// SPDX-License-Identifier: GPL-2.0-only /* * Kernel-based Virtual Machine driver for Linux * * This module enables kernel and guest-mode vCPU access to guest physical * memory with suitable invalidation mechanisms. * * Copyright © 2021 Amazon.com, Inc. or its affiliates. * * Authors: * David Woodhouse */ #include #include #include #include #include #include "kvm_mm.h" /* * MMU notifier 'invalidate_range_start' hook. */ void gfn_to_pfn_cache_invalidate_start(struct kvm *kvm, unsigned long start, unsigned long end, bool may_block) { DECLARE_BITMAP(vcpu_bitmap, KVM_MAX_VCPUS); struct gfn_to_pfn_cache *gpc; bool wake_vcpus = false; spin_lock(&kvm->gpc_lock); list_for_each_entry(gpc, &kvm->gpc_list, list) { write_lock_irq(&gpc->lock); /* Only a single page so no need to care about length */ if (gpc->valid && !is_error_noslot_pfn(gpc->pfn) && gpc->uhva >= start && gpc->uhva < end) { gpc->valid = false; /* * If a guest vCPU could be using the physical address, * it needs to be woken. */ if (gpc->guest_uses_pa) { if (!wake_vcpus) { wake_vcpus = true; bitmap_zero(vcpu_bitmap, KVM_MAX_VCPUS); } __set_bit(gpc->vcpu->vcpu_idx, vcpu_bitmap); } /* * We cannot call mark_page_dirty() from here because * this physical CPU might not have an active vCPU * with which to do the KVM dirty tracking. * * Neither is there any point in telling the kernel MM * that the underlying page is dirty. A vCPU in guest * mode might still be writing to it up to the point * where we wake them a few lines further down anyway. * * So all the dirty marking happens on the unmap. */ } write_unlock_irq(&gpc->lock); } spin_unlock(&kvm->gpc_lock); if (wake_vcpus) { unsigned int req = KVM_REQ_GPC_INVALIDATE; bool called; /* * If the OOM reaper is active, then all vCPUs should have * been stopped already, so perform the request without * KVM_REQUEST_WAIT and be sad if any needed to be woken. */ if (!may_block) req &= ~KVM_REQUEST_WAIT; called = kvm_make_vcpus_request_mask(kvm, req, vcpu_bitmap); WARN_ON_ONCE(called && !may_block); } } bool kvm_gfn_to_pfn_cache_check(struct kvm *kvm, struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len) { struct kvm_memslots *slots = kvm_memslots(kvm); if ((gpa & ~PAGE_MASK) + len > PAGE_SIZE) return false; if (gpc->gpa != gpa || gpc->generation != slots->generation || kvm_is_error_hva(gpc->uhva)) return false; if (!gpc->valid) return false; return true; } EXPORT_SYMBOL_GPL(kvm_gfn_to_pfn_cache_check); static void __release_gpc(struct kvm *kvm, kvm_pfn_t pfn, void *khva, gpa_t gpa, bool dirty) { /* Unmap the old page if it was mapped before, and release it */ if (!is_error_noslot_pfn(pfn)) { if (khva) { if (pfn_valid(pfn)) kunmap(pfn_to_page(pfn)); #ifdef CONFIG_HAS_IOMEM else memunmap(khva); #endif } kvm_release_pfn(pfn, dirty); if (dirty) mark_page_dirty(kvm, gpa); } } static kvm_pfn_t hva_to_pfn_retry(struct kvm *kvm, unsigned long uhva) { unsigned long mmu_seq; kvm_pfn_t new_pfn; int retry; do { mmu_seq = kvm->mmu_notifier_seq; smp_rmb(); /* We always request a writeable mapping */ new_pfn = hva_to_pfn(uhva, false, NULL, true, NULL); if (is_error_noslot_pfn(new_pfn)) break; KVM_MMU_READ_LOCK(kvm); retry = mmu_notifier_retry_hva(kvm, mmu_seq, uhva); KVM_MMU_READ_UNLOCK(kvm); if (!retry) break; cond_resched(); } while (1); return new_pfn; } int kvm_gfn_to_pfn_cache_refresh(struct kvm *kvm, struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len, bool dirty) { struct kvm_memslots *slots = kvm_memslots(kvm); unsigned long page_offset = gpa & ~PAGE_MASK; kvm_pfn_t old_pfn, new_pfn; unsigned long old_uhva; gpa_t old_gpa; void *old_khva; bool old_valid, old_dirty; int ret = 0; /* * If must fit within a single