aboutsummaryrefslogtreecommitdiffstats
path: root/arch/x86/kvm/x86.c
AgeCommit message (Collapse)Author
2020-08-03KVM: x86: Inject #GP if guest attempts to toggle CR4.LA57 in 64-bit modeSean Christopherson
commit d74fcfc1f0ff4b6c26ecef1f9e48d8089ab4eaac upstream. Inject a #GP on MOV CR4 if CR4.LA57 is toggled in 64-bit mode, which is illegal per Intel's SDM: CR4.LA57 57-bit linear addresses (bit 12 of CR4) ... blah blah blah ... This bit cannot be modified in IA-32e mode. Note, the pseudocode for MOV CR doesn't call out the fault condition, which is likely why the check was missed during initial development. This is arguably an SDM bug and will hopefully be fixed in future release of the SDM. Fixes: fd8cb433734ee ("KVM: MMU: Expose the LA57 feature to VM.") Cc: stable@vger.kernel.org Reported-by: Sebastien Boeuf <sebastien.boeuf@intel.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Message-Id: <20200703021714.5549-1-sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2020-07-16KVM: X86: Fix MSR range of APIC registers in X2APIC modeXiaoyao Li
commit bf10bd0be53282183f374af23577b18b5fbf7801 upstream. Only MSR address range 0x800 through 0x8ff is architecturally reserved and dedicated for accessing APIC registers in x2APIC mode. Fixes: 0105d1a52640 ("KVM: x2apic interface to lapic") Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com> Message-Id: <20200616073307.16440-1-xiaoyao.li@intel.com> Cc: stable@vger.kernel.org Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com> Reviewed-by: Jim Mattson <jmattson@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2020-07-16KVM: vmx: implement MSR_IA32_TSX_CTRL disable RTM functionalityPaolo Bonzini
commit c11f83e0626bdc2b6c550fc8b9b6eeefbd8cefaa upstream. The current guest mitigation of TAA is both too heavy and not really sufficient. It is too heavy because it will cause some affected CPUs (those that have MDS_NO but lack TAA_NO) to fall back to VERW and get the corresponding slowdown. It is not really sufficient because it will cause the MDS_NO bit to disappear upon microcode update, so that VMs started before the microcode update will not be runnable anymore afterwards, even with tsx=on. Instead, if tsx=on on the host, we can emulate MSR_IA32_TSX_CTRL for the guest and let it run without the VERW mitigation. Even though MSR_IA32_TSX_CTRL is quite heavyweight, and we do not want to write it on every vmentry, we can use the shared MSR functionality because the host kernel need not protect itself from TSX-based side-channels. Tested-by: Jim Mattson <jmattson@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2020-07-07KVM: x86: Fix APIC page invalidation raceEiichi Tsukata
commit e649b3f0188f8fd34dd0dde8d43fd3312b902fb2 upstream. Commit b1394e745b94 ("KVM: x86: fix APIC page invalidation") tried to fix inappropriate APIC page invalidation by re-introducing arch specific kvm_arch_mmu_notifier_invalidate_range() and calling it from kvm_mmu_notifier_invalidate_range_start. However, the patch left a possible race where the VMCS APIC address cache is updated *before* it is unmapped: (Invalidator) kvm_mmu_notifier_invalidate_range_start() (Invalidator) kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD) (KVM VCPU) vcpu_enter_guest() (KVM VCPU) kvm_vcpu_reload_apic_access_page() (Invalidator) actually unmap page Because of the above race, there can be a mismatch between the host physical address stored in the APIC_ACCESS_PAGE VMCS field and the host physical address stored in the EPT entry for the APIC GPA (0xfee0000). When this happens, the processor will not trap APIC accesses, and will instead show the raw contents of the APIC-access page. Because Windows OS periodically checks for unexpected modifications to the LAPIC register, this will show up as a BSOD crash with BugCheck CRITICAL_STRUCTURE_CORRUPTION (109) we are currently seeing in https://bugzilla.redhat.com/show_bug.cgi?id=1751017. The root cause of the issue is that kvm_arch_mmu_notifier_invalidate_range() cannot guarantee that no additional references are taken to the pages in the range before kvm_mmu_notifier_invalidate_range_end(). Fortunately, this case is supported by the MMU notifier API, as documented in include/linux/mmu_notifier.h: * If the subsystem * can't guarantee that no additional references are taken to * the pages in the range, it has to implement the * invalidate_range() notifier to remove any references taken * after invalidate_range_start(). The fix therefore is to reload the APIC-access page field in the VMCS from kvm_mmu_notifier_invalidate_range() instead of ..._range_start(). Cc: stable@vger.kernel.org Fixes: b1394e745b94 ("KVM: x86: fix APIC page invalidation") Fixes: https://bugzilla.kernel.org/show_bug.cgi?id=197951 Signed-off-by: Eiichi Tsukata <eiichi.tsukata@nutanix.com> Message-Id: <20200606042627.61070-1-eiichi.tsukata@nutanix.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2020-07-07KVM: x86: respect singlestep when emulating instructionFelipe Franciosi
commit 384dea1c9183880be183cfaae161d99aafd16df6 upstream. When userspace configures KVM_GUESTDBG_SINGLESTEP, KVM will manage the presence of X86_EFLAGS_TF via kvm_set/get_rflags on vcpus. The actual rflag bit is therefore hidden from callers. That includes init_emulate_ctxt() which uses the value returned from kvm_get_flags() to set ctxt->tf. As a result, x86_emulate_instruction() will skip a single step, leaving singlestep_rip stale and not returning to userspace. This resolves the issue by observing the vcpu guest_debug configuration alongside ctxt->tf in x86_emulate_instruction(), performing the single step if set. Cc: stable@vger.kernel.org Signed-off-by: Felipe Franciosi <felipe@nutanix.com> Message-Id: <20200519081048.8204-1-felipe@nutanix.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2020-06-08KVM: x86: Fix pkru save/restore when guest CR4.PKE=0, move it to x86.cBabu Moger
commit 37486135d3a7b03acc7755b63627a130437f066a upstream. Though rdpkru and wrpkru are contingent upon CR4.PKE, the PKRU resource isn't. It can be read with XSAVE and written with XRSTOR. So, if we don't set the guest PKRU value here(kvm_load_guest_xsave_state), the guest can read the host value. In case of kvm_load_host_xsave_state, guest with CR4.PKE clear could potentially use XRSTOR to change the host PKRU value. While at it, move pkru state save/restore to common code and the host_pkru field to kvm_vcpu_arch. This will let SVM support protection keys. Cc: stable@vger.kernel.org Reported-by: Jim Mattson <jmattson@google.com> Signed-off-by: Babu Moger <babu.moger@amd.com> Message-Id: <158932794619.44260.14508381096663848853.stgit@naples-babu.amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> [PG: xcr0 --> xsave_state "rename" wasn't until v5.5-rc1~47^2~65.] Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2020-06-08KVM: x86: Fix off-by-one error in kvm_vcpu_ioctl_x86_setup_mceJim Mattson
