summaryrefslogtreecommitdiffstats
path: root/mm/page_alloc.c
AgeCommit message (Collapse)Author
2015-03-18mm: when stealing freepages, also take pages created by splitting buddy pageVlastimil Babka
commit 99592d598eca62bdbbf62b59941c189176dfc614 upstream. When studying page stealing, I noticed some weird looking decisions in try_to_steal_freepages(). The first I assume is a bug (Patch 1), the following two patches were driven by evaluation. Testing was done with stress-highalloc of mmtests, using the mm_page_alloc_extfrag tracepoint and postprocessing to get counts of how often page stealing occurs for individual migratetypes, and what migratetypes are used for fallbacks. Arguably, the worst case of page stealing is when UNMOVABLE allocation steals from MOVABLE pageblock. RECLAIMABLE allocation stealing from MOVABLE allocation is also not ideal, so the goal is to minimize these two cases. The evaluation of v2 wasn't always clear win and Joonsoo questioned the results. Here I used different baseline which includes RFC compaction improvements from [1]. I found that the compaction improvements reduce variability of stress-highalloc, so there's less noise in the data. First, let's look at stress-highalloc configured to do sync compaction, and how these patches reduce page stealing events during the test. First column is after fresh reboot, other two are reiterations of test without reboot. That was all accumulater over 5 re-iterations (so the benchmark was run 5x3 times with 5 fresh restarts). Baseline: 3.19-rc4 3.19-rc4 3.19-rc4 5-nothp-1 5-nothp-2 5-nothp-3 Page alloc extfrag event 10264225 8702233 10244125 Extfrag fragmenting 10263271 8701552 10243473 Extfrag fragmenting for unmovable 13595 17616 15960 Extfrag fragmenting unmovable placed with movable 7989 12193 8447 Extfrag fragmenting for reclaimable 658 1840 1817 Extfrag fragmenting reclaimable placed with movable 558 1677 1679 Extfrag fragmenting for movable 10249018 8682096 10225696 With Patch 1: 3.19-rc4 3.19-rc4 3.19-rc4 6-nothp-1 6-nothp-2 6-nothp-3 Page alloc extfrag event 11834954 9877523 9774860 Extfrag fragmenting 11833993 9876880 9774245 Extfrag fragmenting for unmovable 7342 16129 11712 Extfrag fragmenting unmovable placed with movable 4191 10547 6270 Extfrag fragmenting for reclaimable 373 1130 923 Extfrag fragmenting reclaimable placed with movable 302 906 738 Extfrag fragmenting for movable 11826278 9859621 9761610 With Patch 2: 3.19-rc4 3.19-rc4 3.19-rc4 7-nothp-1 7-nothp-2 7-nothp-3 Page alloc extfrag event 4725990 3668793 3807436 Extfrag fragmenting 4725104 3668252 3806898 Extfrag fragmenting for unmovable 6678 7974 7281 Extfrag fragmenting unmovable placed with movable 2051 3829 4017 Extfrag fragmenting for reclaimable 429 1208 1278 Extfrag fragmenting reclaimable placed with movable 369 976 1034 Extfrag fragmenting for movable 4717997 3659070 3798339 With Patch 3: 3.19-rc4 3.19-rc4 3.19-rc4 8-nothp-1 8-nothp-2 8-nothp-3 Page alloc extfrag event 5016183 4700142 3850633 Extfrag fragmenting 5015325 4699613 3850072 Extfrag fragmenting for unmovable 1312 3154 3088 Extfrag fragmenting unmovable placed with movable 1115 2777 2714 Extfrag fragmenting for reclaimable 437 1193 1097 Extfrag fragmenting reclaimable placed with movable 330 969 879 Extfrag fragmenting for movable 5013576 4695266 3845887 In v2 we've seen apparent regression with Patch 1 for unmovable events, this is now gone, suggesting it was indeed noise. Here, each patch improves the situation for unmovable events. Reclaimable is improved by patch 1 and then either the same modulo noise, or perhaps sligtly worse - a small price for unmovable improvements, IMHO. The number of movable allocations falling back to other migratetypes is most noisy, but it's reduced to half at Patch 2 nevertheless. These are least critical as compaction can move them around. If we look at success rates, the patches don't affect them, that didn't change. Baseline: 3.19-rc4 3.19-rc4 3.19-rc4 5-nothp-1 5-nothp-2 5-nothp-3 Success 1 Min 49.00 ( 0.00%) 42.00 ( 14.29%) 41.00 ( 16.33%) Success 1 Mean 51.00 ( 0.00%) 45.00 ( 11.76%) 42.60 ( 16.47%) Success 1 Max 55.00 ( 0.00%) 51.00 ( 7.27%) 46.00 ( 16.36%) Success 2 Min 53.00 ( 0.00%) 47.00 ( 11.32%) 44.00 ( 16.98%) Success 2 Mean 59.60 ( 0.00%) 50.80 ( 14.77%) 48.20 ( 19.13%) Success 2 Max 64.00 ( 0.00%) 56.00 ( 12.50%) 52.00 ( 18.75%) Success 3 Min 84.00 ( 0.00%) 82.00 ( 2.38%) 78.00 ( 7.14%) Success 3 Mean 85.60 ( 0.00%) 82.80 ( 3.27%) 79.40 ( 7.24%) Success 3 Max 86.00 ( 0.00%) 83.00 ( 3.49%) 80.00 ( 6.98%) Patch 1: 3.19-rc4 3.19-rc4 3.19-rc4 6-nothp-1 6-nothp-2 6-nothp-3 Success 1 Min 49.00 ( 0.00%) 44.00 ( 10.20%) 44.00 ( 10.20%) Success 1 Mean 51.80 ( 0.00%) 46.00 ( 11.20%) 45.80 ( 11.58%) Success 1 Max 54.00 ( 0.00%) 49.00 ( 9.26%) 49.00 ( 9.26%) Success 2 Min 58.00 ( 0.00%) 49.00 ( 15.52%) 48.00 ( 17.24%) Success 2 Mean 60.40 ( 0.00%) 51.80 ( 14.24%) 50.80 ( 15.89%) Success 2 Max 63.00 ( 0.00%) 54.00 ( 14.29%) 55.00 ( 12.70%) Success 3 Min 84.00 ( 0.00%) 81.00 ( 3.57%) 79.00 ( 5.95%) Success 3 Mean 85.00 ( 0.00%) 81.60 ( 4.00%) 79.80 ( 6.12%) Success 3 Max 86.00 ( 0.00%) 82.00 ( 4.65%) 82.00 ( 4.65%) Patch 2: 3.19-rc4 3.19-rc4 3.19-rc4 7-nothp-1 7-nothp-2 7-nothp-3 Success 1 Min 50.00 ( 0.00%) 44.00 ( 12.00%) 39.00 ( 22.00%) Success 1 Mean 52.80 ( 0.00%) 45.60 ( 13.64%) 42.40 ( 19.70%) Success 1 Max 55.00 ( 0.00%) 46.00 ( 16.36%) 47.00 ( 14.55%) Success 2 Min 52.00 ( 0.00%) 48.00 ( 7.69%) 45.00 ( 13.46%) Success 2 Mean 53.40 ( 0.00%) 49.80 ( 6.74%) 48.80 ( 8.61%) Success 2 Max 57.00 ( 0.00%) 52.00 ( 8.77%) 52.00 ( 8.77%) Success 3 Min 84.00 ( 0.00%) 81.00 ( 3.57%) 79.00 ( 5.95%) Success 3 Mean 85.00 ( 0.00%) 82.40 ( 3.06%) 79.60 ( 6.35%) Success 3 Max 86.00 ( 0.00%) 83.00 ( 3.49%) 80.00 ( 6.98%) Patch 3: 3.19-rc4 3.19-rc4 3.19-rc4 8-nothp-1 8-nothp-2 8-nothp-3 Success 1 Min 46.00 ( 0.00%) 44.00 ( 4.35%) 42.00 ( 8.70%) Success 1 Mean 50.20 ( 0.00%) 45.60 ( 9.16%) 44.00 ( 12.35%) Success 1 Max 52.00 ( 0.00%) 47.00 ( 9.62%) 47.00 ( 9.62%) Success 2 Min 53.00 ( 0.00%) 49.00 ( 7.55%) 48.00 ( 9.43%) Success 2 Mean 55.80 ( 0.00%) 50.60 ( 9.32%) 49.00 ( 12.19%) Success 2 Max 59.00 ( 0.00%) 52.00 ( 11.86%) 51.00 ( 13.56%) Success 3 Min 84.00 ( 0.00%) 80.00 ( 4.76%) 79.00 ( 5.95%) Success 3 Mean 85.40 ( 0.00%) 81.60 ( 4.45%) 80.40 ( 5.85%) Success 3 Max 87.00 ( 0.00%) 83.00 ( 4.60%) 82.00 ( 5.75%) While there's no improvement here, I consider reduced fragmentation events to be worth on its own. Patch 2 also seems to reduce scanning for free pages, and migrations in compaction, suggesting it has somewhat less work to do: Patch 1: Compaction stalls 4153 3959 3978 Compaction success 1523 1441 1446 Compaction failures 2630 2517 2531 Page migrate success 4600827 4943120 5104348 Page migrate failure 19763 16656 17806 Compaction pages isolated 9597640 10305617 10653541 Compaction migrate scanned 77828948 86533283 87137064 Compaction free scanned 517758295 521312840 521462251 Compaction cost 5503 5932 6110 Patch 2: Compaction stalls 3800 3450 3518 Compaction success 1421 1316 1317 Compaction failures 2379 2134 2201 Page migrate success 4160421 4502708 4752148 Page migrate failure 19705 14340 14911 Compaction pages isolated 8731983 9382374 9910043 Compaction migrate scanned 98362797 96349194 98609686 Compaction free scanned 496512560 469502017 480442545 Compaction cost 5173 5526 5811 As with v2, /proc/pagetypeinfo appears unaffected with respect to numbers of unmovable