aboutsummaryrefslogtreecommitdiffstats
path: root/common/recipes-kernel/linux/files/0058-drm-amd-powerplay-add-Fiji-DPM-support.patch
diff options
context:
space:
mode:
Diffstat (limited to 'common/recipes-kernel/linux/files/0058-drm-amd-powerplay-add-Fiji-DPM-support.patch')
-rw-r--r--common/recipes-kernel/linux/files/0058-drm-amd-powerplay-add-Fiji-DPM-support.patch5906
1 files changed, 5906 insertions, 0 deletions
diff --git a/common/recipes-kernel/linux/files/0058-drm-amd-powerplay-add-Fiji-DPM-support.patch b/common/recipes-kernel/linux/files/0058-drm-amd-powerplay-add-Fiji-DPM-support.patch
new file mode 100644
index 00000000..e9336534
--- /dev/null
+++ b/common/recipes-kernel/linux/files/0058-drm-amd-powerplay-add-Fiji-DPM-support.patch
@@ -0,0 +1,5906 @@
+From 9c74c84bd1448613a5f18b23d7ef0221110fe52b Mon Sep 17 00:00:00 2001
+From: Eric Huang <JinHuiEric.Huang@amd.com>
+Date: Wed, 26 Aug 2015 16:52:28 -0400
+Subject: [PATCH 0058/1110] drm/amd/powerplay: add Fiji DPM support.
+
+This enabled DPM support for Fiji. DPM is dynamic
+clock and voltage scaling.
+
+v2: rename fiji_hwmgr_early_init to fiji_hwmgr_init
+v3: (agd) fold in endian fix, additional function addition
+
+Reviewed-by: Alex Deucher <alexander.deucher@amd.com>
+Signed-off-by: Eric Huang <JinHuiEric.Huang@amd.com>
+---
+ drivers/gpu/drm/amd/powerplay/hwmgr/Makefile | 3 +-
+ .../drm/amd/powerplay/hwmgr/fiji_dyn_defaults.h | 105 +
+ drivers/gpu/drm/amd/powerplay/hwmgr/fiji_hwmgr.c | 4728 ++++++++++++++++++++
+ drivers/gpu/drm/amd/powerplay/hwmgr/fiji_hwmgr.h | 356 ++
+ .../gpu/drm/amd/powerplay/hwmgr/fiji_powertune.c | 553 +++
+ .../gpu/drm/amd/powerplay/hwmgr/fiji_powertune.h | 66 +
+ drivers/gpu/drm/amd/powerplay/hwmgr/hwmgr.c | 5 +
+ 7 files changed, 5815 insertions(+), 1 deletion(-)
+ create mode 100644 drivers/gpu/drm/amd/powerplay/hwmgr/fiji_dyn_defaults.h
+ create mode 100644 drivers/gpu/drm/amd/powerplay/hwmgr/fiji_hwmgr.c
+ create mode 100644 drivers/gpu/drm/amd/powerplay/hwmgr/fiji_hwmgr.h
+ create mode 100644 drivers/gpu/drm/amd/powerplay/hwmgr/fiji_powertune.c
+ create mode 100644 drivers/gpu/drm/amd/powerplay/hwmgr/fiji_powertune.h
+
+diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/Makefile b/drivers/gpu/drm/amd/powerplay/hwmgr/Makefile
+index fd73d3c..c78e38c 100644
+--- a/drivers/gpu/drm/amd/powerplay/hwmgr/Makefile
++++ b/drivers/gpu/drm/amd/powerplay/hwmgr/Makefile
+@@ -6,7 +6,8 @@ HARDWARE_MGR = hwmgr.o processpptables.o functiontables.o \
+ hardwaremanager.o pp_acpi.o cz_hwmgr.o \
+ cz_clockpowergating.o \
+ tonga_processpptables.o ppatomctrl.o \
+- tonga_hwmgr.o pppcielanes.o
++ tonga_hwmgr.o pppcielanes.o \
++ fiji_powertune.o fiji_hwmgr.o
+
+ AMD_PP_HWMGR = $(addprefix $(AMD_PP_PATH)/hwmgr/,$(HARDWARE_MGR))
+
+diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/fiji_dyn_defaults.h b/drivers/gpu/drm/amd/powerplay/hwmgr/fiji_dyn_defaults.h
+new file mode 100644
+index 0000000..32d43e8
+--- /dev/null
++++ b/drivers/gpu/drm/amd/powerplay/hwmgr/fiji_dyn_defaults.h
+@@ -0,0 +1,105 @@
++/*
++ * Copyright 2015 Advanced Micro Devices, Inc.
++ *
++ * Permission is hereby granted, free of charge, to any person obtaining a
++ * copy of this software and associated documentation files (the "Software"),
++ * to deal in the Software without restriction, including without limitation
++ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
++ * and/or sell copies of the Software, and to permit persons to whom the
++ * Software is furnished to do so, subject to the following conditions:
++ *
++ * The above copyright notice and this permission notice shall be included in
++ * all copies or substantial portions of the Software.
