aboutsummaryrefslogtreecommitdiffstats
path: root/arch/x86/boot/compressed/head_64.S
AgeCommit message (Collapse)Author
2019-02-06x86/boot/compressed/64: Do not corrupt EDX on EFER.LME=1 settingKirill A. Shutemov
RDMSR in the trampoline code overwrites EDX but that register is used to indicate whether 5-level paging has to be enabled and if clobbered, leads to failure to boot on a 5-level paging machine. Preserve EDX on the stack while we are dealing with EFER. Fixes: b677dfae5aa1 ("x86/boot/compressed/64: Set EFER.LME=1 in 32-bit trampoline before returning to long mode") Reported-by: Kyle D Pelton <kyle.d.pelton@intel.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: dave.hansen@linux.intel.com Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Wei Huang <wei@redhat.com> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/20190206115253.1907-1-kirill.shutemov@linux.intel.com
2019-01-29x86/boot/compressed/64: Set EFER.LME=1 in 32-bit trampoline before returning ↵Wei Huang
to long mode In some old AMD KVM implementation, guest's EFER.LME bit is cleared by KVM when the hypervsior detects that the guest sets CR0.PG to 0. This causes the guest OS to reboot when it tries to return from 32-bit trampoline code because the CPU is in incorrect state: CR4.PAE=1, CR0.PG=1, CS.L=1, but EFER.LME=0. As a precaution, set EFER.LME=1 as part of long mode activation procedure. This extra step won't cause any harm when Linux is booted on a bare-metal machine. Signed-off-by: Wei Huang <wei@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: bp@alien8.de Cc: hpa@zytor.com Link: https://lkml.kernel.org/r/20190104054411.12489-1-wei@redhat.com
2018-05-19x86/mm: Introduce the 'no5lvl' kernel parameterKirill A. Shutemov
This kernel parameter allows to force kernel to use 4-level paging even if hardware and kernel support 5-level paging. The option may be useful to work around regressions related to 5-level paging. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Hugh Dickins <hughd@google.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20180518103528.59260-5-kirill.shutemov@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-05-16x86/boot/compressed/64: Fix moving page table out of trampoline memoryKirill A. Shutemov
cleanup_trampoline() relocates the top-level page table out of trampoline memory. We use 'top_pgtable' as our new top-level page table. But if the 'top_pgtable' would be referenced from C in a usual way, the address of the table will be calculated relative to RIP. After kernel gets relocated, the address will be in the middle of decompression buffer and the page table may get overwritten. This leads to a crash. We calculate the address of other page tables relative to the relocation address. It makes them safe. We should do the same for 'top_pgtable'. Calculate the address of 'top_pgtable' in assembly and pass down to cleanup_trampoline(). Move the page table to .pgtable section where the rest of page tables are. The section is @nobits so we save 4k in kernel image. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Hugh Dickins <hughd@google.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Fixes: e9d0e6330eb8 ("x86/boot/compressed/64: Prepare new top-level page table for trampoline") Link: http://lkml.kernel.org/r/20180516080131.27913-3-kirill.shutemov@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-05-16x86/boot/compressed/64: Set up GOT for paging_prepare() and cleanup_trampoline()Kirill A. Shutemov
Eric and Hugh have reported instant reboot due to my recent changes in decompression code. The root cause is that I didn't realize that we need to adjust GOT to be able to run C code that early. The problem is only visible with an older toolchain. Binutils >= 2.24 is able to eliminate GOT references by replacing them with RIP-relative address loads: https://sourceware.org/git/gitweb.cgi?p=binutils-gdb.git;a=commitdiff;h=80d873266dec We need to adjust GOT two times: - before calling paging_prepare() using the initial load address - before calling C code from the relocated kernel Reported-by: Eric Dumazet <eric.dumazet@gmail.com> Reported-by: Hugh Dickins <hughd@google.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Fixes: 194a9749c73d ("x86/boot/compressed/64: Handle 5-level paging boot if kernel is above 4G") Link: http://lkml.kernel.org/r/20180516080131.27913-2-kirill.shutemov@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-03-12x86/boot/compressed/64: Handle 5-level paging boot if kernel is above 4GKirill A. Shutemov
This patch addresses a shortcoming in current boot process on machines that supports 5-level paging. If a bootloader enables 64-bit mode with 4-level paging, we might need to switch over to 5-level paging. The switching requires the disabling paging. It works fine if kernel itself is loaded below 4G. But if the bootloader put the kernel above 4G (not sure if anybody does this), we would lose control as soon as paging is disabled, because the code becomes unreachable to the CPU. This patch implements a trampoline in lower memory to handle this situation. We only need the memory for a very short time, until the main kernel image sets up own page tables. We go through the trampoline even if we don't have to: if we're already in 5-level paging mode or if we don't need to switch to it. This way the trampoline gets tested on every boot. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Borislav Petkov <bp@suse.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/20180312100246.89175-5-kirill.shutemov@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-03-12x86/boot/compressed/64: Use page table in trampoline memoryKirill A. Shutemov
If a bootloader enables 64-bit mode with 4-level paging, we might need to switch over to 5-level paging. The switching requires the disabling paging. It works fine if kernel itself is loaded below 4G. But if the bootloader put the kernel above 4G (i.e. in kexec() case), we would lose control as soon as paging is disabled, because the code becomes unreachable to the CPU. To handle the situation, we need a trampoline in lower memory that would take care of switching on 5-level paging. Apart from the trampoline code itself we also need a place to store top-level page table in lower memory as we don't have a way to load 64-bit values into CR3 in 32-bit mode. We only really need 8 bytes there as we only use the very first entry of the page table. But we allocate a whole page anyway. This patch switches 32-bit code to use page table in trampoline memory. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Borislav Petkov <bp@suse.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/20180312100246.89175-4-kirill.shutemov@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-03-12x86/boot/compressed/64: Use stack from trampoline memoryKirill A. Shutemov