and reclaimable pageblocks. Configuring the benchmark to allocate like THP page fault (i.e. no sync compaction) gives much noisier results for iterations 2 and 3 after reboot. This is not so surprising given how [1] offers lower improvements in this scenario due to less restarts after deferred compaction which would change compaction pivot. Baseline: 3.19-rc4 3.19-rc4 3.19-rc4 5-thp-1 5-thp-2 5-thp-3 Page alloc extfrag event 8148965 6227815 6646741 Extfrag fragmenting 8147872 6227130 6646117 Extfrag fragmenting for unmovable 10324 12942 15975 Extfrag fragmenting unmovable placed with movable 5972 8495 10907 Extfrag fragmenting for reclaimable 601 1707 2210 Extfrag fragmenting reclaimable placed with movable 520 1570 2000 Extfrag fragmenting for movable 8136947 6212481 6627932 Patch 1: 3.19-rc4 3.19-rc4 3.19-rc4 6-thp-1 6-thp-2 6-thp-3 Page alloc extfrag event 8345457 7574471 7020419 Extfrag fragmenting 8343546 7573777 7019718 Extfrag fragmenting for unmovable 10256 18535 30716 Extfrag fragmenting unmovable placed with movable 6893 11726 22181 Extfrag fragmenting for reclaimable 465 1208 1023 Extfrag fragmenting reclaimable placed with movable 353 996 843 Extfrag fragmenting for movable 8332825 7554034 6987979 Patch 2: 3.19-rc4 3.19-rc4 3.19-rc4 7-thp-1 7-thp-2 7-thp-3 Page alloc extfrag event 3512847 3020756 2891625 Extfrag fragmenting 3511940 3020185 2891059 Extfrag fragmenting for unmovable 9017 6892 6191 Extfrag fragmenting unmovable placed with movable 1524 3053 2435 Extfrag fragmenting for reclaimable 445 1081 1160 Extfrag fragmenting reclaimable placed with movable 375 918 986 Extfrag fragmenting for movable 3502478 3012212 2883708 Patch 3: 3.19-rc4 3.19-rc4 3.19-rc4 8-thp-1 8-thp-2 8-thp-3 Page alloc extfrag event 3181699 3082881 2674164 Extfrag fragmenting 3180812 3082303 2673611 Extfrag fragmenting for unmovable 1201 4031 4040 Extfrag fragmenting unmovable placed with movable 974 3611 3645 Extfrag fragmenting for reclaimable 478 1165 1294 Extfrag fragmenting reclaimable placed with movable 387 985 1030 Extfrag fragmenting for movable 3179133 3077107 2668277 The improvements for first iteration are clear, the rest is much noisier and can appear like regression for Patch 1. Anyway, patch 2 rectifies it. Allocation success rates are again unaffected so there's no point in making this e-mail any longer. [1] http://marc.info/?l=linux-mm&m=142166196321125&w=2 This patch (of 3): When __rmqueue_fallback() is called to allocate a page of order X, it will find a page of order Y >= X of a fallback migratetype, which is different from the desired migratetype. With the help of try_to_steal_freepages(), it may change the migratetype (to the desired one) also of: 1) all currently free pages in the pageblock containing the fallback page 2) the fallback pageblock itself 3) buddy pages created by splitting the fallback page (when Y > X) These decisions take the order Y into account, as well as the desired migratetype, with the goal of preventing multiple fallback allocations that could e.g. distribute UNMOVABLE allocations among multiple pageblocks. Originally, decision for 1) has implied the decision for 3). Commit 47118af076f6 ("mm: mmzone: MIGRATE_CMA migration type added") changed that (probably unintentionally) so that the buddy pages in case 3) are always changed to the desired migratetype, except for CMA pageblocks. Commit fef903efcf0c ("mm/page_allo.c: restructure free-page stealing code and fix a bug") did some refactoring and added a comment that the case of 3) is intended. Commit 0cbef29a7821 ("mm: __rmqueue_fallback() should respect pageblock type") removed the comment and tried to restore the original behavior where 1) implies 3), but due to the previous refactoring, the result is instead that only 2) implies 3) - and the conditions for 2) are less frequently met than conditions for 1). This may increase fragmentation in situations where the code decides to steal all free pages from the pageblock (case 1)), but then gives back the buddy pages produced by splitting. This patch restores the original intended logic where 1) implies 3). During testing with stress-highalloc from mmtests, this has shown to decrease the number of events where UNMOVABLE and RECLAIMABLE allocations steal from MOVABLE pageblocks, which can lead to permanent fragmentation. In some cases it has increased the number of events when MOVABLE allocations steal from UNMOVABLE or RECLAIMABLE pageblocks, but these are fixable by sync compaction and thus less harmful. Note that evaluation has shown that the behavior introduced by 47118af076f6 for buddy pages in case 3) is actually even better than the original logic, so the following patch will introduce it properly once again. For stable backports of this patch it makes thus sense to only fix versions containing 0cbef29a7821. [iamjoonsoo.kim@lge.com: tracepoint fix] Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Acked-by: Minchan Kim <minchan@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-01-29mm: page_alloc: reduce cost of the fair zone allocation policyMel Gorman
commit 4ffeaf3560a52b4a69cc7909873d08c0ef5909d4 upstream. The fair zone allocation policy round-robins allocations between zones within a node to avoid age inversion problems during reclaim. If the first allocation fails, the batch counts are reset and a second attempt made before entering the slow path. One assumption made with this scheme is that batches expire at roughly the same time and the resets each time are justified. This assumption does not hold when zones reach their low watermark as the batches will be consumed at uneven rates. Allocation failure due to watermark depletion result in additional zonelist scans for the reset and another watermark check before hitting the slowpath. On UMA, the benefit is negligible -- around 0.25%. On 4-socket NUMA machine it's variable due to the variability of measuring overhead with the vmstat changes. The system CPU overhead comparison looks like 3.16.0-rc3 3.16.0-rc3 3.16.0-rc3 vanilla vmstat-v5 lowercost-v5 User 746.94 774.56 802.00 System 65336.22 32847.27 40852.33 Elapsed 27553.52 27415.04 27368.46 However it is worth noting that the overall benchmark still completed faster and intuitively it makes sense to take as few passes as possible through the zonelists. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-01-29mm: page_alloc: abort fair zone allocation policy when remotes nodes are ↵Mel Gorman
encountered commit f7b5d647946aae1647bf5cd26c16b3a793c1ac49 upstream. The purpose of numa_zonelist_order=zone is to preserve lower zones for use with 32-bit devices. If locality is preferred then the numa_zonelist_order=node policy should be used. Unfortunately, the fair zone allocation policy overrides this by skipping zones on remote nodes until the lower one is found. While this makes sense from a page aging and performance perspective, it breaks the expected zonelist policy. This patch restores the expected behaviour for zone-list ordering. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-01-29mm: move zone->pages_scanned into a vmstat counterMel Gorman
