/* * r8a73a4 clock framework support * * Copyright (C) 2013 Renesas Solutions Corp. * Copyright (C) 2013 Magnus Damm * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include "common.h" #include "clock.h" #define CPG_BASE 0xe6150000 #define CPG_LEN 0x270 #define SMSTPCR2 0xe6150138 #define SMSTPCR3 0xe615013c #define SMSTPCR4 0xe6150140 #define SMSTPCR5 0xe6150144 #define FRQCRA 0xE6150000 #define FRQCRB 0xE6150004 #define FRQCRC 0xE61500E0 #define VCLKCR1 0xE6150008 #define VCLKCR2 0xE615000C #define VCLKCR3 0xE615001C #define VCLKCR4 0xE6150014 #define VCLKCR5 0xE6150034 #define ZBCKCR 0xE6150010 #define SD0CKCR 0xE6150074 #define SD1CKCR 0xE6150078 #define SD2CKCR 0xE615007C #define MMC0CKCR 0xE6150240 #define MMC1CKCR 0xE6150244 #define FSIACKCR 0xE6150018 #define FSIBCKCR 0xE6150090 #define MPCKCR 0xe6150080 #define SPUVCKCR 0xE6150094 #define HSICKCR 0xE615026C #define M4CKCR 0xE6150098 #define PLLECR 0xE61500D0 #define PLL0CR 0xE61500D8 #define PLL1CR 0xE6150028 #define PLL2CR 0xE615002C #define PLL2SCR 0xE61501F4 #define PLL2HCR 0xE61501E4 #define CKSCR 0xE61500C0 #define CPG_MAP(o) ((o - CPG_BASE) + cpg_mapping.base) static struct clk_mapping cpg_mapping = { .phys = CPG_BASE, .len = CPG_LEN, }; static struct clk extalr_clk = { .rate = 32768, .mapping = &cpg_mapping, }; static struct clk extal1_clk = { .rate = 26000000, .mapping = &cpg_mapping, }; static struct clk extal2_clk = { .rate = 48000000, .mapping = &cpg_mapping, }; static struct sh_clk_ops followparent_clk_ops = { .recalc = followparent_recalc, }; static struct clk main_clk = { /* .parent will be set r8a73a4_clock_init */ .ops = &followparent_clk_ops, }; SH_CLK_RATIO(div2, 1, 2); SH_CLK_RATIO(div4, 1, 4); SH_FIXED_RATIO_CLK(main_div2_clk, main_clk, div2); SH_FIXED_RATIO_CLK(extal1_div2_clk, extal1_clk, div2); SH_FIXED_RATIO_CLK(extal2_div2_clk, extal2_clk, div2); SH_FIXED_RATIO_CLK(extal2_div4_clk, extal2_clk, div4); /* External FSIACK/FSIBCK clock */ static struct clk fsiack_clk = { }; static struct clk fsibck_clk = { }; /* * PLL clocks */ static struct clk *pll_parent_main[] = { [0] = &main_clk, [1] = &main_div2_clk }; static struct clk *pll_parent_main_extal[8] = { [0] = &main_div2_clk, [1] = &extal2_div2_clk, [3] = &extal2_div4_clk, [4] = &main_clk, [5] = &extal2_clk, }; static unsigned long pll_recalc(struct clk *clk) { unsigned long mult = 1; if (ioread32(CPG_MAP(PLLECR)) & (1 << clk->enable_bit)) mult = (((ioread32(clk->mapped_reg) >> 24) & 0x7f) + 1); return clk->parent->rate * mult; } static int pll_set_parent(struct clk *clk, struct clk *parent) { u32 val; int i, ret; if (!clk->parent_table || !clk->parent_num) return -EINVAL; /* Search the parent */ for (i = 0; i < clk->parent_num; i++) if (clk->parent_table[i] == parent) break; if (i == clk->parent_num) return -ENODEV; ret = clk_reparent(clk, parent); if (ret < 0) return ret; val = ioread32(clk->mapped_reg) & ~(((1 << clk->src_width) - 1) << clk->src_shift); iowrite32(val | i << clk->src_shift, clk->mapped_reg); return 0; } static struct sh_clk_ops pll_clk_ops = { .recalc = pll_recalc, .set_parent = pll_set_parent, }; #define PLL_CLOCK(name, p, pt, w, s, reg, e) \ static struct clk name = { \ .ops = &pll_clk_ops, \ .flags = CLK_ENABLE_ON_INIT, \ .parent = p, \ .parent_table = pt, \ .parent_num = ARRAY_SIZE(pt), \ .src_width = w, \ .src_shift = s, \ .enable_reg = (void __iomem *)reg, \ .enable_bit = e, \ .mapping = &cpg_mapping, \ } PLL_CLOCK(pll0_clk, &main_clk, pll_parent_main, 1, 20, PLL0CR, 0); PLL_CLOCK(pll1_clk, &main_clk, pll_parent_main, 1, 7, PLL1CR, 1); PLL_CLOCK(pll2_clk, &main_div2_clk, pll_parent_main_extal, 3, 5, PLL2CR, 2); PLL_CLOCK(pll2s_clk, &main_div2_clk, pll_parent_main_extal, 3, 5, PLL2SCR, 4); PLL_CLOCK(pll2h_clk, &main_div2_clk, pll_parent_main_extal, 3, 5, PLL2HCR, 5); SH_FIXED_RATIO_CLK(pll1_div2_clk, pll1_clk, div2); static atomic_t frqcr_lock; /* Several clocks need to access FRQCRB, have to lock */ static bool frqcr_kick_check(struct clk *clk) { return !(ioread32(CPG_MAP(FRQCRB)) & BIT(31)); } static int frqcr_kick_do(struct clk *clk) { int i; /* set KICK bit in FRQCRB to update hardware setting, check success */ iowrite32(ioread32(CPG_MAP(FRQCRB)) | BIT(31), CPG_MAP(FRQCRB)); for (i = 1000; i; i--) if (ioread32(CPG_MAP(FRQCRB)) & BIT(31)) cpu_relax(); else return 0; return -ETIMEDOUT; } static int zclk_set_rate(struct clk *clk, unsigned long rate) { void __iomem *frqcrc; int ret; unsigned long step, p_rate; u32 val; if (!clk->parent || !__clk_get(clk->parent)) return -ENODEV; if (!atomic_inc_and_test(&frqcr_lock) || !frqcr_kick_check(clk)) { ret = -EBUSY; goto done; } /* * Users are supposed to first call clk_set_rate() only with * clk_round_rate() results. So, we don't fix wrong rates here, but * guard against them anyway */ p_rate = clk_get_rate(clk->parent); if (rate == p_rate) { val = 0; } else { step = DIV_ROUND_CLOSEST(p_rate, 32); if (rate > p_rate || rate < step) { ret = -EINVAL; goto done; } val = 32 - rate / step; } frqcrc = clk->mapped_reg + (FRQCRC - (u32)clk->enable_reg); iowrite32((ioread32(frqcrc) & ~(clk->div_mask << clk->enable_bit)) | (val << clk->enable_bit), frqcrc); ret = frqcr_kick_do(clk); done: atomic_dec(&frqcr_lock); __clk_put(clk->parent); return ret; } static long zclk_round_rate(struct clk *clk, unsigned long rate) { /* * theoretical rate = parent rate * multiplier / 32, * where 1 <= multiplier <= 32. Therefore we should do * multiplier = rate * 32 / parent rate * rounded rate = parent rate * multiplier / 32. * However, multiplication before division won't fit in 32 bits, so * we sacrifice some precision by first dividing and then multiplying. * To find the nearest divisor we calculate both and pick up the best * one. This avoids 64-bit arithmetics. */ unsigned long step, mul_min, mul_max, rate_min, rate_max; rate_max = clk_get_rate(clk->parent); /* output freq <= parent */ if (rate >= rate_max) return rate_max; step = DIV_ROUND_CLOSEST(rate_max, 32); /* output freq >= parent / 32 */ if (step >= rate) return step; mul_min = rate / step; mul_max = DIV_ROUND_UP(rate, step); rate_min = step * mul_min; if (mul_max == mul_min) return rate_min; rate_max = step * mul_max; if (rate_max - rate < rate - rate_min) return rate_max; return rate_min; } static unsigned long zclk_recalc(struct clk *clk) { void __iomem *frqcrc = FRQCRC - (u32)clk->enable_reg + clk->mapped_reg; unsigned int max = clk->div_mask + 1; unsigned long val = ((ioread32(frqcrc) >> clk->enable_bit) & clk->div_mask); return DIV_ROUND_CLOSEST(clk_get_rate(clk->parent), max) * (max - val); } static struct sh_clk_ops zclk_ops = { .recalc = zclk_recalc, .set_rate = zclk_set_rate, .round_rate = zclk_round_rate, }; static struct clk z_clk = { .parent = &pll0_clk, .div_mask = 0x1f, .enable_bit = 8, /* We'll need to access FRQCRB and FRQCRC */ .enable_reg = (void __iomem *)FRQCRB, .ops = &zclk_ops, }; /* * It seems only 1/2 divider is usable in manual mode. 1/2 / 2/3 * switching is only available in auto-DVFS mode */ SH_FIXED_RATIO_CLK(pll0_div2_clk, pll0_clk, div2); static struct clk z2_clk = { .parent = &pll0_div2_clk, .div_mask = 0x1f, .enable_bit = 0, /* We'll need to access FRQCRB and FRQCRC */ .enable_reg = (void __iomem *)FRQCRB, .ops = &zclk_ops, }; static struct clk *main_clks[] = { &extalr_clk, &extal1_clk, &extal1_div2_clk, &extal2_clk, &extal2_div2_clk, &extal2_div4_clk, &main_clk, &main_div2_clk, &fsiack_clk, &fsibck_clk, &pll0_clk, &pll1_clk, &pll1_div2_clk, &pll2_clk, &pll2s_clk, &pll2h_clk, &z_clk, &pll0_div2_clk, &z2_clk, }; /* DIV4 */ static void div4_kick(struct clk *clk) { if (!WARN(!atomic_inc_and_test(&frqcr_lock), "FRQCR* lock broken!