/* * BPF JIT compiler for ARM64 * * Copyright (C) 2014-2016 Zi Shen Lim * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #define pr_fmt(fmt) "bpf_jit: " fmt #include #include #include #include #include #include #include #include #include "bpf_jit.h" #define TMP_REG_1 (MAX_BPF_JIT_REG + 0) #define TMP_REG_2 (MAX_BPF_JIT_REG + 1) #define TCALL_CNT (MAX_BPF_JIT_REG + 2) #define TMP_REG_3 (MAX_BPF_JIT_REG + 3) /* Map BPF registers to A64 registers */ static const int bpf2a64[] = { /* return value from in-kernel function, and exit value from eBPF */ [BPF_REG_0] = A64_R(7), /* arguments from eBPF program to in-kernel function */ [BPF_REG_1] = A64_R(0), [BPF_REG_2] = A64_R(1), [BPF_REG_3] = A64_R(2), [BPF_REG_4] = A64_R(3), [BPF_REG_5] = A64_R(4), /* callee saved registers that in-kernel function will preserve */ [BPF_REG_6] = A64_R(19), [BPF_REG_7] = A64_R(20), [BPF_REG_8] = A64_R(21), [BPF_REG_9] = A64_R(22), /* read-only frame pointer to access stack */ [BPF_REG_FP] = A64_R(25), /* temporary registers for internal BPF JIT */ [TMP_REG_1] = A64_R(10), [TMP_REG_2] = A64_R(11), [TMP_REG_3] = A64_R(12), /* tail_call_cnt */ [TCALL_CNT] = A64_R(26), /* temporary register for blinding constants */ [BPF_REG_AX] = A64_R(9), }; struct jit_ctx { const struct bpf_prog *prog; int idx; int epilogue_offset; int *offset; __le32 *image; u32 stack_size; }; static inline void emit(const u32 insn, struct jit_ctx *ctx) { if (ctx->image != NULL) ctx->image[ctx->idx] = cpu_to_le32(insn); ctx->idx++; } static inline void emit_a64_mov_i(const int is64, const int reg, const s32 val, struct jit_ctx *ctx) { u16 hi = val >> 16; u16 lo = val & 0xffff; if (hi & 0x8000) { if (hi == 0xffff) { emit(A64_MOVN(is64, reg, (u16)~lo, 0), ctx); } else { emit(A64_MOVN(is64, reg, (u16)~hi, 16), ctx); if (lo != 0xffff) emit(A64_MOVK(is64, reg, lo, 0), ctx); } } else { emit(A64_MOVZ(is64, reg, lo, 0), ctx); if (hi) emit(A64_MOVK(is64, reg, hi, 16), ctx); } } static int i64_i16_blocks(const u64 val, bool inverse) { return (((val >> 0) & 0xffff) != (inverse ? 0xffff : 0x0000)) + (((val >> 16) & 0xffff) != (inverse ? 0xffff : 0x0000)) + (((val >> 32) & 0xffff) != (inverse ? 0xffff : 0x0000)) + (((val >> 48) & 0xffff) != (inverse ? 0xffff : 0x0000)); } static inline void emit_a64_mov_i64(const int reg, const u64 val, struct jit_ctx *ctx) { u64 nrm_tmp = val, rev_tmp = ~val; bool inverse; int shift; if (!(nrm_tmp >> 32)) return emit_a64_mov_i(0, reg, (u32)val, ctx); inverse = i64_i16_blocks(nrm_tmp, true) < i64_i16_blocks(nrm_tmp, false); shift = max(round_down((inverse ? (fls64(rev_tmp) - 1) : (fls64(nrm_tmp) - 1)), 16), 0); if (inverse) emit(A64_MOVN(1, reg, (rev_tmp >> shift) & 0xffff, shift), ctx); else emit(A64_MOVZ(1, reg, (nrm_tmp >> shift) & 0xffff, shift), ctx); shift -= 16; while (shift >= 0) { if (((nrm_tmp >> shift) & 0xffff) != (inverse ? 