commit 0d5d823ab4e608ec7b52ac4410de4cb74bbe0edd upstream. zone->pages_scanned is a write-intensive cache line during page reclaim and it's also updated during page free. Move the counter into vmstat to take advantage of the per-cpu updates and do not update it in the free paths unless necessary. On a small UMA machine running tiobench the difference is marginal. On a 4-node machine the overhead is more noticable. Note that automatic NUMA balancing was disabled for this test as otherwise the system CPU overhead is unpredictable. 3.16.0-rc3 3.16.0-rc3 3.16.0-rc3 vanillarearrange-v5 vmstat-v5 User 746.94 759.78 774.56 System 65336.22 58350.98 32847.27 Elapsed 27553.52 27282.02 27415.04 Note that the overhead reduction will vary depending on where exactly pages are allocated and freed. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-01-29mm: rearrange zone fields into read-only, page alloc, statistics and page ↵Mel Gorman
reclaim lines commit 3484b2de9499df23c4604a513b36f96326ae81ad upstream. The arrangement of struct zone has changed over time and now it has reached the point where there is some inappropriate sharing going on. On x86-64 for example o The zone->node field is shared with the zone lock and zone->node is accessed frequently from the page allocator due to the fair zone allocation policy. o span_seqlock is almost never used by shares a line with free_area o Some zone statistics share a cache line with the LRU lock so reclaim-intensive and allocator-intensive workloads can bounce the cache line on a stat update This patch rearranges struct zone to put read-only and read-mostly fields together and then splits the page allocator intensive fields, the zone statistics and the page reclaim intensive fields into their own cache lines. Note that the type of lowmem_reserve changes due to the watermark calculations being signed and avoiding a signed/unsigned conversion there. On the test configuration I used the overall size of struct zone shrunk by one cache line. On smaller machines, this is not likely to be noticable. However, on a 4-node NUMA machine running tiobench the system CPU overhead is reduced by this patch. 3.16.0-rc3 3.16.0-rc3 vanillarearrange-v5r9 User 746.94 759.78 System 65336.22 58350.98 Elapsed 27553.52 27282.02 Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-01-29mm: page_alloc: lookup pageblock migratetype with IRQs enabled during freeMel Gorman
commit cfc47a2803db42140167b92d991ef04018e162c7 upstream. get_pageblock_migratetype() is called during free with IRQs disabled. This is unnecessary and disables IRQs for longer than necessary. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Jan Kara <jack@suse.cz> Cc: Michal Hocko <mhocko@suse.cz> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Theodore Ts'o <tytso@mit.edu> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-01-29mm: page_alloc: convert hot/cold parameter and immediate callers to boolMel Gorman
commit b745bc85f21ea707e4ea1a91948055fa3e72c77b upstream. cold is a bool, make it one. Make the likely case the "if" part of the block instead of the else as according to the optimisation manual this is preferred. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jan Kara <jack@suse.cz> Cc: Michal Hocko <mhocko@suse.cz> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Theodore Ts'o <tytso@mit.edu> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-01-29mm: page_alloc: reduce number of times page_to_pfn is calledMel Gorman
commit dc4b0caff24d9b2918e9f27bc65499ee63187eba upstream. In the free path we calculate page_to_pfn multiple times. Reduce that. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Jan Kara <jack@suse.cz> Cc: Michal Hocko <mhocko@suse.cz> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Theodore Ts'o <tytso@mit.edu> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-01-29mm: page_alloc: use unsigned int for order in more placesMel Gorman
commit 7aeb09f9104b760fc53c98cb7d20d06640baf9e6 upstream. X86 prefers the use of unsigned types for iterators and there is a tendency to mix whether a signed or unsigned type if used for page order. This converts a number of sites in mm/page_alloc.c to use unsigned int for order where possible. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jan Kara <jack@suse.cz> Cc: Michal Hocko <mhocko@suse.cz> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Theodore Ts'o <tytso@mit.edu> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-01-29mm: page_alloc: take the ALLOC_NO_WATERMARK check out of the fast pathMel Gorman
commit 5dab29113ca56335c78be3f98bf5ddf2ef8eb6a6 upstream. ALLOC_NO_WATERMARK is set in a few cases. Always by kswapd, always for __GFP_MEMALLOC, sometimes for swap-over-nfs, tasks etc. Each of these cases are relatively rare events but the ALLOC_NO_WATERMARK check is an unlikely branch in the fast path. This patch moves the check out of the fast path and after it has been determined that the watermarks have not been met. This helps the common fast path at the cost of making the slow path slower and hitting kswapd with a performance cost. It's a reasonable tradeoff. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jan Kara <jack@suse.cz> Cc: Michal Hocko <mhocko@suse.cz> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Theodore Ts'o <tytso@mit.edu> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-01-29mm: page_alloc: only check the alloc flags and gfp_mask for dirty onceMel Gorman
commit a6e21b14f22041382e832d30deda6f26f37b1097 upstream. Currently it's calculated once per zone in the zonelist. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jan Kara <jack@suse.cz> Cc: Michal Hocko <mhocko@suse.cz> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Theodore Ts'o <tytso@mit.edu> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-01-29mm: page_alloc: only check the zone id check if pages are buddiesMel Gorman
commit d34c5fa06fade08a689fc171bf756fba2858ae73 upstream. A node/zone index is used to check if pages are compatible for merging but this happens unconditionally even if the buddy page is not free. Defer the calculation as long as possible. Ideally we would check the zone boundary but nodes can overlap. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Rik van Riel <riel@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jan Kara <jack@suse.cz> Cc: Michal Hocko <mhocko@suse.cz> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Theodore Ts'o <tytso@mit.edu> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-01-29mm: page_alloc: calculate classzone_idx once from the zonelist refMel Gorman
commit d8846374a85f4290a473a4e2a64c1ba046c4a0e1 upstream. There is no need to calculate zone_idx(preferred_zone) multiple times or use the pgdat to figure it out. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jan Kara <jack@suse.cz> Cc: Michal Hocko <mhocko@suse.cz> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Theodore Ts'o <tytso@mit.edu> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-01-29mm: page_alloc: use jump labels to avoid checking number_of_cpusetsMel Gorman
commit 664eeddeef6539247691197c1ac124d4aa872ab6 upstream. If cpusets are not in use then we still check a global variable on every page allocation. Use jump labels to avoid the overhead. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jan Kara <jack@suse.cz> Cc: Michal Hocko <mhocko@suse.cz> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Theodore Ts'o <tytso@mit.edu> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-01-29mm: page_alloc: do not treat a zone that cannot be used for dirty pages as ↵Mel Gorman