commit c4e0e4ab4cf3ec2b3f0b628ead108d677644ebd9 upstream. Bank_num is a one-based count of banks, not a zero-based index. It overflows the allocated space only when strictly greater than KVM_MAX_MCE_BANKS. Fixes: a9e38c3e01ad ("KVM: x86: Catch potential overrun in MCE setup") Signed-off-by: Jue Wang <juew@google.com> Signed-off-by: Jim Mattson <jmattson@google.com> Reviewed-by: Peter Shier <pshier@google.com> Message-Id: <20200511225616.19557-1-jmattson@google.com> Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2020-06-04KVM: x86/mmu: Set mmio_value to '0' if reserved #PF can't be generatedSean Christopherson
commit 6129ed877d409037b79866327102c9dc59a302fe upstream. Set the mmio_value to '0' instead of simply clearing the present bit to squash a benign warning in kvm_mmu_set_mmio_spte_mask() that complains about the mmio_value overlapping the lower GFN mask on systems with 52 bits of PA space. Opportunistically clean up the code and comments. Cc: stable@vger.kernel.org Fixes: d43e2675e96fc ("KVM: x86: only do L1TF workaround on affected processors") Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Message-Id: <20200527084909.23492-1-sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2020-06-01KVM: x86: Allocate new rmap and large page tracking when moving memslotSean Christopherson
commit edd4fa37baa6ee8e44dc65523b27bd6fe44c94de upstream. Reallocate a rmap array and recalcuate large page compatibility when moving an existing memslot to correctly handle the alignment properties of the new memslot. The number of rmap entries required at each level is dependent on the alignment of the memslot's base gfn with respect to that level, e.g. moving a large-page aligned memslot so that it becomes unaligned will increase the number of rmap entries needed at the now unaligned level. Not updating the rmap array is the most obvious bug, as KVM accesses garbage data beyond the end of the rmap. KVM interprets the bad data as pointers, leading to non-canonical #GPs, unexpected #PFs, etc... general protection fault: 0000 [#1] SMP CPU: 0 PID: 1909 Comm: move_memory_reg Not tainted 5.4.0-rc7+ #139 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 RIP: 0010:rmap_get_first+0x37/0x50 [kvm] Code: <48> 8b 3b 48 85 ff 74 ec e8 6c f4 ff ff 85 c0 74 e3 48 89 d8 5b c3 RSP: 0018:ffffc9000021bbc8 EFLAGS: 00010246 RAX: ffff00617461642e RBX: ffff00617461642e RCX: 0000000000000012 RDX: ffff88827400f568 RSI: ffffc9000021bbe0 RDI: ffff88827400f570 RBP: 0010000000000000 R08: ffffc9000021bd00 R09: ffffc9000021bda8 R10: ffffc9000021bc48 R11: 0000000000000000 R12: 0030000000000000 R13: 0000000000000000 R14: ffff88827427d700 R15: ffffc9000021bce8 FS: 00007f7eda014700(0000) GS:ffff888277a00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f7ed9216ff8 CR3: 0000000274391003 CR4: 0000000000162eb0 Call Trace: kvm_mmu_slot_set_dirty+0xa1/0x150 [kvm] __kvm_set_memory_region.part.64+0x559/0x960 [kvm] kvm_set_memory_region+0x45/0x60 [kvm] kvm_vm_ioctl+0x30f/0x920 [kvm] do_vfs_ioctl+0xa1/0x620 ksys_ioctl+0x66/0x70 __x64_sys_ioctl+0x16/0x20 do_syscall_64+0x4c/0x170 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f7ed9911f47 Code: <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 21 6f 2c 00 f7 d8 64 89 01 48 RSP: 002b:00007ffc00937498 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 RAX: ffffffffffffffda RBX: 0000000001ab0010 RCX: 00007f7ed9911f47 RDX: 0000000001ab1350 RSI: 000000004020ae46 RDI: 0000000000000004 RBP: 000000000000000a R08: 0000000000000000 R09: 00007f7ed9214700 R10: 00007f7ed92149d0 R11: 0000000000000246 R12: 00000000bffff000 R13: 0000000000000003 R14: 00007f7ed9215000 R15: 0000000000000000 Modules linked in: kvm_intel kvm irqbypass ---[ end trace 0c5f570b3358ca89 ]--- The disallow_lpage tracking is more subtle. Failure to update results in KVM creating large pages when it shouldn't, either due to stale data or again due to indexing beyond the end of the metadata arrays, which can lead to memory corruption and/or leaking data to guest/userspace. Note, the arrays for the old memslot are freed by the unconditional call to kvm_free_memslot() in __kvm_set_memory_region(). Fixes: 05da45583de9b ("KVM: MMU: large page support") Cc: stable@vger.kernel.org Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Reviewed-by: Peter Xu <peterx@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2020-06-01KVM: nVMX: Properly handle userspace interrupt window requestSean Christopherson
commit a1c77abb8d93381e25a8d2df3a917388244ba776 upstream. Return true for vmx_interrupt_allowed() if the vCPU is in L2 and L1 has external interrupt exiting enabled. IRQs are never blocked in hardware if the CPU is in the guest (L2 from L1's perspective) when IRQs trigger VM-Exit. The new check percolates up to kvm_vcpu_ready_for_interrupt_injection() and thus vcpu_run(), and so KVM will exit to userspace if userspace has requested an interrupt window (to inject an IRQ into L1). Remove the @external_intr param from vmx_check_nested_events(), which is actually an indicator that userspace wants an interrupt window, e.g. it's named @req_int_win further up the stack. Injecting a VM-Exit into L1 to try and bounce out to L0 userspace is all kinds of broken and is no longer necessary. Remove the hack in nested_vmx_vmexit() that attempted to workaround the breakage in vmx_check_nested_events() by only filling interrupt info if there's an actual interrupt pending. The hack actually made things worse because it caused KVM to _never_ fill interrupt info when the LAPIC resides in userspace (kvm_cpu_has_interrupt() queries interrupt.injected, which is always cleared by prepare_vmcs12() before reaching the hack in nested_vmx_vmexit()). Fixes: 6550c4df7e50 ("KVM: nVMX: Fix interrupt window request with "Acknowledge interrupt on exit"") Cc: stable@vger.kernel.org Cc: Liran Alon <liran.alon@oracle.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2020-05-15KVM: x86: Remove spurious clearing of async #PF MSRSean Christopherson
