/* * The MORUS-640 Authenticated-Encryption Algorithm * Common x86 SIMD glue skeleton * * Copyright (c) 2016-2018 Ondrej Mosnacek * Copyright (C) 2017-2018 Red Hat, Inc. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. */ #include #include #include #include #include #include #include #include #include #include #include struct morus640_state { struct morus640_block s[MORUS_STATE_BLOCKS]; }; struct morus640_ops { int (*skcipher_walk_init)(struct skcipher_walk *walk, struct aead_request *req, bool atomic); void (*crypt_blocks)(void *state, const void *src, void *dst, unsigned int length); void (*crypt_tail)(void *state, const void *src, void *dst, unsigned int length); }; static void crypto_morus640_glue_process_ad( struct morus640_state *state, const struct morus640_glue_ops *ops, struct scatterlist *sg_src, unsigned int assoclen) { struct scatter_walk walk; struct morus640_block buf; unsigned int pos = 0; scatterwalk_start(&walk, sg_src); while (assoclen != 0) { unsigned int size = scatterwalk_clamp(&walk, assoclen); unsigned int left = size; void *mapped = scatterwalk_map(&walk); const u8 *src = (const u8 *)mapped; if (pos + size >= MORUS640_BLOCK_SIZE) { if (pos > 0) { unsigned int fill = MORUS640_BLOCK_SIZE - pos; memcpy(buf.bytes + pos, src, fill); ops->ad(state, buf.bytes, MORUS640_BLOCK_SIZE); pos = 0; left -= fill; src += fill; } ops->ad(state, src, left); src += left & ~(MORUS640_BLOCK_SIZE - 1); left &= MORUS640_BLOCK_SIZE - 1; } memcpy(buf.bytes + pos, src, left); pos += left; assoclen -= size; scatterwalk_unmap(mapped); scatterwalk_advance(&walk, size); scatterwalk_done(&walk, 0, assoclen); } if (pos > 0) { memset(buf.bytes + pos, 0, MORUS640_BLOCK_SIZE - pos); ops->ad(state, buf.bytes, MORUS640_BLOCK_SIZE); } } static void crypto_morus640_glue_process_crypt(struct morus640_state *state, struct morus640_ops ops, struct skcipher_walk *walk) { while (walk->nbytes >= MORUS640_BLOCK_SIZE) { ops.crypt_blocks(state, walk->src.virt.addr, walk->dst.virt.addr, round_down(walk->nbytes, MORUS640_BLOCK_SIZE)); skcipher_walk_done(walk, walk->nbytes % MORUS640_BLOCK_SIZE); } if (walk->nbytes) { ops.crypt_tail(state, walk->src.virt.addr, walk->dst.virt.addr, walk->nbytes); skcipher_walk_done(walk, 0); } } int crypto_morus640_glue_setkey(struct crypto_aead *aead, const u8 *key, unsigned int keylen) { struct morus640_ctx *ctx = crypto_aead_ctx(aead); if (keylen != MORUS640_BLOCK_SIZE) { crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN); return -EINVAL; } memcpy(ctx->key.bytes, key, MORUS640_BLOCK_SIZE); return 0; } EXPORT_SYMBOL_GPL(crypto_morus640_glue_setkey); int crypto_morus640_glue_setauthsize(struct crypto_aead *tfm, unsigned int authsize) { return (authsize <= MORUS_MAX_AUTH_SIZE) ? 0 : -EINVAL; } EXPORT_SYMBOL_GPL(crypto_morus640_glue_setauthsize); static void crypto_morus640_glue_crypt(struct aead_request *req, struct morus640_ops ops, unsigned int cryptlen, struct morus640_block *tag_xor) { struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct morus640_ctx *ctx = crypto_aead_ctx(tfm); struct morus640_state state; struct skcipher_walk walk; ops.skcipher_walk_init(&walk, req, true); kernel_fpu_begin(); ctx->ops->init(&state, &ctx->key, req->iv); crypto_morus640_glue_process_ad(&state, ctx->ops, req->src, req->assoclen); crypto_morus640_glue_process_crypt(&state, ops, &walk); ctx->ops->final(&state, tag_xor, req->assoclen, cryptlen); kernel_fpu_end(); } int crypto_morus640_glue_encrypt(struct aead_request *req) { struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct morus640_ctx *ctx = crypto_aead_ctx(tfm); struct morus640_ops OPS = { .skcipher_walk_init = skcipher_walk_aead_encrypt, .crypt_blocks = ctx->ops->enc, .crypt_tail = ctx->ops->enc_tail, }; struct