As the first step on using trampoline memory, let's make 32-bit code use stack there. Separate stack is required to return back from trampoline and we cannot user stack from 64-bit mode as it may be above 4G. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Borislav Petkov <bp@suse.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/20180312100246.89175-3-kirill.shutemov@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-03-12x86/boot/compressed/64: Make sure we have a 32-bit code segmentKirill A. Shutemov
When kernel starts in 64-bit mode we inherit the GDT from the bootloader. It may cause a problem if the GDT doesn't have a 32-bit code segment where we expect it to be. Load our own GDT with known segments. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Borislav Petkov <bp@suse.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/20180312100246.89175-2-kirill.shutemov@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-03-12x86/boot/compressed/64: Set up trampoline memoryKirill A. Shutemov
This patch clears up trampoline memory and copies trampoline code in place. It's not yet used though. Tested-by: Borislav Petkov <bp@suse.de> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Andy Shevchenko <andy.shevchenko@gmail.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Eric Biederman <ebiederm@xmission.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Juergen Gross <jgross@suse.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/20180226180451.86788-5-kirill.shutemov@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-03-12x86/boot/compressed/64: Save and restore trampoline memoryKirill A. Shutemov
The memory area we found for trampoline shouldn't contain anything useful. But let's preserve the data anyway. Just to be on safe side. paging_prepare() would save the data into a buffer. cleanup_trampoline() would restore it back once we are done with the trampoline. Tested-by: Borislav Petkov <bp@suse.de> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Andy Shevchenko <andy.shevchenko@gmail.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Eric Biederman <ebiederm@xmission.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Juergen Gross <jgross@suse.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/20180226180451.86788-4-kirill.shutemov@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-02-11x86/boot/compressed/64: Introduce paging_prepare()Kirill A. Shutemov
Rename l5_paging_required() to paging_prepare() and change the interface of the function. This is a preparation for the next patch, which would make the function also allocate memory for the 32-bit trampoline. The function now returns a 128-bit structure. RAX would return trampoline memory address (zero for now) and RDX would indicate if we need to enable 5-level paging. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> [ Typo fixes and general clarification. ] Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@suse.de> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/20180209142228.21231-3-kirill.shutemov@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-12-07x86/boot/compressed/64: Detect and handle 5-level paging at boot-timeKirill A. Shutemov
Prerequisite for fixing the current problem of instantaneous reboots when a 5-level paging kernel is booted on 4-level paging hardware. At the same time this change prepares the decompression code to boot-time switching between 4- and 5-level paging. [ tglx: Folded the GCC < 5 fix. ] Fixes: 77ef56e4f0fb ("x86: Enable 5-level paging support via CONFIG_X86_5LEVEL=y") Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andi Kleen <ak@linux.intel.com> Cc: stable@vger.kernel.org Cc: Andy Lutomirski <luto@amacapital.net> Cc: linux-mm@kvack.org Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Borislav Petkov <bp@suse.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: https://lkml.kernel.org/r/20171204124059.63515-2-kirill.shutemov@linux.intel.com
2017-11-07x86/boot: Add early boot support when running with SEV activeTom Lendacky
Early in the boot process, add checks to determine if the kernel is running with Secure Encrypted Virtualization (SEV) active. Checking for SEV requires checking that the kernel is running under a hypervisor (CPUID 0x00000001, bit 31), that the SEV feature is available (CPUID 0x8000001f, bit 1) and then checking a non-interceptable SEV MSR (0xc0010131, bit 0). This check is required so that during early compressed kernel booting the pagetables (both the boot pagetables and KASLR pagetables (if enabled) are updated to include the encryption mask so that when the kernel is decompressed into encrypted memory, it can boot properly. After the kernel is decompressed and continues booting the same logic is used to check if SEV is active and set a flag indicating so. This allows to distinguish between SME and SEV, each of which have unique differences in how certain things are handled: e.g. DMA (always bounce buffered with SEV) or EFI tables (always access decrypted with SME). Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: Brijesh Singh <brijesh.singh@amd.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Tested-by: Borislav Petkov <bp@suse.de> Cc: Laura Abbott <labbott@redhat.com> Cc: Kees Cook <keescook@chromium.org> Cc: kvm@vger.kernel.org Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Link: https://lkml.kernel.org/r/20171020143059.3291-13-brijesh.singh@amd.com
2017-11-02License cleanup: add SPDX GPL-2.0 license identifier to files with no licenseGreg Kroah-Hartman
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-08-29x86/boot/64: Extract efi_pe_entry() from startup_64()Jiri Slaby
Similarly to the 32-bit code, efi_pe_entry body() is somehow squashed into startup_64(). In the old days, we forced startup_64() to start at offset 0x200 and efi_pe_entry() to start at 0x210. But this requirement was removed long time ago, in: 99f857db8857 ("x86, build: Dynamically find entry points in compressed startup code") The way it is now makes the code less readable and illogical. Given we can now safely extract the inlined efi_pe_entry() body from startup_64() into a separate function, we do so. We also annotate the function appropriatelly by ENTRY+ENDPROC. ABI offsets are preserved: 0000000000000000 T startup_32 0000000000000200 T startup_64 0000000000000390 T efi64_stub_entry On the top-level, it looked like: .org 0x200 ENTRY(startup_64) #ifdef CONFIG_EFI_STUB ; start of inlined jmp preferred_addr GLOBAL(efi_pe_entry) ... ; a lot of assembly (efi_pe_entry) leaq preferred_addr(%rax), %rax jmp *%rax preferred_addr: #endif ; end of inlined ... ; a lot of assembly (startup_64) ENDPROC(startup_64) And it is now converted into: .org 0x200 ENTRY(startup_64) ... ; a lot of assembly (startup_64) ENDPROC(startup_64) #ifdef CONFIG_EFI_STUB ENTRY(efi_pe_entry) ... ; a lot of assembly (efi_pe_entry) leaq startup_64(%rax), %rax jmp *%rax ENDPROC(efi_pe_entry) #endif Signed-off-by: Jiri Slaby <jslaby@suse.cz> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: ard.biesheuvel@linaro.org Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/20170824073327.4129-2-jslaby@suse.cz Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-06-13x86/boot/compressed: Enable 5-level paging during decompression stageKirill A. Shutemov