++ *
++ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
++ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
++ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
++ * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
++ * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
++ * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
++ * OTHER DEALINGS IN THE SOFTWARE.
++ *
++ */
++
++#ifndef FIJI_DYN_DEFAULTS_H
++#define FIJI_DYN_DEFAULTS_H
++
++/** \file
++* Volcanic Islands Dynamic default parameters.
++*/
++
++enum FIJIdpm_TrendDetection
++{
++ FIJIAdpm_TrendDetection_AUTO,
++ FIJIAdpm_TrendDetection_UP,
++ FIJIAdpm_TrendDetection_DOWN
++};
++typedef enum FIJIdpm_TrendDetection FIJIdpm_TrendDetection;
++
++/* We need to fill in the default values!!!!!!!!!!!!!!!!!!!!!!! */
++
++/* Bit vector representing same fields as hardware register. */
++#define PPFIJI_VOTINGRIGHTSCLIENTS_DFLT0 0x3FFFC102 /* CP_Gfx_busy ????
++ * HDP_busy
++ * IH_busy
++ * UVD_busy
++ * VCE_busy
++ * ACP_busy
++ * SAMU_busy
++ * SDMA enabled */
++#define PPFIJI_VOTINGRIGHTSCLIENTS_DFLT1 0x000400 /* FE_Gfx_busy - Intended for primary usage. Rest are for flexibility. ????
++ * SH_Gfx_busy
++ * RB_Gfx_busy
++ * VCE_busy */
++
++#define PPFIJI_VOTINGRIGHTSCLIENTS_DFLT2 0xC00080 /* SH_Gfx_busy - Intended for primary usage. Rest are for flexibility.
++ * FE_Gfx_busy
++ * RB_Gfx_busy
++ * ACP_busy */
++
++#define PPFIJI_VOTINGRIGHTSCLIENTS_DFLT3 0xC00200 /* RB_Gfx_busy - Intended for primary usage. Rest are for flexibility.
++ * FE_Gfx_busy
++ * SH_Gfx_busy
++ * UVD_busy */
++
++#define PPFIJI_VOTINGRIGHTSCLIENTS_DFLT4 0xC01680 /* UVD_busy
++ * VCE_busy
++ * ACP_busy
++ * SAMU_busy */
++
++#define PPFIJI_VOTINGRIGHTSCLIENTS_DFLT5 0xC00033 /* GFX, HDP */
++#define PPFIJI_VOTINGRIGHTSCLIENTS_DFLT6 0xC00033 /* GFX, HDP */
++#define PPFIJI_VOTINGRIGHTSCLIENTS_DFLT7 0x3FFFC000 /* GFX, HDP */
++
++
++/* thermal protection counter (units). */
++#define PPFIJI_THERMALPROTECTCOUNTER_DFLT 0x200 /* ~19us */
++
++/* static screen threshold unit */
++#define PPFIJI_STATICSCREENTHRESHOLDUNIT_DFLT 0
++
++/* static screen threshold */
++#define PPFIJI_STATICSCREENTHRESHOLD_DFLT 0x00C8
++
++/* gfx idle clock stop threshold */
++#define PPFIJI_GFXIDLECLOCKSTOPTHRESHOLD_DFLT 0x200 /* ~19us with static screen threshold unit of 0 */
++
++/* Fixed reference divider to use when building baby stepping tables. */
++#define PPFIJI_REFERENCEDIVIDER_DFLT 4
++
++/* ULV voltage change delay time
++ * Used to be delay_vreg in N.I. split for S.I.
++ * Using N.I. delay_vreg value as default
++ * ReferenceClock = 2700
++ * VoltageResponseTime = 1000
++ * VDDCDelayTime = (VoltageResponseTime * ReferenceClock) / 1600 = 1687
++ */
++#define PPFIJI_ULVVOLTAGECHANGEDELAY_DFLT 1687
++
++#define PPFIJI_CGULVPARAMETER_DFLT 0x00040035
++#define PPFIJI_CGULVCONTROL_DFLT 0x00007450
++#define PPFIJI_TARGETACTIVITY_DFLT 30 /* 30%*/
++#define PPFIJI_MCLK_TARGETACTIVITY_DFLT 10 /* 10% */
++
++#endif
++
+diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/fiji_hwmgr.c b/drivers/gpu/drm/amd/powerplay/hwmgr/fiji_hwmgr.c
+new file mode 100644
+index 0000000..4457878
+--- /dev/null
++++ b/drivers/gpu/drm/amd/powerplay/hwmgr/fiji_hwmgr.c
+@@ -0,0 +1,4728 @@
++/*
++ * Copyright 2015 Advanced Micro Devices, Inc.
++ *
++ * Permission is hereby granted, free of charge, to any person obtaining a
++ * copy of this software and associated documentation files (the "Software"),
++ * to deal in the Software without restriction, including without limitation
++ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
++ * and/or sell copies of the Software, and to permit persons to whom the
++ * Software is furnished to do so, subject to the following conditions:
++ *
++ * The above copyright notice and this permission notice shall be included in
++ * all copies or substantial portions of the Software.
