/* * NVMe over Fabrics loopback device. * Copyright (c) 2015-2016 HGST, a Western Digital Company. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include "nvmet.h" #include "../host/nvme.h" #include "../host/fabrics.h" #define NVME_LOOP_AQ_DEPTH 256 #define NVME_LOOP_MAX_SEGMENTS 256 /* * We handle AEN commands ourselves and don't even let the * block layer know about them. */ #define NVME_LOOP_NR_AEN_COMMANDS 1 #define NVME_LOOP_AQ_BLKMQ_DEPTH \ (NVME_LOOP_AQ_DEPTH - NVME_LOOP_NR_AEN_COMMANDS) struct nvme_loop_iod { struct nvme_command cmd; struct nvme_completion rsp; struct nvmet_req req; struct nvme_loop_queue *queue; struct work_struct work; struct sg_table sg_table; struct scatterlist first_sgl[]; }; struct nvme_loop_ctrl { spinlock_t lock; struct nvme_loop_queue *queues; u32 queue_count; struct blk_mq_tag_set admin_tag_set; struct list_head list; u64 cap; struct blk_mq_tag_set tag_set; struct nvme_loop_iod async_event_iod; struct nvme_ctrl ctrl; struct nvmet_ctrl *target_ctrl; struct work_struct delete_work; struct work_struct reset_work; }; static inline struct nvme_loop_ctrl *to_loop_ctrl(struct nvme_ctrl *ctrl) { return container_of(ctrl, struct nvme_loop_ctrl, ctrl); } struct nvme_loop_queue { struct nvmet_cq nvme_cq; struct nvmet_sq nvme_sq; struct nvme_loop_ctrl *ctrl; }; static struct nvmet_port *nvmet_loop_port; static LIST_HEAD(nvme_loop_ctrl_list); static DEFINE_MUTEX(nvme_loop_ctrl_mutex); static void nvme_loop_queue_response(struct nvmet_req *nvme_req); static void nvme_loop_delete_ctrl(struct nvmet_ctrl *ctrl); static struct nvmet_fabrics_ops nvme_loop_ops; static inline int nvme_loop_queue_idx(struct nvme_loop_queue *queue) { return queue - queue->ctrl->queues; } static void nvme_loop_complete_rq(struct request *req) { struct nvme_loop_iod *iod = blk_mq_rq_to_pdu(req); int error = 0; nvme_cleanup_cmd(req); sg_free_table_chained(&iod->sg_table, true); if (unlikely(req->errors)) { if (nvme_req_needs_retry(req, req->errors)) { nvme_requeue_req(req); return; } if (req->cmd_type == REQ_TYPE_DRV_PRIV) error = req->errors; else error = nvme_error_status(req->errors); } blk_mq_end_request(req, error); } static void nvme_loop_queue_response(struct nvmet_req *nvme_req) { struct nvme_loop_iod *iod = container_of(nvme_req, struct nvme_loop_iod, req); struct nvme_completion *cqe = &iod->rsp; /* * AEN requests are special as they don't time out and can * survive any kind of queue freeze and often don't respond to * aborts. We don't even bother to allocate a struct request * for them but rather special case them here. */ if (unlikely(nvme_loop_queue_idx(iod->queue) == 0 && cqe->command_id >= NVME_LOOP_AQ_BLKMQ_DEPTH)) { nvme_complete_async_event(&iod->queue->ctrl->ctrl, cqe); } else { struct request *req = blk_mq_rq_from_pdu(iod); if (req->cmd_type == REQ_TYPE_DRV_PRIV && req->special) memcpy(req->special, cqe, sizeof(*cqe)); blk_mq_complete_request(req, le16_to_cpu(cqe->status) >> 1); } } static void