commit 208050dac5ef4de5cb83ffcafa78499c94d0b5ad upstream. Remove a bogus clearing of apf.msr_val from kvm_arch_vcpu_destroy(). apf.msr_val is only set to a non-zero value by kvm_pv_enable_async_pf(), which is only reachable by kvm_set_msr_common(), i.e. by writing MSR_KVM_ASYNC_PF_EN. KVM does not autonomously write said MSR, i.e. can only be written via KVM_SET_MSRS or KVM_RUN. Since KVM_SET_MSRS and KVM_RUN are vcpu ioctls, they require a valid vcpu file descriptor. kvm_arch_vcpu_destroy() is only called if KVM_CREATE_VCPU fails, and KVM declares KVM_CREATE_VCPU successful once the vcpu fd is installed and thus visible to userspace. Ergo, apf.msr_val cannot be non-zero when kvm_arch_vcpu_destroy() is called. Fixes: 344d9588a9df0 ("KVM: Add PV MSR to enable asynchronous page faults delivery.") Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2020-05-15KVM: x86: Remove spurious kvm_mmu_unload() from vcpu destruction pathSean Christopherson
commit 9d979c7e6ff43ca3200ffcb74f57415fd633a2da upstream. x86 does not load its MMU until KVM_RUN, which cannot be invoked until after vCPU creation succeeds. Given that kvm_arch_vcpu_destroy() is called if and only if vCPU creation fails, it is impossible for the MMU to be loaded. Note, the bogus kvm_mmu_unload() call was added during an unrelated refactoring of vCPU allocation, i.e. was presumably added as an opportunstic "fix" for a perceived leak. Fixes: fb3f0f51d92d1 ("KVM: Dynamically allocate vcpus") Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2020-05-15KVM: x86/mmu: Add explicit access mask for MMIO SPTEsSean Christopherson
commit 4af7715110a2617fc40ac2c1232f664019269f3a upstream. When shadow paging is enabled, KVM tracks the allowed access type for MMIO SPTEs so that it can do a permission check on a MMIO GVA cache hit without having to walk the guest's page tables. The tracking is done by retaining the WRITE and USER bits of the access when inserting the MMIO SPTE (read access is implicitly allowed), which allows the MMIO page fault handler to retrieve and cache the WRITE/USER bits from the SPTE. Unfortunately for EPT, the mask used to retain the WRITE/USER bits is hardcoded using the x86 paging versions of the bits. This funkiness happens to work because KVM uses a completely different mask/value for MMIO SPTEs when EPT is enabled, and the EPT mask/value just happens to overlap exactly with the x86 WRITE/USER bits[*]. Explicitly define the access mask for MMIO SPTEs to accurately reflect that EPT does not want to incorporate any access bits into the SPTE, and so that KVM isn't subtly relying on EPT's WX bits always being set in MMIO SPTEs, e.g. attempting to use other bits for experimentation breaks horribly. Note, vcpu_match_mmio_gva() explicits prevents matching GVA==0, and all TDP flows explicit set mmio_gva to 0, i.e. zeroing vcpu->arch.access for EPT has no (known) functional impact. [*] Using WX to generate EPT misconfigurations (equivalent to reserved bit page fault) ensures KVM can employ its MMIO page fault tricks even platforms without reserved address bits. Fixes: ce88decffd17 ("KVM: MMU: mmio page fault support") Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> [PG: use older x86 file path for v5.2.x code base.] Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2020-05-04KVM: x86: Mask off reserved bit from #DB exception payloadOliver Upton
commit 307f1cfa269657c63cfe2c932386fcc24684d9dd upstream. KVM defines the #DB payload as compatible with the 'pending debug exceptions' field under VMX, not DR6. Mask off bit 12 when applying the payload to DR6, as it is reserved on DR6 but not the 'pending debug exceptions' field. Fixes: f10c729ff965 ("kvm: vmx: Defer setting of DR6 until #DB delivery") Signed-off-by: Oliver Upton <oupton@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2020-05-04KVM: x86: Use gpa_t for cr2/gpa to fix TDP support on 32-bit KVMSean Christopherson
commit 736c291c9f36b07f8889c61764c28edce20e715d upstream. Convert a plethora of parameters and variables in the MMU and page fault flows from type gva_t to gpa_t to properly handle TDP on 32-bit KVM. Thanks to PSE and PAE paging, 32-bit kernels can access 64-bit physical addresses. When TDP is enabled, the fault address is a guest physical address and thus can be a 64-bit value, even when both KVM and its guest are using 32-bit virtual addressing, e.g. VMX's VMCS.GUEST_PHYSICAL is a 64-bit field, not a natural width field. Using a gva_t for the fault address means KVM will incorrectly drop the upper 32-bits of the GPA. Ditto for gva_to_gpa() when it is used to translate L2 GPAs to L1 GPAs. Opportunistically rename variables and parameters to better reflect the dual address modes, e.g. use "cr2_or_gpa" for fault addresses and plain "addr" instead of "vaddr" when the address may be either a GVA or an L2 GPA. Similarly, use "gpa" in the nonpaging_page_fault() flows to avoid a confusing "gpa_t gva" declaration; this also sets the stage for a future patch to combing nonpaging_page_fault() and tdp_page_fault() with minimal churn. Sprinkle in a few comments to document flows where an address is known to be a GVA and thus can be safely truncated to a 32-bit value. Add WARNs in kvm_handle_page_fault() and FNAME(gva_to_gpa_nested)() to help document such cases and detect bugs. Cc: stable@vger.kernel.org Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2020-05-04KVM: x86/mmu: Apply max PA check for MMIO sptes to 32-bit KVMSean Christopherson
commit e30a7d623dccdb3f880fbcad980b0cb589a1da45 upstream. Remove the bogus 64-bit only condition from the check that disables MMIO spte optimization when the system supports the max PA, i.e. doesn't have any reserved PA bits. 32-bit KVM always uses PAE paging for the shadow MMU, and per Intel's SDM: PAE paging translates 32-bit linear addresses to 52-bit physical addresses. The kernel's restrictions on max physical addresses are limits on how much memory the kernel can reasonably use, not what physical addresses are supported by hardware. Fixes: ce88decffd17 ("KVM: MMU: mmio page fault support") Cc: stable@vger.kernel.org Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2020-05-04KVM: x86: Handle TIF_NEED_FPU_LOAD in kvm_{load,put}_guest_fpu()Sean Christopherson
commit c9aef3b85f425d1f6635382ec210ee5a7ef55d7d upstream. Handle TIF_NEED_FPU_LOAD similar to how fpu__copy() handles the flag when duplicating FPU state to a new task struct. TIF_NEED_FPU_LOAD can be set any time control is transferred out of KVM, be it voluntarily, e.g. if I/O is triggered during a KVM call to get_user_pages, or involuntarily, e.g. if softirq runs after an IRQ occurs. Therefore, KVM must account for TIF_NEED_FPU_LOAD whenever it is (potentially) accessing CPU FPU state. Fixes: 5f409e20b7945 ("x86/fpu: Defer FPU state load until return to userspace") Cc: stable@vger.kernel.org Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2020-05-04KVM: X86: Dynamically allocate user_fpuWanpeng Li