++ *
++ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
++ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
++ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
++ * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
++ * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
++ * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
++ * OTHER DEALINGS IN THE SOFTWARE.
++ *
++ */
++#include <linux/module.h>
++#include <linux/slab.h>
++#include <linux/fb.h>
++#include "linux/delay.h"
++
++#include "hwmgr.h"
++#include "fiji_smumgr.h"
++#include "atombios.h"
++#include "hardwaremanager.h"
++#include "ppatomctrl.h"
++#include "atombios.h"
++#include "cgs_common.h"
++#include "fiji_dyn_defaults.h"
++#include "fiji_powertune.h"
++#include "smu73.h"
++#include "smu/smu_7_1_3_d.h"
++#include "smu/smu_7_1_3_sh_mask.h"
++#include "gmc/gmc_8_1_d.h"
++#include "gmc/gmc_8_1_sh_mask.h"
++#include "bif/bif_5_0_d.h"
++#include "bif/bif_5_0_sh_mask.h"
++#include "dce/dce_10_0_d.h"
++#include "dce/dce_10_0_sh_mask.h"
++#include "pppcielanes.h"
++#include "fiji_hwmgr.h"
++#include "tonga_processpptables.h"
++#include "tonga_pptable.h"
++#include "pp_debug.h"
++#include "pp_acpi.h"
++
++#define VOLTAGE_SCALE 4
++#define SMC_RAM_END 0x40000
++#define VDDC_VDDCI_DELTA 300
++
++#define MC_SEQ_MISC0_GDDR5_SHIFT 28
++#define MC_SEQ_MISC0_GDDR5_MASK 0xf0000000
++#define MC_SEQ_MISC0_GDDR5_VALUE 5
++
++#define MC_CG_ARB_FREQ_F0 0x0a /* boot-up default */
++#define MC_CG_ARB_FREQ_F1 0x0b
++#define MC_CG_ARB_FREQ_F2 0x0c
++#define MC_CG_ARB_FREQ_F3 0x0d
++
++/* From smc_reg.h */
++#define SMC_CG_IND_START 0xc0030000
++#define SMC_CG_IND_END 0xc0040000 /* First byte after SMC_CG_IND */
++
++#define VOLTAGE_SCALE 4
++#define VOLTAGE_VID_OFFSET_SCALE1 625
++#define VOLTAGE_VID_OFFSET_SCALE2 100
++
++#define VDDC_VDDCI_DELTA 300
++
++#define ixSWRST_COMMAND_1 0x1400103
++#define MC_SEQ_CNTL__CAC_EN_MASK 0x40000000
++
++/** Values for the CG_THERMAL_CTRL::DPM_EVENT_SRC field. */
++enum DPM_EVENT_SRC {
++ DPM_EVENT_SRC_ANALOG = 0, /* Internal analog trip point */
++ DPM_EVENT_SRC_EXTERNAL = 1, /* External (GPIO 17) signal */
++ DPM_EVENT_SRC_DIGITAL = 2, /* Internal digital trip point (DIG_THERM_DPM) */
++ DPM_EVENT_SRC_ANALOG_OR_EXTERNAL = 3, /* Internal analog or external */
++ DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL = 4 /* Internal digital or external */
++};
++
++enum DISPLAY_GAP {
++ DISPLAY_GAP_VBLANK_OR_WM = 0, /* Wait for vblank or MCHG watermark. */
++ DISPLAY_GAP_VBLANK = 1, /* Wait for vblank. */
++ DISPLAY_GAP_WATERMARK = 2, /* Wait for MCHG watermark. */
++ DISPLAY_GAP_IGNORE = 3 /* Do not wait. */
++};
++
++/* [2.5%,~2.5%] Clock stretched is multiple of 2.5% vs
++ * not and [Fmin, Fmax, LDO_REFSEL, USE_FOR_LOW_FREQ]
++ */
++uint16_t fiji_clock_stretcher_lookup_table[2][4] = { {600, 1050, 3, 0},
++ {600, 1050, 6, 1} };
++
++/* [FF, SS] type, [] 4 voltage ranges, and
++ * [Floor Freq, Boundary Freq, VID min , VID max]
++ */
++uint32_t fiji_clock_stretcher_ddt_table[2][4][4] =
++{ { {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} },
++ { {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} } };
++
++/* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%]
++ * (coming from PWR_CKS_CNTL.stretch_amount reg spec)
++ */
++uint8_t fiji_clock_stretch_amount_conversion[2][6] = { {0, 1, 3, 2, 4, 5},
++ {0, 2, 4, 5, 6, 5} };
++
++const unsigned long PhwFiji_Magic = (unsigned long)(PHM_VIslands_Magic);
++
++struct fiji_power_state *cast_phw_fiji_power_state(
++ struct pp_hw_power_state *hw_ps)
++{
++ PP_ASSERT_WITH_CODE((PhwFiji_Magic == hw_ps->magic),
++ "Invalid Powerstate Type!",