page. The 'len' argument is * only to enforce that. */ if (page_offset + len > PAGE_SIZE) return -EINVAL; write_lock_irq(&gpc->lock); old_gpa = gpc->gpa; old_pfn = gpc->pfn; old_khva = gpc->khva - offset_in_page(gpc->khva); old_uhva = gpc->uhva; old_valid = gpc->valid; old_dirty = gpc->dirty; /* If the userspace HVA is invalid, refresh that first */ if (gpc->gpa != gpa || gpc->generation != slots->generation || kvm_is_error_hva(gpc->uhva)) { gfn_t gfn = gpa_to_gfn(gpa); gpc->dirty = false; gpc->gpa = gpa; gpc->generation = slots->generation; gpc->memslot = __gfn_to_memslot(slots, gfn); gpc->uhva = gfn_to_hva_memslot(gpc->memslot, gfn); if (kvm_is_error_hva(gpc->uhva)) { ret = -EFAULT; goto out; } gpc->uhva += page_offset; } /* * If the userspace HVA changed or the PFN was already invalid, * drop the lock and do the HVA to PFN lookup again. */ if (!old_valid || old_uhva != gpc->uhva) { unsigned long uhva = gpc->uhva; void *new_khva = NULL; /* Placeholders for "hva is valid but not yet mapped" */ gpc->pfn = KVM_PFN_ERR_FAULT; gpc->khva = NULL; gpc->valid = true; write_unlock_irq(&gpc->lock); new_pfn = hva_to_pfn_retry(kvm, uhva); if (is_error_noslot_pfn(new_pfn)) { ret = -EFAULT; goto map_done; } if (gpc->kernel_map) { if (new_pfn == old_pfn) { new_khva = old_khva; old_pfn = KVM_PFN_ERR_FAULT; old_khva = NULL; } else if (pfn_valid(new_pfn)) { new_khva = kmap(pfn_to_page(new_pfn)); #ifdef CONFIG_HAS_IOMEM } else { new_khva = memremap(pfn_to_hpa(new_pfn), PAGE_SIZE, MEMREMAP_WB); #endif } if (new_khva) new_khva += page_offset; else ret = -EFAULT; } map_done: write_lock_irq(&gpc->lock); if (ret) { gpc->valid = false; gpc->pfn = KVM_PFN_ERR_FAULT; gpc->khva = NULL; } else { /* At this point, gpc->valid may already have been cleared */ gpc->pfn = new_pfn; gpc->khva = new_khva; } } else { /* If the HVA→PFN mapping was already valid, don't unmap it. */ old_pfn = KVM_PFN_ERR_FAULT; old_khva = NULL; } out: if (ret) gpc->dirty = false; else gpc->dirty = dirty; write_unlock_irq(&gpc->lock); __release_gpc(kvm, old_pfn, old_khva, old_gpa, old_dirty); return ret; } EXPORT_SYMBOL_GPL(kvm_gfn_to_pfn_cache_refresh); void kvm_gfn_to_pfn_cache_unmap(struct kvm *kvm, struct gfn_to_pfn_cache *gpc) { void *old_khva; kvm_pfn_t old_pfn; bool old_dirty; gpa_t old_gpa; write_lock_irq(&gpc->lock); gpc->valid = false; old_khva = gpc->khva - offset_in_page(gpc->khva); old_dirty = gpc->dirty; old_gpa = gpc->gpa; old_pfn = gpc->pfn; /* * We can leave the GPA → uHVA map cache intact but the PFN * lookup will need to be redone even for the same page. */ gpc->khva = NULL; gpc->pfn = KVM_PFN_ERR_FAULT; write_unlock_irq(&gpc->lock); __release_gpc(kvm, old_pfn, old_khva, old_gpa, old_dirty); } EXPORT_SYMBOL_GPL(kvm_gfn_to_pfn_cache_unmap); int kvm_gfn_to_pfn_cache_init(struct kvm *kvm, struct gfn_to_pfn_cache *gpc, struct kvm_vcpu *vcpu, bool guest_uses_pa, bool kernel_map, gpa_t gpa, unsigned long len, bool dirty) { if (!gpc->active) { rwlock_init(&gpc->lock); gpc->khva = NULL; gpc->pfn = KVM_PFN_ERR_FAULT; gpc->uhva = KVM_HVA_ERR_BAD; gpc->vcpu = vcpu; gpc->kernel_map = kernel_map; gpc->guest_uses_pa = guest_uses_pa; gpc->valid = false; gpc->active = true; spin_lock(&kvm->gpc_lock); list_add(&gpc->list, &kvm->gpc_list); spin_unlock(&kvm->gpc_lock); } return kvm_gfn_to_pfn_cache_refresh(kvm, gpc, gpa, len, dirty); } EXPORT_SYMBOL_GPL(kvm_gfn_to_pfn_cache_init); void kvm_gfn_to_pfn_cache_destroy(struct kvm *kvm, struct gfn_to_pfn_cache *gpc) { if (gpc->active) { spin_lock(&kvm->gpc_lock); list_del(&gpc->list); spin_unlock(&kvm->gpc_lock); kvm_gfn_to_pfn_cache_unmap(kvm, gpc); gpc->active = false; } } EXPORT_SYMBOL_GPL(kvm_gfn_to_pfn_cache_destroy);