nvme_loop_execute_work(struct work_struct *work) { struct nvme_loop_iod *iod = container_of(work, struct nvme_loop_iod, work); iod->req.execute(&iod->req); } static enum blk_eh_timer_return nvme_loop_timeout(struct request *rq, bool reserved) { struct nvme_loop_iod *iod = blk_mq_rq_to_pdu(rq); /* queue error recovery */ schedule_work(&iod->queue->ctrl->reset_work); /* fail with DNR on admin cmd timeout */ rq->errors = NVME_SC_ABORT_REQ | NVME_SC_DNR; return BLK_EH_HANDLED; } static int nvme_loop_queue_rq(struct blk_mq_hw_ctx *hctx, const struct blk_mq_queue_data *bd) { struct nvme_ns *ns = hctx->queue->queuedata; struct nvme_loop_queue *queue = hctx->driver_data; struct request *req = bd->rq; struct nvme_loop_iod *iod = blk_mq_rq_to_pdu(req); int ret; ret = nvme_setup_cmd(ns, req, &iod->cmd); if (ret) return ret; iod->cmd.common.flags |= NVME_CMD_SGL_METABUF; iod->req.port = nvmet_loop_port; if (!nvmet_req_init(&iod->req, &queue->nvme_cq, &queue->nvme_sq, &nvme_loop_ops)) { nvme_cleanup_cmd(req); blk_mq_start_request(req); nvme_loop_queue_response(&iod->req); return 0; } if (blk_rq_bytes(req)) { iod->sg_table.sgl = iod->first_sgl; ret = sg_alloc_table_chained(&iod->sg_table, req->nr_phys_segments, iod->sg_table.sgl); if (ret) return BLK_MQ_RQ_QUEUE_BUSY; iod->req.sg = iod->sg_table.sgl; iod->req.sg_cnt = blk_rq_map_sg(req->q, req, iod->sg_table.sgl); BUG_ON(iod->req.sg_cnt > req->nr_phys_segments); } iod->cmd.common.command_id = req->tag; blk_mq_start_request(req); schedule_work(&iod->work); return 0; } static void nvme_loop_submit_async_event(struct nvme_ctrl *arg, int aer_idx) { struct nvme_loop_ctrl *ctrl = to_loop_ctrl(arg); struct nvme_loop_queue *queue = &ctrl->queues[0]; struct nvme_loop_iod *iod = &ctrl->async_event_iod; memset(&iod->cmd, 0, sizeof(iod->cmd)); iod->cmd.common.opcode = nvme_admin_async_event; iod->cmd.common.command_id = NVME_LOOP_AQ_BLKMQ_DEPTH; iod->cmd.common.flags |= NVME_CMD_SGL_METABUF; if (!nvmet_req_init(&iod->req, &queue->nvme_cq, &queue->nvme_sq, &nvme_loop_ops)) { dev_err(ctrl->ctrl.device, "failed async event work\n"); return; } schedule_work(&iod->work); } static int nvme_loop_init_iod(struct nvme_loop_ctrl *ctrl, struct nvme_loop_iod *iod, unsigned int queue_idx) { BUG_ON(queue_idx >= ctrl->queue_count); iod->req.cmd = &iod->cmd; iod->req.rsp = &iod->rsp; iod->queue = &ctrl->queues[queue_idx]; INIT_WORK(&iod->work, nvme_loop_execute_work); return 0; } static int nvme_loop_init_request(void *data, struct request *req, unsigned int hctx_idx, unsigned int rq_idx, unsigned int numa_node) { return nvme_loop_init_iod(data, blk_mq_rq_to_pdu(req), hctx_idx + 1); } static int nvme_loop_init_admin_request(void *data, struct request *req, unsigned int hctx_idx, unsigned int rq_idx, unsigned int numa_node) { return nvme_loop_init_iod(data, blk_mq_rq_to_pdu(req), 0); } static int nvme_loop_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, unsigned int hctx_idx) { struct nvme_loop_ctrl *ctrl = data; struct nvme_loop_queue *queue = &ctrl->queues[hctx_idx + 1]; BUG_ON(hctx_idx >= ctrl->queue_count); hctx->driver_data = queue; return 0; } static int nvme_loop_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, unsigned int hctx_idx) { struct nvme_loop_ctrl *ctrl = data; struct nvme_loop_queue *queue = &ctrl->queues[0]; BUG_ON(hctx_idx != 0); hctx->driver_data = queue; return 0; } static struct blk_mq_ops nvme_loop_mq_ops = { .queue_rq = nvme_loop_queue_rq, .complete = nvme_loop_complete_rq, .map_queue = blk_mq_map_queue, .init_request = nvme_loop_init_request, .init_hctx = nvme_loop_init_hctx, .timeout = nvme_loop_timeout, }; static struct blk_mq_ops nvme_loop_admin_mq_ops = { .queue_rq = nvme_loop_queue_rq, .complete = nvme_loop_complete_rq, .map_queue = blk_mq_map_queue, .init_request = nvme_loop_init_admin_request, .init_hctx = nvme_loop_init_admin_hctx, .timeout = nvme_loop_timeout, }; static void nvme_loop_destroy_admin_queue(struct nvme_loop_ctrl *ctrl) { blk_cleanup_queue(ctrl->ctrl.admin_q); blk_mq_free_tag_set(&ctrl->admin_tag_set); nvmet_sq_destroy(&ctrl->queues[0].nvme_sq); } static void nvme_loop_free_ctrl(struct nvme_ctrl *nctrl) { struct nvme_loop_ctrl *ctrl = to_loop_ctrl(nctrl); if (list_empty(&ctrl->list)) goto free_ctrl; mutex_lock(&nvme_loop_ctrl_mutex); list_del(&ctrl->list); mutex_unlock(&nvme_loop_ctrl_mutex); if (nctrl->tagset) { blk_cleanup_queue(ctrl->ctrl.connect_q); blk_mq_free_tag_set(&ctrl->tag_set); } kfree(ctrl->queues); nvmf_free_options(nctrl->opts); free_ctrl: kfree(ctrl); } static int nvme_loop_configure_admin_queue(struct nvme_loop_ctrl *ctrl) { int error; memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set)); ctrl->admin_tag_set.ops = &nvme_loop_admin_mq_ops; ctrl->admin_tag_set.queue_depth = NVME_LOOP_AQ_BLKMQ_DEPTH; ctrl->admin_tag_set.reserved_tags = 2; /* connect + keep-alive */ ctrl->admin_tag_set.numa_node = NUMA_NO_NODE; ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_loop_iod) + SG_CHUNK_SIZE * sizeof(struct scatterlist); ctrl->admin_tag_set.driver_data = ctrl; ctrl->admin_tag_set.nr_hw_queues = 1; ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT; ctrl->queues[0].ctrl = ctrl; error = nvmet_sq_init(&ctrl->queues[0].nvme_sq); if (error) return error; ctrl->queue_count = 1; error = blk_mq_alloc_tag_set(&ctrl->admin_tag_set); if (error) goto out_free_sq; ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); if (IS_ERR(ctrl->ctrl.admin_q)) { error = PTR_ERR(ctrl->ctrl.admin_q); goto out_free_tagset; } error = nvmf_connect_admin_queue(&ctrl->ctrl); if (error) goto out_cleanup_queue; error = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->cap); if (error) { dev_err(ctrl->ctrl.device, "prop_get NVME_REG_CAP failed\n"); goto out_cleanup_queue; } ctrl->ctrl.sqsize = min_t(int, NVME_CAP_MQES(ctrl->cap) + 1, ctrl->ctrl.sqsize); error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap); if (error) goto out_cleanup_queue; ctrl->ctrl.max_hw_sectors = (NVME_LOOP_MAX_SEGMENTS - 1) << (PAGE_SHIFT - 9); error = nvme_init_identify(&ctrl->ctrl); if (error) goto out_cleanup_queue; nvme_start_keep_alive(&ctrl->ctrl); return 0; out_cleanup_queue: blk_cleanup_queue(ctrl->ctrl.admin_q); out_free_tagset: blk_mq_free_tag_set(&ctrl->admin_tag_set); out_free_sq: nvmet_sq_destroy(&ctrl->queues[0].nvme_sq); return error; } static void nvme_loop_shutdown_ctrl(struct nvme_loop_ctrl *ctrl) { int i; nvme_stop_keep_alive(&ctrl->ctrl); if (ctrl->queue_count > 1) { nvme_stop_queues(&ctrl->ctrl); blk_mq_tagset_busy_iter(&ctrl->tag_set, nvme_cancel_request, &ctrl->ctrl); for (i = 1; i < ctrl->queue_count; i++) nvmet_sq_destroy(&ctrl->queues[i].nvme_sq); } if (ctrl->ctrl.state == NVME_CTRL_LIVE) nvme_shutdown_ctrl(&ctrl->ctrl); blk_mq_stop_hw_queues(ctrl->ctrl.admin_q); blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, nvme_cancel_request, &ctrl->ctrl); nvme_loop_destroy_admin_queue(ctrl); } static void nvme_loop_del_ctrl_work(struct work_struct *work) { struct nvme_loop_ctrl *ctrl = container_of(work, struct nvme_loop_ctrl, delete_work); nvme_uninit_ctrl(&ctrl->ctrl); nvme_loop_shutdown_ctrl(ctrl); nvme_put_ctrl(&ctrl->ctrl); } static int __nvme_loop_del_ctrl(struct nvme_loop_ctrl *ctrl) { if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING)) return -EBUSY; if (!schedule_work(&ctrl->delete_work)) return -EBUSY; return 0; } static int nvme_loop_del_ctrl(struct nvme_ctrl *nctrl) { struct nvme_loop_ctrl *ctrl = to_loop_ctrl(nctrl); int ret; ret = __nvme_loop_del_ctrl(ctrl); if (ret) return ret; flush_work(&ctrl->delete_work); return 0; } static void nvme_loop_delete_ctrl(struct nvmet_ctrl *nctrl) { struct nvme_loop_ctrl *ctrl; mutex_lock(&nvme_loop_ctrl_mutex); list_for_each_entry(ctrl, &nvme_loop_ctrl_list, list) { if (ctrl->ctrl.cntlid == nctrl->cntlid) __nvme_loop_del_ctrl(ctrl); } mutex_unlock(&nvme_loop_ctrl_mutex); } static void nvme_loop_reset_ctrl_work(struct work_struct *work) { struct nvme_loop_ctrl *ctrl = container_of(work, struct nvme_loop_ctrl, reset_work); bool changed; int i, ret; nvme_loop_shutdown_ctrl(ctrl); ret = nvme_loop_configure_admin_queue(ctrl); if (ret) goto out_disable; for (i = 1; i <= ctrl->ctrl.opts->nr_io_queues; i++) { ctrl->queues[i].ctrl = ctrl; ret = nvmet_sq_init(&ctrl->queues[i].nvme_sq); if (ret) goto out_free_queues; ctrl->queue_count++; } for (i = 1; i <= ctrl->ctrl.opts->nr_io_queues; i++) { ret = nvmf_connect_io_queue(&ctrl->ctrl, i); if (ret) goto out_free_queues; } changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); WARN_ON_ONCE(!changed); nvme_queue_scan(&ctrl->ctrl); nvme_queue_async_events(&ctrl->ctrl); nvme_start_queues(&ctrl->ctrl); return; out_free_queues: for (i = 1; i < ctrl->queue_count; i++) nvmet_sq_destroy(&ctrl->queues[i].nvme_sq); nvme_loop_destroy_admin_queue(ctrl); out_disable: dev_warn(ctrl->ctrl.device, "Removing after reset failure\n"); nvme_uninit_ctrl(&ctrl->ctrl); nvme_put_ctrl(&ctrl->ctrl); } static