// SPDX-License-Identifier: GPL-2.0-only /* * Kernel-based Virtual Machine driver for Linux * * AMD SVM support * * Copyright (C) 2006 Qumranet, Inc. * Copyright 2010 Red Hat, Inc. and/or its affiliates. * * Authors: * Yaniv Kamay * Avi Kivity */ #define pr_fmt(fmt) "SVM: " fmt #include #include #include #include #include #include "kvm_emulate.h" #include "trace.h" #include "mmu.h" #include "x86.h" #include "cpuid.h" #include "lapic.h" #include "svm.h" static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu, struct x86_exception *fault) { struct vcpu_svm *svm = to_svm(vcpu); if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) { /* * TODO: track the cause of the nested page fault, and * correctly fill in the high bits of exit_info_1. */ svm->vmcb->control.exit_code = SVM_EXIT_NPF; svm->vmcb->control.exit_code_hi = 0; svm->vmcb->control.exit_info_1 = (1ULL << 32); svm->vmcb->control.exit_info_2 = fault->address; } svm->vmcb->control.exit_info_1 &= ~0xffffffffULL; svm->vmcb->control.exit_info_1 |= fault->error_code; nested_svm_vmexit(svm); } static void svm_inject_page_fault_nested(struct kvm_vcpu *vcpu, struct x86_exception *fault) { struct vcpu_svm *svm = to_svm(vcpu); WARN_ON(!is_guest_mode(vcpu)); if (vmcb_is_intercept(&svm->nested.ctl, INTERCEPT_EXCEPTION_OFFSET + PF_VECTOR) && !svm->nested.nested_run_pending) { svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + PF_VECTOR; svm->vmcb->control.exit_code_hi = 0; svm->vmcb->control.exit_info_1 = fault->error_code; svm->vmcb->control.exit_info_2 = fault->address; nested_svm_vmexit(svm); } else { kvm_inject_page_fault(vcpu, fault); } } static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index) { struct vcpu_svm *svm = to_svm(vcpu); u64 cr3 = svm->nested.ctl.nested_cr3; u64 pdpte; int ret; ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(cr3), &pdpte, offset_in_page(cr3) + index * 8, 8); if (ret) return 0; return pdpte; } static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); return svm->nested.ctl.nested_cr3; } static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); struct vmcb *hsave = svm->nested.hsave; WARN_ON(mmu_is_nested(vcpu)); vcpu->arch.mmu = &vcpu->arch.guest_mmu; kvm_init_shadow_npt_mmu(vcpu, X86_CR0_PG, hsave->save.cr4, hsave->save.efer, svm->nested.ctl.nested_cr3); vcpu->arch.mmu->get_guest_pgd = nested_svm_get_tdp_cr3; vcpu->arch.mmu->get_pdptr = nested_svm_get_tdp_pdptr; vcpu->arch.mmu->inject_page_fault = nested_svm_inject_npf_exit; reset_shadow_zero_bits_mask(vcpu, vcpu->arch.mmu); vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu; } static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu) { vcpu->arch.mmu = &vcpu->arch.root_mmu; vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; } void recalc_intercepts(struct vcpu_svm *svm) { struct vmcb_control_area *c, *h, *g; unsigned int i; vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); if (!is_guest_mode(&svm->vcpu)) return; c = &svm->vmcb->control; h = &svm->nested.hsave->control; g = &svm->nested.ctl; for (i = 0; i < MAX_INTERCEPT; i++) c->intercepts[i] = h->intercepts[i]; if (g->int_ctl & V_INTR_MASKING_MASK) { /* We only want the cr8 intercept bits of L1 */ vmcb_clr_intercept(c, INTERCEPT_CR8_READ); vmcb_clr_intercept(c, INTERCEPT_CR8_WRITE); /* * Once running L2 with HF_VINTR_MASK, EFLAGS.IF does not * affect any interrupt we may want to inject; therefore, * interrupt window vmexits are irrelevant to L0. */ vmcb_clr_intercept(c, INTERCEPT_VINTR); } /* We don't want to see VMMCALLs from a nested guest */ vmcb_clr_intercept(c, INTERCEPT_VMMCALL); for (i = 0; i < MAX_INTERCEPT; i++) c->intercepts[i] |= g->intercepts[i]; } static void copy_vmcb_control_area(struct vmcb_control_area *dst, struct vmcb_control_area *from) { unsigned int i; for (i = 0; i < MAX_INTERCEPT; i++) dst->intercepts[i] = from->intercepts[i]; dst->iopm_base_pa = from->iopm_base_pa; dst->msrpm_base_pa = from->msrpm_base_pa; dst->tsc_offset = from->tsc_offset; /* asid not copied, it is handled manually for svm->vmcb. */ dst->tlb_ctl = from->tlb_ctl; dst->int_ctl = from->int_ctl; dst->int_vector = from->int_vector; dst->int_state = from->int_state; dst->exit_code = from->exit_code; dst->exit_code_hi = from->exit_code_hi; dst->exit_info_1 = from->exit_info_1; dst->exit_info_2 = from->exit_info_2; dst->exit_int_info = from->exit_int_info; dst->exit_int_info_err = from->exit_int_info_err; dst->nested_ctl = from->nested_ctl; dst->event_inj = from->event_inj; dst->event_inj_err = from->event_inj_err; dst->nested_cr3 = from->nested_cr3; dst->virt_ext = from->virt_ext; dst->pause_filter_count = from->pause_filter_count; dst->pause_filter_thresh = from->pause_filter_thresh; } static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm) { /* * This function merges the msr permission bitmaps of kvm and the * nested vmcb. It is optimized in that it only merges the parts where * the kvm msr permission bitmap may contain zero bits */ int i; if (!(vmcb_is_intercept(&svm->nested.ctl, INTERCEPT_MSR_PROT))) return true; for (i = 0; i < MSRPM_OFFSETS; i++) { u32 value, p; u64 offset; if (msrpm_offsets[i] == 0xffffffff) break; p = msrpm_offsets[i]; offset = svm->nested.ctl.msrpm_base_pa + (p * 4); if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4)) return false; svm->nested.msrpm[p] = svm->msrpm[p] | value; } svm->vmcb->control.msrpm_base_pa = __sme_set(__pa(svm->nested.msrpm)); return true; } static bool svm_get_nested_state_pages(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); if (WARN_ON(!is_guest_mode(vcpu))) return true; if (!nested_svm_vmrun_msrpm(svm)) { vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; vcpu->run->internal.ndata = 0; return false; } return true; } static bool nested_vmcb_check_controls(struct vmcb_control_area *control) { if ((vmcb_is_intercept(control, INTERCEPT_VMRUN)) == 0) return false; if (control->asid == 0) return false; if ((control->nested_ctl & SVM_NESTED_CTL_NP_ENABLE) && !npt_enabled) return false; return true; } static bool nested_vmcb_check_save(struct vcpu_svm *svm, struct vmcb *vmcb12) { struct kvm_vcpu *vcpu = &svm->vcpu; bool vmcb12_lma; /* * FIXME: these should be done after copying the fields, * to avoid TOC/TOU races. For these save area checks * the possible damage is limited since kvm_set_cr0 and * kvm_set_cr4 handle failure; EFER_SVME is an exception * so it is force-set later in nested_prepare_vmcb_save. */ if ((vmcb12->save.efer & EFER_SVME) == 0) return false; if (((vmcb12->save.cr0 & X86_CR0_CD) == 0) && (vmcb12->save.cr0 & X86_CR0_NW)) return false; if (!kvm_dr6_valid(vmcb12->save.dr6) || !kvm_dr7_valid(vmcb12->save.dr7)) return false; vmcb12_lma = (vmcb12->save.efer & EFER_LME) && (vmcb12->save.cr0 & X86_CR0_PG); if (vmcb12_lma) { if (!(vmcb12->save.cr4 & X86_CR4_PAE) || !(vmcb12->save.cr0 & X86_CR0_PE) || kvm_vcpu_is_illegal_gpa(vcpu, vmcb12->save.cr3)) return false; } if (!kvm_is_valid_cr4(&svm->vcpu, vmcb12->save.cr4)) return false; return true; } static void load_nested_vmcb_control(struct vcpu_svm *svm, struct vmcb_control_area *control) { copy_vmcb_control_area(&svm->nested.ctl, control); /* Copy it here because nested_svm_check_controls will check it. */ svm->nested.ctl.asid = control->asid; svm->nested.ctl.msrpm_base_pa &= ~0x0fffULL; svm->nested.ctl.iopm_base_pa &= ~0x0fffULL; } /* * Synchronize fields that are written by the processor, so that * they can be copied back into the nested_vmcb. */ void sync_nested_vmcb_control(struct vcpu_svm *svm) { u32 mask; svm->nested.ctl.event_inj = svm->vmcb->control.event_inj; svm->nested.ctl.event_inj_err = svm->vmcb->control.event_inj_err; /* Only a few fields of int_ctl are written by the processor. */ mask = V_IRQ_MASK | V_TPR_MASK; if (!(svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK) && svm_is_intercept(svm, INTERCEPT_VINTR)) { /* * In order to request an interrupt window, L0 is usurping * svm->vmcb->control.int_ctl and possibly setting V_IRQ * even if it was clear in L1's VMCB. Restoring it would be * wrong. However, in this case V_IRQ will remain true until * interrupt_window_interception calls svm_clear_vintr and * restores int_ctl. We can just leave it aside. */ mask &= ~V_IRQ_MASK; } svm->nested.ctl.int_ctl &= ~mask; svm->nested.ctl.int_ctl |= svm->vmcb->control.int_ctl & mask; } /* * Transfer any event that L0 or L1 wanted to inject into L2 to * EXIT_INT_INFO. */ static void nested_vmcb_save_pending_event(struct vcpu_svm *svm, struct vmcb *vmcb12) { struct kvm_vcpu *vcpu = &svm->vcpu; u32 exit_int_info = 0; unsigned int nr; if (vcpu->arch.exception.injected) { nr = vcpu->arch.exception.nr; exit_int_info = nr | SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_EXEPT; if (vcpu->arch.exception.has_error_code) { exit_int_info |= SVM_EVTINJ_VALID_ERR; vmcb12->control.exit_int_info_err = vcpu->arch.exception.error_code; } } else if (vcpu->arch.nmi_injected) { exit_int_info = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI; } else if (vcpu->arch.interrupt.injected) { nr = vcpu->arch.interrupt.nr; exit_int_info = nr | SVM_EVTINJ_VALID; if (vcpu->arch.interrupt.soft) exit_int_info |= SVM_EVTINJ_TYPE_SOFT; else exit_int_info |= SVM_EVTINJ_TYPE_INTR; } vmcb12->control.exit_int_info = exit_int_info; } static inline bool nested_npt_enabled(struct vcpu_svm *svm) { return svm->nested.ctl.nested_ctl & SVM_NESTED_CTL_NP_ENABLE; } /* * Load guest's/host's cr3 on nested vmentry or vmexit. @nested_npt is true * if we are emulating VM-Entry into a guest with NPT enabled. */ static int nested_svm_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_npt) { if (kvm_vcpu_is_illegal_gpa(vcpu, cr3)) return -EINVAL; if (!nested_npt && is_pae_paging(vcpu) && (cr3 != kvm_read_cr3(vcpu) || pdptrs_changed(vcpu))) { if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) return -EINVAL; } /* * TODO: optimize unconditional TLB flush/MMU sync here and in * kvm_init_shadow_npt_mmu(). */ if (!nested_npt) kvm_mmu_new_pgd(vcpu, cr3, false, false); vcpu->arch.cr3 = cr3; kvm_register_mark_available(vcpu, VCPU_EXREG_CR3); kvm_init_mmu(vcpu, false); return 0; } static void nested_prepare_vmcb_save(struct vcpu_svm *svm, struct vmcb *vmcb12) { /* Load the nested guest state */ svm->vmcb->save.es = vmcb12->save.es; svm->vmcb->save.cs = vmcb12->save.cs; svm->vmcb->save.ss = vmcb12->save.ss; svm->vmcb->save.ds = vmcb12->save.ds; svm->vmcb->save.gdtr = vmcb12->save.gdtr; svm->vmcb->save.idtr = vmcb12->save.idtr; kvm_set_rflags(&svm->vcpu, vmcb12->save.rflags | X86_EFLAGS_FIXED); /* * Force-set EFER_SVME even though it is checked earlier on the * VMCB12, because the guest can flip the bit between the check * and now. Clearing EFER_SVME would call svm_free_nested. */ svm_set_efer(&svm->vcpu, vmcb12->save.efer | EFER_SVME); svm_set_cr0(&svm->vcpu, vmcb12->save.cr0); svm_set_cr4(&svm->vcpu, vmcb12->save.cr4); svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = vmcb12->save.cr2; kvm_rax_write(&svm->vcpu, vmcb12->save.rax); kvm_rsp_write(&svm->vcpu, vmcb12->save.rsp); kvm_rip_write(&svm->vcpu, vmcb12->save.rip); /* In case we don't even reach vcpu_run, the fields are not updated */ svm->vmcb->save.rax = vmcb12->save.rax; svm->vmcb->save.rsp = vmcb12->save.rsp; svm->vmcb->save.rip = vmcb12->save.rip; svm->vmcb->save.dr7 = vmcb12->save.dr7 | DR7_FIXED_1; svm->vcpu.arch.dr6 = vmcb12->save.dr6 | DR6_ACTIVE_LOW; svm->vmcb->save.cpl = vmcb12->save.cpl; } static void nested_prepare_vmcb_control(struct vcpu_svm *svm) { const u32 mask = V_INTR_MASKING_MASK | V_GIF_ENABLE_MASK | V_GIF_MASK; if (nested_npt_enabled(svm)) nested_svm_init_mmu_context(&svm->vcpu); svm->vmcb->control.tsc_offset = svm->vcpu.arch.tsc_offset = svm->vcpu.arch.l1_tsc_offset + svm->nested.ctl.tsc_offset; svm->vmcb->control.int_ctl = (svm->nested.ctl.int_ctl & ~mask) | (svm->nested.hsave->control.int_ctl & mask); svm->vmcb->control.virt_ext = svm->nested.ctl.virt_ext; svm->vmcb->control.int_vector = svm->nested.ctl.int_vector; svm->vmcb->control.int_state = svm->nested.ctl.int_state; svm->vmcb->control.event_inj = svm->nested.ctl.event_inj; svm->vmcb->control.event_inj_err = svm->nested.ctl.event_inj_err; svm->vmcb->control.pause_filter_count = svm->nested.ctl.pause_filter_count; svm->vmcb->control.pause_filter_thresh = svm->nested.ctl.pause_filter_thresh; /* Enter Guest-Mode */ enter_guest_mode(&svm->vcpu); /* * Merge guest and host intercepts - must be called with vcpu in * guest-mode to take affect here */ recalc_intercepts(svm); vmcb_mark_all_dirty(svm->vmcb); } int enter_svm_guest_mode(struct vcpu_svm *svm, u64 vmcb12_gpa, struct vmcb *vmcb12) { int ret; trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb12_gpa, vmcb12->save.rip, vmcb12->control.int_ctl, vmcb12->control.event_inj, vmcb12->control.nested_ctl); trace_kvm_nested_intercepts(vmcb12->control.intercepts[INTERCEPT_CR] & 0xffff, vmcb12->control.intercepts[INTERCEPT_CR] >> 16, vmcb12->control.intercepts[INTERCEPT_EXCEPTION], vmcb12->control.intercepts[INTERCEPT_WORD3], vmcb12->control.intercepts[INTERCEPT_WORD4], vmcb12->control.intercepts[INTERCEPT_WORD5]); svm->nested.vmcb12_gpa = vmcb12_gpa; nested_prepare_vmcb_control(svm); nested_prepare_vmcb_save(svm, vmcb12); ret = nested_svm_load_cr3(&svm->vcpu, vmcb12->save.cr3, nested_npt_enabled(svm)); if (ret) return ret; if (!npt_enabled) svm->vcpu.arch.mmu->inject_page_fault = svm_inject_page_fault_nested; svm_set_gif(svm, true); return 0; } int nested_svm_vmrun(struct vcpu_svm *svm) { int ret; struct vmcb *vmcb12; struct vmcb *hsave = svm->nested.hsave; struct vmcb *vmcb = svm->vmcb; struct kvm_host_map map; u64 vmcb12_gpa; if (is_smm(&svm->vcpu)) { kvm_queue_exception(&svm->vcpu, UD_VECTOR); return 1; } vmcb12_gpa = svm->vmcb->save.rax; ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(vmcb12_gpa), &map); if (ret == -EINVAL) { kvm_inject_gp(&svm->vcpu, 0); return 1; } else if (ret) { return kvm_skip_emulated_instruction(&svm->vcpu); } ret = kvm_skip_emulated_instruction(&svm->vcpu); vmcb12 = map.hva; if (WARN_ON_ONCE(!svm->nested.initialized)) return -EINVAL; load_nested_vmcb_control(svm, &vmcb12->control); if (!nested_vmcb_check_save(svm, vmcb12) || !nested_vmcb_check_controls(&svm->nested.ctl)) { vmcb12->control.exit_code = SVM_EXIT_ERR; vmcb12->control.exit_code_hi = 0; vmcb12->control.exit_info_1 = 0; vmcb12->control.exit_info_2 = 0; goto out; } /* Clear internal status */ kvm_clear_exception_queue(&svm->vcpu); kvm_clear_interrupt_queue(&svm->vcpu); /* * Save the old vmcb, so we don't need to pick what we save, but can * restore everything when a VMEXIT occurs */ hsave->save.es = vmcb->save.es; hsave->save.cs = vmcb->save.cs; hsave->save.ss = vmcb->save.ss; hsave->save.ds = vmcb->save.ds; hsave->save.gdtr = vmcb->save.gdtr; hsave->save.idtr = vmcb->save.idtr; hsave->save.efer = svm->vcpu.arch.efer; hsave->save.cr0 = kvm_read_cr0(&svm->vcpu); hsave->save.cr4 = svm->vcpu.arch.cr4; hsave->save.rflags = kvm_get_rflags(&svm->vcpu); hsave->save.rip = kvm_rip_read(&svm->vcpu); hsave->save.rsp = vmcb->save.rsp; hsave->save.rax = vmcb->save.rax; if (npt_enabled) hsave->save.cr3 = vmcb->save.cr3; else hsave->save.cr3 = kvm_read_cr3(&svm->vcpu); copy_vmcb_control_area(&hsave->control, &vmcb->control); svm->nested.nested_run_pending = 1; if (enter_svm_guest_mode(svm, vmcb12_gpa, vmcb12)) goto out_exit_err; if (nested_svm_vmrun_msrpm(svm)) goto out; out_exit_err: svm->nested.nested_run_pending = 0; svm->vmcb->control.exit_code = SVM_EXIT_ERR; svm->vmcb->control.exit_code_hi = 0; svm->vmcb->control.exit_info_1 = 0; svm->vmcb->control.exit_info_2 = 0; nested_svm_vmexit(svm); out: kvm_vcpu_unmap(&svm->vcpu, &map, true); return ret; } void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb) { to_vmcb->save.fs = from_vmcb->save.fs; to_vmcb->save.gs = from_vmcb->save.gs; to_vmcb->save.tr = from_vmcb->save.tr; to_vmcb->save.ldtr = from_vmcb->save.ldtr; to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base; to_vmcb->save.star = from_vmcb->save.star; to_vmcb->save.lstar = from_vmcb->save.lstar; to_vmcb->save.cstar = from_vmcb->save.cstar; to_vmcb->save.sfmask = from_vmcb->save.sfmask; to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs; to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp; to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip; } int nested_svm_vmexit(struct vcpu_svm *svm) { int