// SPDX-License-Identifier: GPL-2.0-only #include #include #include #include #include #include #include #include #include #include #include "vgic.h" static bool group0_trap; static bool group1_trap; static bool common_trap; static bool dir_trap; static bool gicv4_enable; void vgic_v3_set_underflow(struct kvm_vcpu *vcpu) { struct vgic_v3_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v3; cpuif->vgic_hcr |= ICH_HCR_UIE; } static bool lr_signals_eoi_mi(u64 lr_val) { return !(lr_val & ICH_LR_STATE) && (lr_val & ICH_LR_EOI) && !(lr_val & ICH_LR_HW); } void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu) { struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; struct vgic_v3_cpu_if *cpuif = &vgic_cpu->vgic_v3; u32 model = vcpu->kvm->arch.vgic.vgic_model; int lr; DEBUG_SPINLOCK_BUG_ON(!irqs_disabled()); cpuif->vgic_hcr &= ~ICH_HCR_UIE; for (lr = 0; lr < cpuif->used_lrs; lr++) { u64 val = cpuif->vgic_lr[lr]; u32 intid, cpuid; struct vgic_irq *irq; bool is_v2_sgi = false; bool deactivated; cpuid = val & GICH_LR_PHYSID_CPUID; cpuid >>= GICH_LR_PHYSID_CPUID_SHIFT; if (model == KVM_DEV_TYPE_ARM_VGIC_V3) { intid = val & ICH_LR_VIRTUAL_ID_MASK; } else { intid = val & GICH_LR_VIRTUALID; is_v2_sgi = vgic_irq_is_sgi(intid); } /* Notify fds when the guest EOI'ed a level-triggered IRQ */ if (lr_signals_eoi_mi(val) && vgic_valid_spi(vcpu->kvm, intid)) kvm_notify_acked_irq(vcpu->kvm, 0, intid - VGIC_NR_PRIVATE_IRQS); irq = vgic_get_irq(vcpu->kvm, vcpu, intid); if (!irq) /* An LPI could have been unmapped. */ continue; raw_spin_lock(&irq->irq_lock); /* Always preserve the active bit, note deactivation */ deactivated = irq->active && !(val & ICH_LR_ACTIVE_BIT); irq->active = !!(val & ICH_LR_ACTIVE_BIT); if (irq->active && is_v2_sgi) irq->active_source = cpuid; /* Edge is the only case where we preserve the pending bit */ if (irq->config == VGIC_CONFIG_EDGE && (val & ICH_LR_PENDING_BIT)) { irq->pending_latch = true; if (is_v2_sgi) irq->source |= (1 << cpuid); } /* * Clear soft pending state when level irqs have been acked. */ if (irq->config == VGIC_CONFIG_LEVEL && !(val & ICH_LR_STATE)) irq->pending_latch = false; /* Handle resampling for mapped interrupts if required */ vgic_irq_handle_resampling(irq, deactivated, val & ICH_LR_PENDING_BIT); raw_spin_unlock(&irq->irq_lock); vgic_put_irq(vcpu->kvm, irq); } cpuif->used_lrs = 0; } /* Requires the irq to be locked already */ void vgic_v3_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr) { u32 model = vcpu->kvm->arch.vgic.vgic_model; u64 val = irq->intid; bool allow_pending = true, is_v2_sgi; is_v2_sgi = (vgic_irq_is_sgi(irq->intid) && model == KVM_DEV_TYPE_ARM_VGIC_V2); if (irq->active) { val |= ICH_LR_ACTIVE_BIT; if (is_v2_sgi) val |= irq->active_source << GICH_LR_PHYSID_CPUID_SHIFT; if (vgic_irq_is_multi_sgi(irq)) { allow_pending = false; val |= ICH_LR_EOI; } } if (irq->hw && !vgic_irq_needs_resampling(irq)) { val |= ICH_LR_HW; val |= ((u64)irq->hwintid) << ICH_LR_PHYS_ID_SHIFT; /* * Never set pending+active on a HW interrupt, as the * pending state is kept at the physical distributor * level. */ if (irq->active) allow_pending = false; } else { if (irq->config == VGIC_CONFIG_LEVEL) { val |= ICH_LR_EOI; /* * Software resampling doesn't work very well * if we allow P+A, so let's not do that. */ if (irq->active) allow_pending = false; } } if (allow_pending && irq_is_pending(irq)) { val |= ICH_LR_PENDING_BIT; if (irq->config == VGIC_CONFIG_EDGE) irq->pending_latch = false; if (vgic_irq_is_sgi(irq->intid) && model == KVM_DEV_TYPE_ARM_VGIC_V2) { u32 src = ffs(irq->source); if (WARN_RATELIMIT(!src, "No SGI source for INTID %d\n", irq->intid)) return; val |= (src - 1) << GICH_LR_PHYSID_CPUID_SHIFT; irq->source &= ~(1 << (src - 1)); if (irq->source) { irq->pending_latch = true; val |= ICH_LR_EOI; } } } /* * Level-triggered mapped IRQs are special because we only observe * rising edges as input to the VGIC. We therefore lower the line * level here, so that we can take new virtual IRQs. See * vgic_v3_fold_lr_state for more info. */ if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT)) irq->line_level = false; if (irq->group) val |= ICH_LR_GROUP; val |= (u64)irq->priority << ICH_LR_PRIORITY_SHIFT; vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = val; } void vgic_v3_clear_lr(struct kvm_vcpu *vcpu, int lr) { vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = 0; } void vgic_v3_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp) { struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; u32 model = vcpu->kvm->arch.vgic.vgic_model; u32 vmcr; if (model == KVM_DEV_TYPE_ARM_VGIC_V2) { vmcr = (vmcrp->ackctl << ICH_VMCR_ACK_CTL_SHIFT) & ICH_VMCR_ACK_CTL_MASK; vmcr |= (vmcrp->fiqen << ICH_VMCR_FIQ_EN_SHIFT) & ICH_VMCR_FIQ_EN_MASK; } else { /* * When emulating GICv3 on GICv3 with SRE=1 on the * VFIQEn bit is RES1 and the VAckCtl bit is RES0. */ vmcr = ICH_VMCR_FIQ_EN_MASK; } vmcr |= (vmcrp->cbpr << ICH_VMCR_CBPR_SHIFT) & ICH_VMCR_CBPR_MASK; vmcr |= (vmcrp->eoim << ICH_VMCR_EOIM_SHIFT) & ICH_VMCR_EOIM_MASK; vmcr |= (vmcrp->abpr << ICH_VMCR_BPR1_SHIFT) & ICH_VMCR_BPR1_MASK; vmcr |= (vmcrp->bpr << ICH_VMCR_BPR0_SHIFT) & ICH_VMCR_BPR0_MASK; vmcr |= (vmcrp->pmr << ICH_VMCR_PMR_SHIFT) & ICH_VMCR_PMR_MASK; vmcr |= (vmcrp->grpen0 << ICH_VMCR_ENG0_SHIFT) & ICH_VMCR_ENG0_MASK; vmcr |= (vmcrp->grpen1 << ICH_VMCR_ENG1_SHIFT) & ICH_VMCR_ENG1_MASK; cpu_if->vgic_vmcr = vmcr; } void vgic_v3_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp) { struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; u32 model = vcpu->kvm->arch.vgic.vgic_model; u32 vmcr; vmcr = cpu_if->vgic_vmcr; if (model == KVM_DEV_TYPE_ARM_VGIC_V2) { vmcrp->ackctl = (vmcr & ICH_VMCR_ACK_CTL_MASK) >> ICH_VMCR_ACK_CTL_SHIFT; vmcrp->fiqen = (vmcr & ICH_VMCR_FIQ_EN_MASK) >> ICH_VMCR_FIQ_EN_SHIFT; } else { /* * When emulating GICv3 on GICv3 with SRE=1 on the * VFIQEn bit is RES1 and the VAckCtl bit is RES0. */ vmcrp->fiqen = 1; vmcrp->ackctl = 0; } vmcrp->cbpr = (vmcr & ICH_VMCR_CBPR_MASK) >> ICH_VMCR_CBPR_SHIFT; vmcrp->eoim = (vmcr & ICH_VMCR_EOIM_MASK) >> ICH_VMCR_EOIM_SHIFT; vmcrp->abpr = (vmcr & ICH_VMCR_BPR1_MASK) >> ICH_VMCR_BPR1_SHIFT; vmcrp->bpr = (vmcr & ICH_VMCR_BPR0_MASK) >> ICH_VMCR_BPR0_SHIFT; vmcrp->pmr = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT; vmcrp->grpen0 = (vmcr & ICH_VMCR_ENG0_MASK) >> ICH_VMCR_ENG0_SHIFT; vmcrp->grpen1 = (vmcr & ICH_VMCR_ENG1_MASK) >> ICH_VMCR_ENG1_SHIFT; } #define INITIAL_PENDBASER_VALUE \ (GIC_BASER_CACHEABILITY(GICR_PENDBASER, INNER, RaWb) | \ GIC_BASER_CACHEABILITY(GICR_PENDBASER, OUTER, SameAsInner) | \ GIC_BASER_SHAREABILITY(GICR_PENDBASER, InnerShareable)) void vgic_v3_enable(struct kvm_vcpu *vcpu) { struct vgic_v3_cpu_if *vgic_v3 = &vcpu->arch.vgic_cpu.vgic_v3; /* * By forcing VMCR to zero, the GIC will restore the binary * points to their reset values. Anything else resets to zero * anyway. */ vgic_v3->vgic_vmcr = 0; /* * If we are emulating a GICv3, we do it in an non-GICv2-compatible * way, so we force SRE to 1 to demonstrate this to the guest. * Also, we don't support any form of IRQ/FIQ bypass. * This goes with the spec allowing the value to be RAO/WI. */ if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) { vgic_v3->vgic_sre = (ICC_SRE_EL1_DIB | ICC_SRE_EL1_DFB | ICC_SRE_EL1_SRE); vcpu->arch.vgic_cpu.pendbaser = INITIAL_PENDBASER_VALUE; } else { vgic_v3->vgic_sre = 0; } vcpu->arch.vgic_cpu.num_id_bits = (kvm_vgic_global_state.ich_vtr_el2 & ICH_VTR_ID_BITS_MASK) >> ICH_VTR_ID_BITS_SHIFT; vcpu->arch.vgic_cpu.num_pri_bits = ((kvm_vgic_global_state.ich_vtr_el2 & ICH_VTR_PRI_BITS_MASK) >> ICH_VTR_PRI_BITS_SHIFT) + 1; /* Get the show on the road... */ vgic_v3->vgic_hcr = ICH_HCR_EN; if (group0_trap) vgic_v3->vgic_hcr |= ICH_HCR_TALL0; if (group1_trap) vgic_v3->vgic_hcr |= ICH_HCR_TALL1; if (common_trap) vgic_v3->vgic_hcr |= ICH_HCR_TC; if (dir_trap) vgic_v3->vgic_hcr |= ICH_HCR_TDIR; } int vgic_v3_lpi_sync_pending_status(struct kvm *kvm, struct vgic_irq *irq) { struct kvm_vcpu *vcpu; int byte_offset, bit_nr; gpa_t pendbase, ptr; bool status; u8 val; int ret; unsigned long flags; retry: vcpu = irq->target_vcpu; if (!vcpu) return 0; pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser); byte_offset = irq->intid / BITS_PER_BYTE; bit_nr = irq->intid % BITS_PER_BYTE; ptr = pendbase + byte_offset; ret = kvm_read_guest_lock(kvm, ptr, &val, 1); if (ret) return ret; status = val & (1 << bit_nr); raw_spin_lock_irqsave(&irq->irq_lock, flags); if (irq->target_vcpu != vcpu) { raw_spin_unlock_irqrestore(&irq->irq_lock, flags); goto retry; } irq->pending_latch = status; vgic_queue_irq_unlock(vcpu->kvm, irq, flags); if (status) { /* clear consumed data */ val &= ~(1 << bit_nr); ret = vgic_write_guest_lock(kvm, ptr, &val, 1); if (ret) return ret; } return 0; } /* * The deactivation of the doorbell interrupt will trigger the * unmapping of the associated vPE. */ static void unmap_all_vpes(struct kvm *kvm) { struct vgic_dist *dist = &kvm->arch.vgic; int i; for (i = 0; i < dist->its_vm.nr_vpes; i++) free_irq(dist->its_vm.vpes[i]->irq, kvm_get_vcpu(kvm, i)); } static void map_all_vpes(struct kvm *kvm) { struct vgic_dist *dist = &kvm->arch.vgic; int i; for (i = 0; i < dist->its_vm.nr_vpes; i++) WARN_ON(vgic_v4_request_vpe_irq(kvm_get_vcpu(kvm, i), dist->its_vm.vpes[i]->irq)); } /** * vgic_v3_save_pending_tables - Save the pending tables into guest RAM * kvm lock and all vcpu lock must be held */ int vgic_v3_save_pending_tables(struct kvm *kvm) { struct vgic_dist *dist = &kvm->arch.vgic; struct vgic_irq *irq; gpa_t last_ptr = ~(gpa_t)0; bool vlpi_avail = false; int ret = 0; u8 val; if (unlikely(!vgic_initialized(kvm))) return -ENXIO; /* * A preparation for getting any VLPI states. * The above vgic initialized check also ensures that the allocation * and enabling of the doorbells have already been done. */ if (kvm_vgic_global_state.has_gicv4_1) { unmap_all_vpes(kvm); vlpi_avail = true; } list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) { int byte_offset, bit_nr; struct kvm_vcpu *vcpu; gpa_t pendbase, ptr; bool is_pending; bool stored; vcpu = irq->target_vcpu; if (!vcpu) continue; pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser); byte_offset = irq->intid / BITS_PER_BYTE; bit_nr = irq->intid % BITS_PER_BYTE; ptr = pendbase + byte_offset; if (ptr != last_ptr) { ret = kvm_read_guest_lock(kvm, ptr, &val, 1); if (ret) goto out; last_ptr = ptr; } stored = val & (1U << bit_nr); is_pending = irq->pending_latch; if (irq->hw && vlpi_avail) vgic_v4_get_vlpi_state(irq, &is_pending); if (stored == is_pending) continue; if (is_pending) val |= 1 << bit_nr; else val &= ~(1 << bit_nr); ret = vgic_write_guest_lock(kvm, ptr, &val, 1); if (ret) goto out; } out: if (vlpi_avail) map_all_vpes(kvm); return ret; } /** * vgic_v3_rdist_overlap - check if a region overlaps with any * existing redistributor region * * @kvm: kvm handle * @base: base of the region * @size: size of region * * Return: true if there is an overlap */ bool vgic_v3_rdist_overlap(struct kvm *kvm, gpa_t base, size_t size) { struct vgic_dist *d = &kvm->arch.vgic; struct vgic_redist_region *rdreg; list_for_each_entry(rdreg, &d->rd_regions, list) { if ((base + size > rdreg->base) && (base < rdreg->base + vgic_v3_rd_region_size(kvm, rdreg))) return true; } return false; } /* * Check for overlapping regions and for regions crossing the end of memory * for base addresses which have already been set. */ bool vgic_v3_check_base(struct kvm *kvm) { struct vgic_dist *d = &kvm->arch.vgic; struct vgic_redist_region *rdreg; if (!IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) && d->vgic_dist_base + KVM_VGIC_V3_DIST_SIZE < d->vgic_dist_base) return false; list_for_each_entry(rdreg, &d->rd_regions, list) { size_t sz = vgic_v3_rd_region_size(kvm, rdreg); if (vgic_check_iorange(kvm, VGIC_ADDR_UNDEF, rdreg->base, SZ_64K, sz)) return false; } if (IS_VGIC_ADDR_UNDEF(d->vgic_dist_base)) return true; return !vgic_v3_rdist_overlap(kvm, d->vgic_dist_base, KVM_VGIC_V3_DIST_SIZE); } /** * vgic_v3_rdist_free_slot - Look up registered rdist regions and identify one * which has free space to put a new rdist region. * * @rd_regions: redistributor region list head * * A redistributor regions maps n redistributors, n = region size / (2 x 64kB). * Stride between redistributors is 0 and regions are filled in the index order. * * Return: the redist region handle, if any, that has space to map a new rdist * region. */ struct vgic_redist_region *vgic_v3_rdist_free_slot(struct list_head *rd_regions) { struct vgic_redist_region *rdreg; list_for_each_entry(rdreg, rd_regions, list) { if (!vgic_v3_redist_region_full(rdreg)) return rdreg; } return NULL; } struct vgic_redist_region *vgic_v3_rdist_region_from_index(struct kvm *kvm, u32 index) { struct list_head *rd_regions = &kvm->arch.vgic.rd_regions; struct vgic_redist_region *rdreg; list_for_each_entry(rdreg, rd_regions, list) { if (rdreg->index == index) return rdreg; } return NULL; } int vgic_v3_map_resources(struct kvm *kvm) { struct vgic_dist *dist = &kvm->arch.vgic; struct kvm_vcpu *vcpu; unsigned long c; kvm_for_each_vcpu(c, vcpu, kvm) { struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; if (IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr)) { kvm_debug("vcpu %ld redistributor base not set\n", c); return -ENXIO; } } if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base)) { kvm_debug("Need to set vgic distributor addresses first\n"); return -ENXIO; } if (!vgic_v3_check_base(kvm)) { kvm_debug("VGIC redist and dist frames overlap\n"); return -EINVAL; } /* * For a VGICv3 we require the userland to explicitly initialize * the VGIC before we need to use it. */ if (!vgic_initialized(kvm)) { return -EBUSY; } if (kvm_vgic_global_state.has_gicv4_1) vgic_v4_configure_vsgis(kvm); return 0; } DEFINE_STATIC_KEY_FALSE(vgic_v3_cpuif_trap); static int __init early_group0_trap_cfg(char *buf) { return kstrtobool(buf, &group0_trap); } early_param("kvm-arm.vgic_v3_group0_trap", early_group0_trap_cfg); static int __init early_group1_trap_cfg(char *buf) { return kstrtobool(buf, &group1_trap); } early_param("kvm-arm.vgic_v3_group1_trap", early_group1_trap_cfg); static int __init early_common_trap_cfg(char *buf) { return kstrtobool(buf, &common_trap); } early_param("kvm-arm.vgic_v3_common_trap", early_common_trap_cfg); static int __init early_gicv4_enable(char *buf) { return kstrtobool(buf, &gicv4_enable); } early_param("kvm-arm.vgic_v4_enable", early_gicv4_enable); static const struct midr_range broken_seis[] = { MIDR_ALL_VERSIONS(MIDR_APPLE_M1_ICESTORM), MIDR_ALL_VERSIONS(MIDR_APPLE_M1_FIRESTORM), MIDR_ALL_VERSIONS(MIDR_APPLE_M1_ICESTORM_PRO), MIDR_ALL_VERSIONS(MIDR_APPLE_M1_FIRESTORM_PRO), MIDR_ALL_VERSIONS(MIDR_APPLE_M1_ICESTORM_MAX), MIDR_ALL_VERSIONS(MIDR_APPLE_M1_FIRESTORM_MAX), MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD), MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE), MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_PRO), MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_PRO), MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_MAX), MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_MAX), {}, }; static bool vgic_v3_broken_seis(void) { return ((kvm_vgic_global_state.ich_vtr_el2 & ICH_VTR_SEIS_MASK) && is_midr_in_range_list(read_cpuid_id(), broken_seis)); } /** * vgic_v3_probe - probe for a VGICv3 compatible interrupt controller * @info: pointer to the GIC description * * Returns 0 if the VGICv3 has been probed successfully, returns an error code * otherwise */ int vgic_v3_probe(const struct gic_kvm_info *info) { u64 ich_vtr_el2 = kvm_call_hyp_ret(__vgic_v3_get_gic_config); bool has_v2; int ret; has_v2 = ich_vtr_el2 >> 63; ich_vtr_el2 = (u32)ich_vtr_el2; /* * The ListRegs field is 5 bits, but there is an