morus640_block tag = {}; unsigned int authsize = crypto_aead_authsize(tfm); unsigned int cryptlen = req->cryptlen; crypto_morus640_glue_crypt(req, OPS, cryptlen, &tag); scatterwalk_map_and_copy(tag.bytes, req->dst, req->assoclen + cryptlen, authsize, 1); return 0; } EXPORT_SYMBOL_GPL(crypto_morus640_glue_encrypt); int crypto_morus640_glue_decrypt(struct aead_request *req) { static const u8 zeros[MORUS640_BLOCK_SIZE] = {}; struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct morus640_ctx *ctx = crypto_aead_ctx(tfm); struct morus640_ops OPS = { .skcipher_walk_init = skcipher_walk_aead_decrypt, .crypt_blocks = ctx->ops->dec, .crypt_tail = ctx->ops->dec_tail, }; struct morus640_block tag; unsigned int authsize = crypto_aead_authsize(tfm); unsigned int cryptlen = req->cryptlen - authsize; scatterwalk_map_and_copy(tag.bytes, req->src, req->assoclen + cryptlen, authsize, 0); crypto_morus640_glue_crypt(req, OPS, cryptlen, &tag); return crypto_memneq(tag.bytes, zeros, authsize) ? -EBADMSG : 0; } EXPORT_SYMBOL_GPL(crypto_morus640_glue_decrypt); void crypto_morus640_glue_init_ops(struct crypto_aead *aead, const struct morus640_glue_ops *ops) { struct morus640_ctx *ctx = crypto_aead_ctx(aead); ctx->ops = ops; } EXPORT_SYMBOL_GPL(crypto_morus640_glue_init_ops); int cryptd_morus640_glue_setkey(struct crypto_aead *aead, const u8 *key, unsigned int keylen) { struct cryptd_aead **ctx = crypto_aead_ctx(aead); struct cryptd_aead *cryptd_tfm = *ctx; return crypto_aead_setkey(&cryptd_tfm->base, key, keylen); } EXPORT_SYMBOL_GPL(cryptd_morus640_glue_setkey); int cryptd_morus640_glue_setauthsize(struct crypto_aead *aead, unsigned int authsize) { struct cryptd_aead **ctx = crypto_aead_ctx(aead); struct cryptd_aead *cryptd_tfm = *ctx; return crypto_aead_setauthsize(&cryptd_tfm->base, authsize); } EXPORT_SYMBOL_GPL(cryptd_morus640_glue_setauthsize); int cryptd_morus640_glue_encrypt(struct aead_request *req) { struct crypto_aead *aead = crypto_aead_reqtfm(req); struct cryptd_aead **ctx = crypto_aead_ctx(aead); struct cryptd_aead *cryptd_tfm = *ctx; aead = &cryptd_tfm->base; if (irq_fpu_usable() && (!in_atomic() || !cryptd_aead_queued(cryptd_tfm))) aead = cryptd_aead_child(cryptd_tfm); aead_request_set_tfm(req, aead); return crypto_aead_encrypt(req); } EXPORT_SYMBOL_GPL(cryptd_morus640_glue_encrypt); int cryptd_morus640_glue_decrypt(struct aead_request *req) { struct crypto_aead *aead = crypto_aead_reqtfm(req); struct cryptd_aead **ctx = crypto_aead_ctx(aead); struct cryptd_aead *cryptd_tfm = *ctx; aead = &cryptd_tfm->base; if (irq_fpu_usable() && (!in_atomic() || !cryptd_aead_queued(cryptd_tfm))) aead = cryptd_aead_child(cryptd_tfm); aead_request_set_tfm(req, aead); return crypto_aead_decrypt(req); } EXPORT_SYMBOL_GPL(cryptd_morus640_glue_decrypt); int cryptd_morus640_glue_init_tfm(struct crypto_aead *aead) { struct cryptd_aead *cryptd_tfm; struct cryptd_aead **ctx = crypto_aead_ctx(aead); const char *name = crypto_aead_alg(aead)->base.cra_driver_name; char internal_name[CRYPTO_MAX_ALG_NAME]; if (snprintf(internal_name, CRYPTO_MAX_ALG_NAME, "__%s", name) >= CRYPTO_MAX_ALG_NAME) return -ENAMETOOLONG; cryptd_tfm = cryptd_alloc_aead(internal_name, CRYPTO_ALG_INTERNAL, CRYPTO_ALG_INTERNAL); if (IS_ERR(cryptd_tfm)) return PTR_ERR(cryptd_tfm); *ctx = cryptd_tfm; crypto_aead_set_reqsize(aead, crypto_aead_reqsize(&cryptd_tfm->base)); return 0; } EXPORT_SYMBOL_GPL(cryptd_morus640_glue_init_tfm); void cryptd_morus640_glue_exit_tfm(struct crypto_aead *aead) { struct cryptd_aead **ctx = crypto_aead_ctx(aead); cryptd_free_aead(*ctx); } EXPORT_SYMBOL_GPL(cryptd_morus640_glue_exit_tfm); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Ondrej Mosnacek "); MODULE_DESCRIPTION("MORUS-640 AEAD mode -- glue for x86 optimizations");