0xffff : 0x0000)) emit(A64_MOVK(1, reg, (nrm_tmp >> shift) & 0xffff, shift), ctx); shift -= 16; } } /* * Kernel addresses in the vmalloc space use at most 48 bits, and the * remaining bits are guaranteed to be 0x1. So we can compose the address * with a fixed length movn/movk/movk sequence. */ static inline void emit_addr_mov_i64(const int reg, const u64 val, struct jit_ctx *ctx) { u64 tmp = val; int shift = 0; emit(A64_MOVN(1, reg, ~tmp & 0xffff, shift), ctx); while (shift < 32) { tmp >>= 16; shift += 16; emit(A64_MOVK(1, reg, tmp & 0xffff, shift), ctx); } } static inline int bpf2a64_offset(int bpf_to, int bpf_from, const struct jit_ctx *ctx) { int to = ctx->offset[bpf_to]; /* -1 to account for the Branch instruction */ int from = ctx->offset[bpf_from] - 1; return to - from; } static void jit_fill_hole(void *area, unsigned int size) { __le32 *ptr; /* We are guaranteed to have aligned memory. */ for (ptr = area; size >= sizeof(u32); size -= sizeof(u32)) *ptr++ = cpu_to_le32(AARCH64_BREAK_FAULT); } static inline int epilogue_offset(const struct jit_ctx *ctx) { int to = ctx->epilogue_offset; int from = ctx->idx; return to - from; } /* Stack must be multiples of 16B */ #define STACK_ALIGN(sz) (((sz) + 15) & ~15) /* Tail call offset to jump into */ #define PROLOGUE_OFFSET 7 static int build_prologue(struct jit_ctx *ctx, bool ebpf_from_cbpf) { const struct bpf_prog *prog = ctx->prog; const u8 r6 = bpf2a64[BPF_REG_6]; const u8 r7 = bpf2a64[BPF_REG_7]; const u8 r8 = bpf2a64[BPF_REG_8]; const u8 r9 = bpf2a64[BPF_REG_9]; const u8 fp = bpf2a64[BPF_REG_FP]; const u8 tcc = bpf2a64[TCALL_CNT]; const int idx0 = ctx->idx; int cur_offset; /* * BPF prog stack layout * * high * original A64_SP => 0:+-----+ BPF prologue * |FP/LR| * current A64_FP => -16:+-----+ * | ... | callee saved registers * BPF fp register => -64:+-----+ <= (BPF_FP) * | | * | ... | BPF prog stack * | | * +-----+ <= (BPF_FP - prog->aux->stack_depth) * |RSVD | padding * current A64_SP => +-----+ <= (BPF_FP - ctx->stack_size) * | | * | ... | Function call stack * | | * +-----+ * low * */ /* Save FP and LR registers to stay align with ARM64 AAPCS */ emit(A64_PUSH(A64_FP, A64_LR, A64_SP), ctx); emit(A64_MOV(1, A64_FP, A64_SP), ctx); /* Save callee-saved registers */ emit(A64_PUSH(r6, r7, A64_SP), ctx); emit(A64_PUSH(r8, r9, A64_SP), ctx); emit(A64_PUSH(fp, tcc, A64_SP), ctx); /* Set up BPF prog stack base register */ emit(A64_MOV(1, fp, A64_SP), ctx); if (!ebpf_from_cbpf) { /* Initialize tail_call_cnt */ emit(A64_MOVZ(1, tcc, 0, 0), ctx); cur_offset = ctx->idx - idx0; if (cur_offset != PROLOGUE_OFFSET) { pr_err_once("PROLOGUE_OFFSET = %d, expected %d!