++ return NULL;);
++
++ return (struct fiji_power_state *)hw_ps;
++}
++
++const struct fiji_power_state *cast_const_phw_fiji_power_state(
++ const struct pp_hw_power_state *hw_ps)
++{
++ PP_ASSERT_WITH_CODE((PhwFiji_Magic == hw_ps->magic),
++ "Invalid Powerstate Type!",
++ return NULL;);
++
++ return (const struct fiji_power_state *)hw_ps;
++}
++
++static bool fiji_is_dpm_running(struct pp_hwmgr *hwmgr)
++{
++ return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
++ CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON))
++ ? true : false;
++}
++
++static void fiji_init_dpm_defaults(struct pp_hwmgr *hwmgr)
++{
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++ struct fiji_ulv_parm *ulv = &data->ulv;
++
++ ulv->cg_ulv_parameter = PPFIJI_CGULVPARAMETER_DFLT;
++ data->voting_rights_clients0 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT0;
++ data->voting_rights_clients1 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT1;
++ data->voting_rights_clients2 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT2;
++ data->voting_rights_clients3 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT3;
++ data->voting_rights_clients4 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT4;
++ data->voting_rights_clients5 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT5;
++ data->voting_rights_clients6 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT6;
++ data->voting_rights_clients7 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT7;
++
++ data->static_screen_threshold_unit =
++ PPFIJI_STATICSCREENTHRESHOLDUNIT_DFLT;
++ data->static_screen_threshold =
++ PPFIJI_STATICSCREENTHRESHOLD_DFLT;
++
++ /* Unset ABM cap as it moved to DAL.
++ * Add PHM_PlatformCaps_NonABMSupportInPPLib
++ * for re-direct ABM related request to DAL
++ */
++ phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_ABM);
++ phm_cap_set(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_NonABMSupportInPPLib);
++
++ phm_cap_set(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_DynamicACTiming);
++
++ fiji_initialize_power_tune_defaults(hwmgr);
++
++ data->mclk_stutter_mode_threshold = 60000;
++ data->pcie_gen_performance.max = PP_PCIEGen1;
++ data->pcie_gen_performance.min = PP_PCIEGen3;
++ data->pcie_gen_power_saving.max = PP_PCIEGen1;
++ data->pcie_gen_power_saving.min = PP_PCIEGen3;
++ data->pcie_lane_performance.max = 0;
++ data->pcie_lane_performance.min = 16;
++ data->pcie_lane_power_saving.max = 0;
++ data->pcie_lane_power_saving.min = 16;
++
++ phm_cap_set(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_DynamicUVDState);
++}
++
++static int fiji_get_sclk_for_voltage_evv(struct pp_hwmgr *hwmgr,
++ phm_ppt_v1_voltage_lookup_table *lookup_table,
++ uint16_t virtual_voltage_id, int32_t *sclk)
++{
++ uint8_t entryId;
++ uint8_t voltageId;
++ struct phm_ppt_v1_information *table_info =
++ (struct phm_ppt_v1_information *)(hwmgr->pptable);
++
++ PP_ASSERT_WITH_CODE(lookup_table->count != 0, "Lookup table is empty", return -EINVAL);
++
++ /* search for leakage voltage ID 0xff01 ~ 0xff08 and sckl */
++ for (entryId = 0; entryId < table_info->vdd_dep_on_sclk->count; entryId++) {
++ voltageId = table_info->vdd_dep_on_sclk->entries[entryId].vddInd;
++ if (lookup_table->entries[voltageId].us_vdd == virtual_voltage_id)
++ break;
++ }
++
++ PP_ASSERT_WITH_CODE(entryId < table_info->vdd_dep_on_sclk->count,
++ "Can't find requested voltage id in vdd_dep_on_sclk table!",
++ return -EINVAL;
++ );
++
++ *sclk = table_info->vdd_dep_on_sclk->entries[entryId].clk;
++
++ return 0;
++}
++
++/**
++* Get Leakage VDDC based on leakage ID.
++*
++* @param hwmgr the address of the powerplay hardware manager.