rc; struct vmcb *vmcb12; struct vmcb *hsave = svm->nested.hsave; struct vmcb *vmcb = svm->vmcb; struct kvm_host_map map; rc = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->nested.vmcb12_gpa), &map); if (rc) { if (rc == -EINVAL) kvm_inject_gp(&svm->vcpu, 0); return 1; } vmcb12 = map.hva; /* Exit Guest-Mode */ leave_guest_mode(&svm->vcpu); svm->nested.vmcb12_gpa = 0; WARN_ON_ONCE(svm->nested.nested_run_pending); kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, &svm->vcpu); /* in case we halted in L2 */ svm->vcpu.arch.mp_state = KVM_MP_STATE_RUNNABLE; /* Give the current vmcb to the guest */ vmcb12->save.es = vmcb->save.es; vmcb12->save.cs = vmcb->save.cs; vmcb12->save.ss = vmcb->save.ss; vmcb12->save.ds = vmcb->save.ds; vmcb12->save.gdtr = vmcb->save.gdtr; vmcb12->save.idtr = vmcb->save.idtr; vmcb12->save.efer = svm->vcpu.arch.efer; vmcb12->save.cr0 = kvm_read_cr0(&svm->vcpu); vmcb12->save.cr3 = kvm_read_cr3(&svm->vcpu); vmcb12->save.cr2 = vmcb->save.cr2; vmcb12->save.cr4 = svm->vcpu.arch.cr4; vmcb12->save.rflags = kvm_get_rflags(&svm->vcpu); vmcb12->save.rip = kvm_rip_read(&svm->vcpu); vmcb12->save.rsp = kvm_rsp_read(&svm->vcpu); vmcb12->save.rax = kvm_rax_read(&svm->vcpu); vmcb12->save.dr7 = vmcb->save.dr7; vmcb12->save.dr6 = svm->vcpu.arch.dr6; vmcb12->save.cpl = vmcb->save.cpl; vmcb12->control.int_state = vmcb->control.int_state; vmcb12->control.exit_code = vmcb->control.exit_code; vmcb12->control.exit_code_hi = vmcb->control.exit_code_hi; vmcb12->control.exit_info_1 = vmcb->control.exit_info_1; vmcb12->control.exit_info_2 = vmcb->control.exit_info_2; if (vmcb12->control.exit_code != SVM_EXIT_ERR) nested_vmcb_save_pending_event(svm, vmcb12); if (svm->nrips_enabled) vmcb12->control.next_rip = vmcb->control.next_rip; vmcb12->control.int_ctl = svm->nested.ctl.int_ctl; vmcb12->control.tlb_ctl = svm->nested.ctl.tlb_ctl; vmcb12->control.event_inj = svm->nested.ctl.event_inj; vmcb12->control.event_inj_err = svm->nested.ctl.event_inj_err; vmcb12->control.pause_filter_count = svm->vmcb->control.pause_filter_count; vmcb12->control.pause_filter_thresh = svm->vmcb->control.pause_filter_thresh; /* Restore the original control entries */ copy_vmcb_control_area(&vmcb->control, &hsave->control); /* On vmexit the GIF is set to false */ svm_set_gif(svm, false); svm->vmcb->control.tsc_offset = svm->vcpu.arch.tsc_offset = svm->vcpu.arch.l1_tsc_offset; svm->nested.ctl.nested_cr3 = 0; /* Restore selected save entries */ svm->vmcb->save.es = hsave->save.es; svm->vmcb->save.cs = hsave->save.cs; svm->vmcb->save.ss = hsave->save.ss; svm->vmcb->save.ds = hsave->save.ds; svm->vmcb->save.gdtr = hsave->save.gdtr; svm->vmcb->save.idtr = hsave->save.idtr; kvm_set_rflags(&svm->vcpu, hsave->save.rflags); kvm_set_rflags(&svm->vcpu, hsave->save.rflags | X86_EFLAGS_FIXED); svm_set_efer(&svm->vcpu, hsave->save.efer); svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE); svm_set_cr4(&svm->vcpu, hsave->save.cr4); kvm_rax_write(&svm->vcpu, hsave->save.rax); kvm_rsp_write(&svm->vcpu, hsave->save.rsp); kvm_rip_write(&svm->vcpu, hsave->save.rip); svm->vmcb->save.dr7 = DR7_FIXED_1; svm->vmcb->save.cpl = 0; svm->vmcb->control.exit_int_info = 0; vmcb_mark_all_dirty(svm->vmcb); trace_kvm_nested_vmexit_inject(vmcb12->control.exit_code, vmcb12->control.exit_info_1, vmcb12->control.exit_info_2, vmcb12->control.exit_int_info, vmcb12->control.exit_int_info_err, KVM_ISA_SVM); kvm_vcpu_unmap(&svm->vcpu, &map, true); nested_svm_uninit_mmu_context(&svm->vcpu); rc = nested_svm_load_cr3(&svm->vcpu, hsave->save.cr3, false); if (rc) return 1; if (npt_enabled) svm->vmcb->save.cr3 = hsave->save.cr3; /* * Drop what we picked up for L2 via svm_complete_interrupts() so it * doesn't end up in L1. */ svm->vcpu.arch.nmi_injected = false; kvm_clear_exception_queue(&svm->vcpu); kvm_clear_interrupt_queue(&svm->vcpu); return 0; } int svm_allocate_nested(struct vcpu_svm *svm) { struct page *hsave_page; if (svm->nested.initialized) return 0; hsave_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); if (!hsave_page) return -ENOMEM; svm->nested.hsave = page_address(hsave_page); svm->nested.msrpm = svm_vcpu_alloc_msrpm(); if (!svm->nested.msrpm) goto err_free_hsave; svm_vcpu_init_msrpm(&svm->vcpu, svm->nested.msrpm); svm->nested.initialized = true; return 0; err_free_hsave: __free_page(hsave_page); return -ENOMEM; } void svm_free_nested(struct vcpu_svm *svm) { if (!svm->nested.initialized) return; svm_vcpu_free_msrpm(svm->nested.msrpm); svm->nested.msrpm = NULL; __free_page(virt_to_page(svm->nested.hsave)); svm->nested.hsave = NULL; svm->nested.initialized = false; } /* * Forcibly leave nested mode in order to be able to reset the VCPU later on. */ void svm_leave_nested(struct vcpu_svm *svm) { if (is_guest_mode(&svm->vcpu)) { struct vmcb *hsave = svm->nested.hsave; struct vmcb *vmcb = svm->vmcb; svm->nested.nested_run_pending = 0; leave_guest_mode(&svm->vcpu); copy_vmcb_control_area(&vmcb->control, &hsave->control); nested_svm_uninit_mmu_context(&svm->vcpu); vmcb_mark_all_dirty(svm->vmcb); } kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, &svm->vcpu); } static int nested_svm_exit_handled_msr(struct vcpu_svm *svm) { u32 offset, msr, value; int write, mask; if (!(vmcb_is_intercept(&svm->nested.ctl, INTERCEPT_MSR_PROT))) return NESTED_EXIT_HOST; msr = svm->vcpu.arch.regs[VCPU_REGS_RCX]; offset = svm_msrpm_offset(msr); write = svm->vmcb->control.exit_info_1 & 1; mask = 1 << ((2 * (msr & 0xf)) + write); if (offset == MSR_INVALID) return NESTED_EXIT_DONE; /* Offset is in 32 bit units but need in 8 bit units */ offset *= 4; if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.ctl.msrpm_base_pa + offset, &value, 4)) return NESTED_EXIT_DONE; return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST; } static int nested_svm_intercept_ioio(struct vcpu_svm *svm) { unsigned port, size, iopm_len; u16 val, mask; u8 start_bit; u64 gpa; if (!(vmcb_is_intercept(&svm->nested.ctl, INTERCEPT_IOIO_PROT))) return NESTED_EXIT_HOST; port = svm->vmcb->control.exit_info_1 >> 16; size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT; gpa = svm->nested.ctl.iopm_base_pa + (port / 8); start_bit = port % 8; iopm_len = (start_bit + size > 8) ? 2 : 1; mask = (0xf >> (4 - size)) << start_bit; val = 0; if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len)) return NESTED_EXIT_DONE; return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST; } static int nested_svm_intercept(struct vcpu_svm *svm) { u32 exit_code = svm->vmcb->control.exit_code; int vmexit = NESTED_EXIT_HOST; switch (exit_code) { case SVM_EXIT_MSR: vmexit = nested_svm_exit_handled_msr(svm); break; case SVM_EXIT_IOIO: vmexit = nested_svm_intercept_ioio(svm); break; case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: { if (vmcb_is_intercept(&svm->nested.ctl, exit_code)) vmexit = NESTED_EXIT_DONE; break; } case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: { if (vmcb_is_intercept(&svm->nested.ctl, exit_code)) vmexit = NESTED_EXIT_DONE; break; } case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: { /* * Host-intercepted exceptions have been checked already in * nested_svm_exit_special. There is nothing to do here, * the vmexit is injected by svm_check_nested_events. */ vmexit = NESTED_EXIT_DONE; break; } case SVM_EXIT_ERR: { vmexit = NESTED_EXIT_DONE; break; } default: { if (vmcb_is_intercept(&svm->nested.ctl, exit_code)) vmexit = NESTED_EXIT_DONE; } } return vmexit; } int nested_svm_exit_handled(struct vcpu_svm *svm) { int vmexit; vmexit = nested_svm_intercept(svm); if (vmexit == NESTED_EXIT_DONE) nested_svm_vmexit(svm); return vmexit; } int nested_svm_check_permissions(struct vcpu_svm *svm) { if (!