summaryrefslogtreecommitdiffstats
path: root/arch/arm64/lib
AgeCommit message (Collapse)Author
2015-07-27arm64: atomics: prefetch the destination word for write prior to stxrWill Deacon
The cost of changing a cacheline from shared to exclusive state can be significant, especially when this is triggered by an exclusive store, since it may result in having to retry the transaction. This patch makes use of prfm to prefetch cachelines for write prior to ldxr/stxr loops when using the ll/sc atomic routines. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2015-07-27arm64: bitops: patch in lse instructions when supported by the CPUWill Deacon
On CPUs which support the LSE atomic instructions introduced in ARMv8.1, it makes sense to use them in preference to ll/sc sequences. This patch introduces runtime patching of our bitops functions so that LSE atomic instructions are used instead. Reviewed-by: Steve Capper <steve.capper@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2015-07-27arm64: introduce CONFIG_ARM64_LSE_ATOMICS as fallback to ll/sc atomicsWill Deacon
In order to patch in the new atomic instructions at runtime, we need to generate wrappers around the out-of-line exclusive load/store atomics. This patch adds a new Kconfig option, CONFIG_ARM64_LSE_ATOMICS. which causes our atomic functions to branch to the out-of-line ll/sc implementations. To avoid the register spill overhead of the PCS, the out-of-line functions are compiled with specific compiler flags to force out-of-line save/restore of any registers that are usually caller-saved. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2015-07-27arm64: kernel: Add support for Privileged Access NeverJames Morse
'Privileged Access Never' is a new arm8.1 feature which prevents privileged code from accessing any virtual address where read or write access is also permitted at EL0. This patch enables the PAN feature on all CPUs, and modifies {get,put}_user helpers temporarily to permit access. This will catch kernel bugs where user memory is accessed directly. 'Unprivileged loads and stores' using ldtrb et al are unaffected by PAN. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: James Morse <james.morse@arm.com> [will: use ALTERNATIVE in asm and tidy up pan_enable check] Signed-off-by: Will Deacon <will.deacon@arm.com>
2015-07-27arm64: lib: use pair accessors for copy_*_user routinesWill Deacon
The AArch64 instruction set contains load/store pair memory accessors, so use these in our copy_*_user routines to transfer 16 bytes per iteration. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2014-11-13arm64: __clear_user: handle exceptions on strbKyle McMartin
ARM64 currently doesn't fix up faults on the single-byte (strb) case of __clear_user... which means that we can cause a nasty kernel panic as an ordinary user with any multiple PAGE_SIZE+1 read from /dev/zero. i.e.: dd if=/dev/zero of=foo ibs=1 count=1 (or ibs=65537, etc.) This is a pretty obscure bug in the general case since we'll only __do_kernel_fault (since there's no extable entry for pc) if the mmap_sem is contended. However, with CONFIG_DEBUG_VM enabled, we'll always fault. if (!down_read_trylock(&mm->mmap_sem)) { if (!user_mode(regs) && !search_exception_tables(regs->pc)) goto no_context; retry: down_read(&mm->mmap_sem); } else { /* * The above down_read_trylock() might have succeeded in * which * case, we'll have missed the might_sleep() from * down_read(). */ might_sleep(); if (!user_mode(regs) && !search_exception_tables(regs->pc)) goto no_context; } Fix that by adding an extable entry for the strb instruction, since it touches user memory, similar to the other stores in __clear_user. Signed-off-by: Kyle McMartin <kyle@redhat.com> Reported-by: Miloš Prchlík <mprchlik@redhat.com> Cc: stable@vger.kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2014-05-23arm64: lib: Implement optimized string length routineszhichang.yuan
This patch, based on Linaro's Cortex Strings library, adds an assembly optimized strlen() and strnlen() functions. Signed-off-by: Zhichang Yuan <zhichang.yuan@linaro.org> Signed-off-by: Deepak Saxena <dsaxena@linaro.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2014-05-23arm64: lib: Implement optimized string compare routineszhichang.yuan
This patch, based on Linaro's Cortex Strings library, adds an assembly optimized strcmp() and strncmp() functions. Signed-off-by: Zhichang Yuan <zhichang.yuan@linaro.org> Signed-off-by: Deepak Saxena <dsaxena@linaro.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2014-05-23arm64: lib: Implement optimized memcmp routinezhichang.yuan
This patch, based on Linaro's Cortex Strings library, adds an assembly optimized memcmp() function. Signed-off-by: Zhichang Yuan <zhichang.yuan@linaro.org> Signed-off-by: Deepak Saxena <dsaxena@linaro.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2014-05-23arm64: lib: Implement optimized memset routinezhichang.yuan
This patch, based on Linaro's Cortex Strings library, improves the performance of the assembly optimized memset() function. Signed-off-by: Zhichang Yuan <zhichang.yuan@linaro.org> Signed-off-by: Deepak Saxena <dsaxena@linaro.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2014-05-23arm64: lib: Implement optimized memmove routinezhichang.yuan
This patch, based on Linaro's Cortex Strings library, improves the performance of the assembly optimized memmove() function. Signed-off-by: Zhichang Yuan <zhichang.yuan@linaro.org> Signed-off-by: Deepak Saxena <dsaxena@linaro.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2014-05-23arm64: lib: Implement optimized memcpy routinezhichang.yuan
This patch, based on Linaro's Cortex Strings library, improves the performance of the assembly optimized memcpy() function. Signed-off-by: Zhichang Yuan <zhichang.yuan@linaro.org> Signed-off-by: Deepak Saxena <dsaxena@linaro.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2014-02-07arm64: atomics: fix use of acquire + release for full barrier semanticsWill Deacon
