/* SPDX-License-Identifier: GPL-2.0 */ /* * This file contains the 64-bit "server" PowerPC variant * of the low level exception handling including exception * vectors, exception return, part of the slb and stab * handling and other fixed offset specific things. * * This file is meant to be #included from head_64.S due to * position dependent assembly. * * Most of this originates from head_64.S and thus has the same * copyright history. * */ #include #include #include #include #include #include #include /* PACA save area offsets (exgen, exmc, etc) */ #define EX_R9 0 #define EX_R10 8 #define EX_R11 16 #define EX_R12 24 #define EX_R13 32 #define EX_DAR 40 #define EX_DSISR 48 #define EX_CCR 52 #define EX_CFAR 56 #define EX_PPR 64 #define EX_CTR 72 .if EX_SIZE != 10 .error "EX_SIZE is wrong" .endif /* * Following are fixed section helper macros. * * EXC_REAL_BEGIN/END - real, unrelocated exception vectors * EXC_VIRT_BEGIN/END - virt (AIL), unrelocated exception vectors * TRAMP_REAL_BEGIN - real, unrelocated helpers (virt may call these) * TRAMP_VIRT_BEGIN - virt, unreloc helpers (in practice, real can use) * EXC_COMMON - After switching to virtual, relocated mode. */ #define EXC_REAL_BEGIN(name, start, size) \ FIXED_SECTION_ENTRY_BEGIN_LOCATION(real_vectors, exc_real_##start##_##name, start, size) #define EXC_REAL_END(name, start, size) \ FIXED_SECTION_ENTRY_END_LOCATION(real_vectors, exc_real_##start##_##name, start, size) #define EXC_VIRT_BEGIN(name, start, size) \ FIXED_SECTION_ENTRY_BEGIN_LOCATION(virt_vectors, exc_virt_##start##_##name, start, size) #define EXC_VIRT_END(name, start, size) \ FIXED_SECTION_ENTRY_END_LOCATION(virt_vectors, exc_virt_##start##_##name, start, size) #define EXC_COMMON_BEGIN(name) \ USE_TEXT_SECTION(); \ .balign IFETCH_ALIGN_BYTES; \ .global name; \ _ASM_NOKPROBE_SYMBOL(name); \ DEFINE_FIXED_SYMBOL(name); \ name: #define TRAMP_REAL_BEGIN(name) \ FIXED_SECTION_ENTRY_BEGIN(real_trampolines, name) #define TRAMP_VIRT_BEGIN(name) \ FIXED_SECTION_ENTRY_BEGIN(virt_trampolines, name) #define EXC_REAL_NONE(start, size) \ FIXED_SECTION_ENTRY_BEGIN_LOCATION(real_vectors, exc_real_##start##_##unused, start, size); \ FIXED_SECTION_ENTRY_END_LOCATION(real_vectors, exc_real_##start##_##unused, start, size) #define EXC_VIRT_NONE(start, size) \ FIXED_SECTION_ENTRY_BEGIN_LOCATION(virt_vectors, exc_virt_##start##_##unused, start, size); \ FIXED_SECTION_ENTRY_END_LOCATION(virt_vectors, exc_virt_##start##_##unused, start, size) /* * We're short on space and time in the exception prolog, so we can't * use the normal LOAD_REG_IMMEDIATE macro to load the address of label. * Instead we get the base of the kernel from paca->kernelbase and or in the low * part of label. This requires that the label be within 64KB of kernelbase, and * that kernelbase be 64K aligned. */ #define LOAD_HANDLER(reg, label) \ ld reg,PACAKBASE(r13); /* get high part of &label */ \ ori reg,reg,FIXED_SYMBOL_ABS_ADDR(label) #define __LOAD_HANDLER(reg, label) \ ld reg,PACAKBASE(r13); \ ori reg,reg,(ABS_ADDR(label))@l /* * Branches from unrelocated code (e.g., interrupts) to labels outside * head-y require >64K offsets. */ #define __LOAD_FAR_HANDLER(reg, label) \ ld reg,PACAKBASE(r13); \ ori reg,reg,(ABS_ADDR(label))@l; \ addis reg,reg,(ABS_ADDR(label))@h /* * Branch to label using its 0xC000 address. This results in instruction * address suitable for MSR[IR]=0 or 1, which allows relocation to be turned * on using mtmsr rather than rfid. * * This could set the 0xc bits for !RELOCATABLE as an immediate, rather than * load KBASE for a slight optimisation. */ #define BRANCH_TO_C000(reg, label) \ __LOAD_FAR_HANDLER(reg, label); \ mtctr reg; \ bctr /* * Interrupt code generation macros */ #define IVEC .L_IVEC_\name\() /* Interrupt vector address */ #define IHSRR .L_IHSRR_\name\() /* Sets SRR or HSRR registers */ #define IHSRR_IF_HVMODE .L_IHSRR_IF_HVMODE_\name\() /* HSRR if HV else SRR */ #define IAREA .L_IAREA_\name\() /* PACA save area */ #define IVIRT .L_IVIRT_\name\() /* Has virt mode entry point */ #define IISIDE .L_IISIDE_\name\() /* Uses SRR0/1 not DAR/DSISR */ #define IDAR .L_IDAR_\name\() /* Uses DAR (or SRR0) */ #define IDSISR .L_IDSISR_\name\() /* Uses DSISR (or SRR1) */ #define ISET_RI .L_ISET_RI_\name\() /* Run common code w/ MSR[RI]=1 */ #define IBRANCH_TO_COMMON .L_IBRANCH_TO_COMMON_\name\() /* ENTRY branch to common */ #define IREALMODE_COMMON .L_IREALMODE_COMMON_\name\() /* Common runs in realmode */ #define IMASK .L_IMASK_\name\() /* IRQ soft-mask bit */ #define IKVM_SKIP .L_IKVM_SKIP_\name\() /* Generate KVM skip handler */ #define IKVM_REAL .L_IKVM_REAL_\name\() /* Real entry tests KVM */ #define __IKVM_REAL(name) .L_IKVM_REAL_ ## name #define IKVM_VIRT .L_IKVM_VIRT_\name\() /* Virt entry tests KVM */ #define ISTACK .L_ISTACK_\name\() /* Set regular kernel stack */ #define __ISTACK(name) .L_ISTACK_ ## name #define IRECONCILE .L_IRECONCILE_\name\() /* Do RECONCILE_IRQ_STATE */ #define IKUAP .L_IKUAP_\name\() /* Do KUAP lock */ #define INT_DEFINE_BEGIN(n) \ .macro int_define_ ## n name #define INT_DEFINE_END(n) \ .endm ; \ int_define_ ## n n ; \ do_define_int n .macro do_define_int name .ifndef IVEC .error "IVEC not defined" .endif .ifndef IHSRR IHSRR=0 .endif .ifndef IHSRR_IF_HVMODE IHSRR_IF_HVMODE=0 .endif .ifndef IAREA IAREA=PACA_EXGEN .endif .ifndef IVIRT IVIRT=1 .endif .ifndef IISIDE IISIDE=0 .endif .ifndef IDAR IDAR=0 .endif .ifndef IDSISR IDSISR=0 .endif .ifndef ISET_RI ISET_RI=1 .endif .ifndef IBRANCH_TO_COMMON IBRANCH_TO_COMMON=1 .endif .ifndef IREALMODE_COMMON IREALMODE_COMMON=0 .else .if ! IBRANCH_TO_COMMON .error "IREALMODE_COMMON=1 but IBRANCH_TO_COMMON=0" .endif .endif .ifndef IMASK IMASK=0 .endif .ifndef IKVM_SKIP IKVM_SKIP=0 .endif .ifndef IKVM_REAL IKVM_REAL=0 .endif .ifndef IKVM_VIRT IKVM_VIRT=0 .endif .ifndef ISTACK ISTACK=1 .endif .ifndef IRECONCILE IRECONCILE=1 .endif .ifndef IKUAP IKUAP=1 .endif .endm #ifdef CONFIG_KVM_BOOK3S_64_HANDLER #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE /* * All interrupts which set HSRR registers, as well as SRESET and MCE and * syscall when invoked with "sc 1" switch to MSR[HV]=1 (HVMODE) to be taken, * so they all generally need to test whether they were taken in guest context. * * Note: SRESET and MCE may also be sent to the guest by the hypervisor, and be * taken with MSR[HV]=0. * * Interrupts which set SRR registers (with the above exceptions) do not * elevate to MSR[HV]=1 mode, though most can be taken when running with * MSR[HV]=1 (e.g., bare metal kernel and userspace). So these interrupts do * not need to test whether a guest is running because they get delivered to * the guest directly, including nested HV KVM guests. * * The exception is PR KVM, where the guest runs with MSR[PR]=1 and the host * runs with MSR[HV]=0, so the host takes all interrupts on behalf of the * guest. PR KVM runs with LPCR[AIL]=0 which causes interrupts to always be * delivered to the real-mode entry point, therefore such interrupts only test * KVM in their real mode handlers, and only when PR KVM is possible. * * Interrupts that are taken in MSR[HV]=0 and escalate to MSR[HV]=1 are always * delivered in real-mode when the MMU is in hash mode because the MMU * registers are not set appropriately to translate host addresses. In nested * radix mode these can be delivered in virt-mode as the host translations are * used implicitly (see: effective LPID, effective PID). */ /* * If an interrupt is taken while a guest is running, it is immediately routed * to KVM to handle. If both HV and PR KVM arepossible, KVM interrupts go first * to kvmppc_interrupt_hv, which handles the PR guest case. */ #define kvmppc_interrupt kvmppc_interrupt_hv #else #define kvmppc_interrupt kvmppc_interrupt_pr #endif .macro KVMTEST name lbz r10,HSTATE_IN_GUEST(r13) cmpwi r10,0 bne \name\()_kvm .endm .macro GEN_KVM name .balign IFETCH_ALIGN_BYTES \name\()_kvm: .if IKVM_SKIP cmpwi r10,KVM_GUEST_MODE_SKIP beq 89f .else BEGIN_FTR_SECTION ld r10,IAREA+EX_CFAR(r13) std r10,HSTATE_CFAR(r13) END_FTR_SECTION_IFSET(CPU_FTR_CFAR) .endif ld r10,PACA_EXGEN+EX_CTR(r13) mtctr r10 BEGIN_FTR_SECTION ld r10,IAREA+EX_PPR(r13) std r10,HSTATE_PPR(r13) END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR) ld r11,IAREA+EX_R11(r13) ld r12,IAREA+EX_R12(r13) std r12,HSTATE_SCRATCH0(r13) sldi r12,r9,32 ld r9,IAREA+EX_R9(r13) ld r10,IAREA+EX_R10(r13) /* HSRR variants have the 0x2 bit added to their trap number */ .if IHSRR_IF_HVMODE BEGIN_FTR_SECTION ori r12,r12,(IVEC + 0x2) FTR_SECTION_ELSE ori r12,r12,(IVEC) ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206) .elseif IHSRR ori r12,r12,(IVEC+ 0x2) .else ori r12,r12,(IVEC) .endif b kvmppc_interrupt .if IKVM_SKIP 89: mtocrf 0x80,r9 ld r10,PACA_EXGEN+EX_CTR(r13) mtctr r10 ld r9,IAREA+EX_R9(r13) ld r10,IAREA+EX_R10(r13) ld r11,IAREA+EX_R11(r13) ld r12,IAREA+EX_R12(r13) .if IHSRR_IF_HVMODE BEGIN_FTR_SECTION b kvmppc_skip_Hinterrupt FTR_SECTION_ELSE b kvmppc_skip_interrupt ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206) .elseif IHSRR b kvmppc_skip_Hinterrupt .else b kvmppc_skip_interrupt .endif .endif .endm #else .macro KVMTEST name .endm .macro GEN_KVM name .endm #endif /* * This is the BOOK3S interrupt entry code macro. * * This can result in one of several things happening: * - Branch to the _common handler, relocated, in virtual mode. * These are normal interrupts (synchronous and asynchronous) handled by * the kernel. * - Branch to KVM, relocated but real mode interrupts remain in real mode. * These occur when HSTATE_IN_GUEST is set. The interrupt may be caused by * / intended for host or guest kernel, but KVM must always be involved * because the machine state is set for guest execution. * - Branch to the masked handler, unrelocated. * These occur when maskable asynchronous interrupts are taken with the * irq_soft_mask set. * - Branch to an "early" handler in real mode but relocated. * This is done if early=1. MCE and HMI use these to handle errors in real * mode. * - Fall through and continue executing in real, unrelocated mode. * This is done if early=2. */ .macro GEN_BRANCH_TO_COMMON name, virt .if IREALMODE_COMMON LOAD_HANDLER(r10, \name\()_common) mtctr r10 bctr .else .if \virt #ifndef CONFIG_RELOCATABLE b \name\()_common_virt #else LOAD_HANDLER(r10, \name\()_common_virt) mtctr r10 bctr #endif .else LOAD_HANDLER(r10, \name\()_common_real) mtctr r10 bctr .endif .endif .endm .macro GEN_INT_ENTRY name, virt, ool=0 SET_SCRATCH0(r13) /* save r13 */ GET_PACA(r13) std r9,IAREA+EX_R9(r13) /* save r9 */ BEGIN_FTR_SECTION mfspr r9,SPRN_PPR END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR) HMT_MEDIUM std r10,IAREA+EX_R10(r13) /* save r10 - r12 */ BEGIN_FTR_SECTION mfspr r10,SPRN_CFAR END_FTR_SECTION_IFSET(CPU_FTR_CFAR) .if \ool .if !