aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/admin-guide
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/admin-guide')
-rw-r--r--Documentation/admin-guide/hw-vuln/index.rst1
-rw-r--r--Documentation/admin-guide/hw-vuln/mds.rst7
-rw-r--r--Documentation/admin-guide/hw-vuln/special-register-buffer-data-sampling.rst149
-rw-r--r--Documentation/admin-guide/hw-vuln/tsx_async_abort.rst5
-rw-r--r--Documentation/admin-guide/kernel-parameters.txt72
5 files changed, 218 insertions, 16 deletions
diff --git a/Documentation/admin-guide/hw-vuln/index.rst b/Documentation/admin-guide/hw-vuln/index.rst
index 0795e3c2643f..ca4dbdd9016d 100644
--- a/Documentation/admin-guide/hw-vuln/index.rst
+++ b/Documentation/admin-guide/hw-vuln/index.rst
@@ -14,3 +14,4 @@ are configurable at compile, boot or run time.
mds
tsx_async_abort
multihit.rst
+ special-register-buffer-data-sampling.rst
diff --git a/Documentation/admin-guide/hw-vuln/mds.rst b/Documentation/admin-guide/hw-vuln/mds.rst
index e3a796c0d3a2..2d19c9f4c1fe 100644
--- a/Documentation/admin-guide/hw-vuln/mds.rst
+++ b/Documentation/admin-guide/hw-vuln/mds.rst
@@ -265,8 +265,11 @@ time with the option "mds=". The valid arguments for this option are:
============ =============================================================
-Not specifying this option is equivalent to "mds=full".
-
+Not specifying this option is equivalent to "mds=full". For processors
+that are affected by both TAA (TSX Asynchronous Abort) and MDS,
+specifying just "mds=off" without an accompanying "tsx_async_abort=off"
+will have no effect as the same mitigation is used for both
+vulnerabilities.
Mitigation selection guide
--------------------------
diff --git a/Documentation/admin-guide/hw-vuln/special-register-buffer-data-sampling.rst b/Documentation/admin-guide/hw-vuln/special-register-buffer-data-sampling.rst
new file mode 100644
index 000000000000..47b1b3afac99
--- /dev/null
+++ b/Documentation/admin-guide/hw-vuln/special-register-buffer-data-sampling.rst
@@ -0,0 +1,149 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+SRBDS - Special Register Buffer Data Sampling
+=============================================
+
+SRBDS is a hardware vulnerability that allows MDS :doc:`mds` techniques to
+infer values returned from special register accesses. Special register
+accesses are accesses to off core registers. According to Intel's evaluation,
+the special register reads that have a security expectation of privacy are
+RDRAND, RDSEED and SGX EGETKEY.
+
+When RDRAND, RDSEED and EGETKEY instructions are used, the data is moved
+to the core through the special register mechanism that is susceptible
+to MDS attacks.
+
+Affected processors
+--------------------
+Core models (desktop, mobile, Xeon-E3) that implement RDRAND and/or RDSEED may
+be affected.
+
+A processor is affected by SRBDS if its Family_Model and stepping is
+in the following list, with the exception of the listed processors
+exporting MDS_NO while Intel TSX is available yet not enabled. The
+latter class of processors are only affected when Intel TSX is enabled
+by software using TSX_CTRL_MSR otherwise they are not affected.
+
+ ============= ============ ========
+ common name Family_Model Stepping
+ ============= ============ ========
+ IvyBridge 06_3AH All
+
+ Haswell 06_3CH All
+ Haswell_L 06_45H All
+ Haswell_G 06_46H All
+
+ Broadwell_G 06_47H All
+ Broadwell 06_3DH All
+
+ Skylake_L 06_4EH All
+ Skylake 06_5EH All
+
+ Kabylake_L 06_8EH <= 0xC
+ Kabylake 06_9EH <= 0xD
+ ============= ============ ========
+
+Related CVEs
+------------
+
+The following CVE entry is related to this SRBDS issue:
+
+ ============== ===== =====================================
+ CVE-2020-0543 SRBDS Special Register Buffer Data Sampling
+ ============== ===== =====================================
+
+Attack scenarios
+----------------
+An unprivileged user can extract values returned from RDRAND and RDSEED
+executed on another core or sibling thread using MDS techniques.