commit d9a710e5fc4941944d565b013414e9fdc66242b5 upstream. After reverting commit 240c35a3783a (kvm: x86: Use task structs fpu field for user), struct kvm_vcpu is 19456 bytes on my server, PAGE_ALLOC_COSTLY_ORDER(3) is the order at which allocations are deemed costly to service. In serveless scenario, one host can service hundreds/thoudands firecracker/kata-container instances, howerver, new instance will fail to launch after memory is too fragmented to allocate kvm_vcpu struct on host, this was observed in some cloud provider product environments. This patch dynamically allocates user_fpu, kvm_vcpu is 15168 bytes now on my Skylake server. Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Wanpeng Li <wanpengli@tencent.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2020-05-04KVM: x86: Free wbinvd_dirty_mask if vCPU creation failsSean Christopherson
commit 16be9ddea268ad841457a59109963fff8c9de38d upstream. Free the vCPU's wbinvd_dirty_mask if vCPU creation fails after kvm_arch_vcpu_init(), e.g. when installing the vCPU's file descriptor. Do the freeing by calling kvm_arch_vcpu_free() instead of open coding the freeing. This adds a likely superfluous, but ultimately harmless, call to kvmclock_reset(), which only clears vcpu->arch.pv_time_enabled. Using kvm_arch_vcpu_free() allows for additional cleanup in the future. Fixes: f5f48ee15c2ee ("KVM: VMX: Execute WBINVD to keep data consistency with assigned devices") Cc: stable@vger.kernel.org Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2020-05-04KVM: x86: Don't let userspace set host-reserved cr4 bitsSean Christopherson
commit b11306b53b2540c6ba068c4deddb6a17d9f8d95b upstream. Calculate the host-reserved cr4 bits at runtime based on the system's capabilities (using logic similar to __do_cpuid_func()), and use the dynamically generated mask for the reserved bit check in kvm_set_cr4() instead using of the static CR4_RESERVED_BITS define. This prevents userspace from "enabling" features in cr4 that are not supported by the system, e.g. by ignoring KVM_GET_SUPPORTED_CPUID and specifying a bogus CPUID for the vCPU. Allowing userspace to set unsupported bits in cr4 can lead to a variety of undesirable behavior, e.g. failed VM-Enter, and in general increases KVM's attack surface. A crafty userspace can even abuse CR4.LA57 to induce an unchecked #GP on a WRMSR. On a platform without LA57 support: KVM_SET_CPUID2 // CPUID_7_0_ECX.LA57 = 1 KVM_SET_SREGS // CR4.LA57 = 1 KVM_SET_MSRS // KERNEL_GS_BASE = 0x0004000000000000 KVM_RUN leads to a #GP when writing KERNEL_GS_BASE into hardware: unchecked MSR access error: WRMSR to 0xc0000102 (tried to write 0x0004000000000000) at rIP: 0xffffffffa00f239a (vmx_prepare_switch_to_guest+0x10a/0x1d0 [kvm_intel]) Call Trace: kvm_arch_vcpu_ioctl_run+0x671/0x1c70 [kvm] kvm_vcpu_ioctl+0x36b/0x5d0 [kvm] do_vfs_ioctl+0xa1/0x620 ksys_ioctl+0x66/0x70 __x64_sys_ioctl+0x16/0x20 do_syscall_64+0x4c/0x170 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7fc08133bf47 Note, the above sequence fails VM-Enter due to invalid guest state. Userspace can allow VM-Enter to succeed (after the WRMSR #GP) by adding a KVM_SET_SREGS w/ CR4.LA57=0 after KVM_SET_MSRS, in which case KVM will technically leak the host's KERNEL_GS_BASE into the guest. But, as KERNEL_GS_BASE is a userspace-defined value/address, the leak is largely benign as a malicious userspace would simply be exposing its own data to the guest, and attacking a benevolent userspace would require multiple bugs in the userspace VMM. Cc: stable@vger.kernel.org Cc: Jun Nakajima <jun.nakajima@intel.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2020-05-04KVM: x86: Fix potential put_fpu() w/o load_fpu() on MPX platformSean Christopherson
commit f958bd2314d117f8c29f4821401bc1925bc2e5ef upstream. Unlike most state managed by XSAVE, MPX is initialized to zero on INIT. Because INITs are usually recognized in the context of a VCPU_RUN call, kvm_vcpu_reset() puts the guest's FPU so that the FPU state is resident in memory, zeros the MPX state, and reloads FPU state to hardware. But, in the unlikely event that an INIT is recognized during kvm_arch_vcpu_ioctl_get_mpstate() via kvm_apic_accept_events(), kvm_vcpu_reset() will call kvm_put_guest_fpu() without a preceding kvm_load_guest_fpu() and corrupt the guest's FPU state (and possibly userspace's FPU state as well). Given that MPX is being removed from the kernel[*], fix the bug with the simple-but-ugly approach of loading the guest's FPU during KVM_GET_MP_STATE. [*] See commit f240652b6032b ("x86/mpx: Remove MPX APIs"). Fixes: f775b13eedee2 ("x86,kvm: move qemu/guest FPU switching out to vcpu_run") Cc: stable@vger.kernel.org Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2020-05-04KVM: x86: Protect MSR-based index computations from Spectre-v1/L1TF attacks ↵Marios Pomonis
in x86.c commit 6ec4c5eee1750d5d17951c4e1960d953376a0dda upstream. This fixes a Spectre-v1/L1TF vulnerability in set_msr_mce() and get_msr_mce(). Both functions contain index computations based on the (attacker-controlled) MSR number. Fixes: 890ca9aefa78 ("KVM: Add MCE support") Signed-off-by: Nick Finco <nifi@google.com> Signed-off-by: Marios Pomonis <pomonis@google.com> Reviewed-by: Andrew Honig <ahonig@google.com> Cc: stable@vger.kernel.org Reviewed-by: Jim Mattson <jmattson@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2020-05-04KVM: x86: Protect DR-based index computations from Spectre-v1/L1TF attacksMarios Pomonis
commit ea740059ecb37807ba47b84b33d1447435a8d868 upstream. This fixes a Spectre-v1/L1TF vulnerability in __kvm_set_dr() and kvm_get_dr(). Both kvm_get_dr() and kvm_set_dr() (a wrapper of __kvm_set_dr()) are exported symbols so KVM should tream them conservatively from a security perspective. Fixes: 020df0794f57 ("KVM: move DR register access handling into generic code") Signed-off-by: Nick Finco <nifi@google.com> Signed-off-by: Marios Pomonis <pomonis@google.com> Reviewed-by: Andrew Honig <ahonig@google.com> Cc: stable@vger.kernel.org Reviewed-by: Jim Mattson <jmattson@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2020-05-04kvm: allow shadow_bits to exist in kvm/x86.cPaul Gortmaker
In older code base, the shadow_bits via backports exists in two files and not just one - hence it can't be static. Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2020-05-04kvm: x86: Fix reserved bits related calculation errors caused by MKTMEKai Huang