We need to cover two basic cases: when bootloader left us in 32-bit mode and when bootloader enabled long mode. The patch implements unified codepath to enabled 5-level paging for both cases. It means case when we start in 32-bit mode, we first enable long mode with 4-level and then switch over to 5-level paging. Switching from 4-level to 5-level paging is not trivial. We cannot do it directly. Setting LA57 in long mode would trigger #GP. So we need to switch off long mode first and the then re-enable with 5-level paging. NOTE: The need of switching off long mode means we are in trouble if bootloader put us above 4G boundary. If bootloader wants to boot 5-level paging kernel, it has to put kernel below 4G or enable 5-level paging on it's own, so we could avoid the step. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-arch@vger.kernel.org Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/20170606113133.22974-7-kirill.shutemov@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-02-07x86/efi: Allow invocation of arbitrary runtime servicesDavid Howells
Provide the ability to perform mixed-mode runtime service calls for x86 in the same way the following commit provided the ability to invoke for boot services: 0a637ee61247bd ("x86/efi: Allow invocation of arbitrary boot services") Suggested-by: Lukas Wunner <lukas@wunner.de> Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/1486380166-31868-2-git-send-email-ard.biesheuvel@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-11-07x86/boot: Simplify the GDTR calculation assembly code a bitWei Yang
This patch calculates the GDTR's base address via a single instruction. ( EBP contains the address where it is loaded and GDTR's base address is already set to "gdt" in compilation. It is fine to get the correct base address by adding the delta to GDTR's base address. ) Signed-off-by: Wei Yang <richard.weiyang@gmail.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1478015364-5547-1-git-send-email-richard.weiyang@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-09-09x86/efi: Allow invocation of arbitrary boot servicesLukas Wunner
We currently allow invocation of 8 boot services with efi_call_early(). Not included are LocateHandleBuffer and LocateProtocol in particular. For graphics output or to retrieve PCI ROMs and Apple device properties, we're thus forced to use the LocateHandle + AllocatePool + LocateHandle combo, which is cumbersome and needs more code. The ARM folks allow invocation of the full set of boot services but are restricted to our 8 boot services in functions shared across arches. Thus, rather than adding just LocateHandleBuffer and LocateProtocol to struct efi_config, let's rework efi_call_early() to allow invocation of arbitrary boot services by selecting the 64 bit vs 32 bit code path in the macro itself. When compiling for 32 bit or for 64 bit without mixed mode, the unused code path is optimized away and the binary code is the same as before. But on 64 bit with mixed mode enabled, this commit adds one compare instruction to each invocation of a boot service and, depending on the code path selected, two jump instructions. (Most of the time gcc arranges the jumps in the 32 bit code path.) The result is a minuscule performance penalty and the binary code becomes slightly larger and more difficult to read when disassembled. This isn't a hot path, so these drawbacks are arguably outweighed by the attainable simplification of the C code. We have some overhead anyway for thunking or conversion between calling conventions. The 8 boot services can consequently be removed from struct efi_config. No functional change intended (for now). Example -- invocation of free_pool before (64 bit code path): 0x2d4 movq %ds:efi_early, %rdx ; efi_early 0x2db movq %ss:arg_0-0x20(%rsp), %rsi 0x2e0 xorl %eax, %eax 0x2e2 movq %ds:0x28(%rdx), %rdi ; efi_early->free_pool 0x2e6 callq *%ds:0x58(%rdx) ; efi_early->call() Example -- invocation of free_pool after (64 / 32 bit mixed code path): 0x0dc movq %ds:efi_early, %rax ; efi_early 0x0e3 cmpb $0, %ds:0x28(%rax) ; !efi_early->is64 ? 0x0e7 movq %ds:0x20(%rax), %rdx ; efi_early->call() 0x0eb movq %ds:0x10(%rax), %rax ; efi_early->boot_services 0x0ef je $0x150 0x0f1 movq %ds:0x48(%rax), %rdi ; free_pool (64 bit) 0x0f5 xorl %eax, %eax 0x0f7 callq *%rdx ... 0x150 movl %ds:0x30(%rax), %edi ; free_pool (32 bit) 0x153 jmp $0x0f5 Size of eboot.o text section: CONFIG_X86_32: 6464 before, 6318 after CONFIG_X86_64 && !CONFIG_EFI_MIXED: 7670 before, 7573 after CONFIG_X86_64 && CONFIG_EFI_MIXED: 7670 before, 8319 after Signed-off-by: Lukas Wunner <lukas@wunner.de> Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
2016-05-07x86/KASLR: Build identity mappings on demandKees Cook
Currently KASLR only supports relocation in a small physical range (from 16M to 1G), due to using the initial kernel page table identity mapping. To support ranges above this, we need to have an identity mapping for the desired memory range before we can decompress (and later run) the kernel. 32-bit kernels already have the needed identity mapping. This patch adds identity mappings for the needed memory ranges on 64-bit kernels. This happens in two possible boot paths: If loaded via startup_32(), we need to set up the needed identity map. If loaded from a 64-bit bootloader, the bootloader will have already set up an identity mapping, and we'll start via the compressed kernel's startup_64(). In this case, the bootloader's page tables need to be avoided while selecting the new uncompressed kernel location. If not, the decompressor could overwrite them during decompression. To accomplish this, we could walk the pagetable and find every page that is used, and add them to mem_avoid, but this needs extra code and will require increasing the size of the mem_avoid array. Instead, we can create a new set of page tables for our own identity mapping instead. The pages for the new page table will come from the _pagetable section of the compressed kernel, which means they are already contained by in mem_avoid array. To do this, we reuse the code from the uncompressed kernel's identity mapping routines. The _pgtable will be shared by both the 32-bit and 64-bit paths to reduce init_size, as now the compressed kernel's _rodata to _end will contribute to init_size. To handle the possible mappings, we need to increase the existing page table buffer size: When booting via startup_64(), we need to cover the old VO, params, cmdline and uncompressed kernel. In an extreme case we could have them all beyond the 512G boundary, which needs (2+2)*4 pages with 2M mappings. And we'll need 2 for first 2M for VGA RAM. One more is needed for level4. This gets us to 19 pages total. When booting via startup_32(), KASLR could move the uncompressed kernel above 4G, so we need to create extra identity mappings, which should only need (2+2) pages at most when it is beyond the 512G boundary. So 19 pages is sufficient for this case as well. The resulting BOOT_*PGT_SIZE defines use the "_SIZE" suffix on their names to maintain logical consistency with the existing BOOT_HEAP_SIZE and BOOT_STACK_SIZE defines. This patch is based on earlier patches from Yinghai Lu and Baoquan He. Signed-off-by: Kees Cook <keescook@chromium.