+
+
+Mitigation mechanism
+-------------------
+Intel will release microcode updates that modify the RDRAND, RDSEED, and
+EGETKEY instructions to overwrite secret special register data in the shared
+staging buffer before the secret data can be accessed by another logical
+processor.
+
+During execution of the RDRAND, RDSEED, or EGETKEY instructions, off-core
+accesses from other logical processors will be delayed until the special
+register read is complete and the secret data in the shared staging buffer is
+overwritten.
+
+This has three effects on performance:
+
+#. RDRAND, RDSEED, or EGETKEY instructions have higher latency.
+
+#. Executing RDRAND at the same time on multiple logical processors will be
+ serialized, resulting in an overall reduction in the maximum RDRAND
+ bandwidth.
+
+#. Executing RDRAND, RDSEED or EGETKEY will delay memory accesses from other
+ logical processors that miss their core caches, with an impact similar to
+ legacy locked cache-line-split accesses.
+
+The microcode updates provide an opt-out mechanism (RNGDS_MITG_DIS) to disable
+the mitigation for RDRAND and RDSEED instructions executed outside of Intel
+Software Guard Extensions (Intel SGX) enclaves. On logical processors that
+disable the mitigation using this opt-out mechanism, RDRAND and RDSEED do not
+take longer to execute and do not impact performance of sibling logical
+processors memory accesses. The opt-out mechanism does not affect Intel SGX
+enclaves (including execution of RDRAND or RDSEED inside an enclave, as well
+as EGETKEY execution).
+
+IA32_MCU_OPT_CTRL MSR Definition
+--------------------------------
+Along with the mitigation for this issue, Intel added a new thread-scope
+IA32_MCU_OPT_CTRL MSR, (address 0x123). The presence of this MSR and
+RNGDS_MITG_DIS (bit 0) is enumerated by CPUID.(EAX=07H,ECX=0).EDX[SRBDS_CTRL =
+9]==1. This MSR is introduced through the microcode update.
+
+Setting IA32_MCU_OPT_CTRL[0] (RNGDS_MITG_DIS) to 1 for a logical processor
+disables the mitigation for RDRAND and RDSEED executed outside of an Intel SGX
+enclave on that logical processor. Opting out of the mitigation for a
+particular logical processor does not affect the RDRAND and RDSEED mitigations
+for other logical processors.
+
+Note that inside of an Intel SGX enclave, the mitigation is applied regardless
+of the value of RNGDS_MITG_DS.
+
+Mitigation control on the kernel command line
+---------------------------------------------
+The kernel command line allows control over the SRBDS mitigation at boot time
+with the option "srbds=". The option for this is:
+
+ ============= =============================================================
+ off This option disables SRBDS mitigation for RDRAND and RDSEED on
+ affected platforms.
+ ============= =============================================================
+
+SRBDS System Information
+-----------------------
+The Linux kernel provides vulnerability status information through sysfs. For
+SRBDS this can be accessed by the following sysfs file:
+/sys/devices/system/cpu/vulnerabilities/srbds
+
+The possible values contained in this file are:
+
+ ============================== =============================================
+ Not affected Processor not vulnerable
+ Vulnerable Processor vulnerable and mitigation disabled
+ Vulnerable: No microcode Processor vulnerable and microcode is missing
+ mitigation
+ Mitigation: Microcode Processor is vulnerable and mitigation is in
+ effect.
+ Mitigation: TSX disabled Processor is only vulnerable when TSX is
+ enabled while this system was booted with TSX
+ disabled.