"full" commit 800a1e750c7b04c2aa2459afca77e936e01c0029 upstream. If a zone cannot be used for a dirty page then it gets marked "full" which is cached in the zlc and later potentially skipped by allocation requests that have nothing to do with dirty zones. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-01-29mm: page_alloc: do not update zlc unless the zlc is activeMel Gorman
commit 65bb371984d6a2c909244eb749e482bb40b72e36 upstream. The zlc is used on NUMA machines to quickly skip over zones that are full. However it is always updated, even for the first zone scanned when the zlc might not even be active. As it's a write to a bitmap that potentially bounces cache line it's deceptively expensive and most machines will not care. Only update the zlc if it was active. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-11-21mm/page_alloc: prevent MIGRATE_RESERVE pages from being misplacedVlastimil Babka
commit 5bcc9f86ef09a933255ee66bd899d4601785dad5 upstream. For the MIGRATE_RESERVE pages, it is useful when they do not get misplaced on free_list of other migratetype, otherwise they might get allocated prematurely and e.g. fragment the MIGRATE_RESEVE pageblocks. While this cannot be avoided completely when allocating new MIGRATE_RESERVE pageblocks in min_free_kbytes sysctl handler, we should prevent the misplacement where possible. Currently, it is possible for the misplacement to happen when a MIGRATE_RESERVE page is allocated on pcplist through rmqueue_bulk() as a fallback for other desired migratetype, and then later freed back through free_pcppages_bulk() without being actually used. This happens because free_pcppages_bulk() uses get_freepage_migratetype() to choose the free_list, and rmqueue_bulk() calls set_freepage_migratetype() with the *desired* migratetype and not the page's original MIGRATE_RESERVE migratetype. This patch fixes the problem by moving the call to set_freepage_migratetype() from rmqueue_bulk() down to __rmqueue_smallest() and __rmqueue_fallback() where the actual page's migratetype (e.g. from which free_list the page is taken from) is used. Note that this migratetype might be different from the pageblock's migratetype due to freepage stealing decisions. This is OK, as page stealing never uses MIGRATE_RESERVE as a fallback, and also takes care to leave all MIGRATE_CMA pages on the correct freelist. Therefore, as an additional benefit, the call to get_pageblock_migratetype() from rmqueue_bulk() when CMA is enabled, can be removed completely. This relies on the fact that MIGRATE_CMA pageblocks are created only during system init, and the above. The related is_migrate_isolate() check is also unnecessary, as memory isolation has other ways to move pages between freelists, and drain pcp lists containing pages that should be isolated. The buffered_rmqueue() can also benefit from calling get_freepage_migratetype() instead of get_pageblock_migratetype(). Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reported-by: Yong-Taek Lee <ytk.lee@samsung.com> Reported-by: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com> Suggested-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Suggested-by: Mel Gorman <mgorman@suse.de> Acked-by: Minchan Kim <minchan@kernel.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: "Wang, Yalin" <Yalin.Wang@sonymobile.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-11-21mm, compaction: embed migration mode in compact_controlDavid Rientjes
commit e0b9daeb453e602a95ea43853dc12d385558ce1f upstream. We're going to want to manipulate the migration mode for compaction in the page allocator, and currently compact_control's sync field is only a bool. Currently, we only do MIGRATE_ASYNC or MIGRATE_SYNC_LIGHT compaction depending on the value of this bool. Convert the bool to enum migrate_mode and pass the migration mode in directly. Later, we'll want to avoid MIGRATE_SYNC_LIGHT for thp allocations in the pagefault patch to avoid unnecessary latency. This also alters compaction triggered from sysfs, either for the entire system or for a node, to force MIGRATE_SYNC. [akpm@linux-foundation.org: fix build] [iamjoonsoo.kim@lge.com: use MIGRATE_SYNC in alloc_contig_range()] Signed-off-by: David Rientjes <rientjes@google.com> Suggested-by: Mel Gorman <mgorman@suse.de> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Greg Thelen <gthelen@google.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-11-21mm, migration: add destination page freeing callbackDavid Rientjes
commit 68711a746345c44ae00c64d8dbac6a9ce13ac54a upstream. Memory migration uses a callback defined by the caller to determine how to allocate destination pages. When migration fails for a source page, however, it frees the destination page back to the system. This patch adds a memory migration callback defined by the caller to determine how to free destination pages. If a caller, such as memory compaction, builds its own freelist for migration targets, this can reuse already freed memory instead of scanning additional memory. If the caller provides a function to handle freeing of destination pages, it is called when page migration fails. If the caller passes NULL then freeing back to the system will be handled as usual. This patch introduces no functional change. Signed-off-by: David Rientjes <rientjes@google.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Mel Gorman <mgorman@suse.de> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Greg Thelen <gthelen@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-11-14mm: page_alloc: fix zone allocation fairness on UPJohannes Weiner
commit abe5f972912d086c080be4bde67750630b6fb38b upstream. The zone allocation batches can easily underflow due to higher-order allocations or spills to remote nodes. On SMP that's fine, because underflows are expected from concurrency and dealt with by returning 0. But on UP, zone_page_state will just return a wrapped unsigned long, which will get past the <= 0 check and then consider the zone eligible until its watermarks are hit. Commit 3a025760fc15 ("mm: page_alloc: spill to remote nodes before waking kswapd") already made the counter-resetting use atomic_long_read() to accomodate underflows from remote spills, but it didn't go all the way with it. Make it clear that these batches are expected to go negative regardless of concurrency, and use atomic_long_read() everywhere. Fixes: 81c0a2bb515f ("mm: page_alloc: fair zone allocator policy") Reported-by: Vlastimil Babka <vbabka@suse.cz> Reported-by: Leon Romanovsky <leon@leon.nu> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: <stable@vger.kernel.org> [3.12+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-11-14OOM, PM: OOM killed task shouldn't escape PM suspendMichal Hocko