architectural * maximum of 16 list registers. Just ignore bit 4... */ kvm_vgic_global_state.nr_lr = (ich_vtr_el2 & 0xf) + 1; kvm_vgic_global_state.can_emulate_gicv2 = false; kvm_vgic_global_state.ich_vtr_el2 = ich_vtr_el2; /* GICv4 support? */ if (info->has_v4) { kvm_vgic_global_state.has_gicv4 = gicv4_enable; kvm_vgic_global_state.has_gicv4_1 = info->has_v4_1 && gicv4_enable; kvm_info("GICv4%s support %sabled\n", kvm_vgic_global_state.has_gicv4_1 ? ".1" : "", gicv4_enable ? "en" : "dis"); } kvm_vgic_global_state.vcpu_base = 0; if (!info->vcpu.start) { kvm_info("GICv3: no GICV resource entry\n"); } else if (!has_v2) { pr_warn(FW_BUG "CPU interface incapable of MMIO access\n"); } else if (!PAGE_ALIGNED(info->vcpu.start)) { pr_warn("GICV physical address 0x%llx not page aligned\n", (unsigned long long)info->vcpu.start); } else if (kvm_get_mode() != KVM_MODE_PROTECTED) { kvm_vgic_global_state.vcpu_base = info->vcpu.start; kvm_vgic_global_state.can_emulate_gicv2 = true; ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2); if (ret) { kvm_err("Cannot register GICv2 KVM device.\n"); return ret; } kvm_info("vgic-v2@%llx\n", info->vcpu.start); } ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V3); if (ret) { kvm_err("Cannot register GICv3 KVM device.\n"); kvm_unregister_device_ops(KVM_DEV_TYPE_ARM_VGIC_V2); return ret; } if (kvm_vgic_global_state.vcpu_base == 0) kvm_info("disabling GICv2 emulation\n"); if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_30115)) { group0_trap = true; group1_trap = true; } if (vgic_v3_broken_seis()) { kvm_info("GICv3 with broken locally generated SEI\n"); kvm_vgic_global_state.ich_vtr_el2 &= ~ICH_VTR_SEIS_MASK; group0_trap = true; group1_trap = true; if (ich_vtr_el2 & ICH_VTR_TDS_MASK) dir_trap = true; else common_trap = true; } if (group0_trap || group1_trap || common_trap | dir_trap) { kvm_info("GICv3 sysreg trapping enabled ([%s%s%s%s], reduced performance)\n", group0_trap ? "G0" : "", group1_trap ? "G1" : "", common_trap ? "C" : "", dir_trap ? "D" : ""); static_branch_enable(&vgic_v3_cpuif_trap); } kvm_vgic_global_state.vctrl_base = NULL; kvm_vgic_global_state.type = VGIC_V3; kvm_vgic_global_state.max_gic_vcpus = VGIC_V3_MAX_CPUS; return 0; } void vgic_v3_load(struct kvm_vcpu *vcpu) { struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; /* * If dealing with a GICv2 emulation on GICv3, VMCR_EL2.VFIQen * is dependent on ICC_SRE_EL1.SRE, and we have to perform the * VMCR_EL2 save/restore in the world switch. */ if (likely(cpu_if->vgic_sre)) kvm_call_hyp(__vgic_v3_write_vmcr, cpu_if->vgic_vmcr); kvm_call_hyp(__vgic_v3_restore_aprs, cpu_if); if (has_vhe()) __vgic_v3_activate_traps(cpu_if); WARN_ON(vgic_v4_load(vcpu)); } void vgic_v3_vmcr_sync(struct kvm_vcpu *vcpu) { struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; if (likely(cpu_if->vgic_sre)) cpu_if->vgic_vmcr = kvm_call_hyp_ret(__vgic_v3_read_vmcr); } void vgic_v3_put(struct kvm_vcpu *vcpu) { struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; WARN_ON(vgic_v4_put(vcpu)); vgic_v3_vmcr_sync(vcpu); kvm_call_hyp(__vgic_v3_save_aprs, cpu_if); if (has_vhe()) __vgic_v3_deactivate_traps(cpu_if); }