++* @return always 0
++*/
++static int fiji_get_evv_voltages(struct pp_hwmgr *hwmgr)
++{
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++ uint16_t vv_id;
++ uint16_t vddc = 0;
++ uint16_t evv_default = 1150;
++ uint16_t i, j;
++ uint32_t sclk = 0;
++ struct phm_ppt_v1_information *table_info =
++ (struct phm_ppt_v1_information *)hwmgr->pptable;
++ struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
++ table_info->vdd_dep_on_sclk;
++ int result;
++
++ for (i = 0; i < FIJI_MAX_LEAKAGE_COUNT; i++) {
++ vv_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
++ if (!fiji_get_sclk_for_voltage_evv(hwmgr,
++ table_info->vddc_lookup_table, vv_id, &sclk)) {
++ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_ClockStretcher)) {
++ for (j = 1; j < sclk_table->count; j++) {
++ if (sclk_table->entries[j].clk == sclk &&
++ sclk_table->entries[j].cks_enable == 0) {
++ sclk += 5000;
++ break;
++ }
++ }
++ }
++
++ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_EnableDriverEVV))
++ result = atomctrl_calculate_voltage_evv_on_sclk(hwmgr,
++ VOLTAGE_TYPE_VDDC, sclk, vv_id, &vddc, i, true);
++ else
++ result = -EINVAL;
++
++ if (result)
++ result = atomctrl_get_voltage_evv_on_sclk(hwmgr,
++ VOLTAGE_TYPE_VDDC, sclk,vv_id, &vddc);
++
++ /* need to make sure vddc is less than 2v or else, it could burn the ASIC. */
++ PP_ASSERT_WITH_CODE((vddc < 2000),
++ "Invalid VDDC value, greater than 2v!", result = -EINVAL;);
++
++ if (result)
++ /* 1.15V is the default safe value for Fiji */
++ vddc = evv_default;
++
++ /* the voltage should not be zero nor equal to leakage ID */
++ if (vddc != 0 && vddc != vv_id) {
++ data->vddc_leakage.actual_voltage
++ [data->vddc_leakage.count] = vddc;
++ data->vddc_leakage.leakage_id
++ [data->vddc_leakage.count] = vv_id;
++ data->vddc_leakage.count++;
++ }
++ }
++ }
++ return 0;
++}
++
++/**
++ * Change virtual leakage voltage to actual value.
++ *
++ * @param hwmgr the address of the powerplay hardware manager.
++ * @param pointer to changing voltage
++ * @param pointer to leakage table
++ */
++static void fiji_patch_with_vdd_leakage(struct pp_hwmgr *hwmgr,
++ uint16_t *voltage, struct fiji_leakage_voltage *leakage_table)
++{
++ uint32_t index;
++
++ /* search for leakage voltage ID 0xff01 ~ 0xff08 */
++ for (index = 0; index < leakage_table->count; index++) {
++ /* if this voltage matches a leakage voltage ID */
++ /* patch with actual leakage voltage */
++ if (leakage_table->leakage_id[index] == *voltage) {
++ *voltage = leakage_table->actual_voltage[index];
++ break;
++ }
++ }
++
++ if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
++ printk(KERN_ERR "Voltage value looks like a Leakage ID but it's not patched \n");
++}
++
++/**
++* Patch voltage lookup table by EVV leakages.
++*
++* @param hwmgr the address of the powerplay hardware manager.
++* @param pointer to voltage lookup table
++* @param pointer to leakage table
++* @return always 0
++*/
++static int fiji_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr,
++ phm_ppt_v1_voltage_lookup_table *lookup_table,
++ struct fiji_leakage_voltage *leakage_table)
++{
++ uint32_t i;
++
++ for (i = 0; i < lookup_table->count; i++)
++ fiji_patch_with_vdd_leakage(hwmgr,
++ &lookup_table->entries[i].us_vdd, leakage_table);
++
++ return 0;
++}
++
++static int fiji_patch_clock_voltage_limits_with_vddc_leakage(
++ struct pp_hwmgr *hwmgr, struct fiji_leakage_voltage *leakage_table,
++ uint16_t *vddc)
++{
++ struct phm_ppt_v1_information *table_info =
++ (struct phm_ppt_v1_information *)(hwmgr->pptable);
++ fiji_patch_with_vdd_leakage(hwmgr, (uint16_t *)vddc, leakage_table);
++ hwmgr->dyn_state.max_clock_voltage_on_dc.vddc =
++ table_info->max_clock_voltage_on_dc.vddc;
++ return 0;
++}
++
++static int fiji_patch_voltage_dependency_tables_with_lookup_table(
++ struct pp_hwmgr *hwmgr)
++{
++ uint8_t entryId;
++ uint8_t voltageId;
++ struct phm_ppt_v1_information *table_info =
++ (struct phm_ppt_v1_information *)(hwmgr->pptable);
++
++ struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
++ table_info->vdd_dep_on_sclk;
++ struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table =
++ table_info->vdd_dep_on_mclk;
++ struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
++ table_info->mm_dep_table;
++
++ for (entryId = 0; entryId < sclk_table->count; ++entryId) {
++ voltageId = sclk_table->entries[entryId].vddInd;
++ sclk_table->entries[entryId].vddc =
++ table_info->vddc_lookup_table->entries[voltageId].us_vdd;
++ }
++
++ for (entryId = 0; entryId < mclk_table->count; ++entryId) {
++ voltageId = mclk_table->entries[entryId].vddInd;
++ mclk_table->entries[entryId].vddc =
++ table_info->vddc_lookup_table->entries[voltageId].us_vdd;
++ }
++
++ for (entryId = 0; entryId < mm_table->count; ++entryId) {
++ voltageId = mm_table->entries[entryId].vddcInd;
++ mm_table->entries[entryId].vddc =
++ table_info->vddc_lookup_table->entries[voltageId].us_vdd;
++ }
++
++ return 0;
++
++}
++
++static int fiji_calc_voltage_dependency_tables(struct pp_hwmgr *hwmgr)
++{
++ /* Need to determine if we need calculated voltage. */