Linux requires a number of atomic operations to provide full barrier semantics, that is no memory accesses after the operation can be observed before any accesses up to and including the operation in program order. On arm64, these operations have been incorrectly implemented as follows: // A, B, C are independent memory locations <Access [A]> // atomic_op (B) 1: ldaxr x0, [B] // Exclusive load with acquire <op(B)> stlxr w1, x0, [B] // Exclusive store with release cbnz w1, 1b <Access [C]> The assumption here being that two half barriers are equivalent to a full barrier, so the only permitted ordering would be A -> B -> C (where B is the atomic operation involving both a load and a store). Unfortunately, this is not the case by the letter of the architecture and, in fact, the accesses to A and C are permitted to pass their nearest half barrier resulting in orderings such as Bl -> A -> C -> Bs or Bl -> C -> A -> Bs (where Bl is the load-acquire on B and Bs is the store-release on B). This is a clear violation of the full barrier requirement. The simple way to fix this is to implement the same algorithm as ARMv7 using explicit barriers: <Access [A]> // atomic_op (B) dmb ish // Full barrier 1: ldxr x0, [B] // Exclusive load <op(B)> stxr w1, x0, [B] // Exclusive store cbnz w1, 1b dmb ish // Full barrier <Access [C]> but this has the undesirable effect of introducing *two* full barrier instructions. A better approach is actually the following, non-intuitive sequence: <Access [A]> // atomic_op (B) 1: ldxr x0, [B] // Exclusive load <op(B)> stlxr w1, x0, [B] // Exclusive store with release cbnz w1, 1b dmb ish // Full barrier <Access [C]> The simple observations here are: - The dmb ensures that no subsequent accesses (e.g. the access to C) can enter or pass the atomic sequence. - The dmb also ensures that no prior accesses (e.g. the access to A) can pass the atomic sequence. - Therefore, no prior access can pass a subsequent access, or vice-versa (i.e. A is strictly ordered before C). - The stlxr ensures that no prior access can pass the store component of the atomic operation. The only tricky part remaining is the ordering between the ldxr and the access to A, since the absence of the first dmb means that we're now permitting re-ordering between the ldxr and any prior accesses. From an (arbitrary) observer's point of view, there are two scenarios: 1. We have observed the ldxr. This means that if we perform a store to [B], the ldxr will still return older data. If we can observe the ldxr, then we can potentially observe the permitted re-ordering with the access to A, which is clearly an issue when compared to the dmb variant of the code. Thankfully, the exclusive monitor will save us here since it will be cleared as a result of the store and the ldxr will retry. Notice that any use of a later memory observation to imply observation of the ldxr will also imply observation of the access to A, since the stlxr/dmb ensure strict ordering. 2. We have not observed the ldxr. This means we can perform a store and influence the later ldxr. However, that doesn't actually tell us anything about the access to [A], so we've not lost anything here either when compared to the dmb variant. This patch implements this solution for our barriered atomic operations, ensuring that we satisfy the full barrier requirements where they are needed. Cc: <stable@vger.kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2013-12-19arm64: use generic strnlen_user and strncpy_from_user functionsWill Deacon
This patch implements the word-at-a-time interface for arm64 using the same algorithm as ARM. We use the fls64 macro, which expands to a clz instruction via a compiler builtin. Big-endian configurations make use of the implementation from asm-generic. With this implemented, we can replace our byte-at-a-time strnlen_user and strncpy_from_user functions with the optimised generic versions. Signed-off-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2013-05-08arm64: Treat the bitops index argument as an 'int'Catalin Marinas
The bitops prototype use an 'int' as the bit index type but the asm implementation assume it to be a 'long'. Since the compiler does not guarantee zeroing the upper 32-bits in a register when used as 'int', change the bitops implementation accordingly. Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2013-04-30arm64: Use acquire/release semantics instead of explicit DMBCatalin Marinas
This patch changes the test_and_*_bit functions to use the load-acquire/store-release instructions instead of explicit DMB. Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2013-04-30arm64: klib: bitops: fix unpredictable stxr usageMark Rutland
We're currently relying on unpredictable behaviour in our testops (test_and_*_bit), as stxr is unpredictable when the status register and the source register are the same This patch changes reallocates the status register so as to bring us back into the realm of predictable behaviour. Boot tested on an AEMv8 model. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2013-03-21arm64: klib: Optimised atomic bitopsCatalin Marinas
This patch implements the AArch64-specific atomic bitops functions using exclusive memory accesses to avoid locking. Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2013-03-21arm64: klib: Optimised string functionsCatalin Marinas
This patch introduces AArch64-specific string functions (strchr, strrchr). Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2013-03-21arm64: klib: Optimised memory functionsCatalin Marinas
This patch introduces AArch64-specific memory functions (memcpy, memmove, memchr, memset). These functions are not optimised for any CPU implementation but can be used as a starting point once hardware is available. Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2012-09-17arm64: Miscellaneous library functionsMarc Zyngier
This patch adds udelay, memory and bit operations together with the ksyms exports. Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: Tony Lindgren <tony@atomide.com> Acked-by: Nicolas Pitre <nico@linaro.org> Acked-by: Olof Johansson <olof@lixom.net> Acked-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
2012-09-17arm64: User access library functionsCatalin Marinas
This patch add support for various user access functions. These functions use the standard LDR/STR instructions and not the LDRT/STRT variants in order to allow kernel addresses (after set_fs(KERNEL_DS)). Signed-off-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: Tony Lindgren <tony@atomide.com> Acked-by: Nicolas Pitre <nico@linaro.org> Acked-by: Olof Johansson <olof@lixom.net> Acked-by: Santosh Shilimkar <santosh.shilimkar@ti.com> Acked-by: Arnd Bergmann <arnd@arndb.de>