#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * per-CPU TSS segments. Threads are completely 'soft' on Linux, * no more per-task TSS's. The TSS size is kept cacheline-aligned * so they are allowed to end up in the .data..cacheline_aligned * section. Since TSS's are completely CPU-local, we want them * on exact cacheline boundaries, to eliminate cacheline ping-pong. */ __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = { .x86_tss = { .sp0 = TOP_OF_INIT_STACK, #ifdef CONFIG_X86_32 .ss0 = __KERNEL_DS, .ss1 = __KERNEL_CS, .io_bitmap_base = INVALID_IO_BITMAP_OFFSET, #endif }, #ifdef CONFIG_X86_32 /* * Note that the .io_bitmap member must be extra-big. This is because * the CPU will access an additional byte beyond the end of the IO * permission bitmap. The extra byte must be all 1 bits, and must * be within the limit. */ .io_bitmap = { [0 ... IO_BITMAP_LONGS] = ~0 }, #endif }; EXPORT_PER_CPU_SYMBOL(cpu_tss); #ifdef CONFIG_X86_64 static DEFINE_PER_CPU(unsigned char, is_idle); static ATOMIC_NOTIFIER_HEAD(idle_notifier); void idle_notifier_register(struct notifier_block *n) { atomic_notifier_chain_register(&idle_notifier, n); } EXPORT_SYMBOL_GPL(idle_notifier_register); void idle_notifier_unregister(struct notifier_block *n) { atomic_notifier_chain_unregister(&idle_notifier, n); } EXPORT_SYMBOL_GPL(idle_notifier_unregister); #endif /* * this gets called so that we can store lazy state into memory and copy the * current task into the new thread. */ int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) { memcpy(dst, src, arch_task_struct_size); return fpu__copy(&dst->thread.fpu, &src->thread.fpu); } /* * Free current thread data structures etc.. */ void exit_thread(void) { struct task_struct *me = current; struct thread_struct *t = &me->thread; unsigned long *bp = t->io_bitmap_ptr; struct fpu *fpu = &t->fpu; if (bp) { struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu()); t->io_bitmap_ptr = NULL; clear_thread_flag(TIF_IO_BITMAP); /* * Careful, clear this in the TSS too: */ memset(tss->io_bitmap, 0xff, t->io_bitmap_max); t->io_bitmap_max = 0; put_cpu(); kfree(bp); } free_vm86(t); fpu__drop(fpu); } void flush_thread(void) { struct task_struct *tsk = current; flush_ptrace_hw_breakpoint(tsk); memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); fpu__clear(&tsk->thread.fpu); } static void hard_disable_TSC(void) { cr4_set_bits(X86_CR4_TSD); } void disable_TSC(void) { preempt_disable(); if (!test_and_set_thread_flag(TIF_NOTSC)) /* * Must flip the CPU state synchronously with * TIF_NOTSC in the current running context. */ hard_disable_TSC(); preempt_enable(); } static void hard_enable_TSC(void) { cr4_clear_bits(X86_CR4_TSD); } static void enable_TSC(void) { preempt_disable(); if (test_and_clear_thread_flag(TIF_NOTSC)) /* * Must flip the CPU state synchronously with * TIF_NOTSC in the current running context. */ hard_enable_TSC(); preempt_enable(); } int get_tsc_mode(unsigned long adr) { unsigned int val; if (test_thread_flag(TIF_NOTSC)) val = PR_TSC_SIGSEGV; else val = PR_TSC_ENABLE; return put_user(val, (unsigned int __user *)adr); } int set_tsc_mode(unsigned int val) { if (val == PR_TSC_SIGSEGV) disable_TSC(); else if (val == PR_TSC_ENABLE) enable_TSC(); else return -EINVAL; return 0; } void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p, struct tss_struct *tss) { struct thread_struct *prev, *next; prev = &prev_p->thread; next = &next_p->thread; if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^ test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) { unsigned long debugctl = get_debugctlmsr(); debugctl &= ~DEBUGCTLMSR_BTF; if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) debugctl |= DEBUGCTLMSR_BTF; update_debugctlmsr(debugctl); } if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^ test_tsk_thread_flag(next_p, TIF_NOTSC)) { /* prev and next are different */ if (test_tsk_thread_flag(next_p, TIF_NOTSC)) hard_disable_TSC(); else