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Andy Lutomirski <luto@kernel.org> Cc: Baoquan He <bhe@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Borislav Petkov <bp@suse.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Young <dyoung@redhat.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: kernel-hardening@lists.openwall.com Cc: lasse.collin@tukaani.org Link: http://lkml.kernel.org/r/1462572095-11754-4-git-send-email-keescook@chromium.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-04-29x86/KASLR: Clean up unused code from old 'run_size' and rename it to ↵Yinghai Lu
'kernel_total_size' Since 'run_size' is now calculated in misc.c, the old script and associated argument passing is no longer needed. This patch removes them, and renames 'run_size' to the more descriptive 'kernel_total_size'. Signed-off-by: Yinghai Lu <yinghai@kernel.org> Signed-off-by: Baoquan He <bhe@redhat.com> [ Rewrote the changelog, renamed 'run_size' to 'kernel_total_size' ] Signed-off-by: Kees Cook <keescook@chromium.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Andy Lutomirski <luto@kernel.org> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Young <dyoung@redhat.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Junjie Mao <eternal.n08@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: lasse.collin@tukaani.org Link: http://lkml.kernel.org/r/1461888548-32439-6-git-send-email-keescook@chromium.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-04-29x86/boot: Move compressed kernel to the end of the decompression bufferYinghai Lu
This change makes later calculations about where the kernel is located easier to reason about. To better understand this change, we must first clarify what 'VO' and 'ZO' are. These values were introduced in commits by hpa: 77d1a4999502 ("x86, boot: make symbols from the main vmlinux available") 37ba7ab5e33c ("x86, boot: make kernel_alignment adjustable; new bzImage fields") Specifically: All names prefixed with 'VO_': - relate to the uncompressed kernel image - the size of the VO image is: VO__end-VO__text ("VO_INIT_SIZE" define) All names prefixed with 'ZO_': - relate to the bootable compressed kernel image (boot/compressed/vmlinux), which is composed of the following memory areas: - head text - compressed kernel (VO image and relocs table) - decompressor code - the size of the ZO image is: ZO__end - ZO_startup_32 ("ZO_INIT_SIZE" define, though see below) The 'INIT_SIZE' value is used to find the larger of the two image sizes: #define ZO_INIT_SIZE (ZO__end - ZO_startup_32 + ZO_z_extract_offset) #define VO_INIT_SIZE (VO__end - VO__text) #if ZO_INIT_SIZE > VO_INIT_SIZE # define INIT_SIZE ZO_INIT_SIZE #else # define INIT_SIZE VO_INIT_SIZE #endif The current code uses extract_offset to decide where to position the copied ZO (i.e. ZO starts at extract_offset). (This is why ZO_INIT_SIZE currently includes the extract_offset.) Why does z_extract_offset exist? It's needed because we are trying to minimize the amount of RAM used for the whole act of creating an uncompressed, executable, properly relocation-linked kernel image in system memory. We do this so that kernels can be booted on even very small systems. To achieve the goal of minimal memory consumption we have implemented an in-place decompression strategy: instead of cleanly separating the VO and ZO images and also allocating some memory for the decompression code's runtime needs, we instead create this elaborate layout of memory buffers where the output (decompressed) stream, as it progresses, overlaps with and destroys the input (compressed) stream. This can only be done safely if the ZO image is placed to the end of the VO range, plus a certain amount of safety distance to make sure that when the last bytes of the VO range are decompressed, the compressed stream pointer is safely beyond the end of the VO range. z_extract_offset is calculated in arch/x86/boot/compressed/mkpiggy.c during the build process, at a point when we know the exact compressed and uncompressed size of the kernel images and can calculate this safe minimum offset value. (Note that the mkpiggy.c calculation is not perfect, because we don't know the decompressor used at that stage, so the z_extract_offset calculation is necessarily imprecise and is mostly based on gzip internals - we'll improve that in the next patch.) When INIT_SIZE is bigger than VO_INIT_SIZE (uncommon but possible), the copied ZO occupies the memory from extract_offset to the end of decompression buffer. It overlaps with the soon-to-be-uncompressed kernel like this: |-----compressed kernel image------| V V 0 extract_offset +INIT_SIZE |-----------|---------------|-------------------------|--------| | | | | VO__text startup_32 of ZO VO__end ZO__end ^ ^ |-------uncompressed kernel image---------| When INIT_SIZE is equal to VO_INIT_SIZE (likely) there's still space left from end of ZO to the end of decompressing buffer, like below. |-compressed kernel image-| V V 0 extract_offset +INIT_SIZE |-----------|---------------|-------------------------|--------| | | | | VO__text startup_32 of ZO ZO__end VO__end ^ ^ |------------uncompressed kernel image-------------| To simplify calculations and avoid special cases, it is cleaner to always place the compressed kernel image in memory so that ZO__end is at the end of the decompression buffer, instead of placing t at the start of extract_offset as is currently done. This patch adds BP_init_size (which is the INIT_SIZE as passed in from the boot_params) into asm-offsets.c to make it visible to the assembly code. Then when moving the ZO, it calculates the starting position of the copied ZO (via BP_init_size and the ZO run size) so that the VO__end will be at the end of the decompression buffer. To make the position calculation safe, the end of ZO is page aligned (and a comment is added to the existing VO alignment for good measure). Signed-off-by: Yinghai Lu <yinghai@kernel.org> [ Rewrote changelog and comments. ] Signed-off-by: Kees Cook <keescook@chromium.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Andy Lutomirski <luto@kernel.org> Cc: Baoquan He <bhe@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Young <dyoung@redhat.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: lasse.collin@tukaani.org Link: http://lkml.kernel.org/r/1461888548-32439-3-git-send-email-keescook@chromium.org [ Rewrote the changelog some more. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-04-19x86/boot: Clarify purpose of functions in misc.cKees Cook