\virt b tramp_real_\name .pushsection .text TRAMP_REAL_BEGIN(tramp_real_\name) .else b tramp_virt_\name .pushsection .text TRAMP_VIRT_BEGIN(tramp_virt_\name) .endif .endif BEGIN_FTR_SECTION std r9,IAREA+EX_PPR(r13) END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR) BEGIN_FTR_SECTION std r10,IAREA+EX_CFAR(r13) END_FTR_SECTION_IFSET(CPU_FTR_CFAR) INTERRUPT_TO_KERNEL mfctr r10 std r10,IAREA+EX_CTR(r13) mfcr r9 std r11,IAREA+EX_R11(r13) std r12,IAREA+EX_R12(r13) /* * DAR/DSISR, SCRATCH0 must be read before setting MSR[RI], * because a d-side MCE will clobber those registers so is * not recoverable if they are live. */ GET_SCRATCH0(r10) std r10,IAREA+EX_R13(r13) .if IDAR && !IISIDE .if IHSRR mfspr r10,SPRN_HDAR .else mfspr r10,SPRN_DAR .endif std r10,IAREA+EX_DAR(r13) .endif .if IDSISR && !IISIDE .if IHSRR mfspr r10,SPRN_HDSISR .else mfspr r10,SPRN_DSISR .endif stw r10,IAREA+EX_DSISR(r13) .endif .if IHSRR_IF_HVMODE BEGIN_FTR_SECTION mfspr r11,SPRN_HSRR0 /* save HSRR0 */ mfspr r12,SPRN_HSRR1 /* and HSRR1 */ FTR_SECTION_ELSE mfspr r11,SPRN_SRR0 /* save SRR0 */ mfspr r12,SPRN_SRR1 /* and SRR1 */ ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206) .elseif IHSRR mfspr r11,SPRN_HSRR0 /* save HSRR0 */ mfspr r12,SPRN_HSRR1 /* and HSRR1 */ .else mfspr r11,SPRN_SRR0 /* save SRR0 */ mfspr r12,SPRN_SRR1 /* and SRR1 */ .endif .if IBRANCH_TO_COMMON GEN_BRANCH_TO_COMMON \name \virt .endif .if \ool .popsection .endif .endm /* * __GEN_COMMON_ENTRY is required to receive the branch from interrupt * entry, except in the case of the real-mode handlers which require * __GEN_REALMODE_COMMON_ENTRY. * * This switches to virtual mode and sets MSR[RI]. */ .macro __GEN_COMMON_ENTRY name DEFINE_FIXED_SYMBOL(\name\()_common_real) \name\()_common_real: .if IKVM_REAL KVMTEST \name .endif ld r10,PACAKMSR(r13) /* get MSR value for kernel */ /* MSR[RI] is clear iff using SRR regs */ .if IHSRR == EXC_HV_OR_STD BEGIN_FTR_SECTION xori r10,r10,MSR_RI END_FTR_SECTION_IFCLR(CPU_FTR_HVMODE) .elseif ! IHSRR xori r10,r10,MSR_RI .endif mtmsrd r10 .if IVIRT .if IKVM_VIRT b 1f /* skip the virt test coming from real */ .endif .balign IFETCH_ALIGN_BYTES DEFINE_FIXED_SYMBOL(\name\()_common_virt) \name\()_common_virt: .if IKVM_VIRT KVMTEST \name 1: .endif .endif /* IVIRT */ .endm /* * Don't switch to virt mode. Used for early MCE and HMI handlers that * want to run in real mode. */ .macro __GEN_REALMODE_COMMON_ENTRY name DEFINE_FIXED_SYMBOL(\name\()_common_real) \name\()_common_real: .if IKVM_REAL KVMTEST \name .endif .endm .macro __GEN_COMMON_BODY name .if IMASK lbz r10,PACAIRQSOFTMASK(r13) andi. r10,r10,IMASK /* Associate vector numbers with bits in paca->irq_happened */ .if IVEC == 0x500 || IVEC == 0xea0 li r10,PACA_IRQ_EE .elseif IVEC == 0x900 li r10,PACA_IRQ_DEC .elseif IVEC == 0xa00 || IVEC == 0xe80 li r10,PACA_IRQ_DBELL .elseif IVEC == 0xe60 li r10,PACA_IRQ_HMI .elseif IVEC == 0xf00 li r10,PACA_IRQ_PMI .else .abort "Bad maskable vector" .endif .if IHSRR_IF_HVMODE BEGIN_FTR_SECTION bne masked_Hinterrupt FTR_SECTION_ELSE bne masked_interrupt ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206) .elseif IHSRR bne masked_Hinterrupt .else bne masked_interrupt .endif .endif .if ISTACK andi. r10,r12,MSR_PR /* See if coming from user */ mr r10,r1 /* Save r1 */ subi r1,r1,INT_FRAME_SIZE /* alloc frame on kernel stack */ beq- 100f ld r1,PACAKSAVE(r13) /* kernel stack to use */ 100: tdgei r1,-INT_FRAME_SIZE /* trap if r1 is in userspace */ EMIT_BUG_ENTRY 100b,__FILE__,__LINE__,0 .endif std r9,_CCR(r1) /* save CR in stackframe */ std r11,_NIP(r1) /* save SRR0 in stackframe */ std r12,_MSR(r1) /* save SRR1 in stackframe */ std r10,0(r1) /* make stack chain pointer */ std r0,GPR0(r1) /* save r0 in stackframe */ std r10,GPR1(r1) /* save r1 in stackframe */ .if ISET_RI li r10,MSR_RI mtmsrd r10,1 /* Set MSR_RI */ .endif .if ISTACK .if IKUAP kuap_save_amr_and_lock r9, r10, cr1, cr0 .endif beq 101f /* if from kernel mode */ ACCOUNT_CPU_USER_ENTRY(r13, r9, r10) BEGIN_FTR_SECTION ld r9,IAREA+EX_PPR(r13) /* Read PPR from paca */ std r9,_PPR(r1) END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR) 101: .else .if IKUAP kuap_save_amr_and_lock r9, r10, cr1 .endif .endif /* Save original regs values from save area to stack frame. */ ld r9,IAREA+EX_R9(r13) /* move r9, r10 to stackframe */ ld r10,IAREA+EX_R10(r13) std r9,GPR9(r1) std r10,GPR10(r1) ld r9,IAREA+EX_R11(r13) /* move r11 - r13 to stackframe */ ld r10,IAREA+EX_R12(r13) ld r11,IAREA+EX_R13(r13) std r9,GPR11(r1) std r10,GPR12(r1) std r11,GPR13(r1) SAVE_NVGPRS(r1) .if IDAR .if IISIDE ld r10,_NIP(r1) .else ld r10,IAREA+EX_DAR(r13) .endif std r10,_DAR(r1) .endif .if IDSISR .if IISIDE ld r10,_MSR(r1) lis r11,DSISR_SRR1_MATCH_64S@h and r10,r10,r11 .else lwz r10,IAREA+EX_DSISR(r13) .endif std r10,_DSISR(r1) .endif BEGIN_FTR_SECTION ld r10,IAREA+EX_CFAR(r13) std r10,ORIG_GPR3(r1) END_FTR_SECTION_IFSET(CPU_FTR_CFAR) ld r10,IAREA+EX_CTR(r13) std r10,_CTR(r1) std r2,GPR2(r1) /* save r2 in stackframe */ SAVE_4GPRS(3, r1) /* save r3 - r6 in stackframe */ SAVE_2GPRS(7, r1) /* save r7, r8 in stackframe */ mflr r9 /* Get LR, later save to stack */ ld r2,PACATOC(r13) /* get kernel TOC into r2 */ std r9,_LINK(r1) lbz r10,PACAIRQSOFTMASK(r13) mfspr r11,SPRN_XER /* save XER in stackframe */ std r10,SOFTE(r1) std r11,_XER(r1) li r9,IVEC std r9,_TRAP(r1) /* set trap number */ li r10,0 ld r11,exception_marker@toc(r2) std r10,RESULT(r1) /* clear regs->result */ std r11,STACK_FRAME_OVERHEAD-16(r1) /* mark the frame */ .if ISTACK ACCOUNT_STOLEN_TIME .endif .if IRECONCILE RECONCILE_IRQ_STATE(r10, r11) .endif .endm /* * On entry r13 points to the paca, r9-r13 are saved in the paca, * r9 contains the saved CR, r11 and r12 contain the saved SRR0 and * SRR1, and relocation is on. * * If stack=0, then the stack is already set in r1, and r1 is saved in r10. * PPR save and CPU accounting is not done for the !stack case (XXX why not?) */ .macro GEN_COMMON name __GEN_COMMON_ENTRY \name __GEN_COMMON_BODY \name .endm /* * Restore all registers including H/SRR0/1 saved in a stack frame of a * standard exception. */ .macro EXCEPTION_RESTORE_REGS hsrr=0 /* Move original SRR0 and SRR1 into the respective regs */ ld r9,_MSR(r1) .if \hsrr mtspr SPRN_HSRR1,r9 .else mtspr SPRN_SRR1,r9 .endif ld r9,_NIP(r1) .if \hsrr mtspr SPRN_HSRR0,r9 .else mtspr SPRN_SRR0,r9 .endif ld r9,_CTR(r1) mtctr r9 ld r9,_XER(r1) mtxer r9 ld r9,_LINK(r1) mtlr r9 ld r9,_CCR(r1) mtcr r9 REST_8GPRS(2, r1) REST_4GPRS(10, r1) REST_GPR(0, r1) /* restore original r1. */ ld r1,GPR1(r1) .endm #define RUNLATCH_ON \ BEGIN_FTR_SECTION \ ld r3, PACA_THREAD_INFO(r13); \ ld r4,TI_LOCAL_FLAGS(r3); \ andi. r0,r4,_TLF_RUNLATCH; \ beql ppc64_runlatch_on_trampoline; \ END_FTR_SECTION_IFSET(CPU_FTR_CTRL) /* * When the idle code in power4_idle puts the CPU into NAP mode, * it has to do so in a loop, and relies on the external interrupt * and decrementer interrupt entry code to get it out of the loop. * It sets the _TLF_NAPPING bit in current_thread_info()->local_flags * to signal that it is in the loop and needs help to get out. */ #ifdef CONFIG_PPC_970_NAP #define FINISH_NAP \ BEGIN_FTR_SECTION \ ld r11, PACA_THREAD_INFO(r13); \ ld r9,TI_LOCAL_FLAGS(r11); \ andi. r10,r9,_TLF_NAPPING; \ bnel power4_fixup_nap; \ END_FTR_SECTION_IFSET(CPU_FTR_CAN_NAP) #else #define FINISH_NAP #endif /* * There are a few constraints to be concerned with. * - Real mode exceptions code/data must be located at their physical location. * - Virtual mode exceptions must be mapped at their 0xc000... location. * - Fixed location code must not call directly beyond the __end_interrupts * area when built with CONFIG_RELOCATABLE. LOAD_HANDLER / bctr sequence * must be used. * - LOAD_HANDLER targets must be within first 64K of physical 0 / * virtual 0xc00... * - Conditional branch targets must be within +/-32K of caller. * * "Virtual exceptions" run with relocation on (MSR_IR=1, MSR_DR=1), and * therefore don't have to run in physically located code or rfid to * virtual mode kernel code. However on relocatable kernels they do have * to branch to KERNELBASE offset because the rest of the kernel (outside * the exception vectors) may be located elsewhere. * * Virtual exceptions correspond with physical, except their entry points * are offset by 0xc000000000000000 and also tend to get an added 0x4000 * offset applied. Virtual exceptions are enabled with the Alternate * Interrupt Location (AIL) bit set in the LPCR. However this does not * guarantee they will be delivered virtually. Some conditions (see the ISA) * cause exceptions to be delivered in real mode. * * It's impossible to receive interrupts below 0x300 via AIL. * * KVM: None of the virtual exceptions are from the guest. Anything that * escalated to HV=1 from HV=0 is delivered via real mode handlers. * * * We layout physical memory as follows: * 0x0000 - 0x00ff : Secondary processor spin code * 0x0100 - 0x18ff : Real mode pSeries interrupt vectors * 0x1900 - 0x3fff : Real mode trampolines * 0x4000 - 0x58ff : Relon (IR=1,DR=1) mode pSeries interrupt vectors * 0x5900 - 0x6fff : Relon mode trampolines * 0x7000 - 0x7fff : FWNMI data area * 0x8000 - .... : Common interrupt handlers, remaining early * setup code, rest of kernel. * * We could reclaim 0x4000-0x42ff for real mode trampolines if the space * is necessary. Until then it's more consistent to explicitly put VIRT_NONE * vectors there. */ OPEN_FIXED_SECTION(real_vectors, 0x0100, 0x1900) OPEN_FIXED_SECTION(real_trampolines, 0x1900, 0x4000) OPEN_FIXED_SECTION(virt_vectors, 0x4000, 0x5900) OPEN_FIXED_SECTION(virt_trampolines, 0x5900, 0x7000) #ifdef CONFIG_PPC_POWERNV .globl start_real_trampolines .globl end_real_trampolines .globl start_virt_trampolines .globl end_virt_trampolines #endif #if defined(CONFIG_PPC_PSERIES) || defined(CONFIG_PPC_POWERNV) /* * Data area reserved for FWNMI option. * This address (0x7000) is fixed by the RPA. * pseries and powernv need to keep the whole page from * 0x7000 to 0x8000 free for use by the firmware */ ZERO_FIXED_SECTION(fwnmi_page, 0x7000, 0x8000) OPEN_TEXT_SECTION(0x8000) #else OPEN_TEXT_SECTION(0x7000) #endif USE_FIXED_SECTION(real_vectors) /* * This is the start of the interrupt handlers for pSeries * This code runs with relocation off. * Code from here to __end_interrupts gets copied down to real * address 0x100 when we are running a relocatable kernel. * Therefore any relative branches in this section must only * branch to labels in this section. */ .globl __start_interrupts __start_interrupts: /* No virt vectors corresponding with 0x0..0x100 */ EXC_VIRT_NONE(0x4000, 0x100) /** * Interrupt 0x100 - System Reset Interrupt (SRESET aka NMI). * This is a non-maskable, asynchronous interrupt always taken in real-mode. * It is caused by: * - Wake from power-saving state, on powernv. * - An NMI from another CPU, triggered by firmware or hypercall. * - As crash/debug signal injected from BMC, firmware or hypervisor. * * Handling: * Power-save wakeup is the only performance critical path, so this is * determined quickly as possible first. In this case volatile registers * can be discarded and SPRs like CFAR don't need to be read. * * If not a powersave wakeup, then it's run as a regular interrupt, however * it uses its own stack and PACA save area to preserve the regular kernel * environment for debugging. * * This interrupt is not maskable, so triggering it when MSR[RI] is clear, * or SCRATCH0 is in use, etc. may cause a crash. It's also not entirely * correct to switch to virtual mode to run the regular interrupt handler * because it might be interrupted when the MMU is in a bad state (e.g., SLB * is clear). * * FWNMI: * PAPR specifies a "fwnmi" facility which sends the sreset to a different * entry point with a different register set up. Some hypervisors will * send the sreset to 0x100 in the guest if it is not fwnmi capable. * * KVM: * Unlike most SRR interrupts, this may be taken by the host while executing * in a guest, so a KVM test is required. KVM will pull the CPU out of guest * mode and then raise the sreset. */ INT_DEFINE_BEGIN(system_reset) IVEC=0x100 IAREA=PACA_EXNMI IVIRT=0 /* no virt entry point */ /* * MSR_RI is not enabled, because PACA_EXNMI and nmi stack is * being used, so a nested NMI exception would corrupt it. */ ISET_RI=0 ISTACK=0 IRECONCILE=0 IKVM_REAL=1 INT_DEFINE_END(system_reset) EXC_REAL_BEGIN(system_reset, 0x100, 0x100) #ifdef CONFIG_PPC_P7_NAP /* * If running native on arch 2.06 or later, check if we are waking up * from nap/sleep/winkle, and branch to idle handler. This tests SRR1 * bits 46:47. A non-0 value indicates that we are coming from a power * saving state. The idle wakeup handler initially runs in real mode, * but we branch to the 0xc000... address so we can turn on relocation * with mtmsrd later, after SPRs are restored. * * Careful to minimise cost for the fast path (idle wakeup) while * also avoiding clobbering CFAR for the debug path (non-idle). * * For the idle wake case volatile registers can be clobbered, which * is why we use those initially. If it turns out to not be an idle * wake, carefully put everything back the way it was, so we can use * common exception macros to handle it. */ BEGIN_FTR_SECTION SET_SCRATCH0(r13) GET_PACA(r13) std r3,PACA_EXNMI+0*8(r13) std r4,PACA_EXNMI+1*8(r13) std r5,PACA_EXNMI+2*8(r13) mfspr r3,SPRN_SRR1 mfocrf r4,0x80 rlwinm. r5,r3,47-31,30,31 bne+ system_reset_idle_wake /* Not powersave wakeup. Restore regs for regular interrupt handler. */ mtocrf 0x80,r4 ld r3,PACA_EXNMI+0*8(r13) ld r4,PACA_EXNMI+1*8(r13) ld r5,PACA_EXNMI+2*8(r13) GET_SCRATCH0(r13) END_FTR_SECTION_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206) #endif GEN_INT_ENTRY system_reset, virt=0 /* * In theory, we should not enable relocation here if it was disabled * in SRR1, because the MMU may not be configured to support it (e.g., * SLB may have been cleared). In practice, there should only be a few * small windows where that's the case, and sreset is considered to * be dangerous anyway. */ EXC_REAL_END(system_reset, 0x100, 0x100) EXC_VIRT_NONE(0x4100, 0x100) #ifdef CONFIG_PPC_P7_NAP TRAMP_REAL_BEGIN(system_reset_idle_wake) /* We are waking up from idle, so may clobber any volatile register */ cmpwi cr1,r5,2 bltlr cr1 /* no state loss, return to idle caller with r3=SRR1 */ BRANCH_TO_C000(r12, DOTSYM(idle_return_gpr_loss)) #endif #ifdef CONFIG_PPC_PSERIES /* * Vectors for the FWNMI option. Share common code. */ TRAMP_REAL_BEGIN(system_reset_fwnmi) /* XXX: fwnmi guest could run a nested/PR guest, so why no test? */ __IKVM_REAL(system_reset)=0 GEN_INT_ENTRY system_reset, virt=0 #endif /* CONFIG_PPC_PSERIES */ EXC_COMMON_BEGIN(system_reset_common) __GEN_COMMON_ENTRY system_reset /* * Increment paca->in_nmi then enable MSR_RI. SLB or MCE will be able * to recover, but nested NMI will notice in_nmi and not recover * because of the use of the NMI stack. in_nmi reentrancy is tested in * system_reset_exception. */ lhz r10,PACA_IN_NMI(r13) addi r10,r10,1 sth r10,PACA_IN_NMI(r13) li r10,MSR_RI mtmsrd r10,1 mr r10,r1 ld r1,PACA_NMI_EMERG_SP(r13) subi r1,r1,INT_FRAME_SIZE __GEN_COMMON_BODY system_reset /* * Set IRQS_ALL_DISABLED unconditionally so irqs_disabled() does * the right thing. We do not want to reconcile because that goes * through irq tracing which we don't want in NMI. * * Save PACAIRQHAPPENED to _DAR (otherwise unused), and set HARD_DIS * as we are running with MSR[EE]=0. */ li r10,IRQS_ALL_DISABLED stb r10,PACAIRQSOFTMASK(r13) lbz r10,PACAIRQHAPPENED(r13) std r10,_DAR(r1) ori r10,r10,PACA_IRQ_HARD_DIS stb r10,PACAIRQHAPPENED(r13) addi r3,r1,STACK_FRAME_OVERHEAD bl system_reset_exception /* Clear MSR_RI before setting SRR0 and SRR1. */ li r9,0 mtmsrd r9,1 /* * MSR_RI is clear, now we can decrement paca->in_nmi. */ lhz r10,PACA_IN_NMI(r13) subi r10,r10,1 sth r10,PACA_IN_NMI(r13) /* * Restore soft mask settings. */ ld r10,_DAR(r1) stb r10,PACAIRQHAPPENED(r13) ld r10,SOFTE(r1) stb r10,PACAIRQSOFTMASK(r13) EXCEPTION_RESTORE_REGS RFI_TO_USER_OR_KERNEL GEN_KVM system_reset /** * Interrupt 0x200 - Machine Check Interrupt (MCE). * This is a non-maskable interrupt always taken in real-mode. It can be * synchronous or asynchronous, caused by hardware or software, and it may be * taken in a power-saving state. * * Handling: * Similarly to system reset, this uses its own stack and PACA save area, * the difference is re-entrancy is allowed on the machine check stack. * * machine_check_early is run in real mode, and carefully decodes the * machine check and tries to handle it (e.g., flush the SLB if there was an * error detected there), determines if it was recoverable and logs the * event. * * This early code does not "reconcile" irq soft-mask state like SRESET or * regular interrupts do, so irqs_disabled() among other things may not work * properly (irq disable/enable already doesn't work because irq tracing can * not work in real mode). * * Then, depending on the execution context when the interrupt is taken, there * are 3 main actions: * - Executing in kernel mode. The event is queued with irq_work, which means * it is handled when it is next safe to do so (i.e., the kernel has enabled * interrupts), which could be immediately when the interrupt returns. This * avoids nasty issues like switching to virtual mode when the MMU is in a * bad state, or when executing OPAL code. (SRESET is exposed to such issues, * but it has different priorities). Check to see if the CPU was in power * save, and return via the wake up code if it was. * * - Executing in user mode. machine_check_exception is run like a normal * interrupt handler, which processes the data generated by the early handler. * * - Executing in guest mode. The interrupt is run with its KVM test, and * branches to KVM to deal with. KVM may queue the event for the host * to report later. * * This interrupt is not maskable, so if it triggers when MSR[RI] is clear, * or SCRATCH0 is in use, it may cause a crash. * * KVM: * See SRESET. */ INT_DEFINE_BEGIN(machine_check_early) IVEC=0x200 IAREA=PACA_EXMC IVIRT=0 /* no virt entry point */ IREALMODE_COMMON=1 /* * MSR_RI is not enabled, because PACA_EXMC is being used, so a * nested machine check corrupts it. machine_check_common enables * MSR_RI. */ ISET_RI=0 ISTACK=0 IDAR=1 IDSISR=1 IRECONCILE=0 IKUAP=0 /* We don't touch AMR here, we never go to virtual mode */ INT_DEFINE_END(machine_check_early) INT_DEFINE_BEGIN(machine_check) IVEC=0x200 IAREA=PACA_EXMC IVIRT=0 /* no virt entry point */ ISET_RI=0 IDAR=1 IDSISR=1 IKVM_SKIP=1 IKVM_REAL=1 INT_DEFINE_END(machine_check) EXC_REAL_BEGIN(machine_check, 0x200, 0x100) GEN_INT_ENTRY machine_check_early, virt=0 EXC_REAL_END(machine_check, 0x200, 0x100) EXC_VIRT_NONE(0x4200, 0x100) #ifdef CONFIG_PPC_PSERIES TRAMP_REAL_BEGIN(machine_check_fwnmi) /* See comment at machine_check exception, don't turn on RI */ GEN_INT_ENTRY machine_check_early, virt=0 #endif #define MACHINE_CHECK_HANDLER_WINDUP \ /* Clear MSR_RI before setting SRR0 and SRR1. */\ li r9,0; \ mtmsrd r9,1; /* Clear MSR_RI */ \ /* Decrement paca->in_mce now RI is clear. */ \ lhz r12,PACA_IN_MCE(r13); \ subi r12,r12,1; \ sth r12,PACA_IN_MCE(r13); \ EXCEPTION_RESTORE_REGS EXC_COMMON_BEGIN(machine_check_early_common) __GEN_REALMODE_COMMON_ENTRY machine_check_early /* * Switch to mc_emergency stack and handle re-entrancy (we limit * the nested MCE upto level 4 to avoid stack overflow). * Save MCE registers srr1, srr0, dar and dsisr and then set ME=1 * * We use paca->in_mce to check whether this is the first entry or * nested machine check. We increment paca->in_mce to track nested * machine checks. * * If this is the first entry then set stack pointer to * paca->mc_emergency_sp, otherwise r1 is already pointing to * stack frame on mc_emergency stack. * * NOTE: We are here with MSR_ME=0 (off), which means we risk a * checkstop if we get another machine check exception before we do * rfid with MSR_ME=1. * * This interrupt can wake directly from idle. If that is the case, * the machine check is handled then the idle wakeup code is called * to restore state. */ lhz r10,PACA_IN_MCE(r13) cmpwi r10,0 /* Are we in nested machine check */ cmpwi cr1,r10,MAX_MCE_DEPTH /* Are we at maximum nesting */ addi r10,r10,1 /* increment paca->in_mce */ sth r10,PACA_IN_MCE(r13) mr r10,r1 /* Save r1 */ bne 1f /* First machine check entry */ ld r1,PACAMCEMERGSP(r13) /* Use MC emergency stack */ 1: /* Limit nested MCE to level 4 to avoid stack overflow */ bgt cr1,unrecoverable_mce /* Check if we hit limit of 4 */ subi r1,r1,INT_FRAME_SIZE /* alloc stack frame */ __GEN_COMMON_BODY machine_check_early BEGIN_FTR_SECTION bl enable_machine_check END_FTR_SECTION_IFSET(CPU_FTR_HVMODE) li r10,MSR_RI mtmsrd r10,1 addi r3,r1,STACK_FRAME_OVERHEAD bl machine_check_early std r3,RESULT(r1) /* Save result */ ld r12,_MSR(r1) #ifdef CONFIG_PPC_P7_NAP /* * Check if thread was in power saving mode. We come here when any * of the following is true: * a. thread wasn't in power saving mode * b. thread was in power saving mode with no state loss, * supervisor state loss or hypervisor state loss. * * Go back to nap/sleep/winkle mode again if (b) is true. */ BEGIN_FTR_SECTION rlwinm. r11,r12,47-31,30,31 bne machine_check_idle_common END_FTR_SECTION_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206) #endif #ifdef CONFIG_KVM_BOOK3S_64_HANDLER /* * Check if we are coming from guest. If yes, then run the normal * exception handler which will take the * machine_check_kvm->kvmppc_interrupt branch to deliver the MC event * to guest. */ lbz r11,HSTATE_IN_GUEST(r13) cmpwi r11,0 /* Check if coming from guest */ bne mce_deliver /* continue if we are. */ #endif /* * Check if we are coming from userspace. If yes, then run the normal * exception handler which will deliver the MC event to this kernel. */ andi. r11,r12,MSR_PR /* See if coming from user. */ bne mce_deliver /* continue in V mode if we are. */ /* * At this point we are coming from kernel context. * Queue up the MCE event and return from the interrupt. * But before that, check if this is an un-recoverable exception. * If yes, then stay on emergency stack and panic. */ andi. r11,r12,MSR_RI beq unrecoverable_mce /* * Check if we have successfully handled/recovered from error, if not * then stay on emergency stack and panic. */ ld r3,RESULT(r1) /* Load result */ cmpdi r3,0 /* see if we handled MCE successfully */ beq unrecoverable_mce /* if !handled then panic */ /* * Return from MC interrupt. * Queue up the MCE event so that we can log it later, while * returning from kernel or opal call. */ bl machine_check_queue_event MACHINE_CHECK_HANDLER_WINDUP RFI_TO_KERNEL mce_deliver: /* * This is a host user or guest MCE. Restore all registers, then * run the "late" handler. For host user, this will run the * machine_check_exception handler in virtual mode like a normal * interrupt handler. For guest, this will trigger the KVM test * and branch to the KVM interrupt similarly to other interrupts. */ BEGIN_FTR_SECTION ld r10,ORIG_GPR3(r1) mtspr SPRN_CFAR,r10 END_FTR_SECTION_IFSET(CPU_FTR_CFAR) MACHINE_CHECK_HANDLER_WINDUP GEN_INT_ENTRY machine_check, virt=0 EXC_COMMON_BEGIN(machine_check_common) /* * Machine check is different because we use a different * save area: PACA_EXMC instead of PACA_EXGEN. */ GEN_COMMON machine_check FINISH_NAP /* Enable MSR_RI when finished with PACA_EXMC */ li r10,MSR_RI mtmsrd r10,1 addi r3,r1,STACK_FRAME_OVERHEAD bl machine_check_exception b interrupt_return GEN_KVM machine_check #ifdef CONFIG_PPC_P7_NAP /* * This is an idle wakeup. Low level machine check has already been * done. Queue the event then call the idle code to do the wake up. */ EXC_COMMON_BEGIN(machine_check_idle_common) bl machine_check_queue_event /* * We have not used any non-volatile GPRs here, and as a rule * most exception code including machine check does not. * Therefore PACA_NAPSTATELOST does not need to be set. Idle * wakeup will restore volatile registers. * * Load the original SRR1 into r3 for pnv_powersave_wakeup_mce. * * Then decrement MCE nesting after finishing with the stack. */ ld r3,_MSR(r1) ld r4,_LINK(r1) lhz r11,PACA_IN_MCE(r13) subi r11,r11,1 sth r11,PACA_IN_MCE(r13) mtlr r4 rlwinm r10,r3,47-31,30,31 cmpwi cr1,r10,2 bltlr cr1 /* no state loss, return to idle caller */ b idle_return_gpr_loss #endif EXC_COMMON_BEGIN(unrecoverable_mce) /* * We are going down. But there are chances that we might get hit by * another MCE during panic path and we may run into unstable state * with no way out. Hence, turn ME bit off while going down, so that * when another MCE is hit during panic path, system will checkstop * and hypervisor will get restarted cleanly by SP. */ BEGIN_FTR_SECTION li r10,0 /* clear MSR_RI */ mtmsrd r10,1 bl disable_machine_check END_FTR_SECTION_IFSET(CPU_FTR_HVMODE) ld r10,PACAKMSR(r13) li r3,MSR_ME andc r10,r10,r3 mtmsrd r10 /* Invoke machine_check_exception to print MCE event and panic. */ addi r3,r1,STACK_FRAME_OVERHEAD bl machine_check_exception /* * We will not reach here. Even if we did, there is no way out. * Call unrecoverable_exception and die. */ addi r3,r1,STACK_FRAME_OVERHEAD bl unrecoverable_exception b . /** * Interrupt 0x300 - Data Storage Interrupt (DSI). * This is a synchronous interrupt generated due to a data access exception, * e.g., a load orstore which does not have a valid page table entry with * permissions. DAWR matches also fault here, as do RC updates, and minor misc * errors e.g., copy/paste, AMO, certain invalid CI accesses, etc. * * Handling: * - Hash MMU * Go to do_hash_page first to see if the HPT can be filled from an entry in * the Linux page table. Hash faults can hit in kernel mode in a fairly * arbitrary state (e.g., interrupts disabled, locks held) when accessing * "non-bolted" regions, e.g., vmalloc space. However these should always be * backed by Linux page tables. * * If none is found, do a Linux page fault. Linux page faults can happen in * kernel mode due to user copy operations of course. * * - Radix MMU * The hardware loads from the Linux page table directly, so a fault goes * immediately to Linux page fault. * * Conditions like DAWR match are handled on the way in to Linux page fault. */ INT_DEFINE_BEGIN(data_access) IVEC=0x300 IDAR=1 IDSISR=1 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE IKVM_SKIP=1 IKVM_REAL=1 #endif INT_DEFINE_END(data_access) EXC_REAL_BEGIN(data_access, 0x300, 0x80) GEN_INT_ENTRY data_access, virt=0 EXC_REAL_END(data_access, 0x300, 0x80) EXC_VIRT_BEGIN(data_access, 0x4300, 0x80) GEN_INT_ENTRY data_access, virt=1 EXC_VIRT_END(data_access, 0x4300, 0x80) EXC_COMMON_BEGIN(data_access_common) GEN_COMMON data_access ld r4,_DAR(r1) ld r5,_DSISR(r1) BEGIN_MMU_FTR_SECTION ld r6,_MSR(r1) li r3,0x300 b do_hash_page /* Try to handle as hpte fault */ MMU_FTR_SECTION_ELSE b handle_page_fault ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX) GEN_KVM data_access /** * Interrupt 0x380 - Data Segment Interrupt (DSLB). * This is a synchronous interrupt in response to an MMU fault missing SLB * entry for HPT, or an address outside RPT translation range. * * Handling: * - HPT: * This refills the SLB, or reports an access fault similarly to a bad page * fault. When coming from user-mode, the SLB handler may access any kernel * data, though it may itself take a DSLB. When coming from kernel mode, * recursive faults must be avoided so access is restricted to the kernel * image text/data, kernel stack, and any data allocated below * ppc64_bolted_size (first segment). The kernel handler must avoid stomping * on user-handler data structures. * * A dedicated save area EXSLB is used (XXX: but it actually need not be * these days, we could use EXGEN). */ INT_DEFINE_BEGIN(data_access_slb) IVEC=0x380 IAREA=PACA_EXSLB IRECONCILE=0 IDAR=1 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE IKVM_SKIP=1 IKVM_REAL=1 #endif INT_DEFINE_END(data_access_slb) EXC_REAL_BEGIN(data_access_slb, 0x380, 0x80) GEN_INT_ENTRY data_access_slb, virt=0 EXC_REAL_END(data_access_slb, 0x380, 0x80) EXC_VIRT_BEGIN(data_access_slb, 0x4380, 0x80) GEN_INT_ENTRY data_access_slb, virt=1 EXC_VIRT_END(data_access_slb, 0x4380, 0x80) EXC_COMMON_BEGIN(data_access_slb_common) GEN_COMMON data_access_slb ld r4,_DAR(r1) addi r3,r1,STACK_FRAME_OVERHEAD BEGIN_MMU_FTR_SECTION /* HPT case, do SLB fault */ bl do_slb_fault cmpdi r3,0 bne- 1f b fast_interrupt_return 1: /* Error case */ MMU_FTR_SECTION_ELSE /* Radix case, access is outside page table range */ li r3,-EFAULT ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX) std r3,RESULT(r1) RECONCILE_IRQ_STATE(r10, r11) ld r4,_DAR(r1) ld r5,RESULT(r1) addi r3,r1,STACK_FRAME_OVERHEAD bl do_bad_slb_fault b interrupt_return GEN_KVM data_access_slb /** * Interrupt 0x400 - Instruction Storage Interrupt (ISI). * This is a synchronous interrupt in response to an MMU fault due to an * instruction fetch. * * Handling: * Similar to DSI, though in response to fetch. The faulting address is found * in SRR0 (rather than DAR), and status in SRR1 (rather than DSISR). */ INT_DEFINE_BEGIN(instruction_access) IVEC=0x400 IISIDE=1 IDAR=1 IDSISR=1 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE IKVM_REAL=1 #endif INT_DEFINE_END(instruction_access) EXC_REAL_BEGIN(instruction_access, 0x400, 0x80) GEN_INT_ENTRY instruction_access, virt=0 EXC_REAL_END(instruction_access, 0x400, 0x80) EXC_VIRT_BEGIN(instruction_access, 0x4400, 0x80) GEN_INT_ENTRY instruction_access, virt=1 EXC_VIRT_END(instruction_access, 0x4400, 0x80) EXC_COMMON_BEGIN(instruction_access_common) GEN_COMMON instruction_access ld r4,_DAR(r1) ld r5,_DSISR(r1) BEGIN_MMU_FTR_SECTION ld r6,_MSR(r1) li r3,0x400 b do_hash_page /* Try to handle as hpte fault */ MMU_FTR_SECTION_ELSE b handle_page_fault ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX) GEN_KVM instruction_access /** * Interrupt 0x480 - Instruction Segment Interrupt (ISLB). * This is a synchronous interrupt in response to an MMU fault due to an * instruction fetch. * * Handling: * Similar to DSLB, though in response to fetch. The faulting address is found * in SRR0 (rather than DAR). */ INT_DEFINE_BEGIN(instruction_access_slb) IVEC=0x480 IAREA=PACA_EXSLB IRECONCILE=0 IISIDE=1 IDAR=1 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE IKVM_REAL=1 #endif INT_DEFINE_END(instruction_access_slb) EXC_REAL_BEGIN(instruction_access_slb, 0x480, 0x80) GEN_INT_ENTRY instruction_access_slb, virt=0 EXC_REAL_END(instruction_access_slb, 0x480, 0x80) EXC_VIRT_BEGIN(instruction_access_slb, 0x4480, 0x80) GEN_INT_ENTRY instruction_access_slb, virt=1 EXC_VIRT_END(instruction_access_slb, 0x4480, 0x80) EXC_COMMON_BEGIN(instruction_access_slb_common) GEN_COMMON instruction_access_slb ld r4,_DAR(r1) addi r3,r1,STACK_FRAME_OVERHEAD BEGIN_MMU_FTR_SECTION /* HPT case, do SLB fault */ bl do_slb_fault cmpdi r3,0 bne- 1f b fast_interrupt_return 1: /* Error case */ MMU_FTR_SECTION_ELSE /* Radix case, access is outside page table range */ li r3,-EFAULT ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX) std r3,RESULT(r1) RECONCILE_IRQ_STATE(r10, r11) ld r4,_DAR(r1) ld r5,RESULT(r1) addi r3,r1,STACK_FRAME_OVERHEAD bl do_bad_slb_fault b interrupt_return GEN_KVM instruction_access_slb /** * Interrupt 0x500 - External Interrupt. * This is an asynchronous maskable interrupt in response to an "external * exception" from the interrupt