\n")) frqcr_kick_do(clk); atomic_dec(&frqcr_lock); } static int divisors[] = { 2, 3, 4, 6, 8, 12, 16, 18, 24, 0, 36, 48, 10}; static struct clk_div_mult_table div4_div_mult_table = { .divisors = divisors, .nr_divisors = ARRAY_SIZE(divisors), }; static struct clk_div4_table div4_table = { .div_mult_table = &div4_div_mult_table, .kick = div4_kick, }; enum { DIV4_I, DIV4_M3, DIV4_B, DIV4_M1, DIV4_M2, DIV4_ZX, DIV4_ZS, DIV4_HP, DIV4_NR }; static struct clk div4_clks[DIV4_NR] = { [DIV4_I] = SH_CLK_DIV4(&pll1_clk, FRQCRA, 20, 0x0dff, CLK_ENABLE_ON_INIT), [DIV4_M3] = SH_CLK_DIV4(&pll1_clk, FRQCRA, 12, 0x1dff, CLK_ENABLE_ON_INIT), [DIV4_B] = SH_CLK_DIV4(&pll1_clk, FRQCRA, 8, 0x0dff, CLK_ENABLE_ON_INIT), [DIV4_M1] = SH_CLK_DIV4(&pll1_clk, FRQCRA, 4, 0x1dff, 0), [DIV4_M2] = SH_CLK_DIV4(&pll1_clk, FRQCRA, 0, 0x1dff, 0), [DIV4_ZX] = SH_CLK_DIV4(&pll1_clk, FRQCRB, 12, 0x0dff, 0), [DIV4_ZS] = SH_CLK_DIV4(&pll1_clk, FRQCRB, 8, 0x0dff, 0), [DIV4_HP] = SH_CLK_DIV4(&pll1_clk, FRQCRB, 4, 0x0dff, 0), }; enum { DIV6_ZB, DIV6_SDHI0, DIV6_SDHI1, DIV6_SDHI2, DIV6_MMC0, DIV6_MMC1, DIV6_VCK1, DIV6_VCK2, DIV6_VCK3, DIV6_VCK4, DIV6_VCK5, DIV6_FSIA, DIV6_FSIB, DIV6_MP, DIV6_M4, DIV6_HSI, DIV6_SPUV, DIV6_NR }; static struct clk *div6_parents[8] = { [0] = &pll1_div2_clk, [1] = &pll2s_clk, [3] = &extal2_clk, [4] = &main_div2_clk, [6] = &extalr_clk, }; static struct clk *fsia_parents[4] = { [0] = &pll1_div2_clk, [1] = &pll2s_clk, [2] = &fsiack_clk, }; static struct clk *fsib_parents[4] = { [0] = &pll1_div2_clk, [1] = &pll2s_clk, [2] = &fsibck_clk, }; static struct clk *mp_parents[4] = { [0] = &pll1_div2_clk, [1] = &pll2s_clk, [2] = &extal2_clk, [3] = &extal2_clk, }; static struct clk *m4_parents[2] = { [0] = &pll2s_clk, }; static struct clk *hsi_parents[4] = { [0] = &pll2h_clk, [1] = &pll1_div2_clk, [3] = &pll2s_clk, }; /*** FIXME *** * SH_CLK_DIV6_EXT() macro doesn't care .mapping * but, it is necessary on R-Car (= ioremap() base CPG) * The difference between * SH_CLK_DIV6_EXT() <--> SH_CLK_MAP_DIV6_EXT() * is only .mapping */ #define SH_CLK_MAP_DIV6_EXT(_reg, _flags, _parents, \ _num_parents, _src_shift, _src_width) \ { \ .enable_reg = (void __iomem *)_reg, \ .enable_bit = 0, /* unused */ \ .flags = _flags | CLK_MASK_DIV_ON_DISABLE, \ .div_mask = SH_CLK_DIV6_MSK, \ .parent_table = _parents, \ .parent_num = _num_parents, \ .src_shift = _src_shift, \ .src_width = _src_width, \ .mapping = &cpg_mapping, \ } static struct clk div6_clks[DIV6_NR] = { [DIV6_ZB] = SH_CLK_MAP_DIV6_EXT(ZBCKCR, CLK_ENABLE_ON_INIT, div6_parents, 2, 7, 