int nvme_loop_reset_ctrl(struct nvme_ctrl *nctrl) { struct nvme_loop_ctrl *ctrl = to_loop_ctrl(nctrl); if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING)) return -EBUSY; if (!schedule_work(&ctrl->reset_work)) return -EBUSY; flush_work(&ctrl->reset_work); return 0; } static const struct nvme_ctrl_ops nvme_loop_ctrl_ops = { .name = "loop", .module = THIS_MODULE, .is_fabrics = true, .reg_read32 = nvmf_reg_read32, .reg_read64 = nvmf_reg_read64, .reg_write32 = nvmf_reg_write32, .reset_ctrl = nvme_loop_reset_ctrl, .free_ctrl = nvme_loop_free_ctrl, .submit_async_event = nvme_loop_submit_async_event, .delete_ctrl = nvme_loop_del_ctrl, .get_subsysnqn = nvmf_get_subsysnqn, }; static int nvme_loop_create_io_queues(struct nvme_loop_ctrl *ctrl) { struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; int ret, i; ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues); if (ret || !opts->nr_io_queues) return ret; dev_info(ctrl->ctrl.device, "creating %d I/O queues.\n", opts->nr_io_queues); for (i = 1; i <= opts->nr_io_queues; i++) { ctrl->queues[i].ctrl = ctrl; ret = nvmet_sq_init(&ctrl->queues[i].nvme_sq); if (ret) goto out_destroy_queues; ctrl->queue_count++; } memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set)); ctrl->tag_set.ops = &nvme_loop_mq_ops; ctrl->tag_set.queue_depth = ctrl->ctrl.sqsize; ctrl->tag_set.reserved_tags = 1; /* fabric connect */ ctrl->tag_set.numa_node = NUMA_NO_NODE; ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; ctrl->tag_set.cmd_size = sizeof(struct nvme_loop_iod) + SG_CHUNK_SIZE * sizeof(struct scatterlist); ctrl->tag_set.driver_data = ctrl; ctrl->tag_set.nr_hw_queues = ctrl->queue_count - 1; ctrl->tag_set.timeout = NVME_IO_TIMEOUT; ctrl->ctrl.tagset = &ctrl->tag_set; ret = blk_mq_alloc_tag_set(&ctrl->tag_set); if (ret) goto out_destroy_queues; ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set); if (IS_ERR(ctrl->ctrl.connect_q)) { ret = PTR_ERR(ctrl->ctrl.connect_q); goto out_free_tagset; } for (i = 1; i <= opts->nr_io_queues; i++) { ret = nvmf_connect_io_queue(&ctrl->ctrl, i); if (ret) goto out_cleanup_connect_q; } return 0; out_cleanup_connect_q: blk_cleanup_queue(ctrl->ctrl.connect_q); out_free_tagset: blk_mq_free_tag_set(&ctrl->tag_set); out_destroy_queues: for (i = 1; i < ctrl->queue_count; i++) nvmet_sq_destroy(&ctrl->queues[i].nvme_sq); return ret; } static struct nvme_ctrl *nvme_loop_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts) { struct nvme_loop_ctrl *ctrl; bool changed; int ret; ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); if (!ctrl) return ERR_PTR(-ENOMEM); ctrl->ctrl.opts = opts; INIT_LIST_HEAD(&ctrl->list); INIT_WORK(&ctrl->delete_work, nvme_loop_del_ctrl_work); INIT_WORK(&ctrl->reset_work, nvme_loop_reset_ctrl_work); ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_loop_ctrl_ops, 0 /* no quirks, we're perfect! */); if (ret) goto out_put_ctrl; spin_lock_init(&ctrl->lock); ret = -ENOMEM; ctrl->ctrl.sqsize = opts->queue_size; ctrl->ctrl.kato = opts->kato; ctrl->queues = kcalloc(opts->nr_io_queues + 1, sizeof(*ctrl->queues), GFP_KERNEL); if (!ctrl->queues) goto out_uninit_ctrl; ret = nvme_loop_configure_admin_queue(ctrl); if (ret) goto out_free_queues; if (opts->queue_size > ctrl->ctrl.maxcmd) { /* warn if maxcmd is lower than queue_size */ dev_warn(ctrl->ctrl.device, "queue_size %zu > ctrl maxcmd %u, clamping down\n", opts->queue_size, ctrl->ctrl.maxcmd); opts->queue_size = ctrl->ctrl.maxcmd; } if (opts->nr_io_queues) { ret = nvme_loop_create_io_queues(ctrl); if (ret) goto out_remove_admin_queue; } nvme_loop_init_iod(ctrl, &ctrl->async_event_iod, 0); dev_info(ctrl->ctrl.device, "new ctrl: \"%s\"\n", ctrl->ctrl.opts->subsysnqn); kref_get(&ctrl->ctrl.kref); changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); WARN_ON_ONCE(!changed); mutex_lock(&nvme_loop_ctrl_mutex); list_add_tail(&ctrl->list, &nvme_loop_ctrl_list); mutex_unlock(&nvme_loop_ctrl_mutex); if (opts->nr_io_queues) { nvme_queue_scan(&ctrl->ctrl); nvme_queue_async_events(&ctrl->ctrl); } return &ctrl->ctrl; out_remove_admin_queue: nvme_loop_destroy_admin_queue(ctrl); out_free_queues: kfree(ctrl->queues); out_uninit_ctrl: nvme_uninit_ctrl(&ctrl->ctrl); out_put_ctrl: nvme_put_ctrl(&ctrl->ctrl); if (ret > 0) ret = -EIO; return ERR_PTR(ret); } static int nvme_loop_add_port(struct nvmet_port *port) { /* * XXX: disalow adding more than one port so * there is no connection rejections when a * a subsystem is assigned to a port for which * loop doesn't have a pointer. * This scenario would be possible if we allowed * more than one port to be added and a subsystem * was assigned to a port other than nvmet_loop_port. */ if (nvmet_loop_port) return -EPERM; nvmet_loop_port = port; return 0; } static void nvme_loop_remove_port(struct nvmet_port *port) { if (port == nvmet_loop_port) nvmet_loop_port = NULL; } static struct nvmet_fabrics_ops nvme_loop_ops = { .owner = THIS_MODULE, .type = NVMF_TRTYPE_LOOP, .add_port = nvme_loop_add_port, .remove_port = nvme_loop_remove_port, .queue_response = nvme_loop_queue_response, .delete_ctrl = nvme_loop_delete_ctrl, }; static struct nvmf_transport_ops nvme_loop_transport = { .name = "loop", .create_ctrl = nvme_loop_create_ctrl, }; static int __init nvme_loop_init_module(void) { int ret; ret = nvmet_register_transport(&nvme_loop_ops); if (ret) return ret; nvmf_register_transport(&nvme_loop_transport); return 0; } static void __exit nvme_loop_cleanup_module(void) { struct nvme_loop_ctrl *ctrl, *next; nvmf_unregister_transport(&nvme_loop_transport); nvmet_unregister_transport(&nvme_loop_ops); mutex_lock(&nvme_loop_ctrl_mutex); list_for_each_entry_safe(ctrl, next, &nvme_loop_ctrl_list, list) __nvme_loop_del_ctrl(ctrl); mutex_unlock(&nvme_loop_ctrl_mutex); flush_scheduled_work(); } module_init(nvme_loop_init_module); module_exit(nvme_loop_cleanup_module); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("nvmet-transport-254"); /* 254 == NVMF_TRTYPE_LOOP */