controller or hypervisor (e.g., device * interrupt). It is maskable in hardware by clearing MSR[EE], and * soft-maskable with IRQS_DISABLED mask (i.e., local_irq_disable()). * * When running in HV mode, Linux sets up the LPCR[LPES] bit such that * interrupts are delivered with HSRR registers, guests use SRRs, which * reqiures IHSRR_IF_HVMODE. * * On bare metal POWER9 and later, Linux sets the LPCR[HVICE] bit such that * external interrupts are delivered as Hypervisor Virtualization Interrupts * rather than External Interrupts. * * Handling: * This calls into Linux IRQ handler. NVGPRs are not saved to reduce overhead, * because registers at the time of the interrupt are not so important as it is * asynchronous. * * If soft masked, the masked handler will note the pending interrupt for * replay, and clear MSR[EE] in the interrupted context. */ INT_DEFINE_BEGIN(hardware_interrupt) IVEC=0x500 IHSRR_IF_HVMODE=1 IMASK=IRQS_DISABLED IKVM_REAL=1 IKVM_VIRT=1 INT_DEFINE_END(hardware_interrupt) EXC_REAL_BEGIN(hardware_interrupt, 0x500, 0x100) GEN_INT_ENTRY hardware_interrupt, virt=0 EXC_REAL_END(hardware_interrupt, 0x500, 0x100) EXC_VIRT_BEGIN(hardware_interrupt, 0x4500, 0x100) GEN_INT_ENTRY hardware_interrupt, virt=1 EXC_VIRT_END(hardware_interrupt, 0x4500, 0x100) EXC_COMMON_BEGIN(hardware_interrupt_common) GEN_COMMON hardware_interrupt FINISH_NAP RUNLATCH_ON addi r3,r1,STACK_FRAME_OVERHEAD bl do_IRQ b interrupt_return GEN_KVM hardware_interrupt /** * Interrupt 0x600 - Alignment Interrupt * This is a synchronous interrupt in response to data alignment fault. */ INT_DEFINE_BEGIN(alignment) IVEC=0x600 IDAR=1 IDSISR=1 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE IKVM_REAL=1 #endif INT_DEFINE_END(alignment) EXC_REAL_BEGIN(alignment, 0x600, 0x100) GEN_INT_ENTRY alignment, virt=0 EXC_REAL_END(alignment, 0x600, 0x100) EXC_VIRT_BEGIN(alignment, 0x4600, 0x100) GEN_INT_ENTRY alignment, virt=1 EXC_VIRT_END(alignment, 0x4600, 0x100) EXC_COMMON_BEGIN(alignment_common) GEN_COMMON alignment addi r3,r1,STACK_FRAME_OVERHEAD bl alignment_exception REST_NVGPRS(r1) /* instruction emulation may change GPRs */ b interrupt_return GEN_KVM alignment /** * Interrupt 0x700 - Program Interrupt (program check). * This is a synchronous interrupt in response to various instruction faults: * traps, privilege errors, TM errors, floating point exceptions. * * Handling: * This interrupt may use the "emergency stack" in some cases when being taken * from kernel context, which complicates handling. */ INT_DEFINE_BEGIN(program_check) IVEC=0x700 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE IKVM_REAL=1 #endif INT_DEFINE_END(program_check) EXC_REAL_BEGIN(program_check, 0x700, 0x100) GEN_INT_ENTRY program_check, virt=0 EXC_REAL_END(program_check, 0x700, 0x100) EXC_VIRT_BEGIN(program_check, 0x4700, 0x100) GEN_INT_ENTRY program_check, virt=1 EXC_VIRT_END(program_check, 0x4700, 0x100) EXC_COMMON_BEGIN(program_check_common) __GEN_COMMON_ENTRY program_check /* * It's possible to receive a TM Bad Thing type program check with * userspace register values (in particular r1), but with SRR1 reporting * that we came from the kernel. Normally that would confuse the bad * stack logic, and we would report a bad kernel stack pointer. Instead * we switch to the emergency stack if we're taking a TM Bad Thing from * the kernel. */ andi. r10,r12,MSR_PR bne 2f /* If userspace, go normal path */ andis. r10,r12,(SRR1_PROGTM)@h bne 1f /* If TM, emergency */ cmpdi r1,-INT_FRAME_SIZE /* check if r1 is in userspace */ blt 2f /* normal path if not */ /* Use the emergency stack */ 1: andi. r10,r12,MSR_PR /* Set CR0 correctly for label */ /* 3 in EXCEPTION_PROLOG_COMMON */ mr r10,r1 /* Save r1 */ ld r1,PACAEMERGSP(r13) /* Use emergency stack */ subi r1,r1,INT_FRAME_SIZE /* alloc stack frame */ __ISTACK(program_check)=0 __GEN_COMMON_BODY program_check b 3f 2: __ISTACK(program_check)=1 __GEN_COMMON_BODY program_check 3: addi r3,r1,STACK_FRAME_OVERHEAD bl program_check_exception REST_NVGPRS(r1) /* instruction emulation may change GPRs */ b interrupt_return GEN_KVM program_check /* * Interrupt 0x800 - Floating-Point Unavailable Interrupt. * This is a synchronous interrupt in response to executing an fp instruction * with MSR[FP]=0. * * Handling: * This will load FP registers and enable the FP bit if coming from userspace, * otherwise report a bad kernel use of FP. */ INT_DEFINE_BEGIN(fp_unavailable) IVEC=0x800 IRECONCILE=0 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE IKVM_REAL=1 #endif INT_DEFINE_END(fp_unavailable) EXC_REAL_BEGIN(fp_unavailable, 0x800, 0x100) GEN_INT_ENTRY fp_unavailable, virt=0 EXC_REAL_END(fp_unavailable, 0x800, 0x100) EXC_VIRT_BEGIN(fp_unavailable, 0x4800, 0x100) GEN_INT_ENTRY fp_unavailable, virt=1 EXC_VIRT_END(fp_unavailable, 0x4800, 0x100) EXC_COMMON_BEGIN(fp_unavailable_common) GEN_COMMON fp_unavailable bne 1f /* if from user, just load it up */ RECONCILE_IRQ_STATE(r10, r11) addi r3,r1,STACK_FRAME_OVERHEAD bl kernel_fp_unavailable_exception 0: trap EMIT_BUG_ENTRY 0b, __FILE__, __LINE__, 0 1: #ifdef CONFIG_PPC_TRANSACTIONAL_MEM BEGIN_FTR_SECTION /* Test if 2 TM state bits are zero. If non-zero (ie. userspace was in * transaction), go do TM stuff */ rldicl. r0, r12, (64-MSR_TS_LG), (64-2) bne- 2f END_FTR_SECTION_IFSET(CPU_FTR_TM) #endif bl load_up_fpu b fast_interrupt_return #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 2: /* User process was in a transaction */ RECONCILE_IRQ_STATE(r10, r11) addi r3,r1,STACK_FRAME_OVERHEAD bl fp_unavailable_tm b interrupt_return #endif GEN_KVM fp_unavailable /** * Interrupt 0x900 - Decrementer Interrupt. * This is an asynchronous interrupt in response to a decrementer exception * (e.g., DEC has wrapped below zero). It is maskable in hardware by clearing * MSR[EE], and soft-maskable with IRQS_DISABLED mask (i.e., * local_irq_disable()). * * Handling: * This calls into Linux timer handler. NVGPRs are not saved (see 0x500). * * If soft masked, the masked handler will note the pending interrupt for * replay, and bump the decrementer to a high value, leaving MSR[EE] enabled * in the interrupted context. * If PPC_WATCHDOG is configured, the soft masked handler will actually set * things back up to run soft_nmi_interrupt as a regular interrupt handler * on the emergency stack. */ INT_DEFINE_BEGIN(decrementer) IVEC=0x900 IMASK=IRQS_DISABLED #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE IKVM_REAL=1 #endif INT_DEFINE_END(decrementer) EXC_REAL_BEGIN(decrementer, 0x900, 0x80) GEN_INT_ENTRY decrementer, virt=0 EXC_REAL_END(decrementer, 0x900, 0x80) EXC_VIRT_BEGIN(decrementer, 0x4900, 0x80) GEN_INT_ENTRY decrementer, virt=1 EXC_VIRT_END(decrementer, 0x4900, 0x80) EXC_COMMON_BEGIN(decrementer_common) GEN_COMMON decrementer FINISH_NAP RUNLATCH_ON addi r3,r1,STACK_FRAME_OVERHEAD bl timer_interrupt b interrupt_return GEN_KVM decrementer /** * Interrupt 0x980 - Hypervisor Decrementer Interrupt. * This is an asynchronous interrupt, similar to 0x900 but for the HDEC * register. * * Handling: * Linux does not use this outside KVM where it's used to keep a host timer * while the guest is given control of DEC. It should normally be caught by * the KVM test and routed there. */ INT_DEFINE_BEGIN(hdecrementer) IVEC=0x980 IHSRR=1 ISTACK=0 IRECONCILE=0 IKVM_REAL=1 IKVM_VIRT=1 INT_DEFINE_END(hdecrementer) EXC_REAL_BEGIN(hdecrementer, 0x980, 0x80) GEN_INT_ENTRY hdecrementer, virt=0 EXC_REAL_END(hdecrementer, 0x980, 0x80) EXC_VIRT_BEGIN(hdecrementer, 0x4980, 0x80) GEN_INT_ENTRY hdecrementer, virt=1 EXC_VIRT_END(hdecrementer, 0x4980, 0x80) EXC_COMMON_BEGIN(hdecrementer_common) __GEN_COMMON_ENTRY hdecrementer /* * Hypervisor decrementer interrupts not caught by the KVM test * shouldn't occur but are sometimes left pending on exit from a KVM * guest. We don't need to do anything to clear them, as they are * edge-triggered. * * Be careful to avoid touching the kernel stack. */ ld r10,PACA_EXGEN+EX_CTR(r13) mtctr r10 mtcrf 0x80,r9 ld r9,PACA_EXGEN+EX_R9(r13) ld r10,PACA_EXGEN+EX_R10(r13) ld r11,PACA_EXGEN+EX_R11(r13) ld r12,PACA_EXGEN+EX_R12(r13) ld r13,PACA_EXGEN+EX_R13(r13) HRFI_TO_KERNEL GEN_KVM hdecrementer /** * Interrupt 0xa00 - Directed Privileged Doorbell Interrupt. * This is an asynchronous interrupt in response to a msgsndp doorbell. * It is maskable in hardware by clearing MSR[EE], and soft-maskable with * IRQS_DISABLED mask (i.e., local_irq_disable()). * * Handling: * Guests may use this for IPIs between threads in a core if the * hypervisor supports it. NVGPRS are not saved (see 0x500). * * If soft masked, the masked handler will note the pending interrupt for * replay, leaving MSR[EE] enabled in the interrupted context because the * doorbells are edge triggered. */ INT_DEFINE_BEGIN(doorbell_super) IVEC=0xa00 IMASK=IRQS_DISABLED #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE IKVM_REAL=1 #endif INT_DEFINE_END(doorbell_super) EXC_REAL_BEGIN(doorbell_super, 0xa00, 0x100) GEN_INT_ENTRY doorbell_super, virt=0 EXC_REAL_END(doorbell_super, 0xa00, 0x100) EXC_VIRT_BEGIN(doorbell_super, 0x4a00, 0x100) GEN_INT_ENTRY doorbell_super, virt=1 EXC_VIRT_END(doorbell_super, 0x4a00, 0x100) EXC_COMMON_BEGIN(doorbell_super_common) GEN_COMMON doorbell_super FINISH_NAP RUNLATCH_ON addi r3,r1,STACK_FRAME_OVERHEAD #ifdef CONFIG_PPC_DOORBELL bl doorbell_exception #else bl unknown_exception #endif b interrupt_return GEN_KVM doorbell_super EXC_REAL_NONE(0xb00, 0x100) EXC_VIRT_NONE(0x4b00, 0x100) /** * Interrupt 0xc00 - System Call Interrupt (syscall, hcall). * This is a synchronous interrupt invoked with the "sc" instruction. The * system call is invoked with "sc 0" and does not alter the HV bit, so it * is directed to the currently running OS. The hypercall is invoked with * "sc 1" and it sets HV=1, so it elevates to hypervisor. * * In HPT, sc 1 always goes to 0xc00 real mode. In RADIX, sc 1 can go to * 0x4c00 virtual mode. * * Handling: * If the KVM test fires then it was due to a hypercall and is accordingly * routed to KVM. Otherwise this executes a normal Linux system call. * * Call convention: * * syscall and hypercalls register conventions are documented in * Documentation/powerpc/syscall64-abi.rst and * Documentation/powerpc/papr_hcalls.rst respectively. * * The intersection of volatile registers that don't contain possible * inputs is: cr0, xer, ctr. We may use these as scratch regs upon entry * without saving, though xer is not a good idea to use, as hardware may * interpret some bits so it may be costly to change them. */ INT_DEFINE_BEGIN(system_call) IVEC=0xc00 