++ return 0;
++}
++
++static int fiji_calc_mm_voltage_dependency_table(struct pp_hwmgr *hwmgr)
++{
++ /* Need to determine if we need calculated voltage from mm table. */
++ return 0;
++}
++
++static int fiji_sort_lookup_table(struct pp_hwmgr *hwmgr,
++ struct phm_ppt_v1_voltage_lookup_table *lookup_table)
++{
++ uint32_t table_size, i, j;
++ struct phm_ppt_v1_voltage_lookup_record tmp_voltage_lookup_record;
++ table_size = lookup_table->count;
++
++ PP_ASSERT_WITH_CODE(0 != lookup_table->count,
++ "Lookup table is empty", return -EINVAL);
++
++ /* Sorting voltages */
++ for (i = 0; i < table_size - 1; i++) {
++ for (j = i + 1; j > 0; j--) {
++ if (lookup_table->entries[j].us_vdd <
++ lookup_table->entries[j - 1].us_vdd) {
++ tmp_voltage_lookup_record = lookup_table->entries[j - 1];
++ lookup_table->entries[j - 1] = lookup_table->entries[j];
++ lookup_table->entries[j] = tmp_voltage_lookup_record;
++ }
++ }
++ }
++
++ return 0;
++}
++
++static int fiji_complete_dependency_tables(struct pp_hwmgr *hwmgr)
++{
++ int result = 0;
++ int tmp_result;
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++ struct phm_ppt_v1_information *table_info =
++ (struct phm_ppt_v1_information *)(hwmgr->pptable);
++
++ tmp_result = fiji_patch_lookup_table_with_leakage(hwmgr,
++ table_info->vddc_lookup_table, &(data->vddc_leakage));
++ if (tmp_result)
++ result = tmp_result;
++
++ tmp_result = fiji_patch_clock_voltage_limits_with_vddc_leakage(hwmgr,
++ &(data->vddc_leakage), &table_info->max_clock_voltage_on_dc.vddc);
++ if (tmp_result)
++ result = tmp_result;
++
++ tmp_result = fiji_patch_voltage_dependency_tables_with_lookup_table(hwmgr);
++ if (tmp_result)
++ result = tmp_result;
++
++ tmp_result = fiji_calc_voltage_dependency_tables(hwmgr);
++ if (tmp_result)
++ result = tmp_result;
++
++ tmp_result = fiji_calc_mm_voltage_dependency_table(hwmgr);
++ if (tmp_result)
++ result = tmp_result;
++
++ tmp_result = fiji_sort_lookup_table(hwmgr, table_info->vddc_lookup_table);
++ if(tmp_result)
++ result = tmp_result;
++
++ return result;
++}
++
++static int fiji_set_private_data_based_on_pptable(struct pp_hwmgr *hwmgr)
++{
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++ struct phm_ppt_v1_information *table_info =
++ (struct phm_ppt_v1_information *)(hwmgr->pptable);
++
++ struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table =
++ table_info->vdd_dep_on_sclk;
++ struct phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table =
++ table_info->vdd_dep_on_mclk;
++
++ PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table != NULL,
++ "VDD dependency on SCLK table is missing. \
++ This table is mandatory", return -EINVAL);
++ PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1,
++ "VDD dependency on SCLK table has to have is missing. \
++ This table is mandatory", return -EINVAL);
++
++ PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table != NULL,
++ "VDD dependency on MCLK table is missing. \
++ This table is mandatory", return -EINVAL);
++ PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1,
++ "VDD dependency on MCLK table has to have is missing. \
++ This table is mandatory", return -EINVAL);
++
++ data->min_vddc_in_pptable = (uint16_t)allowed_sclk_vdd_table->entries[0].vddc;
++ data->max_vddc_in_pptable = (uint16_t)allowed_sclk_vdd_table->
++ entries[allowed_sclk_vdd_table->count - 1].vddc;
++
++ table_info->max_clock_voltage_on_ac.sclk =
++ allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk;
++ table_info->max_clock_voltage_on_ac.mclk =
++ allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk;
++ table_info->max_clock_voltage_on_ac.vddc =
++ allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
++ table_info->max_clock_voltage_on_ac.vddci =
++ allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci;
++
++ hwmgr->dyn_state.max_clock_voltage_on_ac.sclk =
++ table_info->max_clock_voltage_on_ac.sclk;
++ hwmgr->dyn_state.max_clock_voltage_on_ac.mclk =
++ table_info->max_clock_voltage_on_ac.mclk;
++ hwmgr->dyn_state.max_clock_voltage_on_ac.vddc =
++ table_info->max_clock_voltage_on_ac.vddc;
++ hwmgr->dyn_state.max_clock_voltage_on_ac.vddci =
++ table_info->max_clock_voltage_on_ac.vddci;
++
++ return 0;
++}
++
++static uint16_t fiji_get_current_pcie_speed(struct pp_hwmgr *hwmgr)
++{
++ uint32_t speedCntl = 0;
++
++ /* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
++ speedCntl = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__PCIE,
++ ixPCIE_LC_SPEED_CNTL);
++ return((uint16_t)PHM_GET_FIELD(speedCntl,
++ PCIE_LC_SPEED_CNTL, LC_CURRENT_DATA_RATE));
++}
++
++static int fiji_get_current_pcie_lane_number(struct pp_hwmgr *hwmgr)
++{
++ uint32_t link_width;
++
++ /* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
++ link_width = PHM_READ_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE,
++ PCIE_LC_LINK_WIDTH_CNTL, LC_LINK_WIDTH_RD);
++
++ PP_ASSERT_WITH_CODE((7 >= link_width),
++ "Invalid PCIe lane width!", return 0);
++
++ return decode_pcie_lane_width(link_width);
++}
++
++/** Patch the Boot State to match VBIOS boot clocks and voltage.