\n", cur_offset, PROLOGUE_OFFSET); return -1; } } ctx->stack_size = STACK_ALIGN(prog->aux->stack_depth); /* Set up function call stack */ emit(A64_SUB_I(1, A64_SP, A64_SP, ctx->stack_size), ctx); return 0; } static int out_offset = -1; /* initialized on the first pass of build_body() */ static int emit_bpf_tail_call(struct jit_ctx *ctx) { /* bpf_tail_call(void *prog_ctx, struct bpf_array *array, u64 index) */ const u8 r2 = bpf2a64[BPF_REG_2]; const u8 r3 = bpf2a64[BPF_REG_3]; const u8 tmp = bpf2a64[TMP_REG_1]; const u8 prg = bpf2a64[TMP_REG_2]; const u8 tcc = bpf2a64[TCALL_CNT]; const int idx0 = ctx->idx; #define cur_offset (ctx->idx - idx0) #define jmp_offset (out_offset - (cur_offset)) size_t off; /* if (index >= array->map.max_entries) * goto out; */ off = offsetof(struct bpf_array, map.max_entries); emit_a64_mov_i64(tmp, off, ctx); emit(A64_LDR32(tmp, r2, tmp), ctx); emit(A64_MOV(0, r3, r3), ctx); emit(A64_CMP(0, r3, tmp), ctx); emit(A64_B_(A64_COND_CS, jmp_offset), ctx); /* if (tail_call_cnt > MAX_TAIL_CALL_CNT) * goto out; * tail_call_cnt++; */ emit_a64_mov_i64(tmp, MAX_TAIL_CALL_CNT, ctx); emit(A64_CMP(1, tcc, tmp), ctx); emit(A64_B_(A64_COND_HI, jmp_offset), ctx); emit(A64_ADD_I(1, tcc, tcc, 1), ctx); /* prog = array->ptrs[index]; * if (prog == NULL) * goto out; */ off = offsetof(struct bpf_array, ptrs); emit_a64_mov_i64(tmp, off, ctx); emit(A64_ADD(1, tmp, r2, tmp), ctx); emit(A64_LSL(1, prg, r3, 3), ctx); emit(A64_LDR64(prg, tmp, prg), ctx); emit(A64_CBZ(1, prg, jmp_offset), ctx); /* goto *(prog->bpf_func + prologue_offset); */ off = offsetof(struct bpf_prog, bpf_func); emit_a64_mov_i64(tmp, off, ctx); emit(A64_LDR64(tmp, prg, tmp), ctx); emit(A64_ADD_I(1, tmp, tmp, sizeof(u32) * PROLOGUE_OFFSET), ctx); emit(A64_ADD_I(1, A64_SP, A64_SP, ctx->stack_size), ctx); emit(A64_BR(tmp), ctx); /* out: */ if (out_offset == -1) out_offset = cur_offset; if (cur_offset != out_offset) { pr_err_once("tail_call out_offset = %d, expected %d!\n", cur_offset, out_offset); return -1; } return 0; #undef cur_offset #undef jmp_offset } static void build_epilogue(struct jit_ctx *ctx) { const u8 r0 = bpf2a64[BPF_REG_0]; const u8 r6 = bpf2a64[BPF_REG_6]; const u8 r7 = bpf2a64[BPF_REG_7]; const u8 r8 = bpf2a64[BPF_REG_8]; const u8 r9 = bpf2a64[BPF_REG_9]; const u8 fp = bpf2a64[BPF_REG_FP]; /* We're done with BPF stack */ emit(A64_ADD_I(1, A64_SP, A64_SP, ctx->stack_size), ctx); /* Restore fs (x25) and x26 */ emit(A64_POP(fp, A64_R(26), A64_SP), ctx); /* Restore callee-saved register */ emit(A64_POP(r8, r9, A64_SP), ctx); emit(A64_POP(r6, r7, A64_SP), ctx); /* Restore FP/LR registers */ emit(A64_POP(A64_FP, A64_LR, A64_SP), ctx); /* Set return value */ emit(A64_MOV(1, A64_R(0), r0), ctx); emit(A64_RET(A64_LR), ctx); } /* JITs an eBPF instruction. * Returns: * 0 - successfully JITed an 8-byte eBPF