IKVM_REAL=1 IKVM_VIRT=1 INT_DEFINE_END(system_call) .macro SYSTEM_CALL virt #ifdef CONFIG_KVM_BOOK3S_64_HANDLER /* * There is a little bit of juggling to get syscall and hcall * working well. Save r13 in ctr to avoid using SPRG scratch * register. * * Userspace syscalls have already saved the PPR, hcalls must save * it before setting HMT_MEDIUM. */ mtctr r13 GET_PACA(r13) std r10,PACA_EXGEN+EX_R10(r13) INTERRUPT_TO_KERNEL KVMTEST system_call /* uses r10, branch to system_call_kvm */ mfctr r9 #else mr r9,r13 GET_PACA(r13) INTERRUPT_TO_KERNEL #endif #ifdef CONFIG_PPC_FAST_ENDIAN_SWITCH BEGIN_FTR_SECTION cmpdi r0,0x1ebe beq- 1f END_FTR_SECTION_IFSET(CPU_FTR_REAL_LE) #endif /* We reach here with PACA in r13, r13 in r9. */ mfspr r11,SPRN_SRR0 mfspr r12,SPRN_SRR1 HMT_MEDIUM .if ! \virt __LOAD_HANDLER(r10, system_call_common) mtspr SPRN_SRR0,r10 ld r10,PACAKMSR(r13) mtspr SPRN_SRR1,r10 RFI_TO_KERNEL b . /* prevent speculative execution */ .else li r10,MSR_RI mtmsrd r10,1 /* Set RI (EE=0) */ #ifdef CONFIG_RELOCATABLE __LOAD_HANDLER(r10, system_call_common) mtctr r10 bctr #else b system_call_common #endif .endif #ifdef CONFIG_PPC_FAST_ENDIAN_SWITCH /* Fast LE/BE switch system call */ 1: mfspr r12,SPRN_SRR1 xori r12,r12,MSR_LE mtspr SPRN_SRR1,r12 mr r13,r9 RFI_TO_USER /* return to userspace */ b . /* prevent speculative execution */ #endif .endm EXC_REAL_BEGIN(system_call, 0xc00, 0x100) SYSTEM_CALL 0 EXC_REAL_END(system_call, 0xc00, 0x100) EXC_VIRT_BEGIN(system_call, 0x4c00, 0x100) SYSTEM_CALL 1 EXC_VIRT_END(system_call, 0x4c00, 0x100) #ifdef CONFIG_KVM_BOOK3S_64_HANDLER TRAMP_REAL_BEGIN(system_call_kvm) /* * This is a hcall, so register convention is as above, with these * differences: * r13 = PACA * ctr = orig r13 * orig r10 saved in PACA */ /* * Save the PPR (on systems that support it) before changing to * HMT_MEDIUM. That allows the KVM code to save that value into the * guest state (it is the guest's PPR value). */ BEGIN_FTR_SECTION mfspr r10,SPRN_PPR std r10,HSTATE_PPR(r13) END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR) HMT_MEDIUM mfctr r10 SET_SCRATCH0(r10) mfcr r10 std r12,HSTATE_SCRATCH0(r13) sldi r12,r10,32 ori r12,r12,0xc00 #ifdef CONFIG_RELOCATABLE /* * Requires __LOAD_FAR_HANDLER beause kvmppc_interrupt lives * outside the head section. */ __LOAD_FAR_HANDLER(r10, kvmppc_interrupt) mtctr r10 ld r10,PACA_EXGEN+EX_R10(r13) bctr #else ld r10,PACA_EXGEN+EX_R10(r13) b kvmppc_interrupt #endif #endif /** * Interrupt 0xd00 - Trace Interrupt. * This is a synchronous interrupt in response to instruction step or * breakpoint faults. */ INT_DEFINE_BEGIN(single_step) IVEC=0xd00 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE IKVM_REAL=1 #endif INT_DEFINE_END(single_step) EXC_REAL_BEGIN(single_step, 0xd00, 0x100) GEN_INT_ENTRY single_step, virt=0 EXC_REAL_END(single_step, 0xd00, 0x100) EXC_VIRT_BEGIN(single_step, 0x4d00, 0x100) GEN_INT_ENTRY single_step, virt=1 EXC_VIRT_END(single_step, 0x4d00, 0x100) EXC_COMMON_BEGIN(single_step_common) GEN_COMMON single_step addi r3,r1,STACK_FRAME_OVERHEAD bl single_step_exception b interrupt_return GEN_KVM single_step /** * Interrupt 0xe00 - Hypervisor Data Storage Interrupt (HDSI). * This is a synchronous interrupt in response to an MMU fault caused by a * guest data access. * * Handling: * This should always get routed to KVM. In radix MMU mode, this is caused * by a guest nested radix access that can't be performed due to the * partition scope page table. In hash mode, this can be caused by guests * running with translation disabled (virtual real mode) or with VPM enabled. * KVM will update the page table structures or disallow the access. */ INT_DEFINE_BEGIN(h_data_storage) IVEC=0xe00 IHSRR=1 IDAR=1 IDSISR=1 IKVM_SKIP=1 IKVM_REAL=1 IKVM_VIRT=1 INT_DEFINE_END(h_data_storage) EXC_REAL_BEGIN(h_data_storage, 0xe00, 0x20) GEN_INT_ENTRY h_data_storage, virt=0, ool=1 EXC_REAL_END(h_data_storage, 0xe00, 0x20) EXC_VIRT_BEGIN(h_data_storage, 0x4e00, 0x20) GEN_INT_ENTRY h_data_storage, virt=1, ool=1 EXC_VIRT_END(h_data_storage, 0x4e00, 0x20) EXC_COMMON_BEGIN(h_data_storage_common) GEN_COMMON h_data_storage addi r3,r1,STACK_FRAME_OVERHEAD BEGIN_MMU_FTR_SECTION ld r4,_DAR(r1) li r5,SIGSEGV bl bad_page_fault MMU_FTR_SECTION_ELSE bl unknown_exception ALT_MMU_FTR_SECTION_END_IFSET(MMU_FTR_TYPE_RADIX) b interrupt_return GEN_KVM h_data_storage /** * Interrupt 0xe20 - Hypervisor Instruction Storage Interrupt (HISI). * This is a synchronous interrupt in response to an MMU fault caused by a * guest instruction fetch, similar to HDSI. */ INT_DEFINE_BEGIN(h_instr_storage) IVEC=0xe20 IHSRR=1 IKVM_REAL=1 IKVM_VIRT=1 INT_DEFINE_END(h_instr_storage) EXC_REAL_BEGIN(h_instr_storage, 0xe20, 0x20) GEN_INT_ENTRY h_instr_storage, virt=0, ool=1 EXC_REAL_END(h_instr_storage, 0xe20, 0x20) EXC_VIRT_BEGIN(h_instr_storage, 0x4e20, 0x20) GEN_INT_ENTRY h_instr_storage, virt=1, ool=1 EXC_VIRT_END(h_instr_storage, 0x4e20, 0x20) EXC_COMMON_BEGIN(h_instr_storage_common) GEN_COMMON h_instr_storage addi r3,r1,STACK_FRAME_OVERHEAD bl unknown_exception b interrupt_return GEN_KVM h_instr_storage /** * Interrupt 0xe40 - Hypervisor Emulation Assistance Interrupt. */ INT_DEFINE_BEGIN(emulation_assist) IVEC=0xe40 IHSRR=1 IKVM_REAL=1 IKVM_VIRT=1 INT_DEFINE_END(emulation_assist) EXC_REAL_BEGIN(emulation_assist, 0xe40, 0x20) GEN_INT_ENTRY emulation_assist, virt=0, ool=1 EXC_REAL_END(emulation_assist, 0xe40, 0x20) EXC_VIRT_BEGIN(emulation_assist, 0x4e40, 0x20) GEN_INT_ENTRY emulation_assist, virt=1, ool=1 EXC_VIRT_END(emulation_assist, 0x4e40, 0x20) EXC_COMMON_BEGIN(emulation_assist_common) GEN_COMMON emulation_assist addi r3,r1,STACK_FRAME_OVERHEAD bl emulation_assist_interrupt REST_NVGPRS(r1) /* instruction emulation may change GPRs */ b interrupt_return GEN_KVM emulation_assist /** * Interrupt 0xe60 - Hypervisor Maintenance Interrupt (HMI). * This is an asynchronous interrupt caused by a Hypervisor Maintenance * Exception. It is always taken in real mode but uses HSRR registers * unlike SRESET and MCE. * * It is maskable in hardware by clearing MSR[EE], and partially soft-maskable * with IRQS_DISABLED mask (i.e., local_irq_disable()). * * Handling: * This is a special case, this is handled similarly to machine checks, with an * initial real mode handler that is not soft-masked, which attempts to fix the * problem. Then a regular handler which is soft-maskable and reports the * problem. * * The emergency stack is used for the early real mode handler. * * XXX: unclear why MCE and HMI schemes could not be made common, e.g., * either use soft-masking for the MCE, or use irq_work for the HMI. * * KVM: * Unlike MCE, this calls into KVM without calling the real mode handler * first. */ INT_DEFINE_BEGIN(hmi_exception_early) IVEC=0xe60 IHSRR=1 IREALMODE_COMMON=1 ISTACK=0 IRECONCILE=0 IKUAP=0 /* We don't touch AMR here, we never go to virtual mode */ IKVM_REAL=1 INT_DEFINE_END(hmi_exception_early) INT_DEFINE_BEGIN(hmi_exception) IVEC=0xe60 IHSRR=1 IMASK=IRQS_DISABLED IKVM_REAL=1 INT_DEFINE_END(hmi_exception) EXC_REAL_BEGIN(hmi_exception, 0xe60, 0x20) GEN_INT_ENTRY hmi_exception_early, virt=0, ool=1 EXC_REAL_END(hmi_exception, 0xe60, 0x20) EXC_VIRT_NONE(0x4e60, 0x20) EXC_COMMON_BEGIN(hmi_exception_early_common) __GEN_REALMODE_COMMON_ENTRY hmi_exception_early mr r10,r1 /* Save r1 */ ld r1,PACAEMERGSP(r13) /* Use emergency stack for realmode */ subi r1,r1,INT_FRAME_SIZE /* alloc stack frame */ __GEN_COMMON_BODY hmi_exception_early addi r3,r1,STACK_FRAME_OVERHEAD bl hmi_exception_realmode cmpdi cr0,r3,0 bne 1f EXCEPTION_RESTORE_REGS hsrr=1 HRFI_TO_USER_OR_KERNEL 1: /* * Go to virtual mode and pull the HMI event information from * firmware. */ EXCEPTION_RESTORE_REGS hsrr=1 GEN_INT_ENTRY hmi_exception, virt=0 GEN_KVM hmi_exception_early EXC_COMMON_BEGIN(hmi_exception_common) GEN_COMMON hmi_exception FINISH_NAP RUNLATCH_ON addi r3,r1,STACK_FRAME_OVERHEAD bl handle_hmi_exception b interrupt_return GEN_KVM hmi_exception /** * Interrupt 0xe80 - Directed Hypervisor Doorbell Interrupt. * This is an asynchronous interrupt in response to a msgsnd doorbell. * Similar to the 0xa00 doorbell but for host rather than guest. */ INT_DEFINE_BEGIN(h_doorbell) IVEC=0xe80 IHSRR=1 IMASK=IRQS_DISABLED IKVM_REAL=1 IKVM_VIRT=1 INT_DEFINE_END(h_doorbell) EXC_REAL_BEGIN(h_doorbell, 0xe80, 0x20) GEN_INT_ENTRY h_doorbell, virt=0, ool=1 EXC_REAL_END(h_doorbell, 0xe80, 0x20) EXC_VIRT_BEGIN(h_doorbell, 0x4e80, 0x20) GEN_INT_ENTRY h_doorbell, virt=1, ool=1 EXC_VIRT_END(h_doorbell, 0x4e80, 0x20) EXC_COMMON_BEGIN(h_doorbell_common) GEN_COMMON h_doorbell FINISH_NAP RUNLATCH_ON addi r3,r1,STACK_FRAME_OVERHEAD #ifdef CONFIG_PPC_DOORBELL bl doorbell_exception #else bl unknown_exception #endif b interrupt_return GEN_KVM h_doorbell /** * Interrupt 0xea0 - Hypervisor Virtualization Interrupt. * This is an asynchronous interrupt in response to an "external exception". * Similar to 0x500 but for host only. */ INT_DEFINE_BEGIN(h_virt_irq) IVEC=0xea0 IHSRR=1 IMASK=IRQS_DISABLED IKVM_REAL=1 IKVM_VIRT=1 INT_DEFINE_END(h_virt_irq) EXC_REAL_BEGIN(h_virt_irq, 0xea0, 0x20) GEN_INT_ENTRY h_virt_irq, virt=0, ool=1 EXC_REAL_END(h_virt_irq, 0xea0, 0x20) EXC_VIRT_BEGIN(h_virt_irq, 0x4ea0, 0x20) GEN_INT_ENTRY h_virt_irq, virt=1, ool=1 EXC_VIRT_END(h_virt_irq, 0x4ea0, 0x20) EXC_COMMON_BEGIN(h_virt_irq_common) GEN_COMMON h_virt_irq FINISH_NAP RUNLATCH_ON addi r3,r1,STACK_FRAME_OVERHEAD bl do_IRQ b interrupt_return GEN_KVM h_virt_irq EXC_REAL_NONE(0xec0, 0x20) EXC_VIRT_NONE(0x4ec0, 0x20) EXC_REAL_NONE(0xee0, 0x20) EXC_VIRT_NONE(0x4ee0, 0x20) /* * Interrupt 0xf00 - Performance Monitor Interrupt (PMI, PMU). * This is an asynchronous interrupt in response to a PMU exception. * It is maskable in hardware by clearing MSR[EE], and soft-maskable with * IRQS_PMI_DISABLED mask (NOTE: NOT local_irq_disable()). * * Handling: * This calls into the perf subsystem. * * Like the watchdog soft-nmi, it appears an NMI interrupt to Linux, in that it * runs under local_irq_disable. However it may be soft-masked in * powerpc-specific code. * * If soft masked, the masked handler will note the pending interrupt for * replay, and clear MSR[EE] in the interrupted context. */ INT_DEFINE_BEGIN(performance_monitor) IVEC=0xf00 IMASK=IRQS_PMI_DISABLED #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE IKVM_REAL=1 #endif INT_DEFINE_END(performance_monitor) EXC_REAL_BEGIN(performance_monitor, 0xf00, 0x20) GEN_INT_ENTRY performance_monitor, virt=0, ool=1 EXC_REAL_END(performance_monitor, 0xf00, 0x20) EXC_VIRT_BEGIN(performance_monitor, 