The function "decompress_kernel" now performs many more duties, so this patch renames it to "extract_kernel" and updates callers and comments. Additionally the file header comment for misc.c is improved to actually describe what is contained. Suggested-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Kees Cook <keescook@chromium.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Andy Lutomirski <luto@kernel.org> Cc: Baoquan He <bhe@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Borislav Petkov <bp@suse.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: H.J. Lu <hjl.tools@gmail.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1460997735-24785-5-git-send-email-keescook@chromium.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-03-29x86/build: Build compressed x86 kernels as PIEH.J. Lu
The 32-bit x86 assembler in binutils 2.26 will generate R_386_GOT32X relocation to get the symbol address in PIC. When the compressed x86 kernel isn't built as PIC, the linker optimizes R_386_GOT32X relocations to their fixed symbol addresses. However, when the compressed x86 kernel is loaded at a different address, it leads to the following load failure: Failed to allocate space for phdrs during the decompression stage. If the compressed x86 kernel is relocatable at run-time, it should be compiled with -fPIE, instead of -fPIC, if possible and should be built as Position Independent Executable (PIE) so that linker won't optimize R_386_GOT32X relocation to its fixed symbol address. Older linkers generate R_386_32 relocations against locally defined symbols, _bss, _ebss, _got and _egot, in PIE. It isn't wrong, just less optimal than R_386_RELATIVE. But the x86 kernel fails to properly handle R_386_32 relocations when relocating the kernel. To generate R_386_RELATIVE relocations, we mark _bss, _ebss, _got and _egot as hidden in both 32-bit and 64-bit x86 kernels. To build a 64-bit compressed x86 kernel as PIE, we need to disable the relocation overflow check to avoid relocation overflow errors. We do this with a new linker command-line option, -z noreloc-overflow, which got added recently: commit 4c10bbaa0912742322f10d9d5bb630ba4e15dfa7 Author: H.J. Lu <hjl.tools@gmail.com> Date: Tue Mar 15 11:07:06 2016 -0700 Add -z noreloc-overflow option to x86-64 ld Add -z noreloc-overflow command-line option to the x86-64 ELF linker to disable relocation overflow check. This can be used to avoid relocation overflow check if there will be no dynamic relocation overflow at run-time. The 64-bit compressed x86 kernel is built as PIE only if the linker supports -z noreloc-overflow. So far 64-bit relocatable compressed x86 kernel boots fine even when it is built as a normal executable. Signed-off-by: H.J. Lu <hjl.tools@gmail.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org [ Edited the changelog and comments. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-04-02x86/asm/boot/64: Use __BOOT_TSS instead of literal $0x20Denys Vlasenko
__BOOT_TSS = (GDT_ENTRY_BOOT_TSS * 8) GDT_ENTRY_BOOT_TSS = (GDT_ENTRY_BOOT_CS + 2) GDT_ENTRY_BOOT_CS = 2 (2 + 2) * 8 = 4 * 8 = 32 = 0x20 No code changes. Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com> Reviewed-by: Steven Rostedt <rostedt@goodmis.org> Acked-by: Borislav Petkov <bp@suse.de> Cc: Alexei Starovoitov <ast@plumgrid.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Will Drewry <wad@chromium.org> Link: http://lkml.kernel.org/r/1427899858-7165-2-git-send-email-dvlasenk@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-02-19x86/asm/boot: Use already defined KEEP_SEGMENTS macro in head_{32,64}.SAlexander Kuleshov
There is already defined macro KEEP_SEGMENTS in <asm/bootparam.h>, let's use it instead of hardcoded constants. Signed-off-by: Alexander Kuleshov <kuleshovmail@gmail.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1424331298-7456-1-git-send-email-kuleshovmail@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-01x86, kaslr: Prevent .bss from overlaping initrdJunjie Mao
When choosing a random address, the current implementation does not take into account the reversed space for .bss and .brk sections. Thus the relocated kernel may overlap other components in memory. Here is an example of the overlap from a x86_64 kernel in qemu (the ranges of physical addresses are presented): Physical Address 0x0fe00000 --+--------------------+ <-- randomized base / | relocated kernel | vmlinux.bin | (from vmlinux.bin) | 0x1336d000 (an ELF file) +--------------------+-- \ | | \ 0x1376d870 --+--------------------+ | | relocs table | | 0x13c1c2a8 +--------------------+ .bss and .brk | | | 0x13ce6000 +--------------------+ | | | / 0x13f77000 | initrd |-- | | 0x13fef374 +--------------------+ The initrd image will then be overwritten by the memset during early initialization: [ 1.655204] Unpacking initramfs... [ 1.662831] Initramfs unpacking failed: junk in compressed archive This patch prevents the above situation by requiring a larger space when looking for a random kernel base, so that existing logic can effectively avoids the overlap. [kees: switched to perl to avoid hex translation pain in mawk vs gawk] [kees: calculated overlap without relocs table] Fixes: 82fa9637a2 ("x86, kaslr: Select random position from e820 maps") Reported-by: Fengguang Wu <fengguang.wu@intel.com> Signed-off-by: Junjie Mao <eternal.n08@gmail.com> Signed-off-by: Kees Cook <keescook@chromium.org> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Matt Fleming <matt.fleming@intel.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: stable@vger.kernel.org Link: http://lkml.kernel.org/r/1414762838-13067-1-git-send-email-eternal.n08@gmail.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2014-09-22Revert "x86/efi: Fixup GOT in all boot code paths"Linus Torvalds
This reverts commit 9cb0e394234d244fe5a97e743ec9dd7ddff7e64b. It causes my Sony Vaio Pro 11 to immediately reboot at startup. Acked-by: Ingo Molnar <mingo@kernel.org> Cc: Peter Anvin <hpa@zytor.com> Cc: Maarten Lankhorst <maarten.lankhorst@canonical.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Matt Fleming <matt.fleming@intel.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-09-08x86/efi: Fixup GOT in all boot code pathsMatt Fleming