commit 5695be142e203167e3cb515ef86a88424f3524eb upstream. PM freezer relies on having all tasks frozen by the time devices are getting frozen so that no task will touch them while they are getting frozen. But OOM killer is allowed to kill an already frozen task in order to handle OOM situtation. In order to protect from late wake ups OOM killer is disabled after all tasks are frozen. This, however, still keeps a window open when a killed task didn't manage to die by the time freeze_processes finishes. Reduce the race window by checking all tasks after OOM killer has been disabled. This is still not race free completely unfortunately because oom_killer_disable cannot stop an already ongoing OOM killer so a task might still wake up from the fridge and get killed without freeze_processes noticing. Full synchronization of OOM and freezer is, however, too heavy weight for this highly unlikely case. Introduce and check oom_kills counter which gets incremented early when the allocator enters __alloc_pages_may_oom path and only check all the tasks if the counter changes during the freezing attempt. The counter is updated so early to reduce the race window since allocator checked oom_killer_disabled which is set by PM-freezing code. A false positive will push the PM-freezer into a slow path but that is not a big deal. Changes since v1 - push the re-check loop out of freeze_processes into check_frozen_processes and invert the condition to make the code more readable as per Rafael Fixes: f660daac474c6f (oom: thaw threads if oom killed thread is frozen before deferring) Signed-off-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-10-09mm: optimize put_mems_allowed() usageMel Gorman
commit d26914d11751b23ca2e8747725f2cae10c2f2c1b upstream. Since put_mems_allowed() is strictly optional, its a seqcount retry, we don't need to evaluate the function if the allocation was in fact successful, saving a smp_rmb some loads and comparisons on some relative fast-paths. Since the naming, get/put_mems_allowed() does suggest a mandatory pairing, rename the interface, as suggested by Mel, to resemble the seqcount interface. This gives us: read_mems_allowed_begin() and read_mems_allowed_retry(), where it is important to note that the return value of the latter call is inverted from its previous incarnation. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-10-09mm: exclude memoryless nodes from zone_reclaimMichal Hocko
commit 70ef57e6c22c3323dce179b7d0d433c479266612 upstream. We had a report about strange OOM killer strikes on a PPC machine although there was a lot of swap free and a tons of anonymous memory which could be swapped out. In the end it turned out that the OOM was a side effect of zone reclaim which wasn't unmapping and swapping out and so the system was pushed to the OOM. Although this sounds like a bug somewhere in the kswapd vs. zone reclaim vs. direct reclaim interaction numactl on the said hardware suggests that the zone reclaim should not have been set in the first place: node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 node 0 size: 0 MB node 0 free: 0 MB node 2 cpus: node 2 size: 7168 MB node 2 free: 6019 MB node distances: node 0 2 0: 10 40 2: 40 10 So all the CPUs are associated with Node0 which doesn't have any memory while Node2 contains all the available memory. Node distances cause an automatic zone_reclaim_mode enabling. Zone reclaim is intended to keep the allocations local but this doesn't make any sense on the memoryless nodes. So let's exclude such nodes for init_zone_allows_reclaim which evaluates zone reclaim behavior and suitable reclaim_nodes. Signed-off-by: Michal Hocko <mhocko@suse.cz> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Nishanth Aravamudan <nacc@linux.vnet.ibm.com> Tested-by: Nishanth Aravamudan <nacc@linux.vnet.ibm.com> Acked-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-08-07mm, thp: do not allow thp faults to avoid cpuset restrictionsDavid Rientjes
commit b104a35d32025ca740539db2808aa3385d0f30eb upstream. The page allocator relies on __GFP_WAIT to determine if ALLOC_CPUSET should be set in allocflags. ALLOC_CPUSET controls if a page allocation should be restricted only to the set of allowed cpuset mems. Transparent hugepages clears __GFP_WAIT when defrag is disabled to prevent the fault path from using memory compaction or direct reclaim. Thus, it is unfairly able to allocate outside of its cpuset mems restriction as a side-effect. This patch ensures that ALLOC_CPUSET is only cleared when the gfp mask is truly GFP_ATOMIC by verifying it is also not a thp allocation. Signed-off-by: David Rientjes <rientjes@google.com> Reported-by: Alex Thorlton <athorlton@sgi.com> Tested-by: Alex Thorlton <athorlton@sgi.com> Cc: Bob Liu <lliubbo@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Hedi Berriche <hedi@sgi.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-07-09mm: page_alloc: fix CMA area initialisation when pageblock > MAX_ORDERMichal Nazarewicz
commit dc78327c0ea7da5186d8cbc1647bd6088c5c9fa5 upstream. With a kernel configured with ARM64_64K_PAGES && !TRANSPARENT_HUGEPAGE, the following is triggered at early boot: SMP: Total of 8 processors activated. devtmpfs: initialized Unable to handle kernel NULL pointer dereference at virtual address 00000008 pgd = fffffe0000050000 [00000008] *pgd=00000043fba00003, *pmd=00000043fba00003, *pte=00e0000078010407 Internal error: Oops: 96000006 [#1] SMP Modules linked in: CPU: 0 PID: 1 Comm: swapper/0 Not tainted 3.15.0-rc864k+ #44 task: fffffe03bc040000 ti: fffffe03bc080000 task.ti: fffffe03bc080000 PC is at __list_add+0x10/0xd4 LR is at free_one_page+0x270/0x638 ... Call trace: __list_add+0x10/0xd4 free_one_page+0x26c/0x638 __free_pages_ok.part.52+0x84/0xbc __free_pages+0x74/0xbc init_cma_reserved_pageblock+0xe8/0x104 cma_init_reserved_areas+0x190/0x1e4 do_one_initcall+0xc4/0x154 kernel_init_freeable+0x204/0x2a8 kernel_init+0xc/0xd4 This happens because init_cma_reserved_pageblock() calls __free_one_page() with pageblock_order as page order but it is bigger than MAX_ORDER. This in turn causes accesses past zone->free_list[]. Fix the problem by changing init_cma_reserved_pageblock() such that it splits pageblock into individual MAX_ORDER pages if pageblock is bigger than a MAX_ORDER page. In cases where !CONFIG_HUGETLB_PAGE_SIZE_VARIABLE, which is all architectures expect for ia64, powerpc and tile at the moment, the “pageblock_order > MAX_ORDER” condition will be optimised out since both sides of the operator are constants. In cases where pageblock size is variable, the performance degradation should not be significant anyway since init_cma_reserved_pageblock() is called only at boot time at most MAX_CMA_AREAS times which by default is eight. Signed-off-by: Michal Nazarewicz <mina86@mina86.com> Reported-by: Mark Salter <msalter@redhat.com> Tested-by: Mark Salter <msalter@redhat.com> Tested-by: Christopher Covington <cov@codeaurora.org> Cc: Mel Gorman <mgorman@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-07-09mm, pcp: allow restoring percpu_pagelist_fraction defaultDavid Rientjes
commit 7cd2b0a34ab8e4db971920eef8982f985441adfb upstream. Oleg reports a division by zero error on zero-length write() to the percpu_pagelist_fraction sysctl: divide error: 0000 [#1] SMP DEBUG_PAGEALLOC CPU: 1 PID: 9142 Comm: badarea_io Not tainted 3.15.0-rc2-vm-nfs+ #19 Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 task: ffff8800d5aeb6e0 ti: ffff8800d87a2000 task.ti: ffff8800d87a2000 RIP: 0010: percpu_pagelist_fraction_sysctl_handler+0x84/0x120 RSP: 0018:ffff8800d87a3e78 EFLAGS: 00010246 RAX: 0000000000000f89 RBX: ffff88011f7fd000 RCX: 0000000000000000 RDX: 0000000000000000 RSI: 0000000000000001 RDI: 0000000000000010 RBP: ffff8800d87a3e98 R08: ffffffff81d002c8 R09: ffff8800d87a3f50 R10: 000000000000000b R11: 0000000000000246 R12: 0000000000000060 R13: ffffffff81c3c3e0 R14: ffffffff81cfddf8 R15: ffff8801193b0800 FS: 00007f614f1e9740(0000) GS:ffff88011f440000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b CR2: 00007f614f1fa000 CR3: 00000000d9291000 CR4: 00000000000006e0 Call Trace: proc_sys_call_handler+0xb3/0xc0 proc_sys_write+0x14/0x20 vfs_write+0xba/0x1e0 SyS_write+0x46/0xb0 tracesys+0xe1/0xe6 However, if the percpu_pagelist_fraction sysctl is set by the user, it is also impossible to restore it to the kernel default since the user cannot write 0 to the sysctl. This patch allows the user to write 0 to restore the default behavior. It still requires a fraction equal to or larger than 8, however, as stated by the documentation for sanity. If a value in the range [1, 7] is written, the sysctl will return EINVAL. This successfully solves the divide by zero issue at the same time. Signed-off-by: David Rientjes <rientjes@google.com> Reported-by: Oleg Drokin <green@linuxhacker.ru> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-06-30mm: page_alloc: use word-based accesses for get/set pageblock bitmapsMel Gorman