commit f3ecb59dd49f1742b97df6ba071aaa3d031154ac upstream. Intel MKTME repurposes several high bits of physical address as 'keyID' for memory encryption thus effectively reduces platform's maximum physical address bits. Exactly how many bits are reduced is configured by BIOS. To honor such HW behavior, the repurposed bits are reduced from cpuinfo_x86->x86_phys_bits when MKTME is detected in CPU detection. Similarly, AMD SME/SEV also reduces physical address bits for memory encryption, and cpuinfo->x86_phys_bits is reduced too when SME/SEV is detected, so for both MKTME and SME/SEV, boot_cpu_data.x86_phys_bits doesn't hold physical address bits reported by CPUID anymore. Currently KVM treats bits from boot_cpu_data.x86_phys_bits to 51 as reserved bits, but it's not true anymore for MKTME, since MKTME treats those reduced bits as 'keyID', but not reserved bits. Therefore boot_cpu_data.x86_phys_bits cannot be used to calculate reserved bits anymore, although we can still use it for AMD SME/SEV since SME/SEV treats the reduced bits differently -- they are treated as reserved bits, the same as other reserved bits in page table entity [1]. Fix by introducing a new 'shadow_phys_bits' variable in KVM x86 MMU code to store the effective physical bits w/o reserved bits -- for MKTME, it equals to physical address reported by CPUID, and for SME/SEV, it is boot_cpu_data.x86_phys_bits. Note that for the physical address bits reported to guest should remain unchanged -- KVM should report physical address reported by CPUID to guest, but not boot_cpu_data.x86_phys_bits. Because for Intel MKTME, there's no harm if guest sets up 'keyID' bits in guest page table (since MKTME only works at physical address level), and KVM doesn't even expose MKTME to guest. Arguably, for AMD SME/SEV, guest is aware of SEV thus it should adjust boot_cpu_data.x86_phys_bits when it detects SEV, therefore KVM should still reports physcial address reported by CPUID to guest. Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Kai Huang <kai.huang@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2020-04-12KVM: x86: Revert "KVM: X86: Fix fpu state crash in kvm guest"Sean Christopherson
commit 2620fe268e80d667a94553cd37a94ccaa2cb8c83 upstream. Reload the current thread's FPU state, which contains the guest's FPU state, to the CPU registers if necessary during vcpu_enter_guest(). TIF_NEED_FPU_LOAD can be set any time control is transferred out of KVM, e.g. if I/O is triggered during a KVM call to get_user_pages() or if a softirq occurs while KVM is scheduled in. Moving the handling of TIF_NEED_FPU_LOAD from vcpu_enter_guest() to kvm_arch_vcpu_load(), effectively kvm_sched_in(), papered over a bug where kvm_put_guest_fpu() failed to account for TIF_NEED_FPU_LOAD. The easiest way to the kvm_put_guest_fpu() bug was to run with involuntary preemption enable, thus handling TIF_NEED_FPU_LOAD during kvm_sched_in() made the bug go away. But, removing the handling in vcpu_enter_guest() exposed KVM to the rare case of a softirq triggering kernel_fpu_begin() between vcpu_load() and vcpu_enter_guest(). Now that kvm_{load,put}_guest_fpu() correctly handle TIF_NEED_FPU_LOAD, revert the commit to both restore the vcpu_enter_guest() behavior and eliminate the superfluous switch_fpu_return() in kvm_arch_vcpu_load(). Note, leaving the handling in kvm_arch_vcpu_load() isn't wrong per se, but it is unnecessary, and most critically, makes it extremely difficult to find bugs such as the kvm_put_guest_fpu() issue due to shrinking the window where a softirq can corrupt state. A sample trace triggered by warning if TIF_NEED_FPU_LOAD is set while vcpu state is loaded: <IRQ> gcmaes_crypt_by_sg.constprop.12+0x26e/0x660 ? 0xffffffffc024547d ? __qdisc_run+0x83/0x510 ? __dev_queue_xmit+0x45e/0x990 ? ip_finish_output2+0x1a8/0x570 ? fib4_rule_action+0x61/0x70 ? fib4_rule_action+0x70/0x70 ? fib_rules_lookup+0x13f/0x1c0 ? helper_rfc4106_decrypt+0x82/0xa0 ? crypto_aead_decrypt+0x40/0x70 ? crypto_aead_decrypt+0x40/0x70 ? crypto_aead_decrypt+0x40/0x70 ? esp_output_tail+0x8f4/0xa5a [esp4] ? skb_ext_add+0xd3/0x170 ? xfrm_input+0x7a6/0x12c0 ? xfrm4_rcv_encap+0xae/0xd0 ? xfrm4_transport_finish+0x200/0x200 ? udp_queue_rcv_one_skb+0x1ba/0x460 ? udp_unicast_rcv_skb.isra.63+0x72/0x90 ? __udp4_lib_rcv+0x51b/0xb00 ? ip_protocol_deliver_rcu+0xd2/0x1c0 ? ip_local_deliver_finish+0x44/0x50 ? ip_local_deliver+0xe0/0xf0 ? ip_protocol_deliver_rcu+0x1c0/0x1c0 ? ip_rcv+0xbc/0xd0 ? ip_rcv_finish_core.isra.19+0x380/0x380 ? __netif_receive_skb_one_core+0x7e/0x90 ? netif_receive_skb_internal+0x3d/0xb0 ? napi_gro_receive+0xed/0x150 ? 0xffffffffc0243c77 ? net_rx_action+0x149/0x3b0 ? __do_softirq+0xe4/0x2f8 ? handle_irq_event_percpu+0x6a/0x80 ? irq_exit+0xe6/0xf0 ? do_IRQ+0x7f/0xd0 ? common_interrupt+0xf/0xf </IRQ> ? irq_entries_start+0x20/0x660 ? vmx_get_interrupt_shadow+0x2f0/0x710 [kvm_intel] ? kvm_set_msr_common+0xfc7/0x2380 [kvm] ? recalibrate_cpu_khz+0x10/0x10 ? ktime_get+0x3a/0xa0 ? kvm_arch_vcpu_ioctl_run+0x107/0x560 [kvm] ? kvm_init+0x6bf/0xd00 [kvm] ? __seccomp_filter+0x7a/0x680 ? do_vfs_ioctl+0xa4/0x630 ? security_file_ioctl+0x32/0x50 ? ksys_ioctl+0x60/0x90 ? __x64_sys_ioctl+0x16/0x20 ? do_syscall_64+0x5f/0x1a0 ? entry_SYSCALL_64_after_hwframe+0x44/0xa9 ---[ end trace 9564a1ccad733a90 ]--- This reverts commit e751732486eb3f159089a64d1901992b1357e7cc. Fixes: e751732486eb3 ("KVM: X86: Fix fpu state crash in kvm guest") Reported-by: Derek Yerger <derek@djy.llc> Reported-by: kernel@najdan.com Cc: Wanpeng Li <wanpengli@tencent.com> Cc: Thomas Lambertz <mail@thomaslambertz.de> Cc: Rik van Riel <riel@surriel.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Borislav Petkov <bp@suse.de> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2020-03-07x86/KVM: Clean up host's steal time structureBoris Ostrovsky
commit a6bd811f1209fe1c64c9f6fd578101d6436c6b6e upstream. Now that we are mapping kvm_steal_time from the guest directly we don't need keep a copy of it in kvm_vcpu_arch.st. The same is true for the stime field. This is part of CVE-2019-3016. Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> Reviewed-by: Joao Martins <joao.m.martins@oracle.com> Cc: stable@vger.kernel.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2020-03-07x86/KVM: Make sure KVM_VCPU_FLUSH_TLB flag is not missedBoris Ostrovsky
commit b043138246a41064527cf019a3d51d9f015e9796 upstream. There is a potential race in record_steal_time() between setting host-local vcpu->arch.st.steal.preempted to zero (i.e. clearing KVM_VCPU_PREEMPTED) and propagating this value to the guest with kvm_write_guest_cached(). Between those two events the guest may still see KVM_VCPU_PREEMPTED in its copy of kvm_steal_time, set KVM_VCPU_FLUSH_TLB and assume that hypervisor will do the right thing. Which it won't. Instad of copying, we should map kvm_steal_time and that will guarantee atomicity of accesses to @preempted. This is part of CVE-2019-3016. Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> Reviewed-by: Joao Martins <joao.m.martins@oracle.com> Cc: stable@vger.kernel.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2020-03-07x86/kvm: Cache gfn to pfn translationBoris Ostrovsky