Maarten reported that his Macbook pro 8.2 stopped booting after commit f23cf8bd5c1f49 ("efi/x86: efistub: Move shared dependencies to <asm/efi.h>"), the main feature of which is changing the visibility of symbol 'efi_early' from local to global. By making 'efi_early' global we end up requiring an entry in the Global Offset Table. Unfortunately, while we do include code to fixup GOT entries in the early boot code, it's only called after we've executed the EFI boot stub. What this amounts to is that references to 'efi_early' in the EFI boot stub don't point to the correct place. Since we've got multiple boot entry points we need to be prepared to fixup the GOT in multiple places, while ensuring that we never do it more than once, otherwise the GOT entries will still point to the wrong place. Reported-by: Maarten Lankhorst <maarten.lankhorst@canonical.com> Tested-by: Maarten Lankhorst <maarten.lankhorst@canonical.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Matt Fleming <matt.fleming@intel.com>
2014-04-17x86/efi: Delete most of the efi_call* macrosMatt Fleming
We really only need one phys and one virt function call, and then only one assembly function to make firmware calls. Since we are not using the C type system anyway, we're not really losing much by deleting the macros apart from no longer having a check that we are passing the correct number of parameters. The lack of duplicated code seems like a worthwhile trade-off. Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com> Cc: Borislav Petkov <bp@suse.de> Signed-off-by: Matt Fleming <matt.fleming@intel.com>
2014-04-10x86/efi: Correct EFI boot stub use of code32_startMatt Fleming
code32_start should point at the start of the protected mode code, and *not* at the beginning of the bzImage. This is much easier to do in assembly so document that callers of make_boot_params() need to fill out code32_start. The fallout from this bug is that we would end up relocating the image but copying the image at some offset, resulting in what appeared to be memory corruption. Reported-by: Thomas Bächler <thomas@archlinux.org> Signed-off-by: Matt Fleming <matt.fleming@intel.com>
2014-03-05x86/boot: Fix non-EFI buildMatt Fleming
The kbuild test robot reported the following errors, introduced with commit 54b52d872680 ("x86/efi: Build our own EFI services pointer table"), arch/x86/boot/compressed/head_32.o: In function `efi32_config': >> (.data+0x58): undefined reference to `efi_call_phys' arch/x86/boot/compressed/head_64.o: In function `efi64_config': >> (.data+0x90): undefined reference to `efi_call6' Wrap the efi*_config structures in #ifdef CONFIG_EFI_STUB so that we don't make references to EFI functions if they're not compiled in. Signed-off-by: Matt Fleming <matt.fleming@intel.com>
2014-03-04x86/boot: Don't overwrite cr4 when enabling PAEMatt Fleming
Some EFI firmware makes use of the FPU during boottime services and clearing X86_CR4_OSFXSR by overwriting %cr4 causes the firmware to crash. Add the PAE bit explicitly instead of trashing the existing contents, leaving the rest of the bits as the firmware set them. Cc: H. Peter Anvin <hpa@zytor.com> Signed-off-by: Matt Fleming <matt.fleming@intel.com>
2014-03-04x86/efi: Firmware agnostic handover entry pointsMatt Fleming
The EFI handover code only works if the "bitness" of the firmware and the kernel match, i.e. 64-bit firmware and 64-bit kernel - it is not possible to mix the two. This goes against the tradition that a 32-bit kernel can be loaded on a 64-bit BIOS platform without having to do anything special in the boot loader. Linux distributions, for one thing, regularly run only 32-bit kernels on their live media. Despite having only one 'handover_offset' field in the kernel header, EFI boot loaders use two separate entry points to enter the kernel based on the architecture the boot loader was compiled for, (1) 32-bit loader: handover_offset (2) 64-bit loader: handover_offset + 512 Since we already have two entry points, we can leverage them to infer the bitness of the firmware we're running on, without requiring any boot loader modifications, by making (1) and (2) valid entry points for both CONFIG_X86_32 and CONFIG_X86_64 kernels. To be clear, a 32-bit boot loader will always use (1) and a 64-bit boot loader will always use (2). It's just that, if a single kernel image supports (1) and (2) that image can be used with both 32-bit and 64-bit boot loaders, and hence both 32-bit and 64-bit EFI. (1) and (2) must be 512 bytes apart at all times, but that is already part of the boot ABI and we could never change that delta without breaking existing boot loaders anyhow. Signed-off-by: Matt Fleming <matt.fleming@intel.com>
2014-03-04x86/efi: Build our own EFI services pointer tableMatt Fleming
It's not possible to dereference the EFI System table directly when booting a 64-bit kernel on a 32-bit EFI firmware because the size of pointers don't match. In preparation for supporting the above use case, build a list of function pointers on boot so that callers don't have to worry about converting pointer sizes through multiple levels of indirection. Signed-off-by: Matt Fleming <matt.fleming@intel.com>
2013-10-13x86, kaslr: Return location from decompress_kernelKees Cook
This allows decompress_kernel to return a new location for the kernel to be relocated to. Additionally, enforces CONFIG_PHYSICAL_START as the minimum relocation position when building with CONFIG_RELOCATABLE. With CONFIG_RANDOMIZE_BASE set, the choose_kernel_location routine will select a new location to decompress the kernel, though here it is presently a no-op. The kernel command line option "nokaslr" is introduced to bypass these routines. Signed-off-by: Kees Cook <keescook@chromium.org> Link: http://lkml.kernel.org/r/1381450698-28710-3-git-send-email-keescook@chromium.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-08-07x86, relocs: Move ELF relocation handling to CKees Cook
Moves the relocation handling into C, after decompression. This requires that the decompressed size is passed to the decompression routine as well so that relocations can be found. Only kernels that need relocation support will use the code (currently just x86_32), but this is laying the ground work for 64-bit using it in support of KASLR. Based on work by Neill Clift and Michael Davidson. Signed-off-by: Kees Cook <keescook@chromium.org> Link: http://lkml.kernel.org/r/20130708161517.GA4832@www.outflux.net Acked-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-05-28x86/mm: Drop unneeded include <asm/*pgtable, page*_types.h>Zhang Yanfei