(svm->vcpu.arch.efer & EFER_SVME) || !is_paging(&svm->vcpu)) { kvm_queue_exception(&svm->vcpu, UD_VECTOR); return 1; } if (svm->vmcb->save.cpl) { kvm_inject_gp(&svm->vcpu, 0); return 1; } return 0; } static bool nested_exit_on_exception(struct vcpu_svm *svm) { unsigned int nr = svm->vcpu.arch.exception.nr; return (svm->nested.ctl.intercepts[INTERCEPT_EXCEPTION] & BIT(nr)); } static void nested_svm_inject_exception_vmexit(struct vcpu_svm *svm) { unsigned int nr = svm->vcpu.arch.exception.nr; svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr; svm->vmcb->control.exit_code_hi = 0; if (svm->vcpu.arch.exception.has_error_code) svm->vmcb->control.exit_info_1 = svm->vcpu.arch.exception.error_code; /* * EXITINFO2 is undefined for all exception intercepts other * than #PF. */ if (nr == PF_VECTOR) { if (svm->vcpu.arch.exception.nested_apf) svm->vmcb->control.exit_info_2 = svm->vcpu.arch.apf.nested_apf_token; else if (svm->vcpu.arch.exception.has_payload) svm->vmcb->control.exit_info_2 = svm->vcpu.arch.exception.payload; else svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2; } else if (nr == DB_VECTOR) { /* See inject_pending_event. */ kvm_deliver_exception_payload(&svm->vcpu); if (svm->vcpu.arch.dr7 & DR7_GD) { svm->vcpu.arch.dr7 &= ~DR7_GD; kvm_update_dr7(&svm->vcpu); } } else WARN_ON(svm->vcpu.arch.exception.has_payload); nested_svm_vmexit(svm); } static void nested_svm_smi(struct vcpu_svm *svm) { svm->vmcb->control.exit_code = SVM_EXIT_SMI; svm->vmcb->control.exit_info_1 = 0; svm->vmcb->control.exit_info_2 = 0; nested_svm_vmexit(svm); } static void nested_svm_nmi(struct vcpu_svm *svm) { svm->vmcb->control.exit_code = SVM_EXIT_NMI; svm->vmcb->control.exit_info_1 = 0; svm->vmcb->control.exit_info_2 = 0; nested_svm_vmexit(svm); } static void nested_svm_intr(struct vcpu_svm *svm) { trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip); svm->vmcb->control.exit_code = SVM_EXIT_INTR; svm->vmcb->control.exit_info_1 = 0; svm->vmcb->control.exit_info_2 = 0; nested_svm_vmexit(svm); } static inline bool nested_exit_on_init(struct vcpu_svm *svm) { return vmcb_is_intercept(&svm->nested.ctl, INTERCEPT_INIT); } static void nested_svm_init(struct vcpu_svm *svm) { svm->vmcb->control.exit_code = SVM_EXIT_INIT; svm->vmcb->control.exit_info_1 = 0; svm->vmcb->control.exit_info_2 = 0; nested_svm_vmexit(svm); } static int svm_check_nested_events(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); bool block_nested_events = kvm_event_needs_reinjection(vcpu) || svm->nested.nested_run_pending; struct kvm_lapic *apic = vcpu->arch.apic; if (lapic_in_kernel(vcpu) && test_bit(KVM_APIC_INIT, &apic->pending_events)) { if (block_nested_events) return -EBUSY; if (!nested_exit_on_init(svm)) return 0; nested_svm_init(svm); return 0; } if (vcpu->arch.exception.pending) { if (block_nested_events) return -EBUSY; if (!nested_exit_on_exception(svm)) return 0; nested_svm_inject_exception_vmexit(svm); return 0; } if (vcpu->arch.smi_pending && !svm_smi_blocked(vcpu)) { if (block_nested_events) return -EBUSY; if (!nested_exit_on_smi(svm)) return 0; nested_svm_smi(svm); return 0; } if (vcpu->arch.nmi_pending && !svm_nmi_blocked(vcpu)) { if (block_nested_events) return -EBUSY; if (!nested_exit_on_nmi(svm)) return 0; nested_svm_nmi(svm); return 0; } if (kvm_cpu_has_interrupt(vcpu) && !svm_interrupt_blocked(vcpu)) { if (block_nested_events) return -EBUSY; if (!nested_exit_on_intr(svm)) return 0; nested_svm_intr(svm); return 0; } return 0; } int nested_svm_exit_special(struct vcpu_svm *svm) { u32 exit_code = svm->vmcb->control.exit_code; switch (exit_code) { case SVM_EXIT_INTR: case SVM_EXIT_NMI: case SVM_EXIT_NPF: return NESTED_EXIT_HOST; case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: { u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE); if (get_host_vmcb(svm)->control.intercepts[INTERCEPT_EXCEPTION] & excp_bits) return NESTED_EXIT_HOST; else if (exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR && svm->vcpu.arch.apf.host_apf_flags) /* Trap async PF even if not shadowing */ return NESTED_EXIT_HOST; break; } default: break; } return NESTED_EXIT_CONTINUE; } static int svm_get_nested_state(struct kvm_vcpu *vcpu, struct kvm_nested_state __user *user_kvm_nested_state, u32 user_data_size) { struct vcpu_svm *svm; struct kvm_nested_state kvm_state = { .flags = 0, .format = KVM_STATE_NESTED_FORMAT_SVM, .size = sizeof(kvm_state), }; struct vmcb __user *user_vmcb = (struct vmcb __user *) &user_kvm_nested_state->data.svm[0]; if (!vcpu) return kvm_state.size + KVM_STATE_NESTED_SVM_VMCB_SIZE; svm = to_svm(vcpu); if (user_data_size < kvm_state.size) goto out; /* First fill in the header and copy it out. */ if (is_guest_mode(vcpu)) { kvm_state.hdr.svm.vmcb_pa = svm->nested.vmcb12_gpa; kvm_state.size += KVM_STATE_NESTED_SVM_VMCB_SIZE; kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE; if (svm->nested.nested_run_pending) kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING; } if (gif_set(svm)) kvm_state.flags |= KVM_STATE_NESTED_GIF_SET; if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state))) return -EFAULT; if (!is_guest_mode(vcpu)) goto out; /* * Copy over the full size of the VMCB rather than just the size * of the structs. */ if (clear_user(user_vmcb, KVM_STATE_NESTED_SVM_VMCB_SIZE)) return -EFAULT; if (copy_to_user(&user_vmcb->control, &svm->nested.ctl, sizeof(user_vmcb->control))) return -EFAULT; if (copy_to_user(&user_vmcb->save, &svm->nested.hsave->save, sizeof(user_vmcb->save))) return -EFAULT; out: return kvm_state.size; } static int svm_set_nested_state(struct kvm_vcpu *vcpu, struct kvm_nested_state __user *user_kvm_nested_state, struct kvm_nested_state *kvm_state) { struct vcpu_svm *svm = to_svm(vcpu); struct vmcb *hsave = svm->nested.hsave; struct vmcb __user *user_vmcb = (struct vmcb __user *) &user_kvm_nested_state->data.svm[0]; struct vmcb_control_area *ctl; struct vmcb_save_area *save; int ret; u32 cr0; BUILD_BUG_ON(sizeof(struct vmcb_control_area) + sizeof(struct vmcb_save_area) > KVM_STATE_NESTED_SVM_VMCB_SIZE); if (kvm_state->format != KVM_STATE_NESTED_FORMAT_SVM) return -EINVAL; if (kvm_state->flags & ~(KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GIF_SET)) return -EINVAL; /* * If in guest mode, vcpu->arch.efer actually refers to the L2 guest's * EFER.SVME, but EFER.SVME still has to be 1 for VMRUN to succeed. */ if (!(vcpu->arch.efer & EFER_SVME)) { /* GIF=1 and no guest mode are required if SVME=0. */ if (kvm_state->flags != KVM_STATE_NESTED_GIF_SET) return -EINVAL; } /* SMM temporarily disables SVM, so we cannot be in guest mode. */ if (is_smm(vcpu) && (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE)) return -EINVAL; if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE)) { svm_leave_nested(svm); svm_set_gif(svm, !!(kvm_state->flags & KVM_STATE_NESTED_GIF_SET)); return 0; } if (!page_address_valid(vcpu, kvm_state->hdr.svm.vmcb_pa)) return -EINVAL; if (kvm_state->size < sizeof(*kvm_state) + KVM_STATE_NESTED_SVM_VMCB_SIZE) return -EINVAL; ret = -ENOMEM; ctl = kzalloc(sizeof(*ctl), GFP_KERNEL); save = kzalloc(sizeof(*save), GFP_KERNEL); if (!ctl || !save) goto out_free; ret = -EFAULT; if (copy_from_user(ctl, &user_vmcb->control, sizeof(*ctl))) goto out_free; if (copy_from_user(save, &user_vmcb->save, sizeof(*save))) goto out_free; ret = -EINVAL; if (!nested_vmcb_check_controls(ctl)) goto out_free; /* * Processor state contains L2 state. Check that it is * valid for guest mode (see nested_vmcb_checks). */ cr0 = kvm_read_cr0(vcpu); if (((cr0 & X86_CR0_CD) == 0) && (cr0 & X86_CR0_NW)) goto out_free; /* * Validate host state saved from before VMRUN (see * nested_svm_check_permissions). * TODO: validate reserved bits for all saved state. */ if (!(save->cr0 & X86_CR0_PG)) goto out_free; if (!(save->efer & EFER_SVME)) goto out_free; /* * All checks done, we can enter guest mode. L1 control fields * come from the nested save state. Guest state is already * in the registers, the save area of the nested state instead * contains saved L1 state. */ svm->nested.nested_run_pending = !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING); copy_vmcb_control_area(&hsave->control, &svm->vmcb->control); hsave->save = *save; svm->nested.vmcb12_gpa = kvm_state->hdr.svm.vmcb_pa; load_nested_vmcb_control(svm, ctl); nested_prepare_vmcb_control(svm); kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu); ret = 0; out_free: kfree(save); kfree(ctl); return ret; } struct kvm_x86_nested_ops svm_nested_ops = { .check_events = svm_check_nested_events, .get_nested_state_pages = svm_get_nested_state_pages, .get_state = svm_get_nested_state, .set_state = svm_set_nested_state, };