0x4f00, 0x20) GEN_INT_ENTRY performance_monitor, virt=1, ool=1 EXC_VIRT_END(performance_monitor, 0x4f00, 0x20) EXC_COMMON_BEGIN(performance_monitor_common) GEN_COMMON performance_monitor FINISH_NAP RUNLATCH_ON addi r3,r1,STACK_FRAME_OVERHEAD bl performance_monitor_exception b interrupt_return GEN_KVM performance_monitor /** * Interrupt 0xf20 - Vector Unavailable Interrupt. * This is a synchronous interrupt in response to * executing a vector (or altivec) instruction with MSR[VEC]=0. * Similar to FP unavailable. */ INT_DEFINE_BEGIN(altivec_unavailable) IVEC=0xf20 IRECONCILE=0 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE IKVM_REAL=1 #endif INT_DEFINE_END(altivec_unavailable) EXC_REAL_BEGIN(altivec_unavailable, 0xf20, 0x20) GEN_INT_ENTRY altivec_unavailable, virt=0, ool=1 EXC_REAL_END(altivec_unavailable, 0xf20, 0x20) EXC_VIRT_BEGIN(altivec_unavailable, 0x4f20, 0x20) GEN_INT_ENTRY altivec_unavailable, virt=1, ool=1 EXC_VIRT_END(altivec_unavailable, 0x4f20, 0x20) EXC_COMMON_BEGIN(altivec_unavailable_common) GEN_COMMON altivec_unavailable #ifdef CONFIG_ALTIVEC BEGIN_FTR_SECTION beq 1f #ifdef CONFIG_PPC_TRANSACTIONAL_MEM BEGIN_FTR_SECTION_NESTED(69) /* Test if 2 TM state bits are zero. If non-zero (ie. userspace was in * transaction), go do TM stuff */ rldicl. r0, r12, (64-MSR_TS_LG), (64-2) bne- 2f END_FTR_SECTION_NESTED(CPU_FTR_TM, CPU_FTR_TM, 69) #endif bl load_up_altivec b fast_interrupt_return #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 2: /* User process was in a transaction */ RECONCILE_IRQ_STATE(r10, r11) addi r3,r1,STACK_FRAME_OVERHEAD bl altivec_unavailable_tm b interrupt_return #endif 1: END_FTR_SECTION_IFSET(CPU_FTR_ALTIVEC) #endif RECONCILE_IRQ_STATE(r10, r11) addi r3,r1,STACK_FRAME_OVERHEAD bl altivec_unavailable_exception b interrupt_return GEN_KVM altivec_unavailable /** * Interrupt 0xf40 - VSX Unavailable Interrupt. * This is a synchronous interrupt in response to * executing a VSX instruction with MSR[VSX]=0. * Similar to FP unavailable. */ INT_DEFINE_BEGIN(vsx_unavailable) IVEC=0xf40 IRECONCILE=0 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE IKVM_REAL=1 #endif INT_DEFINE_END(vsx_unavailable) EXC_REAL_BEGIN(vsx_unavailable, 0xf40, 0x20) GEN_INT_ENTRY vsx_unavailable, virt=0, ool=1 EXC_REAL_END(vsx_unavailable, 0xf40, 0x20) EXC_VIRT_BEGIN(vsx_unavailable, 0x4f40, 0x20) GEN_INT_ENTRY vsx_unavailable, virt=1, ool=1 EXC_VIRT_END(vsx_unavailable, 0x4f40, 0x20) EXC_COMMON_BEGIN(vsx_unavailable_common) GEN_COMMON vsx_unavailable #ifdef CONFIG_VSX BEGIN_FTR_SECTION beq 1f #ifdef CONFIG_PPC_TRANSACTIONAL_MEM BEGIN_FTR_SECTION_NESTED(69) /* Test if 2 TM state bits are zero. If non-zero (ie. userspace was in * transaction), go do TM stuff */ rldicl. r0, r12, (64-MSR_TS_LG), (64-2) bne- 2f END_FTR_SECTION_NESTED(CPU_FTR_TM, CPU_FTR_TM, 69) #endif b load_up_vsx #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 2: /* User process was in a transaction */ RECONCILE_IRQ_STATE(r10, r11) addi r3,r1,STACK_FRAME_OVERHEAD bl vsx_unavailable_tm b interrupt_return #endif 1: END_FTR_SECTION_IFSET(CPU_FTR_VSX) #endif RECONCILE_IRQ_STATE(r10, r11) addi r3,r1,STACK_FRAME_OVERHEAD bl vsx_unavailable_exception b interrupt_return GEN_KVM vsx_unavailable /** * Interrupt 0xf60 - Facility Unavailable Interrupt. * This is a synchronous interrupt in response to * executing an instruction without access to the facility that can be * resolved by the OS (e.g., FSCR, MSR). * Similar to FP unavailable. */ INT_DEFINE_BEGIN(facility_unavailable) IVEC=0xf60 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE IKVM_REAL=1 #endif INT_DEFINE_END(facility_unavailable) EXC_REAL_BEGIN(facility_unavailable, 0xf60, 0x20) GEN_INT_ENTRY facility_unavailable, virt=0, ool=1 EXC_REAL_END(facility_unavailable, 0xf60, 0x20) EXC_VIRT_BEGIN(facility_unavailable, 0x4f60, 0x20) GEN_INT_ENTRY facility_unavailable, virt=1, ool=1 EXC_VIRT_END(facility_unavailable, 0x4f60, 0x20) EXC_COMMON_BEGIN(facility_unavailable_common) GEN_COMMON facility_unavailable addi r3,r1,STACK_FRAME_OVERHEAD bl facility_unavailable_exception b interrupt_return GEN_KVM facility_unavailable /** * Interrupt 0xf60 - Hypervisor Facility Unavailable Interrupt. * This is a synchronous interrupt in response to * executing an instruction without access to the facility that can only * be resolved in HV mode (e.g., HFSCR). * Similar to FP unavailable. */ INT_DEFINE_BEGIN(h_facility_unavailable) IVEC=0xf80 IHSRR=1 IKVM_REAL=1 IKVM_VIRT=1 INT_DEFINE_END(h_facility_unavailable) EXC_REAL_BEGIN(h_facility_unavailable, 0xf80, 0x20) GEN_INT_ENTRY h_facility_unavailable, virt=0, ool=1 EXC_REAL_END(h_facility_unavailable, 0xf80, 0x20) EXC_VIRT_BEGIN(h_facility_unavailable, 0x4f80, 0x20) GEN_INT_ENTRY h_facility_unavailable, virt=1, ool=1 EXC_VIRT_END(h_facility_unavailable, 0x4f80, 0x20) EXC_COMMON_BEGIN(h_facility_unavailable_common) GEN_COMMON h_facility_unavailable addi r3,r1,STACK_FRAME_OVERHEAD bl facility_unavailable_exception b interrupt_return GEN_KVM h_facility_unavailable EXC_REAL_NONE(0xfa0, 0x20) EXC_VIRT_NONE(0x4fa0, 0x20) EXC_REAL_NONE(0xfc0, 0x20) EXC_VIRT_NONE(0x4fc0, 0x20) EXC_REAL_NONE(0xfe0, 0x20) EXC_VIRT_NONE(0x4fe0, 0x20) EXC_REAL_NONE(0x1000, 0x100) EXC_VIRT_NONE(0x5000, 0x100) EXC_REAL_NONE(0x1100, 0x100) EXC_VIRT_NONE(0x5100, 0x100) #ifdef CONFIG_CBE_RAS INT_DEFINE_BEGIN(cbe_system_error) IVEC=0x1200 IHSRR=1 IKVM_SKIP=1 IKVM_REAL=1 INT_DEFINE_END(cbe_system_error) EXC_REAL_BEGIN(cbe_system_error, 0x1200, 0x100) GEN_INT_ENTRY cbe_system_error, virt=0 EXC_REAL_END(cbe_system_error, 0x1200, 0x100) EXC_VIRT_NONE(0x5200, 0x100) EXC_COMMON_BEGIN(cbe_system_error_common) GEN_COMMON cbe_system_error addi r3,r1,STACK_FRAME_OVERHEAD bl cbe_system_error_exception b interrupt_return GEN_KVM cbe_system_error #else /* CONFIG_CBE_RAS */ EXC_REAL_NONE(0x1200, 0x100) EXC_VIRT_NONE(0x5200, 0x100) #endif INT_DEFINE_BEGIN(instruction_breakpoint) IVEC=0x1300 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE IKVM_SKIP=1 IKVM_REAL=1 #endif INT_DEFINE_END(instruction_breakpoint) EXC_REAL_BEGIN(instruction_breakpoint, 0x1300, 0x100) GEN_INT_ENTRY instruction_breakpoint, virt=0 EXC_REAL_END(instruction_breakpoint, 0x1300, 0x100) EXC_VIRT_BEGIN(instruction_breakpoint, 0x5300, 0x100) GEN_INT_ENTRY instruction_breakpoint, virt=1 EXC_VIRT_END(instruction_breakpoint, 0x5300, 0x100) EXC_COMMON_BEGIN(instruction_breakpoint_common) GEN_COMMON instruction_breakpoint addi r3,r1,STACK_FRAME_OVERHEAD bl instruction_breakpoint_exception b interrupt_return GEN_KVM instruction_breakpoint EXC_REAL_NONE(0x1400, 0x100) EXC_VIRT_NONE(0x5400, 0x100) /** * Interrupt 0x1500 - Soft Patch Interrupt * * Handling: * This is an implementation specific interrupt which can be used for a * range of exceptions. * * This interrupt handler is unique in that it runs the denormal assist * code even for guests (and even in guest context) without going to KVM, * for speed. POWER9 does not raise denorm exceptions, so this special case * could be phased out in future to reduce special cases. */ INT_DEFINE_BEGIN(denorm_exception) IVEC=0x1500 IHSRR=1 IBRANCH_COMMON=0 IKVM_REAL=1 INT_DEFINE_END(denorm_exception) EXC_REAL_BEGIN(denorm_exception, 0x1500, 0x100) GEN_INT_ENTRY denorm_exception, virt=0 #ifdef CONFIG_PPC_DENORMALISATION andis. r10,r12,(HSRR1_DENORM)@h /* denorm? */ bne+ denorm_assist #endif GEN_BRANCH_TO_COMMON denorm_exception, virt=0 EXC_REAL_END(denorm_exception, 0x1500, 0x100) #ifdef CONFIG_PPC_DENORMALISATION EXC_VIRT_BEGIN(denorm_exception, 0x5500, 0x100) GEN_INT_ENTRY denorm_exception, virt=1 andis. r10,r12,(HSRR1_DENORM)@h /* denorm? */ bne+ denorm_assist GEN_BRANCH_TO_COMMON denorm_exception, virt=1 EXC_VIRT_END(denorm_exception, 0x5500, 0x100) #else EXC_VIRT_NONE(0x5500, 0x100) #endif #ifdef CONFIG_PPC_DENORMALISATION TRAMP_REAL_BEGIN(denorm_assist) BEGIN_FTR_SECTION /* * To denormalise we need to move a copy of the register to itself. * For POWER6 do that here for all FP regs. */ mfmsr r10 ori r10,r10,(MSR_FP|MSR_FE0|MSR_FE1) xori r10,r10,(MSR_FE0|MSR_FE1) mtmsrd r10 sync .Lreg=0 .rept 32 fmr .Lreg,.Lreg .Lreg=.Lreg+1 .endr FTR_SECTION_ELSE /* * To denormalise we need to move a copy of the register to itself. * For POWER7 do that here for the first 32 VSX registers only. */ mfmsr r10 oris r10,r10,MSR_VSX@h mtmsrd r10 sync .Lreg=0 .rept 32 XVCPSGNDP(.Lreg,.Lreg,.Lreg) .Lreg=.Lreg+1 .endr ALT_FTR_SECTION_END_IFCLR(CPU_FTR_ARCH_206) BEGIN_FTR_SECTION b denorm_done END_FTR_SECTION_IFCLR(CPU_FTR_ARCH_207S) /* * To denormalise we need to move a copy of the register to itself. * For POWER8 we need to do that for all 64 VSX registers */ .Lreg=32 .rept 32 XVCPSGNDP(.Lreg,.Lreg,.Lreg) .Lreg=.Lreg+1 .endr denorm_done: mfspr r11,SPRN_HSRR0 subi r11,r11,4 mtspr SPRN_HSRR0,r11 mtcrf 0x80,r9 ld r9,PACA_EXGEN+EX_R9(r13) BEGIN_FTR_SECTION ld r10,PACA_EXGEN+EX_PPR(r13) mtspr SPRN_PPR,r10 END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR) BEGIN_FTR_SECTION ld r10,PACA_EXGEN+EX_CFAR(r13) mtspr SPRN_CFAR,r10 END_FTR_SECTION_IFSET(CPU_FTR_CFAR) ld r10,PACA_EXGEN+EX_R10(r13) ld r11,PACA_EXGEN+EX_R11(r13) ld r12,PACA_EXGEN+EX_R12(r13) ld r13,PACA_EXGEN+EX_R13(r13) HRFI_TO_UNKNOWN b . #endif EXC_COMMON_BEGIN(denorm_exception_common) GEN_COMMON denorm_exception addi r3,r1,STACK_FRAME_OVERHEAD bl unknown_exception b interrupt_return GEN_KVM denorm_exception #ifdef CONFIG_CBE_RAS INT_DEFINE_BEGIN(cbe_maintenance) IVEC=0x1600 IHSRR=1 IKVM_SKIP=1 IKVM_REAL=1 INT_DEFINE_END(cbe_maintenance) EXC_REAL_BEGIN(cbe_maintenance, 0x1600, 0x100) GEN_INT_ENTRY cbe_maintenance, virt=0 EXC_REAL_END(cbe_maintenance, 0x1600, 0x100) EXC_VIRT_NONE(0x5600, 0x100) EXC_COMMON_BEGIN(cbe_maintenance_common) GEN_COMMON cbe_maintenance addi r3,r1,STACK_FRAME_OVERHEAD bl cbe_maintenance_exception b interrupt_return GEN_KVM cbe_maintenance #else /* CONFIG_CBE_RAS */ EXC_REAL_NONE(0x1600, 0x100) EXC_VIRT_NONE(0x5600, 0x100) #endif INT_DEFINE_BEGIN(altivec_assist) IVEC=0x1700 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE IKVM_REAL=1 #endif INT_DEFINE_END(altivec_assist) EXC_REAL_BEGIN(altivec_assist, 0x1700, 0x100) GEN_INT_ENTRY altivec_assist, virt=0 EXC_REAL_END(altivec_assist, 0x1700, 0x100) EXC_VIRT_BEGIN(altivec_assist, 0x5700, 0x100) GEN_INT_ENTRY altivec_assist, virt=1 EXC_VIRT_END(altivec_assist, 0x5700, 0x100) EXC_COMMON_BEGIN(altivec_assist_common) GEN_COMMON altivec_assist addi r3,r1,STACK_FRAME_OVERHEAD #ifdef CONFIG_ALTIVEC bl altivec_assist_exception REST_NVGPRS(r1) /* instruction emulation may change GPRs */ #else