hard_enable_TSC(); } if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) { /* * Copy the relevant range of the IO bitmap. * Normally this is 128 bytes or less: */ memcpy(tss->io_bitmap, next->io_bitmap_ptr, max(prev->io_bitmap_max, next->io_bitmap_max)); } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) { /* * Clear any possible leftover bits: */ memset(tss->io_bitmap, 0xff, prev->io_bitmap_max); } propagate_user_return_notify(prev_p, next_p); } /* * Idle related variables and functions */ unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE; EXPORT_SYMBOL(boot_option_idle_override); static void (*x86_idle)(void); #ifndef CONFIG_SMP static inline void play_dead(void) { BUG(); } #endif #ifdef CONFIG_X86_64 void enter_idle(void) { this_cpu_write(is_idle, 1); atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL); } static void __exit_idle(void) { if (x86_test_and_clear_bit_percpu(0, is_idle) == 0) return; atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL); } /* Called from interrupts to signify idle end */ void exit_idle(void) { /* idle loop has pid 0 */ if (current->pid) return; __exit_idle(); } #endif void arch_cpu_idle_enter(void) { local_touch_nmi(); enter_idle(); } void arch_cpu_idle_exit(void) { __exit_idle(); } void arch_cpu_idle_dead(void) { play_dead(); } /* * Called from the generic idle code. */ void arch_cpu_idle(void) { x86_idle(); } /* * We use this if we don't have any better idle routine.. */ void default_idle(void) { trace_cpu_idle_rcuidle(1, smp_processor_id()); safe_halt(); trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); } #ifdef CONFIG_APM_MODULE EXPORT_SYMBOL(default_idle); #endif #ifdef CONFIG_XEN bool xen_set_default_idle(void) { bool ret = !!x86_idle; x86_idle = default_idle; return ret; } #endif void stop_this_cpu(void *dummy) { local_irq_disable(); /* * Remove this CPU: */ set_cpu_online(smp_processor_id(), false); disable_local_APIC(); mcheck_cpu_clear(this_cpu_ptr(&cpu_info)); for (;;) halt(); } bool amd_e400_c1e_detected; EXPORT_SYMBOL(amd_e400_c1e_detected); static cpumask_var_t amd_e400_c1e_mask; void amd_e400_remove_cpu(int cpu) { if (amd_e400_c1e_mask != NULL) cpumask_clear_cpu(cpu, amd_e400_c1e_mask); } /* * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt * pending message MSR. If we detect C1E, then we handle it the same * way as C3 power states (local apic timer and TSC stop) */ static void amd_e400_idle(void) { if (!amd_e400_c1e_detected) { u32 lo, hi; rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi); if (lo & K8_INTP_C1E_ACTIVE_MASK) { amd_e400_c1e_detected = true; if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) mark_tsc_unstable("TSC halt in AMD C1E"); pr_info("System has AMD C1E enabled\n"); } } if (amd_e400_c1e_detected) { int cpu = smp_processor_id(); if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) { cpumask_set_cpu(cpu, amd_e400_c1e_mask); /* Force broadcast so ACPI can not interfere. */ tick_broadcast_force(); pr_info("Switch to broadcast mode on CPU%d\n", cpu); } tick_broadcast_enter(); default_idle(); /* * The switch back from broadcast mode needs to be * called with interrupts disabled. */ local_irq_disable(); tick_broadcast_exit(); local_irq_enable(); } else default_idle(); } /* * Intel Core2 and older machines prefer MWAIT over HALT for C1. * We can't rely on cpuidle installing MWAIT, because it will not load * on systems that support only C1 -- so the boot default must be MWAIT. * * Some AMD machines are the opposite, they depend on using HALT. * * So for default C1, which is used during boot until cpuidle loads, * use MWAIT-C1 on Intel HW that has it, else use HALT. */ static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c) { if (c->x86_vendor != X86_VENDOR_INTEL) return 0; if (!cpu_has(c, X86_FEATURE_MWAIT)) return 0; return 1; } /* * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT * with interrupts enabled and no flags, which is backwards compatible