commit 917248144db5d7320655dbb41d3af0b8a0f3d589 upstream. __kvm_map_gfn()'s call to gfn_to_pfn_memslot() is * relatively expensive * in certain cases (such as when done from atomic context) cannot be called Stashing gfn-to-pfn mapping should help with both cases. This is part of CVE-2019-3016. Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> Reviewed-by: Joao Martins <joao.m.martins@oracle.com> Cc: stable@vger.kernel.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2020-03-07x86/kvm: Be careful not to clear KVM_VCPU_FLUSH_TLB bitBoris Ostrovsky
commit 8c6de56a42e0c657955e12b882a81ef07d1d073e upstream. kvm_steal_time_set_preempted() may accidentally clear KVM_VCPU_FLUSH_TLB bit if it is called more than once while VCPU is preempted. This is part of CVE-2019-3016. (This bug was also independently discovered by Jim Mattson <jmattson@google.com>) Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> Reviewed-by: Joao Martins <joao.m.martins@oracle.com> Cc: stable@vger.kernel.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2020-03-07KVM: X86: Add pv tlb shootdown tracepointWanpeng Li
commit b382f44e98506bcb00acada0e30151a73e782a93 upstream. Add pv tlb shootdown tracepoint. Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Wanpeng Li <wanpengli@tencent.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2020-01-19KVM: x86: Grab KVM's srcu lock when setting nested stateSean Christopherson
commit ad5996d9a0e8019c3ae5151e687939369acfe044 upstream. Acquire kvm->srcu for the duration of ->set_nested_state() to fix a bug where nVMX derefences ->memslots without holding ->srcu or ->slots_lock. The other half of nested migration, ->get_nested_state(), does not need to acquire ->srcu as it is a purely a dump of internal KVM (and CPU) state to userspace. Detected as an RCU lockdep splat that is 100% reproducible by running KVM's state_test selftest with CONFIG_PROVE_LOCKING=y. Note that the failing function, kvm_is_visible_gfn(), is only checking the validity of a gfn, it's not actually accessing guest memory (which is more or less unsupported during vmx_set_nested_state() due to incorrect MMU state), i.e. vmx_set_nested_state() itself isn't fundamentally broken. In any case, setting nested state isn't a fast path so there's no reason to go out of our way to avoid taking ->srcu. ============================= WARNING: suspicious RCU usage 5.4.0-rc7+ #94 Not tainted ----------------------------- include/linux/kvm_host.h:626 suspicious rcu_dereference_check() usage! other info that might help us debug this: rcu_scheduler_active = 2, debug_locks = 1 1 lock held by evmcs_test/10939: #0: ffff88826ffcb800 (&vcpu->mutex){+.+.}, at: kvm_vcpu_ioctl+0x85/0x630 [kvm] stack backtrace: CPU: 1 PID: 10939 Comm: evmcs_test Not tainted 5.4.0-rc7+ #94 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 Call Trace: dump_stack+0x68/0x9b kvm_is_visible_gfn+0x179/0x180 [kvm] mmu_check_root+0x11/0x30 [kvm] fast_cr3_switch+0x40/0x120 [kvm] kvm_mmu_new_cr3+0x34/0x60 [kvm] nested_vmx_load_cr3+0xbd/0x1f0 [kvm_intel] nested_vmx_enter_non_root_mode+0xab8/0x1d60 [kvm_intel] vmx_set_nested_state+0x256/0x340 [kvm_intel] kvm_arch_vcpu_ioctl+0x491/0x11a0 [kvm] kvm_vcpu_ioctl+0xde/0x630 [kvm] do_vfs_ioctl+0xa2/0x6c0 ksys_ioctl+0x66/0x70 __x64_sys_ioctl+0x16/0x20 do_syscall_64+0x54/0x200 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x7f59a2b95f47 Fixes: 8fcc4b5923af5 ("kvm: nVMX: Introduce KVM_CAP_NESTED_STATE") Cc: stable@vger.kernel.org Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2020-01-19KVM: x86: Remove a spurious export of a static functionSean Christopherson
commit 24885d1d79e2e83d49201aeae0bc59f1402fd4f1 upstream. A recent change inadvertently exported a static function, which results in modpost throwing a warning. Fix it. Fixes: cbbaa2727aa3 ("KVM: x86: fix presentation of TSX feature in ARCH_CAPABILITIES") Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Cc: stable@vger.kernel.org Reviewed-by: Jim Mattson <jmattson@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2020-01-19KVM: x86: fix presentation of TSX feature in ARCH_CAPABILITIESPaolo Bonzini
commit cbbaa2727aa3ae9e0a844803da7cef7fd3b94f2b upstream. KVM does not implement MSR_IA32_TSX_CTRL, so it must not be presented to the guests. It is also confusing to have !ARCH_CAP_TSX_CTRL_MSR && !RTM && ARCH_CAP_TAA_NO: lack of MSR_IA32_TSX_CTRL suggests TSX was not hidden (it actually was), yet the value says that TSX is not vulnerable to microarchitectural data sampling. Fix both. Cc: stable@vger.kernel.org Tested-by: Jim Mattson <jmattson@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2020-01-19KVM: x86: do not modify masked bits of shared MSRsPaolo Bonzini
commit de1fca5d6e0105c9d33924e1247e2f386efc3ece upstream. "Shared MSRs" are guest MSRs that are written to the host MSRs but keep their value until the next return to userspace. They support a mask, so that some bits keep the host value, but this mask is only used to skip an unnecessary MSR write and the value written to the MSR is always the guest MSR. Fix this and, while at it, do not update smsr->values[slot].curr if for whatever reason the wrmsr fails. This should only happen due to reserved bits, so the value written to smsr->values[slot].curr will not match when the user-return notifier and the host value will always be restored. However, it is untidy and in rare cases this can actually avoid spurious WRMSRs on return to userspace. Cc: stable@vger.kernel.org Reviewed-by: Jim Mattson <jmattson@google.com> Tested-by: Jim Mattson <jmattson@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2019-11-14kvm: x86: mmu: Recovery of shattered NX large pagesJunaid Shahid
commit 1aa9b9572b10529c2e64e2b8f44025d86e124308 upstream. The page table pages corresponding to broken down large pages are zapped in FIFO order, so that the large page can potentially be recovered, if it is not longer being used for execution. This removes the performance penalty for walking deeper EPT page tables. By default, one large page will last about one hour once the guest reaches a steady state. Signed-off-by: Junaid Shahid <junaids@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2019-11-14kvm: mmu: ITLB_MULTIHIT mitigationPaolo Bonzini