+ Unknown: Dependent on
+ hypervisor status Running on virtual guest processor that is
+ affected but with no way to know if host
+ processor is mitigated or vulnerable.
+ ============================== =============================================
+
+SRBDS Default mitigation
+------------------------
+This new microcode serializes processor access during execution of RDRAND,
+RDSEED ensures that the shared buffer is overwritten before it is released for
+reuse. Use the "srbds=off" kernel command line to disable the mitigation for
+RDRAND and RDSEED.
diff --git a/Documentation/admin-guide/hw-vuln/tsx_async_abort.rst b/Documentation/admin-guide/hw-vuln/tsx_async_abort.rst
index fddbd7579c53..af6865b822d2 100644
--- a/Documentation/admin-guide/hw-vuln/tsx_async_abort.rst
+++ b/Documentation/admin-guide/hw-vuln/tsx_async_abort.rst
@@ -174,7 +174,10 @@ the option "tsx_async_abort=". The valid arguments for this option are:
CPU is not vulnerable to cross-thread TAA attacks.
============ =============================================================
-Not specifying this option is equivalent to "tsx_async_abort=full".
+Not specifying this option is equivalent to "tsx_async_abort=full". For
+processors that are affected by both TAA and MDS, specifying just
+"tsx_async_abort=off" without an accompanying "mds=off" will have no
+effect as the same mitigation is used for both vulnerabilities.
The kernel command line also allows to control the TSX feature using the
parameter "tsx=" on CPUs which support TSX control. MSR_IA32_TSX_CTRL is used
diff --git a/Documentation/admin-guide/kernel-parameters.txt b/Documentation/admin-guide/kernel-parameters.txt
index 9b8fe2788037..895b400b734f 100644
--- a/Documentation/admin-guide/kernel-parameters.txt
+++ b/Documentation/admin-guide/kernel-parameters.txt
@@ -113,7 +113,7 @@
the GPE dispatcher.
This facility can be used to prevent such uncontrolled
GPE floodings.
- Format: <int>
+ Format: <byte>
acpi_no_auto_serialize [HW,ACPI]
Disable auto-serialization of AML methods
@@ -136,6 +136,10 @@
dynamic table installation which will install SSDT
tables to /sys/firmware/acpi/tables/dynamic.
+ acpi_no_watchdog [HW,ACPI,WDT]
+ Ignore the ACPI-based watchdog interface (WDAT) and let
+ a native driver control the watchdog device instead.
+
acpi_rsdp= [ACPI,EFI,KEXEC]
Pass the RSDP address to the kernel, mostly used
on machines running EFI runtime service to boot the
@@ -2432,6 +2436,12 @@
SMT on vulnerable CPUs
off - Unconditionally disable MDS mitigation
+ On TAA-affected machines, mds=off can be prevented by
+ an active TAA mitigation as both vulnerabilities are
+ mitigated with the same mechanism so in order to disable
+ this mitigation, you need to specify tsx_async_abort=off
+ too.
+
Not specifying this option is equivalent to
mds=full.
@@ -3779,6 +3789,12 @@
the propagation of recent CPU-hotplug changes up
the rcu_node combining tree.
+ rcutree.use_softirq= [KNL]
+ If set to zero, move all RCU_SOFTIRQ processing to
+ per-CPU rcuc kthreads. Defaults to a non-zero
+ value, meaning that RCU_SOFTIRQ is used by default.
+ Specify rcutree.use_softirq=0 to use rcuc kthreads.
+
rcutree.rcu_fanout_exact= [KNL]
Disable autobalancing of the rcu_node combining
tree. This is used by rcutorture, and might
@@ -4504,6 +4520,26 @@
spia_pedr=
spia_peddr=
+ srbds= [X86,INTEL]
+ Control the Special Register Buffer Data Sampling
+ (SRBDS) mitigation.
