// SPDX-License-Identifier: GPL-2.0 /* * Functions related to mapping data to requests */ #include #include #include #include #include #include #include "blk.h" struct bio_map_data { bool is_our_pages : 1; bool is_null_mapped : 1; struct iov_iter iter; struct iovec iov[]; }; static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data, gfp_t gfp_mask) { struct bio_map_data *bmd; if (data->nr_segs > UIO_MAXIOV) return NULL; bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask); if (!bmd) return NULL; bmd->iter = *data; if (iter_is_iovec(data)) { memcpy(bmd->iov, iter_iov(data), sizeof(struct iovec) * data->nr_segs); bmd->iter.__iov = bmd->iov; } return bmd; } /** * bio_copy_from_iter - copy all pages from iov_iter to bio * @bio: The &struct bio which describes the I/O as destination * @iter: iov_iter as source * * Copy all pages from iov_iter to bio. * Returns 0 on success, or error on failure. */ static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter) { struct bio_vec *bvec; struct bvec_iter_all iter_all; bio_for_each_segment_all(bvec, bio, iter_all) { ssize_t ret; ret = copy_page_from_iter(bvec->bv_page, bvec->bv_offset, bvec->bv_len, iter); if (!iov_iter_count(iter)) break; if (ret < bvec->bv_len) return -EFAULT; } return 0; } /** * bio_copy_to_iter - copy all pages from bio to iov_iter * @bio: The &struct bio which describes the I/O as source * @iter: iov_iter as destination * * Copy all pages from bio to iov_iter. * Returns 0 on success, or error on failure. */ static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter) { struct bio_vec *bvec; struct bvec_iter_all iter_all; bio_for_each_segment_all(bvec, bio, iter_all) { ssize_t ret; ret = copy_page_to_iter(bvec->bv_page, bvec->bv_offset, bvec->bv_len, &iter); if (!iov_iter_count(&iter)) break; if (ret < bvec->bv_len) return -EFAULT; } return 0; } /** * bio_uncopy_user - finish previously mapped bio * @bio: bio being terminated * * Free pages allocated from bio_copy_user_iov() and write back data * to user space in case of a read. */ static int bio_uncopy_user(struct bio *bio) { struct bio_map_data *bmd = bio->bi_private; int ret = 0; if (!bmd->is_null_mapped) { /* * if we're in a workqueue, the request is orphaned, so * don't copy into a random user address space, just free * and return -EINTR so user space doesn't expect any data. */ if (!current->mm) ret = -EINTR; else if (bio_data_dir(bio) == READ) ret = bio_copy_to_iter(bio, bmd->iter); if (bmd->is_our_pages) bio_free_pages(bio); } kfree(bmd); return ret; } static int bio_copy_user_iov(struct request *rq, struct rq_map_data *map_data, struct iov_iter *iter, gfp_t gfp_mask) { struct bio_map_data *bmd; struct page *page; struct bio *bio; int i = 0, ret; int nr_pages; unsigned int len = iter->count; unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0; bmd = bio_alloc_map_data(iter, gfp_mask); if (!bmd) return -ENOMEM; /* * We need to do a deep copy of the iov_iter including the iovecs. * The caller provided iov might point to an on-stack or otherwise * shortlived one. */ bmd->is_our_pages = !map_data; bmd->is_null_mapped = (map_data && map_data->null_mapped); nr_pages = bio_max_segs(DIV_ROUND_UP(offset + len, PAGE_SIZE)); ret = -ENOMEM; bio = bio_kmalloc(nr_pages, gfp_mask); if (!bio) goto out_bmd; bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, req_op(rq)); if (map_data) { nr_pages = 1U << map_data->page_order; i = map_data->offset / PAGE_SIZE; } while (len) { unsigned int bytes = PAGE_SIZE; bytes -= offset; if (bytes > len) bytes = len; if (map_data) { if (i == map_data->nr_entries * nr_pages) { ret = -ENOMEM; goto cleanup; } page = map_data->pages[i / nr_pages]; page += (i % nr_pages); i++; } else { page = alloc_page(GFP_NOIO | gfp_mask); if (!page) { ret = -ENOMEM; goto cleanup; } } if (bio_add_pc_page(rq->q, bio, page, bytes, offset) < bytes) { if (!map_data) __free_page(page); break; } len -= bytes; offset = 0; } if (map_data) map_data->offset += bio->bi_iter.bi_size; /* * success */ if (iov_iter_rw(iter) == WRITE && (!map_data || !map_data->null_mapped)) { ret = bio_copy_from_iter(bio, iter); if (ret) goto cleanup; } else if (map_data && map_data->from_user) { struct iov_iter iter2 = *iter; /* This is the copy-in part of SG_DXFER_TO_FROM_DEV. */ iter2.data_source = ITER_SOURCE; ret = bio_copy_from_iter(bio, &iter2); if (ret) goto cleanup; } else { if (bmd->is_our_pages) zero_fill_bio(bio); iov_iter_advance(iter, bio->bi_iter.bi_size); } bio->bi_private = bmd; ret = blk_rq_append_bio(rq, bio); if (ret) goto cleanup; return 0; cleanup: if (!map_data) bio_free_pages(bio); bio_uninit(bio); kfree(bio); out_bmd: kfree(bmd); return ret; } static void blk_mq_map_bio_put(struct bio *bio) { if (bio->bi_opf & REQ_ALLOC_CACHE) { bio_put(bio); } else { bio_uninit(bio); kfree(bio); } } static struct bio *blk_rq_map_bio_alloc(struct request *rq, unsigned int nr_vecs, gfp_t gfp_mask) { struct bio *bio; if (rq->cmd_flags & REQ_ALLOC_CACHE && (nr_vecs <= BIO_INLINE_VECS)) { bio = bio_alloc_bioset(NULL, nr_vecs, rq->cmd_flags, gfp_mask, &fs_bio_set); if (!bio) return NULL; } else { bio = bio_kmalloc(nr_vecs, gfp_mask); if (!bio) return NULL; bio_init(bio, NULL, bio->bi_inline_vecs, nr_vecs, req_op(rq)); } return bio; } static int bio_map_user_iov(struct request *rq, struct iov_iter *iter, gfp_t gfp_mask) { iov_iter_extraction_t extraction_flags = 0; unsigned int max_sectors = queue_max_hw_sectors(rq->q); unsigned int nr_vecs = iov_iter_npages(iter, BIO_MAX_VECS); struct bio *bio; int ret; int j; if (!iov_iter_count(iter)) return -EINVAL; bio = blk_rq_map_bio_alloc(rq, nr_vecs, gfp_mask); if (bio == NULL) return -ENOMEM; if (blk_queue_pci_p2pdma(rq->q)) extraction_flags |= ITER_ALLOW_P2PDMA; if (iov_iter_extract_will_pin(iter)) bio_set_flag(bio, BIO_PAGE_PINNED); while (iov_iter_count(iter)) { struct page *stack_pages[UIO_FASTIOV]; struct page **pages = stack_pages; ssize_t bytes; size_t offs; int npages; if (nr_vecs > ARRAY_SIZE(stack_pages)) pages = NULL; bytes = iov_iter_extract_pages(iter, &pages, LONG_MAX, nr_vecs, extraction_flags, &offs); if (unlikely(bytes <= 0)) { ret = bytes ? bytes : -EFAULT; goto out_unmap; } npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE); if (unlikely(offs & queue_dma_alignment(rq->q))) j = 0; else { for (j = 0; j < npages; j++) { struct page *page = pages[j]; unsigned int n = PAGE_SIZE - offs; bool same_page = false; if (n > bytes) n = bytes; if (!bio_add_hw_page(rq->q, bio, page, n, offs, max_sectors, &same_page)) break; if (same_page) bio_release_page(bio, page); bytes -= n; offs = 0; } } /* * release the pages we didn't map into the bio, if any */ while (j < npages) bio_release_page(bio, pages[j++]); if (pages != stack_pages) kvfree(pages); /* couldn't stuff something into bio? */ if (bytes) { iov_iter_revert(iter, bytes); break; } } ret = blk_rq_append_bio(rq, bio); if (ret) goto