commit e58469bafd0524e848c3733bc3918d854595e20f upstream. The test_bit operations in get/set pageblock flags are expensive. This patch reads the bitmap on a word basis and use shifts and masks to isolate the bits of interest. Similarly masks are used to set a local copy of the bitmap and then use cmpxchg to update the bitmap if there have been no other changes made in parallel. In a test running dd onto tmpfs the overhead of the pageblock-related functions went from 1.27% in profiles to 0.5%. In addition to the performance benefits, this patch closes races that are possible between: a) get_ and set_pageblock_migratetype(), where get_pageblock_migratetype() reads part of the bits before and other part of the bits after set_pageblock_migratetype() has updated them. b) set_pageblock_migratetype() and set_pageblock_skip(), where the non-atomic read-modify-update set bit operation in set_pageblock_skip() will cause lost updates to some bits changed in the set_pageblock_migratetype(). Joonsoo Kim first reported the case a) via code inspection. Vlastimil Babka's testing with a debug patch showed that either a) or b) occurs roughly once per mmtests' stress-highalloc benchmark (although not necessarily in the same pageblock). Furthermore during development of unrelated compaction patches, it was observed that frequent calls to {start,undo}_isolate_page_range() the race occurs several thousands of times and has resulted in NULL pointer dereferences in move_freepages() and free_one_page() in places where free_list[migratetype] is manipulated by e.g. list_move(). Further debugging confirmed that migratetype had invalid value of 6, causing out of bounds access to the free_list array. That confirmed that the race exist, although it may be extremely rare, and currently only fatal where page isolation is performed due to memory hot remove. Races on pageblocks being updated by set_pageblock_migratetype(), where both old and new migratetype are lower MIGRATE_RESERVE, currently cannot result in an invalid value being observed, although theoretically they may still lead to unexpected creation or destruction of MIGRATE_RESERVE pageblocks. Furthermore, things could get suddenly worse when memory isolation is used more, or when new migratetypes are added. After this patch, the race has no longer been observed in testing. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Vlastimil Babka <vbabka@suse.cz> Reported-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Reported-and-tested-by: Vlastimil Babka <vbabka@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jan Kara <jack@suse.cz> Cc: Michal Hocko <mhocko@suse.cz> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Theodore Ts'o <tytso@mit.edu> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-05-06mm: page_alloc: spill to remote nodes before waking kswapdJohannes Weiner
commit 3a025760fc158b3726eac89ee95d7f29599e9dfa upstream. On NUMA systems, a node may start thrashing cache or even swap anonymous pages while there are still free pages on remote nodes. This is a result of commits 81c0a2bb515f ("mm: page_alloc: fair zone allocator policy") and fff4068cba48 ("mm: page_alloc: revert NUMA aspect of fair allocation policy"). Before those changes, the allocator would first try all allowed zones, including those on remote nodes, before waking any kswapds. But now, the allocator fastpath doubles as the fairness pass, which in turn can only consider the local node to prevent remote spilling based on exhausted fairness batches alone. Remote nodes are only considered in the slowpath, after the kswapds are woken up. But if remote nodes still have free memory, kswapd should not be woken to rebalance the local node or it may thrash cash or swap prematurely. Fix this by adding one more unfair pass over the zonelist that is allowed to spill to remote nodes after the local fairness pass fails but before entering the slowpath and waking the kswapds. This also gets rid of the GFP_THISNODE exemption from the fairness protocol because the unfair pass is no longer tied to kswapd, which GFP_THISNODE is not allowed to wake up. However, because remote spills can be more frequent now - we prefer them over local kswapd reclaim - the allocation batches on remote nodes could underflow more heavily. When resetting the batches, use atomic_long_read() directly instead of zone_page_state() to calculate the delta as the latter filters negative counter values. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-03-04mm: page_alloc: exempt GFP_THISNODE allocations from zone fairnessJohannes Weiner
Jan Stancek reports manual page migration encountering allocation failures after some pages when there is still plenty of memory free, and bisected the problem down to commit 81c0a2bb515f ("mm: page_alloc: fair zone allocator policy"). The problem is that GFP_THISNODE obeys the zone fairness allocation batches on one hand, but doesn't reset them and wake kswapd on the other hand. After a few of those allocations, the batches are exhausted and the allocations fail. Fixing this means either having GFP_THISNODE wake up kswapd, or GFP_THISNODE not participating in zone fairness at all. The latter seems safer as an acute bugfix, we can clean up later. Reported-by: Jan Stancek <jstancek@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Mel Gorman <mgorman@suse.de> Cc: <stable@kernel.org> [3.12+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-03-04mm: close PageTail raceDavid Rientjes
Commit bf6bddf1924e ("mm: introduce compaction and migration for ballooned pages") introduces page_count(page) into memory compaction which dereferences page->first_page if PageTail(page). This results in a very rare NULL pointer dereference on the aforementioned page_count(page). Indeed, anything that does compound_head(), including page_count() is susceptible to racing with prep_compound_page() and seeing a NULL or dangling page->first_page pointer. This patch uses Andrea's implementation of compound_trans_head() that deals with such a race and makes it the default compound_head() implementation. This includes a read memory barrier that ensures that if PageTail(head) is true that we return a head page that is neither NULL nor dangling. The patch then adds a store memory barrier to prep_compound_page() to ensure page->first_page is set. This is the safest way to ensure we see the head page that we are expecting, PageTail(page) is already in the unlikely() path and the memory barriers are unfortunately required. Hugetlbfs is the exception, we don't enforce a store memory barrier during init since no race is possible. Signed-off-by: David Rientjes <rientjes@google.com> Cc: Holger Kiehl <Holger.Kiehl@dwd.de> Cc: Christoph Lameter <cl@linux.com> Cc: Rafael Aquini <aquini@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@suse.cz> Cc: Mel Gorman <mgorman@suse.de> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23mm: show message when updating min_free_kbytes in thpHan Pingtian
