/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * KVM/MIPS MMU handling in the KVM module. * * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved. * Authors: Sanjay Lal */ #include #include #include static u32 kvm_mips_get_kernel_asid(struct kvm_vcpu *vcpu) { int cpu = smp_processor_id(); return vcpu->arch.guest_kernel_asid[cpu] & cpu_asid_mask(&cpu_data[cpu]); } static u32 kvm_mips_get_user_asid(struct kvm_vcpu *vcpu) { int cpu = smp_processor_id(); return vcpu->arch.guest_user_asid[cpu] & cpu_asid_mask(&cpu_data[cpu]); } static int kvm_mips_map_page(struct kvm *kvm, gfn_t gfn) { int srcu_idx, err = 0; kvm_pfn_t pfn; if (kvm->arch.guest_pmap[gfn] != KVM_INVALID_PAGE) return 0; srcu_idx = srcu_read_lock(&kvm->srcu); pfn = gfn_to_pfn(kvm, gfn); if (is_error_pfn(pfn)) { kvm_err("Couldn't get pfn for gfn %#llx!\n", gfn); err = -EFAULT; goto out; } kvm->arch.guest_pmap[gfn] = pfn; out: srcu_read_unlock(&kvm->srcu, srcu_idx); return err; } /* Translate guest KSEG0 addresses to Host PA */ unsigned long kvm_mips_translate_guest_kseg0_to_hpa(struct kvm_vcpu *vcpu, unsigned long gva) { gfn_t gfn; unsigned long offset = gva & ~PAGE_MASK; struct kvm *kvm = vcpu->kvm; if (KVM_GUEST_KSEGX(gva) != KVM_GUEST_KSEG0) { kvm_err("%s/%p: Invalid gva: %#lx\n", __func__, __builtin_return_address(0), gva); return KVM_INVALID_PAGE; } gfn = (KVM_GUEST_CPHYSADDR(gva) >> PAGE_SHIFT); if (gfn >= kvm->arch.guest_pmap_npages) { kvm_err("%s: Invalid gfn: %#llx, GVA: %#lx\n", __func__, gfn, gva); return KVM_INVALID_PAGE; } if (kvm_mips_map_page(vcpu->kvm, gfn) < 0) return KVM_INVALID_ADDR; return (kvm->arch.guest_pmap[gfn] << PAGE_SHIFT) + offset; } /* XXXKYMA: Must be called with interrupts disabled */ int kvm_mips_handle_kseg0_tlb_fault(unsigned long badvaddr, struct kvm_vcpu *vcpu) { gfn_t gfn; kvm_pfn_t pfn0, pfn1; unsigned long vaddr = 0; unsigned long entryhi = 0, entrylo0 = 0, entrylo1 = 0; struct kvm *kvm = vcpu->kvm; const int flush_dcache_mask = 0; int ret; if (KVM_GUEST_KSEGX(badvaddr) != KVM_GUEST_KSEG0) { kvm_err("%s: Invalid BadVaddr: %#lx\n", __func__, badvaddr); kvm_mips_dump_host_tlbs(); return -1; } gfn = (KVM_GUEST_CPHYSADDR(badvaddr) >> PAGE_SHIFT); if (gfn >= kvm->arch.guest_pmap_npages) { kvm_err("%s: Invalid gfn: %#llx, BadVaddr: %#lx\n", __func__, gfn, badvaddr); kvm_mips_dump_host_tlbs(); return -1; } vaddr = badvaddr & (PAGE_MASK << 1); if (kvm_mips_map_page(vcpu->kvm, gfn) < 0) return -1; if (kvm_mips_map_page(vcpu->kvm, gfn ^ 0x1) < 0) return -1; pfn0 = kvm->arch.guest_pmap[gfn & ~0x1]; pfn1 = kvm->arch.guest_pmap[gfn | 0x1]; entrylo0 = mips3_paddr_to_tlbpfn(pfn0 << PAGE_SHIFT) | ((_page_cachable_default >> _CACHE_SHIFT) << ENTRYLO_C_SHIFT) | ENTRYLO_D | ENTRYLO_V; entrylo1 = mips3_paddr_to_tlbpfn(pfn1 << PAGE_SHIFT) | ((_page_cachable_default >> _CACHE_SHIFT) << ENTRYLO_C_SHIFT) | ENTRYLO_D | ENTRYLO_V; preempt_disable(); entryhi = (vaddr | kvm_mips_get_kernel_asid(vcpu)); ret = kvm_mips_host_tlb_write(vcpu, entryhi, entrylo0, entrylo1, flush_dcache_mask); preempt_enable(); return ret; } int kvm_mips_handle_mapped_seg_tlb_fault(struct kvm_vcpu *vcpu, struct kvm_mips_tlb *tlb) { unsigned