out_unmap; return 0; out_unmap: bio_release_pages(bio, false); blk_mq_map_bio_put(bio); return ret; } static void bio_invalidate_vmalloc_pages(struct bio *bio) { #ifdef ARCH_IMPLEMENTS_FLUSH_KERNEL_VMAP_RANGE if (bio->bi_private && !op_is_write(bio_op(bio))) { unsigned long i, len = 0; for (i = 0; i < bio->bi_vcnt; i++) len += bio->bi_io_vec[i].bv_len; invalidate_kernel_vmap_range(bio->bi_private, len); } #endif } static void bio_map_kern_endio(struct bio *bio) { bio_invalidate_vmalloc_pages(bio); bio_uninit(bio); kfree(bio); } /** * bio_map_kern - map kernel address into bio * @q: the struct request_queue for the bio * @data: pointer to buffer to map * @len: length in bytes * @gfp_mask: allocation flags for bio allocation * * Map the kernel address into a bio suitable for io to a block * device. Returns an error pointer in case of error. */ static struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len, gfp_t gfp_mask) { unsigned long kaddr = (unsigned long)data; unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; unsigned long start = kaddr >> PAGE_SHIFT; const int nr_pages = end - start; bool is_vmalloc = is_vmalloc_addr(data); struct page *page; int offset, i; struct bio *bio; bio = bio_kmalloc(nr_pages, gfp_mask); if (!bio) return ERR_PTR(-ENOMEM); bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, 0); if (is_vmalloc) { flush_kernel_vmap_range(data, len); bio->bi_private = data; } offset = offset_in_page(kaddr); for (i = 0; i < nr_pages; i++) { unsigned int bytes = PAGE_SIZE - offset; if (len <= 0) break; if (bytes > len) bytes = len; if (!is_vmalloc) page = virt_to_page(data); else page = vmalloc_to_page(data); if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) { /* we don't support partial mappings */ bio_uninit(bio); kfree(bio); return ERR_PTR(-EINVAL); } data += bytes; len -= bytes; offset = 0; } bio->bi_end_io = bio_map_kern_endio; return bio; } static void bio_copy_kern_endio(struct bio *bio) { bio_free_pages(bio); bio_uninit(bio); kfree(bio); } static void bio_copy_kern_endio_read(struct bio *bio) { char *p = bio->bi_private; struct bio_vec *bvec; struct bvec_iter_all iter_all; bio_for_each_segment_all(bvec, bio, iter_all) { memcpy_from_bvec(p, bvec); p += bvec->bv_len; } bio_copy_kern_endio(bio); } /** * bio_copy_kern - copy kernel address into bio * @q: the struct request_queue for the bio * @data: pointer to buffer to copy * @len: length in bytes * @gfp_mask: allocation flags for bio and page allocation * @reading: data direction is READ * * copy the kernel address into a bio suitable for io to a block * device. Returns an error pointer in case of error. */ static struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len, gfp_t gfp_mask, int reading) { unsigned long kaddr = (unsigned long)data; unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; unsigned long start = kaddr >> PAGE_SHIFT; struct bio *bio; void *p = data; int nr_pages = 0; /* * Overflow, abort */ if (end < start) return ERR_PTR(-EINVAL); nr_pages = end - start; bio = bio_kmalloc(nr_pages, gfp_mask); if (!bio) return ERR_PTR(-ENOMEM); bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, 0); while (len) { struct page *page; unsigned int bytes = PAGE_SIZE; if (bytes > len) bytes = len; page = alloc_page(GFP_NOIO | __GFP_ZERO | gfp_mask); if (!page) goto cleanup; if (!reading) memcpy(page_address(page), p, bytes); if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes) break; len -= bytes; p += bytes; } if (reading) { bio->bi_end_io = bio_copy_kern_endio_read; bio->bi_private = data; } else { bio->bi_end_io = bio_copy_kern_endio; } return bio; cleanup: bio_free_pages(bio); bio_uninit(bio); kfree(bio); return ERR_PTR(-ENOMEM); } /* * Append a bio to a passthrough request. Only works if the bio can be merged * into the request based on the driver constraints. */ int blk_rq_append_bio(struct request *rq, struct bio *bio) { struct bvec_iter iter; struct bio_vec bv; unsigned int nr_segs = 0; bio_for_each_bvec(bv, bio, iter) nr_segs++; if (!rq->bio) { blk_rq_bio_prep(rq, bio, nr_segs); } else { if (!ll_back_merge_fn(rq, bio, nr_segs)) return -EINVAL; rq->biotail->bi_next = bio; rq->biotail = bio; rq->__data_len += (bio)->bi_iter.bi_size; bio_crypt_free_ctx(bio); } return 0; } EXPORT_SYMBOL(blk_rq_append_bio); /* Prepare bio for passthrough IO given ITER_BVEC iter */ static int blk_rq_map_user_bvec(struct request *rq, const struct iov_iter *iter) { struct request_queue *q = rq->q; size_t nr_iter = iov_iter_count(iter); size_t nr_segs = iter->nr_segs; struct bio_vec *bvecs, *bvprvp = NULL; const struct queue_limits *lim = &q->limits; unsigned int nsegs = 0, bytes = 0; struct bio *bio; size_t i; if (!nr_iter || (nr_iter >> SECTOR_SHIFT) > queue_max_hw_sectors(q)) return -EINVAL; if (nr_segs > queue_max_segments(q)) return -EINVAL; /* no iovecs to alloc, as we already have a BVEC iterator */ bio = blk_rq_map_bio_alloc(rq, 0, GFP_KERNEL); if (bio == NULL) return -ENOMEM; bio_iov_bvec_set(bio, (struct iov_iter *)iter); blk_rq_bio_prep(rq, bio, nr_segs); /* loop to perform a bunch of sanity checks */ bvecs = (struct bio_vec *)iter->bvec; for (i = 0; i < nr_segs; i++) { struct bio_vec *bv = &bvecs[i]; /* * If the queue doesn't support SG gaps and adding this * offset would create a gap, fallback to copy. */ if (bvprvp && bvec_gap_to_prev(lim, bvprvp, bv->bv_offset)) { blk_mq_map_bio_put(bio); return -EREMOTEIO; } /* check full condition */ if (nsegs >= nr_segs || bytes > UINT_MAX - bv->bv_len) goto put_bio; if (bytes + bv->bv_len > nr_iter) goto put_bio; if (bv->bv_offset + bv->bv_len > PAGE_SIZE) goto put_bio; nsegs++; bytes += bv->bv_len; bvprvp = bv; } return 0; put_bio: blk_mq_map_bio_put(bio); return -EINVAL; } /** * blk_rq_map_user_iov - map user data to a request, for passthrough requests * @q: request queue where request should be inserted * @rq: request to map data to * @map_data: pointer to the rq_map_data holding pages (if necessary) * @iter: iovec iterator * @gfp_mask: memory allocation flags * * Description: * Data will be mapped directly for zero copy I/O, if possible. Otherwise * a kernel bounce buffer is used. * * A matching blk_rq_unmap_user() must be issued at the end of I/O, while * still in process context. */ int blk_rq_map_user_iov(struct request_queue *q, struct request *rq, struct rq_map_data *map_data, const struct iov_iter *iter, gfp_t gfp_mask) { bool copy = false, map_bvec = false; unsigned long align = q->dma_pad_mask | queue_dma_alignment(q); struct bio *bio = NULL; struct iov_iter i; int ret = -EINVAL; if (map_data) copy = true; else if (blk_queue_may_bounce(q)) copy = true; else if (iov_iter_alignment(iter) & align) copy = true; else if (iov_iter_is_bvec(iter)) map_bvec = true; else if (!user_backed_iter(iter)) copy = true; else if (queue_virt_boundary(q)) copy = queue_virt_boundary(q) & iov_iter_gap_alignment(iter); if (map_bvec) { ret = blk_rq_map_user_bvec(rq, iter); if (!ret) return 0; if (ret != -EREMOTEIO) goto fail; /* fall back to copying the data on limits mismatches */ copy = true; } i = *iter; do { if (copy) ret = bio_copy_user_iov(rq, map_data, &i, gfp_mask); else ret = bio_map_user_iov(rq, &i, gfp_mask); if (ret) goto unmap_rq; if (!bio) bio = rq->bio; } while (iov_iter_count(&i)); return 0; unmap_rq: blk_rq_unmap_user(bio); fail: rq->bio = NULL; return ret; } EXPORT_SYMBOL(blk_rq_map_user_iov); int blk_rq_map_user(struct request_queue *q, struct request *rq, struct rq_map_data *map_data, void __user *ubuf, unsigned long len, gfp_t gfp_mask) { struct iov_iter i; int ret = import_ubuf(rq_data_dir(rq), ubuf, len, &i); if (unlikely(ret < 0)) return ret; return blk_rq_map_user_iov(q, rq, map_data, &i, gfp_mask); } EXPORT_SYMBOL(blk_rq_map_user); int blk_rq_map_user_io(struct request *req, struct rq_map_data *map_data, void __user *ubuf, unsigned long buf_len, gfp_t gfp_mask, bool vec, int iov_count, bool check_iter_count, int rw) { int ret = 0; if (vec) { struct iovec fast_iov[UIO_FASTIOV]; struct iovec *iov = fast_iov; struct iov_iter iter; ret = import_iovec(rw, ubuf, iov_count ? iov_count : buf_len, UIO_FASTIOV, &iov, &iter); if (ret < 0) return ret; if (iov_count) { /* SG_IO howto says that the shorter of the two wins */ iov_iter_truncate(&iter, buf_len); if (check_iter_count && !iov_iter_count(&iter)) { kfree(iov); return -EINVAL; } } ret = blk_rq_map_user_iov(req->q, req, map_data, &iter, gfp_mask); kfree(iov); } else if (buf_len) { ret = blk_rq_map_user(req->q, req, map_data, ubuf, buf_len, gfp_mask); } return ret; } EXPORT_SYMBOL(blk_rq_map_user_io); /** * blk_rq_unmap_user - unmap a request with user data * @bio: start of bio list * * Description: * Unmap a rq previously mapped by blk_rq_map_user(). The caller must * supply the original rq->bio from the blk_rq_map_user() return, since * the I/O completion may have changed rq->bio. */ int blk_rq_unmap_user(struct bio *bio) { struct bio *next_bio; int ret = 0, ret2; while (bio) { if (bio->bi_private) { ret2 = bio_uncopy_user(bio); if (ret2 && !ret) ret = ret2; } else { bio_release_pages(bio, bio_data_dir(bio) == READ); } next_bio = bio; bio = bio->bi_next; blk_mq_map_bio_put(next_bio); } return ret; } EXPORT_SYMBOL(blk_rq_unmap_user); /** * blk_rq_map_kern - map kernel data to a request, for passthrough requests * @q: request queue where request should be inserted * @rq: request to fill * @kbuf: the kernel buffer * @len: length of user data * @gfp_mask: memory allocation flags * * Description: * Data will be mapped directly if possible. Otherwise a bounce * buffer is used. Can be called multiple times to append multiple * buffers. */ int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf, unsigned int len, gfp_t gfp_mask) { int reading = rq_data_dir(rq) == READ; unsigned long addr = (unsigned long) kbuf; struct bio *bio; int ret; if (len > (queue_max_hw_sectors(q) << 9)) return -EINVAL; if (!len || !kbuf) return -EINVAL; if (!blk_rq_aligned(q, addr, len) || object_is_on_stack(kbuf) || blk_queue_may_bounce(q)) bio = bio_copy_kern(q, kbuf, len, gfp_mask, reading); else bio = bio_map_kern(q, kbuf, len, gfp_mask); if (IS_ERR(bio)) return PTR_ERR(bio); bio->bi_opf &= ~REQ_OP_MASK; bio->bi_opf |= req_op(rq); ret = blk_rq_append_bio(rq, bio); if (unlikely(ret)) { bio_uninit(bio); kfree(bio); } return ret; } EXPORT_SYMBOL(blk_rq_map_kern);