min_free_kbytes may be raised during THP's initialization. Sometimes, this will change the value which was set by the user. Showing this message will clarify this confusion. Only show this message when changing a value which was set by the user according to Michal Hocko's suggestion. Show the old value of min_free_kbytes according to Dave Hansen's suggestion. This will give user the chance to restore old value of min_free_kbytes. Signed-off-by: Han Pingtian <hanpt@linux.vnet.ibm.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Dave Hansen <dave.hansen@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23mm: prevent setting of a value less than 0 to min_free_kbytesHan Pingtian
If echo -1 > /proc/vm/sys/min_free_kbytes, the system will hang. Changing proc_dointvec() to proc_dointvec_minmax() in the min_free_kbytes_sysctl_handler() can prevent this to happen. mhocko said: : You can still do echo $BIG_VALUE > /proc/vm/sys/min_free_kbytes and make : your machine unusable but I agree that proc_dointvec_minmax is more : suitable here as we already have: : : .proc_handler = min_free_kbytes_sysctl_handler, : .extra1 = &zero, : : It used to work properly but then 6fce56ec91b5 ("sysctl: Remove references : to ctl_name and strategy from the generic sysctl table") has removed : sysctl_intvec strategy and so extra1 is ignored. Signed-off-by: Han Pingtian <hanpt@linux.vnet.ibm.com> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23mm: dump page when hitting a VM_BUG_ON using VM_BUG_ON_PAGESasha Levin
Most of the VM_BUG_ON assertions are performed on a page. Usually, when one of these assertions fails we'll get a BUG_ON with a call stack and the registers. I've recently noticed based on the requests to add a small piece of code that dumps the page to various VM_BUG_ON sites that the page dump is quite useful to people debugging issues in mm. This patch adds a VM_BUG_ON_PAGE(cond, page) which beyond doing what VM_BUG_ON() does, also dumps the page before executing the actual BUG_ON. [akpm@linux-foundation.org: fix up includes] Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23mm: print more details for bad_page()Dave Hansen
bad_page() is cool in that it prints out a bunch of data about the page. But, I can never remember which page flags are good and which are bad, or whether ->index or ->mapping is required to be NULL. This patch allows bad/dump_page() callers to specify a string about why they are dumping the page and adds explanation strings to a number of places. It also adds a 'bad_flags' argument to bad_page(), which it then dumps out separately from the flags which are actually set. This way, the messages will show specifically why the page was bad, *specifically* which flags it is complaining about, if it was a page flag combination which was the problem. [akpm@linux-foundation.org: switch to pr_alert] Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Christoph Lameter <cl@linux.com> Cc: Andi Kleen <andi@firstfloor.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21mm, page_alloc: warn for non-blockable __GFP_NOFAIL allocation failureDavid Rientjes
__GFP_NOFAIL may return NULL when coupled with GFP_NOWAIT or GFP_ATOMIC. Luckily, nothing currently does such craziness. So instead of causing such allocations to loop (potentially forever), we maintain the current behavior and also warn about the new users of the deprecated flag. Suggested-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21mm: compaction: encapsulate defer reset logicVlastimil Babka
Currently there are several functions to manipulate the deferred compaction state variables. The remaining case where the variables are touched directly is when a successful allocation occurs in direct compaction, or is expected to be successful in the future by kswapd. Here, the lowest order that is expected to fail is updated, and in the case of successful allocation, the deferred status and counter is reset completely. Create a new function compaction_defer_reset() to encapsulate this functionality and make it easier to understand the code. No functional change. Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21mm/page_alloc.c: use memblock apis for early memory allocationsSantosh Shilimkar
Switch to memblock interfaces for early memory allocator instead of bootmem allocator. No functional change in beahvior than what it is in current code from bootmem users points of view. Archs already converted to NO_BOOTMEM now directly use memblock interfaces instead of bootmem wrappers build on top of memblock. And the archs which still uses bootmem, these new apis just fallback to exiting bootmem APIs. Signed-off-by: Grygorii Strashko <grygorii.strashko@ti.com> Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Tejun Heo <tj@kernel.org> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Paul Walmsley <paul@pwsan.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: Russell King <linux@arm.linux.org.uk> Cc: Tony Lindgren <tony@atomide.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21x86, numa, acpi, memory-hotplug: make movable_node have higher priorityTang Chen
If users specify the original movablecore=nn@ss boot option, the kernel will arrange [ss, ss+nn) as ZONE_MOVABLE. The kernelcore=nn@ss boot option is similar except it specifies ZONE_NORMAL ranges. Now, if users specify "movable_node" in kernel commandline, the kernel will arrange hotpluggable memory in SRAT as ZONE_MOVABLE. And if users do this, all the other movablecore=nn@ss and kernelcore=nn@ss options should be ignored. For those who don't want this, just specify nothing. The kernel will act as before. Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com> Signed-off-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: "Rafael J . Wysocki" <rjw@sisk.pl> Cc: Chen Tang <imtangchen@gmail.com> Cc: Gong Chen <gong.chen@linux.intel.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Len Brown <lenb@kernel.org> Cc: Liu Jiang <jiang.liu@huawei.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Taku Izumi <izumi.taku@jp.fujitsu.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Thomas Renninger <trenn@suse.de> Cc: Toshi Kani <toshi.kani@hp.com> Cc: Vasilis Liaskovitis <vasilis.liaskovitis@profitbricks.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Yinghai Lu <yinghai@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21mm, show_mem: remove SHOW_MEM_FILTER_PAGE_COUNTMel Gorman
Commit 4b59e6c47309 ("mm, show_mem: suppress page counts in non-blockable contexts") introduced SHOW_MEM_FILTER_PAGE_COUNT to suppress PFN walks on large memory machines. Commit c78e93630d15 ("mm: do not walk all of system memory during show_mem") avoided a PFN walk in the generic show_mem helper which removes the requirement for SHOW_MEM_FILTER_PAGE_COUNT in that case. This patch removes PFN walkers from the arch-specific implementations that report on a per-node or per-zone granularity. ARM and unicore32 still do a PFN walk as they report memory usage on each bank which is a much finer granularity where the debugging information may still be of use. As the remaining arches doing PFN walks have relatively small amounts of memory, this patch simply removes SHOW_MEM_FILTER_PAGE_COUNT. [akpm@linux-foundation.org: fix parisc] Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: David Rientjes <rientjes@google.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Russell King <linux@arm.linux.org.uk> Cc: James Bottomley <jejb@parisc-linux.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21mm: get rid of unnecessary pageblock scanning in setup_zone_migrate_reserveYasuaki Ishimatsu