long entryhi = 0, entrylo0 = 0, entrylo1 = 0; struct kvm *kvm = vcpu->kvm; kvm_pfn_t pfn0, pfn1; int ret; if ((tlb->tlb_hi & VPN2_MASK) == 0) { pfn0 = 0; pfn1 = 0; } else { if (kvm_mips_map_page(kvm, mips3_tlbpfn_to_paddr(tlb->tlb_lo[0]) >> PAGE_SHIFT) < 0) return -1; if (kvm_mips_map_page(kvm, mips3_tlbpfn_to_paddr(tlb->tlb_lo[1]) >> PAGE_SHIFT) < 0) return -1; pfn0 = kvm->arch.guest_pmap[ mips3_tlbpfn_to_paddr(tlb->tlb_lo[0]) >> PAGE_SHIFT]; pfn1 = kvm->arch.guest_pmap[ mips3_tlbpfn_to_paddr(tlb->tlb_lo[1]) >> PAGE_SHIFT]; } /* Get attributes from the Guest TLB */ entrylo0 = mips3_paddr_to_tlbpfn(pfn0 << PAGE_SHIFT) | ((_page_cachable_default >> _CACHE_SHIFT) << ENTRYLO_C_SHIFT) | (tlb->tlb_lo[0] & ENTRYLO_D) | (tlb->tlb_lo[0] & ENTRYLO_V); entrylo1 = mips3_paddr_to_tlbpfn(pfn1 << PAGE_SHIFT) | ((_page_cachable_default >> _CACHE_SHIFT) << ENTRYLO_C_SHIFT) | (tlb->tlb_lo[1] & ENTRYLO_D) | (tlb->tlb_lo[1] & ENTRYLO_V); kvm_debug("@ %#lx tlb_lo0: 0x%08lx tlb_lo1: 0x%08lx\n", vcpu->arch.pc, tlb->tlb_lo[0], tlb->tlb_lo[1]); preempt_disable(); entryhi = (tlb->tlb_hi & VPN2_MASK) | (KVM_GUEST_KERNEL_MODE(vcpu) ? kvm_mips_get_kernel_asid(vcpu) : kvm_mips_get_user_asid(vcpu)); ret = kvm_mips_host_tlb_write(vcpu, entryhi, entrylo0, entrylo1, tlb->tlb_mask); preempt_enable(); return ret; } void kvm_get_new_mmu_context(struct mm_struct *mm, unsigned long cpu, struct kvm_vcpu *vcpu) { unsigned long asid = asid_cache(cpu); asid += cpu_asid_inc(); if (!(asid & cpu_asid_mask(&cpu_data[cpu]))) { if (cpu_has_vtag_icache) flush_icache_all(); kvm_local_flush_tlb_all(); /* start new asid cycle */ if (!asid) /* fix version if needed */ asid = asid_first_version(cpu); } cpu_context(cpu, mm) = asid_cache(cpu) = asid; } /** * kvm_mips_migrate_count() - Migrate timer. * @vcpu: Virtual CPU. * * Migrate CP0_Count hrtimer to the current CPU by cancelling and restarting it * if it was running prior to being cancelled. * * Must be called when the VCPU is migrated to a different CPU to ensure that * timer expiry during guest execution interrupts the guest and causes the * interrupt to be delivered in a timely manner. */ static void kvm_mips_migrate_count(struct kvm_vcpu *vcpu) { if (hrtimer_cancel(&vcpu->arch.comparecount_timer)) hrtimer_restart(&vcpu->arch.comparecount_timer); } /* Restore ASID once we are scheduled back after preemption */ void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) { unsigned long asid_mask = cpu_asid_mask(&cpu_data[cpu]); unsigned long flags; int newasid = 0; kvm_debug("%s: vcpu %p, cpu: %d\n", __func__, vcpu, cpu); /* Allocate new kernel and user ASIDs if needed */ local_irq_save(flags); if ((vcpu->arch.guest_kernel_asid[cpu] ^ asid_cache(cpu)) & asid_version_mask(cpu)) { kvm_get_new_mmu_context(&vcpu->arch.guest_kernel_mm, cpu, vcpu); vcpu->arch.guest_kernel_asid[cpu] = vcpu->arch.guest_kernel_mm.context.asid[cpu]; kvm_get_new_mmu_context(&vcpu->arch.guest_user_mm, cpu, vcpu); vcpu->arch.guest_user_asid[cpu] = vcpu->arch.guest_user_mm.context.asid[cpu]; newasid++; kvm_debug("[%d]: cpu_context: %#lx\n", cpu, cpu_context(cpu, current->mm)); kvm_debug("[%d]: Allocated new ASID for Guest