arch/x86/boot/compressed/head_64.S includes <asm/pgtable_types.h> and <asm/page_types.h> but it doesn't look like it needs them. So remove them. Signed-off-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Link: http://lkml.kernel.org/r/5191FAE2.4020403@cn.fujitsu.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-03-01x86_64: Use __BOOT_DS instead_of __KERNEL_DS for safetyLans Zhang
In startup_32, the running code still uses the initial GDT located in setup. Thus, __BOOT_DS is preferred. Currently __KERNEL_DS is lucky to equal to __BOOT_DS, but this is not always a safe way. Signed-off-by: Lans Zhang <lans.zhang2008@gmail.com> Link: http://lkml.kernel.org/r/51300267.6000008@gmail.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-02-21Merge branch 'x86-mm-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 mm changes from Peter Anvin: "This is a huge set of several partly interrelated (and concurrently developed) changes, which is why the branch history is messier than one would like. The *really* big items are two humonguous patchsets mostly developed by Yinghai Lu at my request, which completely revamps the way we create initial page tables. In particular, rather than estimating how much memory we will need for page tables and then build them into that memory -- a calculation that has shown to be incredibly fragile -- we now build them (on 64 bits) with the aid of a "pseudo-linear mode" -- a #PF handler which creates temporary page tables on demand. This has several advantages: 1. It makes it much easier to support things that need access to data very early (a followon patchset uses this to load microcode way early in the kernel startup). 2. It allows the kernel and all the kernel data objects to be invoked from above the 4 GB limit. This allows kdump to work on very large systems. 3. It greatly reduces the difference between Xen and native (Xen's equivalent of the #PF handler are the temporary page tables created by the domain builder), eliminating a bunch of fragile hooks. The patch series also gets us a bit closer to W^X. Additional work in this pull is the 64-bit get_user() work which you were also involved with, and a bunch of cleanups/speedups to __phys_addr()/__pa()." * 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (105 commits) x86, mm: Move reserving low memory later in initialization x86, doc: Clarify the use of asm("%edx") in uaccess.h x86, mm: Redesign get_user with a __builtin_choose_expr hack x86: Be consistent with data size in getuser.S x86, mm: Use a bitfield to mask nuisance get_user() warnings x86/kvm: Fix compile warning in kvm_register_steal_time() x86-32: Add support for 64bit get_user() x86-32, mm: Remove reference to alloc_remap() x86-32, mm: Remove reference to resume_map_numa_kva() x86-32, mm: Rip out x86_32 NUMA remapping code x86/numa: Use __pa_nodebug() instead x86: Don't panic if can not alloc buffer for swiotlb mm: Add alloc_bootmem_low_pages_nopanic() x86, 64bit, mm: hibernate use generic mapping_init x86, 64bit, mm: Mark data/bss/brk to nx x86: Merge early kernel reserve for 32bit and 64bit x86: Add Crash kernel low reservation x86, kdump: Remove crashkernel range find limit for 64bit memblock: Add memblock_mem_size() x86, boot: Not need to check setup_header version for setup_data ...
2013-01-29x86, boot: Update comments about entries for 64bit imageYinghai Lu
Now 64bit entry is fixed on 0x200, can not be changed anymore. Update the comments to reflect that. Also put info about it in boot.txt -v2: fix some grammar error Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-27-git-send-email-yinghai@kernel.org Cc: Rob Landley <rob@landley.net> Cc: Matt Fleming <matt.fleming@intel.com> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-29x86, boot: Move lldt/ltr out of 64bit code sectionYinghai Lu
commit 08da5a2ca x86_64: Early segment setup for VT sets up LDT and TR into a valid state in order to speed up boot decompression under VT. Those code are put in code64, and it is using GDT that is only loaded from code32 path. That breaks booting with 64bit bootloader that does not go through code32 path and jump to startup_64 directly, and it has different GDT. Move those lines into code32 after their GDT is loaded. Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-21-git-send-email-yinghai@kernel.org Cc: Zachary Amsden <zamsden@gmail.com> Cc: Matt Fleming <matt.fleming@intel.com> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-29x86, boot: Move verify_cpu.S and no_longmode downYinghai Lu
We need to move some code to 32bit section in following patch: x86, boot: Move lldt/ltr out of 64bit code section but that will push startup_64 down from 0x200. According to hpa, we can not change startup_64 position and that is an ABI. We could move function verify_cpu and no_longmode down, because verify_cpu is used via function call and no_longmode will not return, then we don't need to add extra code for jumping back. Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-20-git-send-email-yinghai@kernel.org Cc: Matt Fleming <matt.fleming@intel.com> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-27x86, build: Dynamically find entry points in compressed startup codeDavid Woodhouse
We have historically hard-coded entry points in head.S just so it's easy to build the executable/bzImage headers with references to them. Unfortunately, this leads to boot loaders abusing these "known" addresses even when they are *explicitly* told that they "should look at the ELF header to find this address, as it may change in the future". And even when the address in question *has* actually been changed in the past, without fanfare or thought to compatibility. Thus we have bootloaders doing stunningly broken things like jumping to offset 0x200 in the kernel startup code in 64-bit mode, *hoping* that startup_64 is still there (it has moved at least once before). And hoping that it's actually a 64-bit kernel despite the fact that we don't give them any indication of that fact. This patch should hopefully remove the temptation to abuse internal addresses in future, where sternly worded comments have not sufficed. Instead of having hard-coded addresses and saying "please don't abuse these", we actually pull the addresses out of the ELF payload into zoffset.h, and make build.c shove them back into the right places in the bzImage header. Rather than including zoffset.h into build.c and thus having to rebuild the tool for every kernel build, we parse it instead. The parsing code is small and simple. This patch doesn't actually move any of the interesting entry points, so any offending bootloader will still continue to "work" after this patch is applied. For some version of "work" which includes jumping into the compressed payload and crashing, if the bzImage it's given is a 32-bit kernel. No change there then. [ hpa: some of the issues in the description are addressed or retconned by the 2.12 boot protocol. This patch has been edited to only remove fixed addresses that were *not* thus retconned. ] Signed-off-by: David Woodhouse <David.Woodhouse@intel.com> Link: http://lkml.kernel.org/r/1358513837.2397.247.camel@shinybook.infradead.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com> Cc: Matt Fleming <matt.fleming@intel.com>