Yasuaki Ishimatsu reported memory hot-add spent more than 5 _hours_ on 9TB memory machine since onlining memory sections is too slow. And we found out setup_zone_migrate_reserve spent >90% of the time. The problem is, setup_zone_migrate_reserve scans all pageblocks unconditionally, but it is only necessary if the number of reserved block was reduced (i.e. memory hot remove). Moreover, maximum MIGRATE_RESERVE per zone is currently 2. It means that the number of reserved pageblocks is almost always unchanged. This patch adds zone->nr_migrate_reserve_block to maintain the number of MIGRATE_RESERVE pageblocks and it reduces the overhead of setup_zone_migrate_reserve dramatically. The following table shows time of onlining a memory section. Amount of memory | 128GB | 192GB | 256GB| --------------------------------------------- linux-3.12 | 23.9 | 31.4 | 44.5 | This patch | 8.3 | 8.3 | 8.6 | Mel's proposal patch | 10.9 | 19.2 | 31.3 | --------------------------------------------- (millisecond) 128GB : 4 nodes and each node has 32GB of memory 192GB : 6 nodes and each node has 32GB of memory 256GB : 8 nodes and each node has 32GB of memory (*1) Mel proposed his idea by the following threads. https://lkml.org/lkml/2013/10/30/272 [akpm@linux-foundation.org: tweak comment] Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Reported-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Tested-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-12-20mm: page_alloc: revert NUMA aspect of fair allocation policyJohannes Weiner
Commit 81c0a2bb515f ("mm: page_alloc: fair zone allocator policy") meant to bring aging fairness among zones in system, but it was overzealous and badly regressed basic workloads on NUMA systems. Due to the way kswapd and page allocator interacts, we still want to make sure that all zones in any given node are used equally for all allocations to maximize memory utilization and prevent thrashing on the highest zone in the node. While the same principle applies to NUMA nodes - memory utilization is obviously improved by spreading allocations throughout all nodes - remote references can be costly and so many workloads prefer locality over memory utilization. The original change assumed that zone_reclaim_mode would be a good enough predictor for that, but it turned out to be as indicative as a coin flip. Revert the NUMA aspect of the fairness until we can find a proper way to make it configurable and agree on a sane default. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: <stable@kernel.org> # 3.12 Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-12-20Revert "mm: page_alloc: exclude unreclaimable allocations from zone fairness ↵Mel Gorman
policy" This reverts commit 73f038b863df. The NUMA behaviour of this patch is less than ideal. An alternative approch is to interleave allocations only within local zones which is implemented in the next patch. Cc: stable@vger.kernel.org Signed-off-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-12-18mm: page_alloc: exclude unreclaimable allocations from zone fairness policyJohannes Weiner
Dave Hansen noted a regression in a microbenchmark that loops around open() and close() on an 8-node NUMA machine and bisected it down to commit 81c0a2bb515f ("mm: page_alloc: fair zone allocator policy"). That change forces the slab allocations of the file descriptor to spread out to all 8 nodes, causing remote references in the page allocator and slab. The round-robin policy is only there to provide fairness among memory allocations that are reclaimed involuntarily based on pressure in each zone. It does not make sense to apply it to unreclaimable kernel allocations that are freed manually, in this case instantly after the allocation, and incur the remote reference costs twice for no reason. Only round-robin allocations that are usually freed through page reclaim or slab shrinking. Bisected by Dave Hansen. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-13mm/page_alloc.c: fix comment in zlc_setup()Zhi Yong Wu
Signed-off-by: Zhi Yong Wu <wuzhy@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-13mm: __rmqueue_fallback() should respect pageblock typeKOSAKI Motohiro
When __rmqueue_fallback() doesn't find a free block with the required size it splits a larger page and puts the rest of the page onto the free list. But it has one serious mistake. When putting back, __rmqueue_fallback() always use start_migratetype if type is not CMA. However, __rmqueue_fallback() is only called when all of the start_migratetype queue is empty. That said, __rmqueue_fallback always puts back memory to the wrong queue except try_to_steal_freepages() changed pageblock type (i.e. requested size is smaller than half of page block). The end result is that the antifragmentation framework increases fragmenation instead of decreasing it. Mel's original anti fragmentation does the right thing. But commit 47118af076f6 ("mm: mmzone: MIGRATE_CMA migration type added") broke it. This patch restores sane and old behavior. It also removes an incorrect comment which was introduced by commit fef903efcf0c ("mm/page_alloc.c: restructure free-page stealing code and fix a bug"). Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Nazarewicz <mina86@mina86.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-13mm: get rid of unnecessary overhead of trace_mm_page_alloc_extfrag()KOSAKI Motohiro
In general, every tracepoint should be zero overhead if it is disabled. However, trace_mm_page_alloc_extfrag() is one of exception. It evaluate "new_type == start_migratetype" even if tracepoint is disabled. However, the code can be moved into tracepoint's TP_fast_assign() and TP_fast_assign exist exactly such purpose. This patch does it. Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-13mm: fix page_group_by_mobility_disabled breakageKOSAKI Motohiro
Currently, set_pageblock_migratetype() screws up MIGRATE_CMA and MIGRATE_ISOLATE if page_group_by_mobility_disabled is true. It rewrites the argument to MIGRATE_UNMOVABLE and we lost these attribute. The problem was introduced by commit 49255c619fbd ("page allocator: move check for disabled anti-fragmentation out of fastpath"). So a 4 year old issue may mean that nobody uses page_group_by_mobility_disabled. But anyway, this patch fixes the problem. Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-13mm/page_alloc.c: remove unused marco LONG_ALIGNZhang Yanfei
Signed-off-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-13mm: add a helper function to check may oom conditionQiang Huang
Use helper function to check if we need to deal with oom condition. Signed-off-by: Qiang Huang <h.huangqiang@huawei.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-13mm: use populated_zone() instead of if(zone->present_pages)Xishi Qiu
Use "if (zone->present_pages)" instead of "if (zone->present_pages)". Simplify the code, no functional change. Signed-off-by: Xishi Qiu <qiuxishi@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>