1), [DIV6_SDHI0] = SH_CLK_MAP_DIV6_EXT(SD0CKCR, 0, div6_parents, 2, 6, 2), [DIV6_SDHI1] = SH_CLK_MAP_DIV6_EXT(SD1CKCR, 0, div6_parents, 2, 6, 2), [DIV6_SDHI2] = SH_CLK_MAP_DIV6_EXT(SD2CKCR, 0, div6_parents, 2, 6, 2), [DIV6_MMC0] = SH_CLK_MAP_DIV6_EXT(MMC0CKCR, 0, div6_parents, 2, 6, 2), [DIV6_MMC1] = SH_CLK_MAP_DIV6_EXT(MMC1CKCR, 0, div6_parents, 2, 6, 2), [DIV6_VCK1] = SH_CLK_MAP_DIV6_EXT(VCLKCR1, 0, /* didn't care bit[6-7] */ div6_parents, ARRAY_SIZE(div6_parents), 12, 3), [DIV6_VCK2] = SH_CLK_MAP_DIV6_EXT(VCLKCR2, 0, /* didn't care bit[6-7] */ div6_parents, ARRAY_SIZE(div6_parents), 12, 3), [DIV6_VCK3] = SH_CLK_MAP_DIV6_EXT(VCLKCR3, 0, /* didn't care bit[6-7] */ div6_parents, ARRAY_SIZE(div6_parents), 12, 3), [DIV6_VCK4] = SH_CLK_MAP_DIV6_EXT(VCLKCR4, 0, /* didn't care bit[6-7] */ div6_parents, ARRAY_SIZE(div6_parents), 12, 3), [DIV6_VCK5] = SH_CLK_MAP_DIV6_EXT(VCLKCR5, 0, /* didn't care bit[6-7] */ div6_parents, ARRAY_SIZE(div6_parents), 12, 3), [DIV6_FSIA] = SH_CLK_MAP_DIV6_EXT(FSIACKCR, 0, fsia_parents, ARRAY_SIZE(fsia_parents), 6, 2), [DIV6_FSIB] = SH_CLK_MAP_DIV6_EXT(FSIBCKCR, 0, fsib_parents, ARRAY_SIZE(fsib_parents), 6, 2), [DIV6_MP] = SH_CLK_MAP_DIV6_EXT(MPCKCR, 0, /* it needs bit[9-11] control */ mp_parents, ARRAY_SIZE(mp_parents), 6, 2), /* pll2s will be selected always for M4 */ [DIV6_M4] = SH_CLK_MAP_DIV6_EXT(M4CKCR, 0, /* it needs bit[9] control */ m4_parents, ARRAY_SIZE(m4_parents), 6, 1), [DIV6_HSI] = SH_CLK_MAP_DIV6_EXT(HSICKCR, 0, /* it needs bit[9] control */ hsi_parents, ARRAY_SIZE(hsi_parents), 6, 2), [DIV6_SPUV] = SH_CLK_MAP_DIV6_EXT(SPUVCKCR, 0, mp_parents, ARRAY_SIZE(mp_parents), 6, 2), }; /* MSTP */ enum { MSTP218, MSTP217, MSTP216, MSTP207, MSTP206, MSTP204, MSTP203, MSTP329, MSTP323, MSTP318, MSTP317, MSTP316, MSTP315, MSTP314, MSTP313, MSTP312, MSTP305, MSTP300, MSTP411, MSTP410, MSTP409, MSTP522, MSTP515, MSTP_NR }; static struct clk mstp_clks[MSTP_NR] = { [MSTP204] = SH_CLK_MSTP32(&div6_clks[DIV6_MP], SMSTPCR2, 4, 0), /* SCIFA0 */ [MSTP203] = SH_CLK_MSTP32(&div6_clks[DIV6_MP], SMSTPCR2, 3, 0), /* SCIFA1 */ [MSTP206] = SH_CLK_MSTP32(&div6_clks[DIV6_MP], SMSTPCR2, 6, 0), /* SCIFB0 */ [MSTP207] = SH_CLK_MSTP32(&div6_clks[DIV6_MP], SMSTPCR2, 7, 0), /* SCIFB1 */ [MSTP216] = SH_CLK_MSTP32(&div6_clks[DIV6_MP], SMSTPCR2, 16, 0), /* SCIFB2 */ [MSTP217] = SH_CLK_MSTP32(&div6_clks[DIV6_MP], SMSTPCR2, 17, 0), /* SCIFB3 */ [MSTP218] = SH_CLK_MSTP32(&div4_clks[DIV4_HP], SMSTPCR2, 18, 0), /* DMAC */ [MSTP300] = SH_CLK_MSTP32(&div4_clks[DIV4_HP], SMSTPCR3, 0, 0), /* IIC2 */ [MSTP305] = SH_CLK_MSTP32(&div6_clks[DIV6_MMC1],SMSTPCR3, 5, 0), /* MMCIF1 */ [MSTP312] = SH_CLK_MSTP32(&div6_clks[DIV6_SDHI2],SMSTPCR3, 12, 0), /* SDHI2 */ [MSTP313] = SH_CLK_MSTP32(&div6_clks[DIV6_SDHI1],SMSTPCR3, 13, 0), /* SDHI1 */ [MSTP314] = SH_CLK_MSTP32(&div6_clks[DIV6_SDHI0],SMSTPCR3, 14, 0), /* SDHI0 */ [MSTP315] = SH_CLK_MSTP32(&div6_clks[DIV6_MMC0],SMSTPCR3, 15, 0), /* MMCIF0 */ [MSTP316] = SH_CLK_MSTP32(&div4_clks[DIV4_HP], SMSTPCR3, 16, 0), /* IIC6 */ [MSTP317] = SH_CLK_MSTP32(&div4_clks[DIV4_HP], SMSTPCR3, 17, 0), /* IIC7 */ [MSTP318] = SH_CLK_MSTP32(&div4_clks[DIV4_HP], SMSTPCR3, 18, 0), /* IIC0 */ [MSTP323] = SH_CLK_MSTP32(&div4_clks[DIV4_HP], SMSTPCR3, 23, 0), /* IIC1 */ [MSTP329] = SH_CLK_MSTP32(&extalr_clk, SMSTPCR3, 29, 0), /* CMT10 */ [MSTP409] = SH_CLK_MSTP32(&main_div2_clk, SMSTPCR4, 9, 0), /* IIC5 */ [MSTP410] = SH_CLK_MSTP32(&div4_clks[DIV4_HP], SMSTPCR4, 10, 0), /* IIC4 */ [MSTP411] = SH_CLK_MSTP32(&div4_clks[DIV4_HP], SMSTPCR4, 11, 0), /* IIC3 */ [MSTP522] = SH_CLK_MSTP32(&extal2_clk, SMSTPCR5, 22, 0), /* Thermal */ [MSTP515] = SH_CLK_MSTP32(&div4_clks[DIV4_HP], SMSTPCR5, 15, 0), /* IIC8 */ }; static struct clk_lookup lookups[] = { /* main clock */ CLKDEV_CON_ID("extal1", &extal1_clk), CLKDEV_CON_ID("extal1_div2", &extal1_div2_clk), CLKDEV_CON_ID("extal2", &extal2_clk), CLKDEV_CON_ID("extal2_div2", &extal2_div2_clk), CLKDEV_CON_ID("extal2_div4", &extal2_div4_clk), CLKDEV_CON_ID("fsiack", &fsiack_clk), CLKDEV_CON_ID("fsibck", &fsibck_clk), /* pll clock */ CLKDEV_CON_ID("pll1", &pll1_clk), CLKDEV_CON_ID("pll1_div2", &pll1_div2_clk), CLKDEV_CON_ID("pll2", &pll2_clk), CLKDEV_CON_ID("pll2s", &pll2s_clk), CLKDEV_CON_ID("pll2h", &pll2h_clk), /* CPU clock */ CLKDEV_DEV_ID("cpu0", &z_clk), /* DIV6 */ CLKDEV_CON_ID("zb", &div6_clks[DIV6_ZB]), CLKDEV_CON_ID("vck1", &div6_clks[DIV6_VCK1]), CLKDEV_CON_ID("vck2", &div6_clks[DIV6_VCK2]), CLKDEV_CON_ID("vck3", &div6_clks[DIV6_VCK3]), CLKDEV_CON_ID("vck4", &div6_clks[DIV6_VCK4]), CLKDEV_CON_ID("vck5", &div6_clks[DIV6_VCK5]), CLKDEV_CON_ID("fsia", &div6_clks[DIV6_FSIA]), CLKDEV_CON_ID("fsib", &div6_clks[DIV6_FSIB]), CLKDEV_CON_ID("mp", &div6_clks[DIV6_MP]), CLKDEV_CON_ID("m4", &div6_clks[DIV6_M4]), CLKDEV_CON_ID("hsi", &div6_clks[DIV6_HSI]), CLKDEV_CON_ID("spuv", &div6_clks[DIV6_SPUV]), /* MSTP */ CLKDEV_DEV_ID("sh-sci.0", &mstp_clks[MSTP204]), CLKDEV_DEV_ID("e6c40000.serial", &mstp_clks[MSTP204]), CLKDEV_DEV_ID("sh-sci.1", &mstp_clks[MSTP203]), CLKDEV_DEV_ID("e6c50000.serial", &mstp_clks[MSTP203]), CLKDEV_DEV_ID("sh-sci.2", &mstp_clks[MSTP206]), CLKDEV_DEV_ID("e6c20000.serial", &mstp_clks[MSTP206]), CLKDEV_DEV_ID("sh-sci.3", &mstp_clks[MSTP207]), CLKDEV_DEV_ID("e6c30000.serial", &mstp_clks[MSTP207]), CLKDEV_DEV_ID("sh-sci.4", &mstp_clks[MSTP216]), CLKDEV_DEV_ID("e6ce0000.serial", &mstp_clks[MSTP216]), CLKDEV_DEV_ID("sh-sci.5", &mstp_clks[MSTP217]), CLKDEV_DEV_ID("e6cf0000.serial", &mstp_clks[MSTP217]), CLKDEV_DEV_ID("sh-dma-engine.0", &mstp_clks[MSTP218]), CLKDEV_DEV_ID("e6700020.dma-controller", &mstp_clks[MSTP218]), CLKDEV_DEV_ID("rcar_thermal", &mstp_clks[MSTP522]), CLKDEV_DEV_ID("e6520000.i2c", &mstp_clks[MSTP300]), CLKDEV_DEV_ID("sh_mmcif.1", &mstp_clks[MSTP305]), CLKDEV_DEV_ID("ee220000.mmc", &mstp_clks[MSTP305]), CLKDEV_DEV_ID("sh_mobile_sdhi.2", &mstp_clks[MSTP312]), CLKDEV_DEV_ID("ee140000.sd", &mstp_clks[MSTP312]), CLKDEV_DEV_ID("sh_mobile_sdhi.1", &mstp_clks[MSTP313]), CLKDEV_DEV_ID("ee120000.sd", &mstp_clks[MSTP313]), CLKDEV_DEV_ID("sh_mobile_sdhi.0", &mstp_clks[MSTP314]), CLKDEV_DEV_ID("ee100000.sd", &mstp_clks[MSTP314]), CLKDEV_DEV_ID("sh_mmcif.0", &mstp_clks[MSTP315]), CLKDEV_DEV_ID("ee200000.mmc", &mstp_clks[MSTP315]), CLKDEV_DEV_ID("e6550000.i2c", &mstp_clks[MSTP316]), CLKDEV_DEV_ID("e6560000.i2c", &mstp_clks[MSTP317]), CLKDEV_DEV_ID("e6500000.i2c", &mstp_clks[MSTP318]), CLKDEV_DEV_ID("e6510000.i2c", &mstp_clks[MSTP323]), CLKDEV_ICK_ID("fck", "sh-cmt-48-gen2.1", &mstp_clks[MSTP329]), CLKDEV_ICK_ID("fck", "e6130000.timer", &mstp_clks[MSTP329]), CLKDEV_DEV_ID("e60b0000.i2c", &mstp_clks[MSTP409]), CLKDEV_DEV_ID("e6540000.i2c", &mstp_clks[MSTP410]), CLKDEV_DEV_ID("e6530000.i2c", &mstp_clks[MSTP411]), CLKDEV_DEV_ID("e6570000.i2c", &mstp_clks[MSTP515]), /* for DT */ CLKDEV_DEV_ID("e61f0000.thermal", &mstp_clks[MSTP522]), }; void __init r8a73a4_clock_init(void) { void __iomem *reg; int k, ret = 0; u32 ckscr; atomic_set(&frqcr_lock, -1); reg = ioremap_nocache(CKSCR, PAGE_SIZE); BUG_ON(!reg); ckscr = ioread32(reg); iounmap(reg); switch ((ckscr >> 28) & 0x3) { case 0: main_clk.parent = &extal1_clk; break; case 1: main_clk.parent = &extal1_div2_clk; break; case 2: main_clk.parent = &extal2_clk; break; case 3: main_clk.parent = &extal2_div2_clk; break; } for (k = 0; !ret && (k < ARRAY_SIZE(main_clks)); k++) ret = clk_register(main_clks[k]); if (!ret) ret = sh_clk_div4_register(div4_clks, DIV4_NR, &div4_table); if (!ret) ret = sh_clk_div6_reparent_register(div6_clks, DIV6_NR); if (!ret) ret = sh_clk_mstp_register(mstp_clks, MSTP_NR); clkdev_add_table(lookups, ARRAY_SIZE(lookups)); if (!ret) shmobile_clk_init(); else panic("failed to setup r8a73a4 clocks\n"); }