width = 2^nwidth (2) * * for some cases the output may be saturated. Hence, from (1) and (2), * assuming the worst case when m = 1, the inequality * * floor(log2(parent_rate / rate)) <= nwidth (3) * * may be derived. Thus, in cases when * * (parent_rate / rate) >> N_width (4) * * we might scale up the rate by 2^scale (see the description of * CLK_FRAC_DIVIDER_POWER_OF_TWO_PS for additional information), where * * scale = floor(log2(parent_rate / rate)) - nwidth (5) * * and assume that the IP, that needs m and n, has also its own * prescaler, which is capable to divide by 2^scale. In this way * we get the denominator to satisfy the desired range (2) and * at the same time a much better result of m and n than simple * saturated values. */ #include #include #include #include #include #include #include #include #include "clk-fractional-divider.h" static inline u32 clk_fd_readl(struct clk_fractional_divider *fd) { if (fd->flags & CLK_FRAC_DIVIDER_BIG_ENDIAN) return ioread32be(fd->reg); return readl(fd->reg); } static inline void clk_fd_writel(struct clk_fractional_divider *fd, u32 val) { if (fd->flags & CLK_FRAC_DIVIDER_BIG_ENDIAN) iowrite32be(val, fd->reg); else writel(val, fd->reg); } static void clk_fd_get_div(struct clk_hw *hw, struct u32_fract *fract) { struct clk_fractional_divider *fd = to_clk_fd(hw); unsigned long flags = 0; unsigned long m, n; u32 mmask, nmask; u32 val; if (fd->lock) spin_lock_irqsave(fd->lock, flags); else __acquire(fd->lock); val = clk_fd_readl(fd); if (fd->lock) spin_unlock_irqrestore(fd->lock, flags); else __release(fd->lock); mmask = GENMASK(fd->mwidth - 1, 0) << fd->mshift; nmask = GENMASK(fd->nwidth - 1, 0) << fd->nshift; m = (val & mmask) >> fd->mshift; n = (val & nmask) >> fd->nshift; if (fd->flags & CLK_FRAC_DIVIDER_ZERO_BASED) { m++; n++; } fract->numerator = m; fract->denominator = n; } static unsigned long clk_fd_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct u32_fract fract; u64 ret; clk_fd_get_div(hw, &fract); if (!fract.numerator || !fract.denominator) return parent_rate; ret = (u64)parent_rate * fract.numerator; do_div(ret, fract.denominator); return ret; } void clk_fractional_divider_general_approximation(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate, unsigned long *m, unsigned long *n) { struct clk_fractional_divider *fd = to_clk_fd(hw); unsigned long max_m, max_n; /* * Get rate closer to *parent_rate to guarantee there is no overflow * for m and n. In the result it will be the nearest rate left shifted * by (scale - fd->nwidth) bits. * * For the detailed explanation see the top comment in this file. */ if (fd->flags & CLK_FRAC_DIVIDER_POWER_OF_TWO_PS) { unsigned long scale = fls_long(*parent_rate / rate - 1); if (scale > fd->nwidth) rate <<= scale - fd->nwidth; } if (fd->flags & CLK_FRAC_DIVIDER_ZERO_BASED) { max_m = 1 << fd->mwidth; max_n = 1 << fd->nwidth; } else { max_m = GENMASK(fd->mwidth - 1, 0); max_n = GENMASK(fd->nwidth - 1, 0); } rational_best_approximation(rate, *parent_rate, max_m, max_n, m, n); } EXPORT_SYMBOL_GPL(clk_fractional_divider_general_approximation); static long clk_fd_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate) { struct clk_fractional_divider *fd = to_clk_fd(hw); unsigned long m, n; u64 ret; if (!rate || (!clk_hw_can_set_rate_parent(hw) && rate >= *parent_rate)) return *parent_rate; if (fd->approximation) fd->approximation(hw, rate, parent_rate, &m, &n); else clk_fractional_divider_general_approximation(hw, rate, parent_rate, &m, &n); ret = (u64)*parent_rate * m; do_div(ret, n); return ret; } static int clk_fd_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_fractional_divider *fd = to_clk_fd(hw); unsigned long flags = 0; unsigned long m, n, max_m, max_n; u32 mmask, nmask; u32 val; if (fd->flags & CLK_FRAC_DIVIDER_ZERO_BASED) { max_m = 1 << fd->mwidth; max_n = 1 << fd->nwidth; } else { max_m = GENMASK(fd->mwidth - 1, 0); max_n = GENMASK(fd->nwidth - 1, 0); } rational_best_approximation(rate, parent_rate, max_m, max_n, &m, &n); if (fd->flags & CLK_FRAC_DIVIDER_ZERO_BASED) { m--; n--; } if (fd->lock) spin_lock_irqsave(fd->lock, flags); else __acquire(fd->lock); mmask = GENMASK(fd->mwidth - 1, 0) << fd->mshift; nmask = GENMASK(fd->nwidth - 1, 0) << fd->nshift; val = clk_fd_readl(fd); val &= ~(mmask | nmask); val |= (m << fd->mshift) | (n << fd->nshift); clk_fd_writel(fd, val); if (fd->lock) spin_unlock_irqrestore(fd->lock, flags); else __release(fd->lock); return 0; } #ifdef CONFIG_DEBUG_FS static int clk_fd_numerator_get(void *hw, u64 *val) { struct u32_fract fract; clk_fd_get_div(hw, &fract); *val = fract.numerator; return 0; } DEFINE_DEBUGFS_ATTRIBUTE(clk_fd_numerator_fops, clk_fd_numerator_get, NULL, "%llu\n"); static int clk_fd_denominator_get(void *hw, u64 *val) { struct u32_fract fract; clk_fd_get_div(hw, &fract); *val = fract.denominator; return 0; } DEFINE_DEBUGFS_ATTRIBUTE(clk_fd_denominator_fops, clk_fd_denominator_get, NULL, "%llu\n"); static void clk_fd_debug_init(struct clk_hw *hw, struct dentry *dentry) { debugfs_create_file("numerator", 0444, dentry, hw, &clk_fd_numerator_fops); debugfs_create_file("denominator", 0444, dentry, hw, &clk_fd_denominator_fops); } #endif const struct clk_ops clk_fractional_divider_ops = { .recalc_rate = clk_fd_recalc_rate, .round_rate = clk_fd_round_rate, .set_rate = clk_fd_set_rate, #ifdef CONFIG_DEBUG_FS .debug_init = clk_fd_debug_init, #endif }; EXPORT_SYMBOL_GPL(clk_fractional_divider_ops); struct clk_hw *clk_hw_register_fractional_divider(struct device *dev, const char *name, const char *parent_name, unsigned long flags, void __iomem *reg, u8 mshift, u8 mwidth, u8 nshift, u8 nwidth, u8 clk_divider_flags, spinlock_t *lock) { struct clk_fractional_divider *fd; struct clk_init_data init; struct clk_hw *hw; int ret; fd = kzalloc(sizeof(*fd), GFP_KERNEL); if (!fd) return ERR_PTR(-ENOMEM); init.name = name; init.ops = &clk_fractional_divider_ops; init.flags = flags; init.parent_names = parent_name ? &parent_name : NULL; init.num_parents = parent_name ? 1 : 0; fd->reg = reg; fd->mshift = mshift; fd->mwidth = mwidth; fd->nshift = nshift; fd->nwidth = nwidth; fd->flags = clk_divider_flags; fd->lock = lock; fd->hw.init = &init; hw = &fd->hw; ret = clk_hw_register(dev, hw); if (ret) { kfree(fd); hw = ERR_PTR(ret); } return hw; } EXPORT_SYMBOL_GPL(clk_hw_register_fractional_divider); struct clk *clk_register_fractional_divider(struct device *dev, const char *name, const char *parent_name, unsigned long flags, void __iomem *reg, u8 mshift, u8 mwidth, u8 nshift, u8 nwidth, u8 clk_divider_flags, spinlock_t *lock) { struct clk_hw *hw; hw = clk_hw_register_fractional_divider(dev, name, parent_name, flags, reg, mshift, mwidth, nshift, nwidth, clk_divider_flags, lock); if (IS_ERR(hw)) return ERR_CAST(hw); return hw->clk; } EXPORT_SYMBOL_GPL(clk_register_fractional_divider); void clk_hw_unregister_fractional_divider(struct clk_hw *hw) { struct clk_fractional_divider *fd; fd = to_clk_fd(hw); clk_hw_unregister(hw); kfree(fd); }