commit b8e8c8303ff28c61046a4d0f6ea99aea609a7dc0 upstream. With some Intel processors, putting the same virtual address in the TLB as both a 4 KiB and 2 MiB page can confuse the instruction fetch unit and cause the processor to issue a machine check resulting in a CPU lockup. Unfortunately when EPT page tables use huge pages, it is possible for a malicious guest to cause this situation. Add a knob to mark huge pages as non-executable. When the nx_huge_pages parameter is enabled (and we are using EPT), all huge pages are marked as NX. If the guest attempts to execute in one of those pages, the page is broken down into 4K pages, which are then marked executable. This is not an issue for shadow paging (except nested EPT), because then the host is in control of TLB flushes and the problematic situation cannot happen. With nested EPT, again the nested guest can cause problems shadow and direct EPT is treated in the same way. [ tglx: Fixup default to auto and massage wording a bit ] Originally-by: Junaid Shahid <junaids@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2019-11-14kvm: x86, powerpc: do not allow clearing largepages debugfs entryPaolo Bonzini
commit 833b45de69a6016c4b0cebe6765d526a31a81580 upstream. The largepages debugfs entry is incremented/decremented as shadow pages are created or destroyed. Clearing it will result in an underflow, which is harmless to KVM but ugly (and could be misinterpreted by tools that use debugfs information), so make this particular statistic read-only. Cc: kvm-ppc@vger.kernel.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2019-11-14kvm/x86: Export MDS_NO=0 to guests when TSX is enabledPawan Gupta
commit e1d38b63acd843cfdd4222bf19a26700fd5c699e upstream. Export the IA32_ARCH_CAPABILITIES MSR bit MDS_NO=0 to guests on TSX Async Abort(TAA) affected hosts that have TSX enabled and updated microcode. This is required so that the guests don't complain, "Vulnerable: Clear CPU buffers attempted, no microcode" when the host has the updated microcode to clear CPU buffers. Microcode update also adds support for MSR_IA32_TSX_CTRL which is enumerated by the ARCH_CAP_TSX_CTRL bit in IA32_ARCH_CAPABILITIES MSR. Guests can't do this check themselves when the ARCH_CAP_TSX_CTRL bit is not exported to the guests. In this case export MDS_NO=0 to the guests. When guests have CPUID.MD_CLEAR=1, they deploy MDS mitigation which also mitigates TAA. Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Neelima Krishnan <neelima.krishnan@intel.com> Reviewed-by: Tony Luck <tony.luck@intel.com> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2019-11-09KVM: X86: Fix userspace set invalid CR4Wanpeng Li
commit 3ca94192278ca8de169d78c085396c424be123b3 upstream. Reported by syzkaller: WARNING: CPU: 0 PID: 6544 at /home/kernel/data/kvm/arch/x86/kvm//vmx/vmx.c:4689 handle_desc+0x37/0x40 [kvm_intel] CPU: 0 PID: 6544 Comm: a.out Tainted: G OE 5.3.0-rc4+ #4 RIP: 0010:handle_desc+0x37/0x40 [kvm_intel] Call Trace: vmx_handle_exit+0xbe/0x6b0 [kvm_intel] vcpu_enter_guest+0x4dc/0x18d0 [kvm] kvm_arch_vcpu_ioctl_run+0x407/0x660 [kvm] kvm_vcpu_ioctl+0x3ad/0x690 [kvm] do_vfs_ioctl+0xa2/0x690 ksys_ioctl+0x6d/0x80 __x64_sys_ioctl+0x1a/0x20 do_syscall_64+0x74/0x720 entry_SYSCALL_64_after_hwframe+0x49/0xbe When CR4.UMIP is set, guest should have UMIP cpuid flag. Current kvm set_sregs function doesn't have such check when userspace inputs sregs values. SECONDARY_EXEC_DESC is enabled on writes to CR4.UMIP in vmx_set_cr4 though guest doesn't have UMIP cpuid flag. The testcast triggers handle_desc warning when executing ltr instruction since guest architectural CR4 doesn't set UMIP. This patch fixes it by adding valid CR4 and CPUID combination checking in __set_sregs. syzkaller source: https://syzkaller.appspot.com/x/repro.c?x=138efb99600000 Reported-by: syzbot+0f1819555fbdce992df9@syzkaller.appspotmail.com Cc: stable@vger.kernel.org Signed-off-by: Wanpeng Li <wanpengli@tencent.com> Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2019-10-05KVM: x86: Manually calculate reserved bits when loading PDPTRSSean Christopherson
commit 16cfacc8085782dab8e365979356ce1ca87fd6cc upstream. Manually generate the PDPTR reserved bit mask when explicitly loading PDPTRs. The reserved bits that are being tracked by the MMU reflect the current paging mode, which is unlikely to be PAE paging in the vast majority of flows that use load_pdptrs(), e.g. CR0 and CR4 emulation, __set_sregs(), etc... This can cause KVM to incorrectly signal a bad PDPTR, or more likely, miss a reserved bit check and subsequently fail a VM-Enter due to a bad VMCS.GUEST_PDPTR. Add a one off helper to generate the reserved bits instead of sharing code across the MMU's calculations and the PDPTR emulation. The PDPTR reserved bits are basically set in stone, and pushing a helper into the MMU's calculation adds unnecessary complexity without improving readability. Oppurtunistically fix/update the comment for load_pdptrs(). Note, the buggy commit also introduced a deliberate functional change, "Also remove bit 5-6 from rsvd_bits_mask per latest SDM.", which was effectively (and correctly) reverted by commit cd9ae5fe47df ("KVM: x86: Fix page-tables reserved bits"). A bit of SDM archaeology shows that the SDM from late 2008 had a bug (likely a copy+paste error) where it listed bits 6:5 as AVL and A for PDPTEs used for 4k entries but reserved for 2mb entries. I.e. the SDM contradicted itself, and bits 6:5 are and always have been reserved. Fixes: 20c466b56168d ("KVM: Use rsvd_bits_mask in load_pdptrs()") Cc: stable@vger.kernel.org Cc: Nadav Amit <nadav.amit@gmail.com> Reported-by: Doug Reiland <doug.reiland@intel.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Reviewed-by: Peter Xu <peterx@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-10-05KVM: x86: set ctxt->have_exception in x86_decode_insn()Jan Dakinevich
commit c8848cee74ff05638e913582a476bde879c968ad upstream. x86_emulate_instruction() takes into account ctxt->have_exception flag during instruction decoding, but in practice this flag is never set in x86_decode_insn(). Fixes: 6ea6e84309ca ("KVM: x86: inject exceptions produced by x86_decode_insn") Cc: stable@vger.kernel.org Cc: Denis Lunev <den@virtuozzo.com> Cc: Roman Kagan <rkagan@virtuozzo.com> Cc: Denis Plotnikov <dplotnikov@virtuozzo.com> Signed-off-by: Jan Dakinevich <jan.dakinevich@virtuozzo.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-10-05KVM: x86: always stop emulation on page faultJan Dakinevich