Kernel: %#x\n", cpu, vcpu->arch.guest_kernel_asid[cpu]); kvm_debug("[%d]: Allocated new ASID for Guest User: %#x\n", cpu, vcpu->arch.guest_user_asid[cpu]); } if (vcpu->arch.last_sched_cpu != cpu) { kvm_debug("[%d->%d]KVM VCPU[%d] switch\n", vcpu->arch.last_sched_cpu, cpu, vcpu->vcpu_id); /* * Migrate the timer interrupt to the current CPU so that it * always interrupts the guest and synchronously triggers a * guest timer interrupt. */ kvm_mips_migrate_count(vcpu); } if (!newasid) { /* * If we preempted while the guest was executing, then reload * the pre-empted ASID */ if (current->flags & PF_VCPU) { write_c0_entryhi(vcpu->arch. preempt_entryhi & asid_mask); ehb(); } } else { /* New ASIDs were allocated for the VM */ /* * Were we in guest context? If so then the pre-empted ASID is * no longer valid, we need to set it to what it should be based * on the mode of the Guest (Kernel/User) */ if (current->flags & PF_VCPU) { if (KVM_GUEST_KERNEL_MODE(vcpu)) write_c0_entryhi(vcpu->arch. guest_kernel_asid[cpu] & asid_mask); else write_c0_entryhi(vcpu->arch. guest_user_asid[cpu] & asid_mask); ehb(); } } /* restore guest state to registers */ kvm_mips_callbacks->vcpu_set_regs(vcpu); local_irq_restore(flags); } /* ASID can change if another task is scheduled during preemption */ void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) { unsigned long flags; int cpu; local_irq_save(flags); cpu = smp_processor_id(); vcpu->arch.preempt_entryhi = read_c0_entryhi(); vcpu->arch.last_sched_cpu = cpu; /* save guest state in registers */ kvm_mips_callbacks->vcpu_get_regs(vcpu); if (((cpu_context(cpu, current->mm) ^ asid_cache(cpu)) & asid_version_mask(cpu))) { kvm_debug("%s: Dropping MMU Context: %#lx\n", __func__, cpu_context(cpu, current->mm)); drop_mmu_context(current->mm, cpu); } write_c0_entryhi(cpu_asid(cpu, current->mm)); ehb(); local_irq_restore(flags); } u32 kvm_get_inst(u32 *opc, struct kvm_vcpu *vcpu) { struct mips_coproc *cop0 = vcpu->arch.cop0; unsigned long paddr, flags, vpn2, asid; unsigned long va = (unsigned long)opc; void *vaddr; u32 inst; int index; if (KVM_GUEST_KSEGX(va) < KVM_GUEST_KSEG0 || KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG23) { local_irq_save(flags); index = kvm_mips_host_tlb_lookup(vcpu, va); if (index >= 0) { inst = *(opc); } else { vpn2 = va & VPN2_MASK; asid = kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID; index = kvm_mips_guest_tlb_lookup(vcpu, vpn2 | asid); if (index < 0) { kvm_err("%s: get_user_failed for %p, vcpu: %p, ASID: %#lx\n", __func__, opc, vcpu, read_c0_entryhi()); kvm_mips_dump_host_tlbs(); kvm_mips_dump_guest_tlbs(vcpu); local_irq_restore(flags); return KVM_INVALID_INST; } kvm_mips_handle_mapped_seg_tlb_fault(vcpu, &vcpu->arch. guest_tlb[index]); inst = *(opc); } local_irq_restore(flags); } else if (KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG0) { paddr = kvm_mips_translate_guest_kseg0_to_hpa(vcpu, va); vaddr = kmap_atomic(pfn_to_page(PHYS_PFN(paddr))); vaddr += paddr & ~PAGE_MASK; inst = *(u32 *)vaddr; kunmap_atomic(vaddr); } else { kvm_err("%s: illegal address: %p\n", __func__, opc); return KVM_INVALID_INST; } return inst; }