bl unknown_exception #endif b interrupt_return GEN_KVM altivec_assist #ifdef CONFIG_CBE_RAS INT_DEFINE_BEGIN(cbe_thermal) IVEC=0x1800 IHSRR=1 IKVM_SKIP=1 IKVM_REAL=1 INT_DEFINE_END(cbe_thermal) EXC_REAL_BEGIN(cbe_thermal, 0x1800, 0x100) GEN_INT_ENTRY cbe_thermal, virt=0 EXC_REAL_END(cbe_thermal, 0x1800, 0x100) EXC_VIRT_NONE(0x5800, 0x100) EXC_COMMON_BEGIN(cbe_thermal_common) GEN_COMMON cbe_thermal addi r3,r1,STACK_FRAME_OVERHEAD bl cbe_thermal_exception b interrupt_return GEN_KVM cbe_thermal #else /* CONFIG_CBE_RAS */ EXC_REAL_NONE(0x1800, 0x100) EXC_VIRT_NONE(0x5800, 0x100) #endif #ifdef CONFIG_PPC_WATCHDOG INT_DEFINE_BEGIN(soft_nmi) IVEC=0x900 ISTACK=0 IRECONCILE=0 /* Soft-NMI may fire under local_irq_disable */ INT_DEFINE_END(soft_nmi) /* * Branch to soft_nmi_interrupt using the emergency stack. The emergency * stack is one that is usable by maskable interrupts so long as MSR_EE * remains off. It is used for recovery when something has corrupted the * normal kernel stack, for example. The "soft NMI" must not use the process * stack because we want irq disabled sections to avoid touching the stack * at all (other than PMU interrupts), so use the emergency stack for this, * and run it entirely with interrupts hard disabled. */ EXC_COMMON_BEGIN(soft_nmi_common) mfspr r11,SPRN_SRR0 mr r10,r1 ld r1,PACAEMERGSP(r13) subi r1,r1,INT_FRAME_SIZE __GEN_COMMON_BODY soft_nmi /* * Set IRQS_ALL_DISABLED and save PACAIRQHAPPENED (see * system_reset_common) */ li r10,IRQS_ALL_DISABLED stb r10,PACAIRQSOFTMASK(r13) lbz r10,PACAIRQHAPPENED(r13) std r10,_DAR(r1) ori r10,r10,PACA_IRQ_HARD_DIS stb r10,PACAIRQHAPPENED(r13) addi r3,r1,STACK_FRAME_OVERHEAD bl soft_nmi_interrupt /* Clear MSR_RI before setting SRR0 and SRR1. */ li r9,0 mtmsrd r9,1 /* * Restore soft mask settings. */ ld r10,_DAR(r1) stb r10,PACAIRQHAPPENED(r13) ld r10,SOFTE(r1) stb r10,PACAIRQSOFTMASK(r13) kuap_restore_amr r10 EXCEPTION_RESTORE_REGS hsrr=0 RFI_TO_KERNEL #endif /* CONFIG_PPC_WATCHDOG */ /* * An interrupt came in while soft-disabled. We set paca->irq_happened, then: * - If it was a decrementer interrupt, we bump the dec to max and and return. * - If it was a doorbell we return immediately since doorbells are edge * triggered and won't automatically refire. * - If it was a HMI we return immediately since we handled it in realmode * and it won't refire. * - Else it is one of PACA_IRQ_MUST_HARD_MASK, so hard disable and return. * This is called with r10 containing the value to OR to the paca field. */ .macro MASKED_INTERRUPT hsrr=0 .if \hsrr masked_Hinterrupt: .else masked_interrupt: .endif lbz r11,PACAIRQHAPPENED(r13) or r11,r11,r10 stb r11,PACAIRQHAPPENED(r13) cmpwi r10,PACA_IRQ_DEC bne 1f lis r10,0x7fff ori r10,r10,0xffff mtspr SPRN_DEC,r10 #ifdef CONFIG_PPC_WATCHDOG b soft_nmi_common #else b 2f #endif 1: andi. r10,r10,PACA_IRQ_MUST_HARD_MASK beq 2f xori r12,r12,MSR_EE /* clear MSR_EE */ .if \hsrr mtspr SPRN_HSRR1,r12 .else mtspr SPRN_SRR1,r12 .endif ori r11,r11,PACA_IRQ_HARD_DIS stb r11,PACAIRQHAPPENED(r13) 2: /* done */ ld r10,PACA_EXGEN+EX_CTR(r13) mtctr r10 mtcrf 0x80,r9 std r1,PACAR1(r13) ld r9,PACA_EXGEN+EX_R9(r13) ld r10,PACA_EXGEN+EX_R10(r13) ld r11,PACA_EXGEN+EX_R11(r13) ld r12,PACA_EXGEN+EX_R12(r13) /* returns to kernel where r13 must be set up, so don't restore it */ .if \hsrr HRFI_TO_KERNEL .else RFI_TO_KERNEL .endif b . .endm TRAMP_REAL_BEGIN(stf_barrier_fallback) std r9,PACA_EXRFI+EX_R9(r13) std r10,PACA_EXRFI+EX_R10(r13) sync ld r9,PACA_EXRFI+EX_R9(r13) ld r10,PACA_EXRFI+EX_R10(r13) ori 31,31,0 .rept 14 b 1f 1: .endr blr TRAMP_REAL_BEGIN(rfi_flush_fallback) SET_SCRATCH0(r13); GET_PACA(r13); std r1,PACA_EXRFI+EX_R12(r13) ld r1,PACAKSAVE(r13) std r9,PACA_EXRFI+EX_R9(r13) std r10,PACA_EXRFI+EX_R10(r13) std r11,PACA_EXRFI+EX_R11(r13) mfctr r9 ld r10,PACA_RFI_FLUSH_FALLBACK_AREA(r13) ld r11,PACA_L1D_FLUSH_SIZE(r13) srdi r11,r11,(7 + 3) /* 128 byte lines, unrolled 8x */ mtctr r11 DCBT_BOOK3S_STOP_ALL_STREAM_IDS(r11) /* Stop prefetch streams */ /* order ld/st prior to dcbt stop all streams with flushing */ sync /* * The load adresses are at staggered offsets within cachelines, * which suits some pipelines better (on others it should not * hurt). */ 1: ld r11,(0x80 + 8)*0(r10) ld r11,(0x80 + 8)*1(r10) ld r11,(0x80 + 8)*2(r10) ld r11,(0x80 + 8)*3(r10) ld r11,(0x80 + 8)*4(r10) ld r11,(0x80 + 8)*5(r10) ld r11,(0x80 + 8)*6(r10) ld r11,(0x80 + 8)*7(r10) addi r10,r10,0x80*8 bdnz 1b mtctr r9 ld r9,PACA_EXRFI+EX_R9(r13) ld r10,PACA_EXRFI+EX_R10(r13) ld r11,PACA_EXRFI+EX_R11(r13) ld r1,PACA_EXRFI+EX_R12(r13) GET_SCRATCH0(r13); rfid TRAMP_REAL_BEGIN(hrfi_flush_fallback) SET_SCRATCH0(r13); GET_PACA(r13); std r1,PACA_EXRFI+EX_R12(r13) ld r1,PACAKSAVE(r13) std r9,PACA_EXRFI+EX_R9(r13) std r10,PACA_EXRFI+EX_R10(r13) std r11,PACA_EXRFI+EX_R11(r13) mfctr r9 ld r10,PACA_RFI_FLUSH_FALLBACK_AREA(r13) ld r11,PACA_L1D_FLUSH_SIZE(r13) srdi r11,r11,(7 + 3) /* 128 byte lines, unrolled 8x */ mtctr r11 DCBT_BOOK3S_STOP_ALL_STREAM_IDS(r11) /* Stop prefetch streams */ /* order ld/st prior to dcbt stop all streams with flushing */ sync /* * The load adresses are at staggered offsets within cachelines, * which suits some pipelines better (on others it should not * hurt). */ 1: ld r11,(0x80 + 8)*0(r10) ld r11,(0x80 + 8)*1(r10) ld r11,(0x80 + 8)*2(r10) ld r11,(0x80 + 8)*3(r10) ld r11,(0x80 + 8)*4(r10) ld r11,(0x80 + 8)*5(r10) ld r11,(0x80 + 8)*6(r10) ld r11,(0x80 + 8)*7(r10) addi r10,r10,0x80*8 bdnz 1b mtctr r9 ld r9,PACA_EXRFI+EX_R9(r13) ld r10,PACA_EXRFI+EX_R10(r13) ld r11,PACA_EXRFI+EX_R11(r13) ld r1,PACA_EXRFI+EX_R12(r13) GET_SCRATCH0(r13); hrfid USE_TEXT_SECTION() MASKED_INTERRUPT MASKED_INTERRUPT hsrr=1 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER kvmppc_skip_interrupt: /* * Here all GPRs are unchanged from when the interrupt happened * except for r13, which is saved in SPRG_SCRATCH0. */ mfspr r13, SPRN_SRR0 addi r13, r13, 4 mtspr SPRN_SRR0, r13 GET_SCRATCH0(r13) RFI_TO_KERNEL b . kvmppc_skip_Hinterrupt: /* * Here all GPRs are unchanged from when the interrupt happened * except for r13, which is saved in SPRG_SCRATCH0. */ mfspr r13, SPRN_HSRR0 addi r13, r13, 4 mtspr SPRN_HSRR0, r13 GET_SCRATCH0(r13) HRFI_TO_KERNEL b . #endif /* * Relocation-on interrupts: A subset of the interrupts can be delivered * with IR=1/DR=1, if AIL==2 and MSR.HV won't be changed by delivering * it. Addresses are the same as the original interrupt addresses, but * offset by 0xc000000000004000. * It's impossible to receive interrupts below 0x300 via this mechanism. * KVM: None of these traps are from the guest ; anything that escalated * to HV=1 from HV=0 is delivered via real mode handlers. */ /* * This uses the standard macro, since the original 0x300 vector * only has extra guff for STAB-based processors -- which never * come here. */ EXC_COMMON_BEGIN(ppc64_runlatch_on_trampoline) b __ppc64_runlatch_on USE_FIXED_SECTION(virt_trampolines) /* * The __end_interrupts marker must be past the out-of-line (OOL) * handlers, so that they are copied to real address 0x100 when running * a relocatable kernel. This ensures they can be reached from the short * trampoline handlers (like 0x4f00, 0x4f20, etc.) which branch * directly, without using LOAD_HANDLER(). */ .align 7 .globl __end_interrupts __end_interrupts: DEFINE_FIXED_SYMBOL(__end_interrupts) #ifdef CONFIG_PPC_970_NAP /* * Called by exception entry code if _TLF_NAPPING was set, this clears * the NAPPING flag, and redirects the exception exit to * power4_fixup_nap_return. */ .globl power4_fixup_nap EXC_COMMON_BEGIN(power4_fixup_nap) andc r9,r9,r10 std r9,TI_LOCAL_FLAGS(r11) LOAD_REG_ADDR(r10, power4_idle_nap_return) std r10,_NIP(r1) blr power4_idle_nap_return: blr #endif CLOSE_FIXED_SECTION(real_vectors); CLOSE_FIXED_SECTION(real_trampolines); CLOSE_FIXED_SECTION(virt_vectors); CLOSE_FIXED_SECTION(virt_trampolines); USE_TEXT_SECTION() /* MSR[RI] should be clear because this uses SRR[01] */ enable_machine_check: mflr r0 bcl 20,31,$+4 0: mflr r3 addi r3,r3,(1f - 0b) mtspr SPRN_SRR0,r3 mfmsr r3 ori r3,r3,MSR_ME mtspr SPRN_SRR1,r3 RFI_TO_KERNEL 1: mtlr r0 blr /* MSR[RI] should be clear because this uses SRR[01] */ disable_machine_check: mflr r0 bcl 20,31,$+4 0: mflr r3 addi r3,r3,(1f - 0b) mtspr SPRN_SRR0,r3 mfmsr r3 li r4,MSR_ME andc r3,r3,r4 mtspr SPRN_SRR1,r3 RFI_TO_KERNEL 1: mtlr r0 blr /* * Hash table stuff */ .balign IFETCH_ALIGN_BYTES do_hash_page: #ifdef CONFIG_PPC_BOOK3S_64 lis r0,(DSISR_BAD_FAULT_64S | DSISR_DABRMATCH | DSISR_KEYFAULT)@h ori r0,r0,DSISR_BAD_FAULT_64S@l and. r0,r5,r0 /* weird error? */ bne- handle_page_fault /* if not, try to insert a HPTE */ ld r11, PACA_THREAD_INFO(r13) lwz r0,TI_PREEMPT(r11) /* If we're in an "NMI" */ andis. r0,r0,NMI_MASK@h /* (i.e. an irq when soft-disabled) */ bne 77f /* then don't call hash_page now */ /* * r3 contains the trap number * r4 contains the faulting address * r5 contains dsisr * r6 msr * * at return r3 = 0 for success, 1 for page fault, negative for error */ bl __hash_page /* build HPTE if possible */ cmpdi r3,0 /* see if __hash_page succeeded */ /* Success */ beq interrupt_return /* Return from exception on success */ /* Error */ blt- 13f /* Reload DAR/DSISR into r4/r5 for the DABR check below */ ld r4,_DAR(r1) ld r5,_DSISR(r1) #endif /* CONFIG_PPC_BOOK3S_64 */ /* Here we have a page fault that hash_page can't handle. */ handle_page_fault: 11: andis. r0,r5,DSISR_DABRMATCH@h bne- handle_dabr_fault addi r3,r1,STACK_FRAME_OVERHEAD bl do_page_fault cmpdi r3,0 beq+ interrupt_return mr r5,r3 addi r3,r1,STACK_FRAME_OVERHEAD ld r4,_DAR(r1) bl bad_page_fault b interrupt_return /* We have a data breakpoint exception - handle it */ handle_dabr_fault: ld r4,_DAR(r1) ld r5,_DSISR(r1) addi r3,r1,STACK_FRAME_OVERHEAD bl do_break /* * do_break() may have changed the NV GPRS while handling a breakpoint. * If so, we need to restore them with their updated values. */ REST_NVGPRS(r1) b interrupt_return #ifdef CONFIG_PPC_BOOK3S_64 /* We have a page fault that hash_page could handle but HV refused * the PTE insertion */ 13: mr r5,r3 addi r3,r1,STACK_FRAME_OVERHEAD ld r4,_DAR(r1) bl low_hash_fault b interrupt_return #endif /* * We come here as a result of a DSI at a point where we don't want * to call hash_page, such as when we are accessing memory (possibly * user memory) inside a PMU interrupt that occurred while interrupts * were soft-disabled. We want to invoke the exception handler for * the access, or panic if there isn't a handler. */ 77: addi r3,r1,STACK_FRAME_OVERHEAD li r5,SIGSEGV bl bad_page_fault b interrupt_return