instruction. * >0 - successfully JITed a 16-byte eBPF instruction. * <0 - failed to JIT. */ static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx, bool extra_pass) { const u8 code = insn->code; const u8 dst = bpf2a64[insn->dst_reg]; const u8 src = bpf2a64[insn->src_reg]; const u8 tmp = bpf2a64[TMP_REG_1]; const u8 tmp2 = bpf2a64[TMP_REG_2]; const u8 tmp3 = bpf2a64[TMP_REG_3]; const s16 off = insn->off; const s32 imm = insn->imm; const int i = insn - ctx->prog->insnsi; const bool is64 = BPF_CLASS(code) == BPF_ALU64; const bool isdw = BPF_SIZE(code) == BPF_DW; u8 jmp_cond; s32 jmp_offset; #define check_imm(bits, imm) do { \ if ((((imm) > 0) && ((imm) >> (bits))) || \ (((imm) < 0) && (~(imm) >> (bits)))) { \ pr_info("[%2d] imm=%d(0x%x) out of range\n", \ i, imm, imm); \ return -EINVAL; \ } \ } while (0) #define check_imm19(imm) check_imm(19, imm) #define check_imm26(imm) check_imm(26, imm) switch (code) { /* dst = src */ case BPF_ALU | BPF_MOV | BPF_X: case BPF_ALU64 | BPF_MOV | BPF_X: emit(A64_MOV(is64, dst, src), ctx); break; /* dst = dst OP src */ case BPF_ALU | BPF_ADD | BPF_X: case BPF_ALU64 | BPF_ADD | BPF_X: emit(A64_ADD(is64, dst, dst, src), ctx); break; case BPF_ALU | BPF_SUB | BPF_X: case BPF_ALU64 | BPF_SUB | BPF_X: emit(A64_SUB(is64, dst, dst, src), ctx); break; case BPF_ALU | BPF_AND | BPF_X: case BPF_ALU64 | BPF_AND | BPF_X: emit(A64_AND(is64, dst, dst, src), ctx); break; case BPF_ALU | BPF_OR | BPF_X: case BPF_ALU64 | BPF_OR | BPF_X: emit(A64_ORR(is64, dst, dst, src), ctx); break; case BPF_ALU | BPF_XOR | BPF_X: case BPF_ALU64 | BPF_XOR | BPF_X: emit(A64_EOR(is64, dst, dst, src), ctx); break; case BPF_ALU | BPF_MUL | BPF_X: case BPF_ALU64 | BPF_MUL | BPF_X: emit(A64_MUL(is64, dst, dst, src), ctx); break; case BPF_ALU | BPF_DIV | BPF_X: case BPF_ALU64 | BPF_DIV | BPF_X: case BPF_ALU | BPF_MOD | BPF_X: case BPF_ALU64 | BPF_MOD | BPF_X: switch (BPF_OP(code)) { case BPF_DIV: emit(A64_UDIV(is64, dst, dst, src), ctx); break; case BPF_MOD: emit(A64_UDIV(is64, tmp, dst, src), ctx); emit(A64_MUL(is64, tmp, tmp, src), ctx); emit(A64_SUB(is64, dst, dst, tmp), ctx); break; } break; case BPF_ALU | BPF_LSH | BPF_X: case BPF_ALU64 | BPF_LSH | BPF_X: emit(A64_LSLV(is64, dst, dst, src), ctx); break; case BPF_ALU | BPF_RSH | BPF_X: case BPF_ALU64 | BPF_RSH | BPF_X: emit(A64_LSRV(is64, dst, dst, src), ctx); break; case BPF_ALU | BPF_ARSH | BPF_X: case BPF_ALU64 | BPF_ARSH | BPF_X: emit(A64_ASRV(is64, dst, dst, src), ctx); break; /* dst = -dst */ case BPF_ALU | BPF_NEG: case BPF_ALU64 | BPF_NEG: emit(A64_NEG(is64, dst, dst), ctx); break; /* dst = BSWAP##imm(dst) */ case BPF_ALU | BPF_END | BPF_FROM_LE: case BPF_ALU | BPF_END | BPF_FROM_BE: #ifdef CONFIG_CPU_BIG_ENDIAN if (BPF_SRC(code) == BPF_FROM_BE) goto emit_bswap_uxt; #else /* !CONFIG_CPU_BIG_ENDIAN */ if (BPF_SRC(code) == BPF_FROM_LE) goto emit_bswap_uxt; #endif switch (imm) { case 16: emit(A64_REV16(is64, dst, dst), ctx); /* zero-extend 16 bits into 64 bits */ emit(A64_UXTH(is64, dst, dst), ctx); break; case 32: emit(A64_REV32(is64, dst, dst), ctx); /* upper 32 bits already cleared */ break; case 64: emit(A64_REV64(dst, dst), ctx); break; } break; emit_bswap_uxt: switch (imm) { case 16: /* zero-extend 16 bits into 64 bits */ emit(A64_UXTH(is64, dst, dst), ctx); break; case 32: /* zero-extend 32 bits into 64 bits */ emit(A64_UXTW(is64, dst, dst), ctx); break; case 64: /* nop */ break; } break; /* dst = imm */ case BPF_ALU | BPF_MOV | BPF_K: case BPF_ALU64 | BPF_MOV | BPF_K: emit_a64_mov_i(is64, dst, imm, ctx); break; /* dst = dst OP imm */ case BPF_ALU | BPF_ADD | BPF_K: case BPF_ALU64 | BPF_ADD | BPF_K: emit_a64_mov_i(is64, tmp, imm, ctx); emit(A64_ADD(is64, dst, dst, tmp), ctx); break; case BPF_ALU | BPF_SUB | BPF_K: case BPF_ALU64 | BPF_SUB | BPF_K: emit_a64_mov_i(is64, tmp, imm, ctx); emit(A64_SUB(is64, dst, dst, tmp), ctx); break; case BPF_ALU | BPF_AND | BPF_K: case BPF_ALU64 | BPF_AND | BPF_K: emit_a64_mov_i(is64, tmp, imm, ctx); emit(A64_AND(is64, dst, dst, tmp), ctx); break; case BPF_ALU | BPF_OR | BPF_K: case BPF_ALU64 | BPF_OR | BPF_K: emit_a64_mov_i(is64, tmp, imm, ctx); emit(A64_ORR(is64, dst, dst, tmp), ctx); break; case BPF_ALU | BPF_XOR | BPF_K: case BPF_ALU64 | BPF_XOR | BPF_K: emit_a64_mov_i(is64, tmp, imm, ctx); emit(A64_EOR(is64, dst, dst, tmp), ctx); break; case BPF_ALU | BPF_MUL | BPF_K: case BPF_ALU64 | BPF_MUL | BPF_K: emit_a64_mov_i(is64, tmp, imm, ctx); emit(A64_MUL(is64, dst, dst, tmp), ctx); break; case BPF_ALU | BPF_DIV | BPF_K: case BPF_ALU64 | BPF_DIV | BPF_K: emit_a64_mov_i(is64, tmp, imm, ctx); emit(A64_UDIV(is64, dst, dst, tmp), ctx); break; case BPF_ALU | BPF_MOD | BPF_K: case BPF_ALU64 | BPF_MOD | BPF_K: emit_a64_mov_i(is64, tmp2, imm, ctx); emit(A64_UDIV(is64, tmp, dst, tmp2), ctx); emit(A64_MUL(is64, tmp, tmp, tmp2), ctx); emit(A64_SUB(is64, dst, dst, tmp), ctx); break; case BPF_ALU | BPF_LSH | BPF_K: case BPF_ALU64 | BPF_LSH | BPF_K: emit(A64_LSL(is64, dst, dst, imm), ctx); break; case BPF_ALU | BPF_RSH | BPF_K: case BPF_ALU64 | BPF_RSH | BPF_K: emit(A64_LSR(is64, dst, dst, imm), ctx); break; case BPF_ALU | BPF_ARSH | BPF_K: case BPF_ALU64 | BPF_ARSH | BPF_K: emit(A64_ASR(is64, dst, dst, imm), ctx); break; /* JUMP off */ case BPF_JMP | BPF_JA: jmp_offset = bpf2a64_offset(i + off, i, ctx); check_imm26(jmp_offset); emit(A64_B(jmp_offset), ctx); break; /* IF (dst COND src) JUMP off */ case BPF_JMP | BPF_JEQ | BPF_X: case BPF_JMP | BPF_JGT | BPF_X: case BPF_JMP | BPF_JLT | BPF_X: case BPF_JMP | BPF_JGE | BPF_X: case BPF_JMP | BPF_JLE | BPF_X: case BPF_JMP | BPF_JNE | BPF_X: case BPF_JMP | BPF_JSGT | BPF_X: case BPF_JMP | BPF_JSLT | BPF_X: case BPF_JMP | BPF_JSGE | BPF_X: case BPF_JMP | BPF_JSLE | BPF_X: emit(A64_CMP(1, dst, src), ctx); emit_cond_jmp: jmp_offset = bpf2a64_offset(i + off, i, ctx); check_imm19(jmp_offset); switch (BPF_OP(code)) { case BPF_JEQ: jmp_cond = A64_COND_EQ; break; case BPF_JGT: jmp_cond = A64_COND_HI; break; case BPF_JLT: jmp_cond = A64_COND_CC; break; case BPF_JGE: jmp_cond = A64_COND_CS; break; case BPF_JLE: jmp_cond = A64_COND_LS; break; case BPF_JSET: case BPF_JNE: jmp_cond = A64_COND_NE; break; case BPF_JSGT: jmp_cond = A64_COND_GT; break; case BPF_JSLT: jmp_cond = A64_COND_LT; break; case BPF_JSGE: jmp_cond = A64_COND_GE; break; case BPF_JSLE: jmp_cond = A64_COND_LE; break; default: return -EFAULT; } emit(A64_B_(jmp_cond, jmp_offset), ctx); break; case BPF_JMP | BPF_JSET | BPF_X: emit(A64_TST(1, dst, src), ctx); goto emit_cond_jmp; /* IF (dst COND imm) JUMP off */ case BPF_JMP | BPF_JEQ | BPF_K: case BPF_JMP | BPF_JGT | BPF_K: case BPF_JMP | BPF_JLT | BPF_K: case BPF_JMP | BPF_JGE | BPF_K: case BPF_JMP | BPF_JLE | BPF_K: case BPF_JMP | BPF_JNE | BPF_K: case BPF_JMP | BPF_JSGT | BPF_K: case BPF_JMP | BPF_JSLT | BPF_K: case BPF_JMP | BPF_JSGE | BPF_K: case BPF_JMP | BPF_JSLE | BPF_K: emit_a64_mov_i(1, tmp, imm, ctx); emit(A64_CMP(1, dst, tmp), ctx); goto emit_cond_jmp; case BPF_JMP | BPF_JSET | BPF_K: emit_a64_mov_i(1, tmp, imm, ctx); emit(A64_TST(1, dst, tmp), ctx); goto emit_cond_jmp; /* function call */ case BPF_JMP | BPF_CALL: { const u8 r0 = bpf2a64[BPF_REG_0]; bool func_addr_fixed; u64 func_addr; int ret; ret = bpf_jit_get_func_addr(ctx->prog, insn, extra_pass, &func_addr, &func_addr_fixed); if (ret < 0) return ret; emit_addr_mov_i64(tmp, func_addr, ctx); emit(A64_BLR(tmp), ctx); emit(A64_MOV(1, r0, A64_R(0)), ctx); break; } /* tail call */ case BPF_JMP | BPF_TAIL_CALL: if (emit_bpf_tail_call(ctx)) return -EFAULT; break; /* function return */ case BPF_JMP | BPF_EXIT: /* Optimization: when last instruction is EXIT, simply fallthrough to epilogue. */ if (i == ctx->prog->len - 1) break; jmp_offset = epilogue_offset(ctx); check_imm26(jmp_offset); emit(A64_B(jmp_offset), ctx); break; /* dst = imm64 */ case BPF_LD | BPF_IMM | BPF_DW: { const struct bpf_insn insn1 = insn[1]; u64 imm64; imm64 = (u64)insn1.imm << 32 | (u32)imm; emit_a64_mov_i64(dst, imm64, ctx); return 1; } /* LDX: dst = *(size *)(src + off) */ case BPF_LDX | BPF_MEM | BPF_W: case BPF_LDX | BPF_MEM | BPF_H: case BPF_LDX | BPF_MEM | BPF_B: case BPF_LDX | BPF_MEM | BPF_DW: emit_a64_mov_i(1, tmp, off, ctx); switch (BPF_SIZE(code)) { case BPF_W: emit(A64_LDR32(dst, src, tmp), ctx); break; case BPF_H: emit(A64_LDRH(dst, src, tmp), ctx); break; case BPF_B: emit(A64_LDRB(dst, src, tmp), ctx); break; case