with the * original MWAIT implementation. */ static void mwait_idle(void) { if (!current_set_polling_and_test()) { trace_cpu_idle_rcuidle(1, smp_processor_id()); if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) { smp_mb(); /* quirk */ clflush((void *)¤t_thread_info()->flags); smp_mb(); /* quirk */ } __monitor((void *)¤t_thread_info()->flags, 0, 0); if (!need_resched()) __sti_mwait(0, 0); else local_irq_enable(); trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); } else { local_irq_enable(); } __current_clr_polling(); } void select_idle_routine(const struct cpuinfo_x86 *c) { #ifdef CONFIG_SMP if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1) pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n"); #endif if (x86_idle || boot_option_idle_override == IDLE_POLL) return; if (cpu_has_bug(c, X86_BUG_AMD_APIC_C1E)) { /* E400: APIC timer interrupt does not wake up CPU from C1e */ pr_info("using AMD E400 aware idle routine\n"); x86_idle = amd_e400_idle; } else if (prefer_mwait_c1_over_halt(c)) { pr_info("using mwait in idle threads\n"); x86_idle = mwait_idle; } else x86_idle = default_idle; } void __init init_amd_e400_c1e_mask(void) { /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */ if (x86_idle == amd_e400_idle) zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL); } static int __init idle_setup(char *str) { if (!str) return -EINVAL; if (!strcmp(str, "poll")) { pr_info("using polling idle threads\n"); boot_option_idle_override = IDLE_POLL; cpu_idle_poll_ctrl(true); } else if (!strcmp(str, "halt")) { /* * When the boot option of idle=halt is added, halt is * forced to be used for CPU idle. In such case CPU C2/C3 * won't be used again. * To continue to load the CPU idle driver, don't touch * the boot_option_idle_override. */ x86_idle = default_idle; boot_option_idle_override = IDLE_HALT; } else if (!strcmp(str, "nomwait")) { /* * If the boot option of "idle=nomwait" is added, * it means that mwait will be disabled for CPU C2/C3 * states. In such case it won't touch the variable * of boot_option_idle_override. */ boot_option_idle_override = IDLE_NOMWAIT; } else return -1; return 0; } early_param("idle", idle_setup); unsigned long arch_align_stack(unsigned long sp) { if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) sp -= get_random_int() % 8192; return sp & ~0xf; } unsigned long arch_randomize_brk(struct mm_struct *mm) { unsigned long range_end = mm->brk + 0x02000000; return randomize_range(mm->brk, range_end, 0) ? : mm->brk; } /* * Called from fs/proc with a reference on @p to find the function * which called into schedule(). This needs to be done carefully * because the task might wake up and we might look at a stack * changing under us. */ unsigned long get_wchan(struct task_struct *p) { unsigned long start, bottom, top, sp, fp, ip; int count = 0; if (!p || p == current || p->state == TASK_RUNNING) return 0; start = (unsigned long)task_stack_page(p); if (!start) return 0; /* * Layout of the stack page: * * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long) * PADDING * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING * stack * ----------- bottom = start + sizeof(thread_info) * thread_info * ----------- start * * The tasks stack pointer points at the location where the * framepointer is stored. The data on the stack is: * ... IP FP ... IP FP * * We need to read FP and IP, so we need to adjust the upper * bound by another unsigned long. */ top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; top -= 2 * sizeof(unsigned long); bottom = start + sizeof(struct thread_info); sp = READ_ONCE(p->thread.sp); if (sp < bottom || sp > top) return 0; fp = READ_ONCE(*(unsigned long *)sp); do { if (fp < bottom || fp > top) return 0; ip = READ_ONCE(*(unsigned long *)(fp + sizeof(unsigned long))); if (!in_sched_functions(ip)) return ip; fp = READ_ONCE(*(unsigned long *)fp); } while (count++ < 16 && p->state != TASK_RUNNING); return 0; }