commit 8530a79c5a9f4e29e6ffb35ec1a79d81f4968ec8 upstream. inject_emulated_exception() returns true if and only if nested page fault happens. However, page fault can come from guest page tables walk, either nested or not nested. In both cases we should stop an attempt to read under RIP and give guest to step over its own page fault handler. This is also visible when an emulated instruction causes a #GP fault and the VMware backdoor is enabled. To handle the VMware backdoor, KVM intercepts #GP faults; with only the next patch applied, x86_emulate_instruction() injects a #GP but returns EMULATE_FAIL instead of EMULATE_DONE. EMULATE_FAIL causes handle_exception_nmi() (or gp_interception() for SVM) to re-inject the original #GP because it thinks emulation failed due to a non-VMware opcode. This patch prevents the issue as x86_emulate_instruction() will return EMULATE_DONE after injecting the #GP. Fixes: 6ea6e84309ca ("KVM: x86: inject exceptions produced by x86_decode_insn") Cc: stable@vger.kernel.org Cc: Denis Lunev <den@virtuozzo.com> Cc: Roman Kagan <rkagan@virtuozzo.com> Cc: Denis Plotnikov <dplotnikov@virtuozzo.com> Signed-off-by: Jan Dakinevich <jan.dakinevich@virtuozzo.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-09-19KVM: x86: work around leak of uninitialized stack contentsFuqian Huang
commit 541ab2aeb28251bf7135c7961f3a6080eebcc705 upstream. Emulation of VMPTRST can incorrectly inject a page fault when passed an operand that points to an MMIO address. The page fault will use uninitialized kernel stack memory as the CR2 and error code. The right behavior would be to abort the VM with a KVM_EXIT_INTERNAL_ERROR exit to userspace; however, it is not an easy fix, so for now just ensure that the error code and CR2 are zero. Signed-off-by: Fuqian Huang <huangfq.daxian@gmail.com> Cc: stable@vger.kernel.org [add comment] Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-09-06KVM: x86: Don't update RIP or do single-step on faulting emulationSean Christopherson
commit 75ee23b30dc712d80d2421a9a547e7ab6e379b44 upstream. Don't advance RIP or inject a single-step #DB if emulation signals a fault. This logic applies to all state updates that are conditional on clean retirement of the emulation instruction, e.g. updating RFLAGS was previously handled by commit 38827dbd3fb85 ("KVM: x86: Do not update EFLAGS on faulting emulation"). Not advancing RIP is likely a nop, i.e. ctxt->eip isn't updated with ctxt->_eip until emulation "retires" anyways. Skipping #DB injection fixes a bug reported by Andy Lutomirski where a #UD on SYSCALL due to invalid state with EFLAGS.TF=1 would loop indefinitely due to emulation overwriting the #UD with #DB and thus restarting the bad SYSCALL over and over. Cc: Nadav Amit <nadav.amit@gmail.com> Cc: stable@vger.kernel.org Reported-by: Andy Lutomirski <luto@kernel.org> Fixes: 663f4c61b803 ("KVM: x86: handle singlestep during emulation") Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-08-16KVM: Fix leak vCPU's VMCS value into other pCPUWanpeng Li
commit 17e433b54393a6269acbcb792da97791fe1592d8 upstream. After commit d73eb57b80b (KVM: Boost vCPUs that are delivering interrupts), a five years old bug is exposed. Running ebizzy benchmark in three 80 vCPUs VMs on one 80 pCPUs Skylake server, a lot of rcu_sched stall warning splatting in the VMs after stress testing: INFO: rcu_sched detected stalls on CPUs/tasks: { 4 41 57 62 77} (detected by 15, t=60004 jiffies, g=899, c=898, q=15073) Call Trace: flush_tlb_mm_range+0x68/0x140 tlb_flush_mmu.part.75+0x37/0xe0 tlb_finish_mmu+0x55/0x60 zap_page_range+0x142/0x190 SyS_madvise+0x3cd/0x9c0 system_call_fastpath+0x1c/0x21 swait_active() sustains to be true before finish_swait() is called in kvm_vcpu_block(), voluntarily preempted vCPUs are taken into account by kvm_vcpu_on_spin() loop greatly increases the probability condition kvm_arch_vcpu_runnable(vcpu) is checked and can be true, when APICv is enabled the yield-candidate vCPU's VMCS RVI field leaks(by vmx_sync_pir_to_irr()) into spinning-on-a-taken-lock vCPU's current VMCS. This patch fixes it by checking conservatively a subset of events. Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Marc Zyngier <Marc.Zyngier@arm.com> Cc: stable@vger.kernel.org Fixes: 98f4a1467 (KVM: add kvm_arch_vcpu_runnable() test to kvm_vcpu_on_spin() loop) Signed-off-by: Wanpeng Li <wanpengli@tencent.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-07-31KVM: X86: Fix fpu state crash in kvm guestWanpeng Li
commit e751732486eb3f159089a64d1901992b1357e7cc upstream. The idea before commit 240c35a37 (which has just been reverted) was that we have the following FPU states: userspace (QEMU) guest --------------------------------------------------------------------------- processor vcpu->arch.guest_fpu >>> KVM_RUN: kvm_load_guest_fpu vcpu->arch.user_fpu processor >>> preempt out vcpu->arch.user_fpu current->thread.fpu >>> preempt in vcpu->arch.user_fpu processor >>> back to userspace >>> kvm_put_guest_fpu processor vcpu->arch.guest_fpu --------------------------------------------------------------------------- With the new lazy model we want to get the state back to the processor when schedule in from current->thread.fpu. Reported-by: Thomas Lambertz <mail@thomaslambertz.de> Reported-by: anthony <antdev66@gmail.com> Tested-by: anthony <antdev66@gmail.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Thomas Lambertz <mail@thomaslambertz.de> Cc: anthony <antdev66@gmail.com> Cc: stable@vger.kernel.org Fixes: 5f409e20b (x86/fpu: Defer FPU state load until return to userspace) Signed-off-by: Wanpeng Li <wanpengli@tencent.com> [Add a comment in front of the warning. - Paolo] Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-07-28Revert "kvm: x86: Use task structs fpu field for user"Paolo Bonzini
commit ec269475cba7bcdd1eb8fdf8e87f4c6c81a376fe upstream. This reverts commit 240c35a3783ab9b3a0afaba0dde7291295680a6b ("kvm: x86: Use task structs fpu field for user", 2018-11-06). The commit is broken and causes QEMU's FPU state to be destroyed when KVM_RUN is preempted. Fixes: 240c35a3783a ("kvm: x86: Use task structs fpu field for user") Cc: stable@vger.kernel.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-07-02KVM: x86: degrade WARN to pr_warn_ratelimitedPaolo Bonzini
This warning can be triggered easily by userspace, so it should certainly not cause a panic if panic_on_warn is set. Reported-by: syzbot+c03f30b4f4c46bdf8575@syzkaller.appspotmail.com Suggested-by: Alexander Potapenko <glider@google.com> Acked-by: Alexander Potapenko <glider@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-06-19treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 499Thomas Gleixner
Based on 1 normalized pattern(s): this work is licensed under the terms of the gnu gpl version 2 see the copying file in the top level directory extracted by the scancode license scanner the SPDX license identifier GPL-2.0-only has been chosen to replace the boilerplate/reference in 35 file(s). Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Enrico Weigelt <info@metux.net> Reviewed-by: Allison Randal <allison@lohutok.net> Cc: linux-spdx@vger.kernel.org Link: https://lkml.kernel.org/r/20190604081206.797835076@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>