BPF_DW: emit(A64_LDR64(dst, src, tmp), ctx); break; } break; /* ST: *(size *)(dst + off) = imm */ case BPF_ST | BPF_MEM | BPF_W: case BPF_ST | BPF_MEM | BPF_H: case BPF_ST | BPF_MEM | BPF_B: case BPF_ST | BPF_MEM | BPF_DW: /* Load imm to a register then store it */ emit_a64_mov_i(1, tmp2, off, ctx); emit_a64_mov_i(1, tmp, imm, ctx); switch (BPF_SIZE(code)) { case BPF_W: emit(A64_STR32(tmp, dst, tmp2), ctx); break; case BPF_H: emit(A64_STRH(tmp, dst, tmp2), ctx); break; case BPF_B: emit(A64_STRB(tmp, dst, tmp2), ctx); break; case BPF_DW: emit(A64_STR64(tmp, dst, tmp2), ctx); break; } break; /* STX: *(size *)(dst + off) = src */ case BPF_STX | BPF_MEM | BPF_W: case BPF_STX | BPF_MEM | BPF_H: case BPF_STX | BPF_MEM | BPF_B: case BPF_STX | BPF_MEM | BPF_DW: emit_a64_mov_i(1, tmp, off, ctx); switch (BPF_SIZE(code)) { case BPF_W: emit(A64_STR32(src, dst, tmp), ctx); break; case BPF_H: emit(A64_STRH(src, dst, tmp), ctx); break; case BPF_B: emit(A64_STRB(src, dst, tmp), ctx); break; case BPF_DW: emit(A64_STR64(src, dst, tmp), ctx); break; } break; /* STX XADD: lock *(u32 *)(dst + off) += src */ case BPF_STX | BPF_XADD | BPF_W: /* STX XADD: lock *(u64 *)(dst + off) += src */ case BPF_STX | BPF_XADD | BPF_DW: emit_a64_mov_i(1, tmp, off, ctx); emit(A64_ADD(1, tmp, tmp, dst), ctx); emit(A64_LDXR(isdw, tmp2, tmp), ctx); emit(A64_ADD(isdw, tmp2, tmp2, src), ctx); emit(A64_STXR(isdw, tmp2, tmp, tmp3), ctx); jmp_offset = -3; check_imm19(jmp_offset); emit(A64_CBNZ(0, tmp3, jmp_offset), ctx); break; default: pr_err_once("unknown opcode %02x\n", code); return -EINVAL; } return 0; } static int build_body(struct jit_ctx *ctx, bool extra_pass) { const struct bpf_prog *prog = ctx->prog; int i; for (i = 0; i < prog->len; i++) { const struct bpf_insn *insn = &prog->insnsi[i]; int ret; ret = build_insn(insn, ctx, extra_pass); if (ret > 0) { i++; if (ctx->image == NULL) ctx->offset[i] = ctx->idx; continue; } if (ctx->image == NULL) ctx->offset[i] = ctx->idx; if (ret) return ret; } return 0; } static int validate_code(struct jit_ctx *ctx) { int i; for (i = 0; i < ctx->idx; i++) { u32 a64_insn = le32_to_cpu(ctx->image[i]); if (a64_insn == AARCH64_BREAK_FAULT) return -1; } return 0; } static inline void bpf_flush_icache(void *start, void *end) { flush_icache_range((unsigned long)start, (unsigned long)end); } struct arm64_jit_data { struct bpf_binary_header *header; u8 *image; struct jit_ctx ctx; }; struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog) { struct bpf_prog *tmp, *orig_prog = prog; struct bpf_binary_header *header; struct arm64_jit_data *jit_data; bool was_classic = bpf_prog_was_classic(prog); bool tmp_blinded = false; bool extra_pass = false; struct jit_ctx ctx; int image_size; u8 *image_ptr; if (!prog->jit_requested) return orig_prog; tmp = bpf_jit_blind_constants(prog); /* If blinding was requested and we failed during blinding, * we must fall back to the interpreter. */ if (IS_ERR(tmp)) return orig_prog; if (tmp != prog) { tmp_blinded = true; prog = tmp; } jit_data = prog->aux->jit_data; if (!jit_data) { jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL); if (!jit_data) { prog = orig_prog; goto out; } prog->aux->jit_data = jit_data; } if (jit_data->ctx.offset) { ctx = jit_data->ctx; image_ptr = jit_data->image; header = jit_data->header; extra_pass = true; image_size = sizeof(u32) * ctx.idx; goto skip_init_ctx; } memset(&ctx, 0, sizeof(ctx)); ctx.prog = prog; ctx.offset = kcalloc(prog->len, sizeof(int), GFP_KERNEL); if (ctx.offset == NULL) { prog = orig_prog; goto out_off; } /* 1. Initial fake pass to compute ctx->idx. */ /* Fake pass to fill in ctx->offset. */ if (build_body(&ctx, extra_pass)) { prog = orig_prog; goto out_off; } if (build_prologue(&ctx, was_classic)) { prog = orig_prog; goto out_off; } ctx.epilogue_offset = ctx.idx; build_epilogue(&ctx); /* Now we know the actual image size. */ image_size = sizeof(u32) * ctx.idx; header = bpf_jit_binary_alloc(image_size, &image_ptr, sizeof(u32), jit_fill_hole); if (header == NULL) { prog = orig_prog; goto out_off; } /* 2. Now, the actual pass. */ ctx.image = (__le32 *)image_ptr; skip_init_ctx: ctx.idx = 0; build_prologue(&ctx, was_classic); if (build_body(&ctx, extra_pass)) { bpf_jit_binary_free(header); prog = orig_prog; goto out_off; } build_epilogue(&ctx); /* 3. Extra pass to validate JITed code. */ if (validate_code(&ctx)) { bpf_jit_binary_free(header); prog = orig_prog; goto out_off; } /* And we're done. */ if (bpf_jit_enable > 1) bpf_jit_dump(prog->len, image_size, 2, ctx.image); bpf_flush_icache(header, ctx.image + ctx.idx); if (!prog->is_func || extra_pass) { if (extra_pass && ctx.idx != jit_data->ctx.idx) { pr_err_once("multi-func JIT bug %d != %d\n", ctx.idx, jit_data->ctx.idx); bpf_jit_binary_free(header); prog->bpf_func = NULL; prog->jited = 0; goto out_off; } bpf_jit_binary_lock_ro(header); } else { jit_data->ctx = ctx; jit_data->image = image_ptr; jit_data->header = header; } prog->bpf_func = (void *)ctx.image; prog->jited = 1; prog->jited_len = image_size; if (!prog->is_func || extra_pass) { bpf_prog_fill_jited_linfo(prog, ctx.offset); out_off: kfree(ctx.offset); kfree(jit_data); prog->aux->jit_data = NULL; } out: if (tmp_blinded) bpf_jit_prog_release_other(prog, prog == orig_prog ? tmp : orig_prog); return prog; } void *bpf_jit_alloc_exec(unsigned long size) { return __vmalloc_node_range(size, PAGE_SIZE, BPF_JIT_REGION_START, BPF_JIT_REGION_END, GFP_KERNEL, PAGE_KERNEL_EXEC, 0, NUMA_NO_NODE, __builtin_return_address(0)); } void bpf_jit_free_exec(void *addr) { return vfree(addr); }