+
+ Certain CPUs are vulnerable to an MDS-like
+ exploit which can leak bits from the random
+ number generator.
+
+ By default, this issue is mitigated by
+ microcode. However, the microcode fix can cause
+ the RDRAND and RDSEED instructions to become
+ much slower. Among other effects, this will
+ result in reduced throughput from /dev/urandom.
+
+ The microcode mitigation can be disabled with
+ the following option:
+
+ off: Disable mitigation and remove
+ performance impact to RDRAND and RDSEED
+
srcutree.counter_wrap_check [KNL]
Specifies how frequently to check for
grace-period sequence counter wrap for the
@@ -4882,6 +4918,11 @@
vulnerable to cross-thread TAA attacks.
off - Unconditionally disable TAA mitigation
+ On MDS-affected machines, tsx_async_abort=off can be
+ prevented by an active MDS mitigation as both vulnerabilities
+ are mitigated with the same mechanism so in order to disable
+ this mitigation, you need to specify mds=off too.
+
Not specifying this option is equivalent to
tsx_async_abort=full. On CPUs which are MDS affected
and deploy MDS mitigation, TAA mitigation is not
@@ -4941,8 +4982,7 @@
usbcore.old_scheme_first=
[USB] Start with the old device initialization
- scheme, applies only to low and full-speed devices
- (default 0 = off).
+ scheme (default 0 = off).
usbcore.usbfs_memory_mb=
[USB] Memory limit (in MB) for buffers allocated by
@@ -5041,13 +5081,13 @@
Flags is a set of characters, each corresponding
to a common usb-storage quirk flag as follows:
a = SANE_SENSE (collect more than 18 bytes
- of sense data);
+ of sense data, not on uas);
b = BAD_SENSE (don't collect more than 18
- bytes of sense data);
+ bytes of sense data, not on uas);
c = FIX_CAPACITY (decrease the reported
device capacity by one sector);
d = NO_READ_DISC_INFO (don't use
- READ_DISC_INFO command);
+ READ_DISC_INFO command, not on uas);
e = NO_READ_CAPACITY_16 (don't use
READ_CAPACITY_16 command);
f = NO_REPORT_OPCODES (don't use report opcodes
@@ -5062,17 +5102,18 @@
j = NO_REPORT_LUNS (don't use report luns
command, uas only);
l = NOT_LOCKABLE (don't try to lock and
- unlock ejectable media);
+ unlock ejectable media, not on uas);
m = MAX_SECTORS_64 (don't transfer more
- than 64 sectors = 32 KB at a time);
+ than 64 sectors = 32 KB at a time,
+ not on uas);
n = INITIAL_READ10 (force a retry of the
- initial READ(10) command);
+ initial READ(10) command, not on uas);
o = CAPACITY_OK (accept the capacity
- reported by the device);
+ reported by the device, not on uas);
p = WRITE_CACHE (the device cache is ON
- by default);
+ by default, not on uas);
r = IGNORE_RESIDUE (the device reports
- bogus residue values);
+ bogus residue values, not on uas);
s = SINGLE_LUN (the device has only one
Logical Unit);
t = NO_ATA_1X (don't allow ATA(12) and ATA(16)
@@ -5081,7 +5122,8 @@
w = NO_WP_DETECT (don't test whether the
medium is write-protected).
y = ALWAYS_SYNC (issue a SYNCHRONIZE_CACHE
- even if the device claims no cache)
+ even if the device claims no cache,
+ not on uas)
Example: quirks=0419:aaf5:rl,0421:0433:rc
user_debug= [KNL,ARM]
@@ -5340,6 +5382,10 @@
the unplug protocol
never -- do not unplug even if version check succeeds
+ xen_legacy_crash [X86,XEN]
+ Crash from Xen panic notifier, without executing late
+ panic() code such as dumping handler.
+
xen_nopvspin [X86,XEN]
Disables the ticketlock slowpath using Xen PV
optimizations.