2012-07-20x86, efi: Handover ProtocolMatt Fleming
As things currently stand, traditional EFI boot loaders and the EFI boot stub are carrying essentially the same initialisation code required to setup an EFI machine for booting a kernel. There's really no need to have this code in two places and the hope is that, with this new protocol, initialisation and booting of the kernel can be left solely to the kernel's EFI boot stub. The responsibilities of the boot loader then become, o Loading the kernel image from boot media File system code still needs to be carried by boot loaders for the scenario where the kernel and initrd files reside on a file system that the EFI firmware doesn't natively understand, such as ext4, etc. o Providing a user interface Boot loaders still need to display any menus/interfaces, for example to allow the user to select from a list of kernels. Bump the boot protocol number because we added the 'handover_offset' field to indicate the location of the handover protocol entry point. Cc: H. Peter Anvin <hpa@zytor.com> Cc: Peter Jones <pjones@redhat.com> Cc: Ingo Molnar <mingo@kernel.org> Signed-off-by: Matt Fleming <matt.fleming@intel.com> Acked-and-Tested-by: Matthew Garrett <mjg@redhat.com> Link: http://lkml.kernel.org/r/1342689828-16815-1-git-send-email-matt@console-pimps.org Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2012-04-16x86, efi: Add dedicated EFI stub entry pointMatt Fleming
The method used to work out whether we were booted by EFI firmware or via a boot loader is broken. Because efi_main() is always executed when booting from a boot loader we will dereference invalid pointers either on the stack (CONFIG_X86_32) or contained in %rdx (CONFIG_X86_64) when searching for an EFI System Table signature. Instead of dereferencing these invalid system table pointers, add a new entry point that is only used when booting from EFI firmware, when we know the pointer arguments will be valid. With this change legacy boot loaders will no longer execute efi_main(), but will instead skip EFI stub initialisation completely. [ hpa: Marking this for urgent/stable since it is a regression when the option is enabled; without the option the patch has no effect ] Signed-off-by: Matt Fleming <matt.hfleming@intel.com> Link: http://lkml.kernel.org/r/1334584744.26997.14.camel@mfleming-mobl1.ger.corp.intel.com Reported-by: Jordan Justen <jordan.l.justen@intel.com> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com> Cc: <stable@vger.kernel.org> v3.3
2011-12-12x86, efi: EFI boot stub supportMatt Fleming
There is currently a large divide between kernel development and the development of EFI boot loaders. The idea behind this patch is to give the kernel developers full control over the EFI boot process. As H. Peter Anvin put it, "The 'kernel carries its own stub' approach been very successful in dealing with BIOS, and would make a lot of sense to me for EFI as well." This patch introduces an EFI boot stub that allows an x86 bzImage to be loaded and executed by EFI firmware. The bzImage appears to the firmware as an EFI application. Luckily there are enough free bits within the bzImage header so that it can masquerade as an EFI application, thereby coercing the EFI firmware into loading it and jumping to its entry point. The beauty of this masquerading approach is that both BIOS and EFI boot loaders can still load and run the same bzImage, thereby allowing a single kernel image to work in any boot environment. The EFI boot stub supports multiple initrds, but they must exist on the same partition as the bzImage. Command-line arguments for the kernel can be appended after the bzImage name when run from the EFI shell, e.g. Shell> bzImage console=ttyS0 root=/dev/sdb initrd=initrd.img v7: - Fix checkpatch warnings. v6: - Try to allocate initrd memory just below hdr->inird_addr_max. v5: - load_options_size is UTF-16, which needs dividing by 2 to convert to the corresponding ASCII size. v4: - Don't read more than image->load_options_size v3: - Fix following warnings when compiling CONFIG_EFI_STUB=n arch/x86/boot/tools/build.c: In function ‘main’: arch/x86/boot/tools/build.c:138:24: warning: unused variable ‘pe_header’ arch/x86/boot/tools/build.c:138:15: warning: unused variable ‘file_sz’ - As reported by Matthew Garrett, some Apple machines have GOPs that don't have hardware attached. We need to weed these out by searching for ones that handle the PCIIO protocol. - Don't allocate memory if no initrds are on cmdline - Don't trust image->load_options_size Maarten Lankhorst noted: - Don't strip first argument when booted from efibootmgr - Don't allocate too much memory for cmdline - Don't update cmdline_size, the kernel considers it read-only - Don't accept '\n' for initrd names v2: - File alignment was too large, was 8192 should be 512. Reported by Maarten Lankhorst on LKML. - Added UGA support for graphics - Use VIDEO_TYPE_EFI instead of hard-coded number. - Move linelength assignment until after we've assigned depth - Dynamically fill out AddressOfEntryPoint in tools/build.c - Don't use magic number for GDT/TSS stuff. Requested by Andi Kleen - The bzImage may need to be relocated as it may have been loaded at a high address address by the firmware. This was required to get my macbook booting because the firmware loaded it at 0x7cxxxxxx, which triggers this error in decompress_kernel(), if (heap > ((-__PAGE_OFFSET-(128<<20)-1) & 0x7fffffff)) error("Destination address too large"); Cc: Mike Waychison <mikew@google.com> Cc: Matthew Garrett <mjg@redhat.com> Tested-by: Henrik Rydberg <rydberg@euromail.se> Signed-off-by: Matt Fleming <matt.fleming@intel.com> Link: http://lkml.kernel.org/r/1321383097.2657.9.camel@mfleming-mobl1.ger.corp.intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2010-11-10x86, cpu: Rename verify_cpu_64.S to verify_cpu.SKees Cook
The code is 32bit already, and can be used in 32bit routines. Signed-off-by: Kees Cook <kees.cook@canonical.com> LKML-Reference: <1289414154-7829-2-git-send-email-kees.cook@canonical.com> Acked-by: Pekka Enberg <penberg@kernel.org> Acked-by: Alan Cox <alan@lxorguk.ukuu.org.uk> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2010-08-02x86, setup: Allow global variables and functions in the decompressorH. Peter Anvin
In order for global variables and functions to work in the decompressor, we need to fix up the GOT in assembly code. Signed-off-by: H. Peter Anvin <hpa@linux.intel.com> LKML-Reference: <4C57382E.8050501@zytor.com>