++*
++* @param hwmgr Pointer to the hardware manager.
++* @param pPowerState The address of the PowerState instance being created.
++*
++*/
++static int fiji_patch_boot_state(struct pp_hwmgr *hwmgr,
++ struct pp_hw_power_state *hw_ps)
++{
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++ struct fiji_power_state *ps = (struct fiji_power_state *)hw_ps;
++ ATOM_FIRMWARE_INFO_V2_2 *fw_info;
++ uint16_t size;
++ uint8_t frev, crev;
++ int index = GetIndexIntoMasterTable(DATA, FirmwareInfo);
++
++ /* First retrieve the Boot clocks and VDDC from the firmware info table.
++ * We assume here that fw_info is unchanged if this call fails.
++ */
++ fw_info = (ATOM_FIRMWARE_INFO_V2_2 *)cgs_atom_get_data_table(
++ hwmgr->device, index,
++ &size, &frev, &crev);
++ if (!fw_info)
++ /* During a test, there is no firmware info table. */
++ return 0;
++
++ /* Patch the state. */
++ data->vbios_boot_state.sclk_bootup_value =
++ le32_to_cpu(fw_info->ulDefaultEngineClock);
++ data->vbios_boot_state.mclk_bootup_value =
++ le32_to_cpu(fw_info->ulDefaultMemoryClock);
++ data->vbios_boot_state.mvdd_bootup_value =
++ le16_to_cpu(fw_info->usBootUpMVDDCVoltage);
++ data->vbios_boot_state.vddc_bootup_value =
++ le16_to_cpu(fw_info->usBootUpVDDCVoltage);
++ data->vbios_boot_state.vddci_bootup_value =
++ le16_to_cpu(fw_info->usBootUpVDDCIVoltage);
++ data->vbios_boot_state.pcie_gen_bootup_value =
++ fiji_get_current_pcie_speed(hwmgr);
++ data->vbios_boot_state.pcie_lane_bootup_value =
++ (uint16_t)fiji_get_current_pcie_lane_number(hwmgr);
++
++ /* set boot power state */
++ ps->performance_levels[0].memory_clock = data->vbios_boot_state.mclk_bootup_value;
++ ps->performance_levels[0].engine_clock = data->vbios_boot_state.sclk_bootup_value;
++ ps->performance_levels[0].pcie_gen = data->vbios_boot_state.pcie_gen_bootup_value;
++ ps->performance_levels[0].pcie_lane = data->vbios_boot_state.pcie_lane_bootup_value;
++
++ return 0;
++}
++
++static int fiji_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
++{
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++ uint32_t i;
++ struct phm_ppt_v1_information *table_info =
++ (struct phm_ppt_v1_information *)(hwmgr->pptable);
++ bool stay_in_boot;
++ int result;
++
++ data->dll_default_on = false;
++ data->sram_end = SMC_RAM_END;
++
++ for (i = 0; i < SMU73_MAX_LEVELS_GRAPHICS; i++)
++ data->activity_target[i] = FIJI_AT_DFLT;
++
++ data->vddc_vddci_delta = VDDC_VDDCI_DELTA;
++
++ data->mclk_activity_target = PPFIJI_MCLK_TARGETACTIVITY_DFLT;
++ data->mclk_dpm0_activity_target = 0xa;
++
++ data->sclk_dpm_key_disabled = 0;
++ data->mclk_dpm_key_disabled = 0;
++ data->pcie_dpm_key_disabled = 0;
++
++ phm_cap_set(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_UnTabledHardwareInterface);
++ phm_cap_set(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_TablelessHardwareInterface);
++
++ phm_cap_set(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_SclkDeepSleep);
++
++ data->gpio_debug = 0;
++
++ phm_cap_set(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_DynamicPatchPowerState);
++
++ /* need to set voltage control types before EVV patching */
++ data->voltage_control = FIJI_VOLTAGE_CONTROL_NONE;
++ data->vddci_control = FIJI_VOLTAGE_CONTROL_NONE;
++ data->mvdd_control = FIJI_VOLTAGE_CONTROL_NONE;
++
++ if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
++ VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2))
++ data->voltage_control = FIJI_VOLTAGE_CONTROL_BY_SVID2;
++
++ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_EnableMVDDControl))
++ if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
++ VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT))
++ data->mvdd_control = FIJI_VOLTAGE_CONTROL_BY_GPIO;
++
++ if (data->mvdd_control == FIJI_VOLTAGE_CONTROL_NONE)
++ phm_cap_set(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_EnableMVDDControl);
++
++ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_ControlVDDCI)) {
++ if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
++ VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT))
++ data->vddci_control = FIJI_VOLTAGE_CONTROL_BY_GPIO;
++ else if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
++ VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_SVID2))
++ data->vddci_control = FIJI_VOLTAGE_CONTROL_BY_SVID2;
++ }
++
++ if (data->vddci_control == FIJI_VOLTAGE_CONTROL_NONE)
++ phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_ControlVDDCI);
++
++ if (table_info && table_info->cac_dtp_table->usClockStretchAmount)
++ phm_cap_set(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_ClockStretcher);
++
++ fiji_init_dpm_defaults(hwmgr);
++
++ /* Get leakage voltage based on leakage ID. */
++ fiji_get_evv_voltages(hwmgr);
++
++ /* Patch our voltage dependency table with actual leakage voltage
++ * We need to perform leakage translation before it's used by other functions
++ */
++ fiji_complete_dependency_tables(hwmgr);
++
++ /* Parse pptable data read from VBIOS */
++ fiji_set_private_data_based_on_pptable(hwmgr);
++
++ /* ULV Support */
++ data->ulv.ulv_supported = true; /* ULV feature is enabled by default */
++
++ /* Initalize Dynamic State Adjustment Rule Settings */
++ result = tonga_initializa_dynamic_state_adjustment_rule_settings(hwmgr);
++
++ if (!result) {
++ data->uvd_enabled = false;
++ phm_cap_set(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_EnableSMU7ThermalManagement);
++ data->vddc_phase_shed_control = false;
++ }
++
++ stay_in_boot = phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_StayInBootState);
++
++ if (0 == result) {
++ data->is_tlu_enabled = 0;
++ hwmgr->platform_descriptor.hardwareActivityPerformanceLevels =
++ FIJI_MAX_HARDWARE_POWERLEVELS;
++ hwmgr->platform_descriptor.hardwarePerformanceLevels = 2;
++ hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50;
++
++ data->pcie_gen_cap = 0x30007;
++ data->pcie_lane_cap = 0x2f0000;
++ } else {
++ /* Ignore return value in here, we are cleaning up a mess. */
++ tonga_hwmgr_backend_fini(hwmgr);
++ }
++
++ return 0;
++}
++
++/**
++ * Read clock related registers.
++ *
++ * @param hwmgr the address of the powerplay hardware manager.
++ * @return always 0
++ */
++static int fiji_read_clock_registers(struct pp_hwmgr *hwmgr)
++{
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++
++ data->clock_registers.vCG_SPLL_FUNC_CNTL =
++ cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
++ ixCG_SPLL_FUNC_CNTL);
++ data->clock_registers.vCG_SPLL_FUNC_CNTL_2 =
++ cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
++ ixCG_SPLL_FUNC_CNTL_2);
++ data->clock_registers.vCG_SPLL_FUNC_CNTL_3 =
++ cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
++ ixCG_SPLL_FUNC_CNTL_3);
++ data->clock_registers.vCG_SPLL_FUNC_CNTL_4 =
++ cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
++ ixCG_SPLL_FUNC_CNTL_4);
++ data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM =
++ cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
++ ixCG_SPLL_SPREAD_SPECTRUM);
++ data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2 =
++ cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
++ ixCG_SPLL_SPREAD_SPECTRUM_2);
++
++ return 0;
++}
++
++/**
++ * Find out if memory is GDDR5.
++ *
++ * @param hwmgr the address of the powerplay hardware manager.
++ * @return always 0
++ */
++static int fiji_get_memory_type(struct pp_hwmgr *hwmgr)
++{
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++ uint32_t temp;
++
++ temp = cgs_read_register(hwmgr->device, mmMC_SEQ_MISC0);
++
++ data->is_memory_gddr5 = (MC_SEQ_MISC0_GDDR5_VALUE ==
++ ((temp & MC_SEQ_MISC0_GDDR5_MASK) >>
++ MC_SEQ_MISC0_GDDR5_SHIFT));
++
++ return 0;
++}
++
++/**
++ * Enables Dynamic Power Management by SMC
++ *
++ * @param hwmgr the address of the powerplay hardware manager.
++ * @return always 0
++ */
++static int fiji_enable_acpi_power_management(struct pp_hwmgr *hwmgr)
++{
++ PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
++ GENERAL_PWRMGT, STATIC_PM_EN, 1);
++
++ return 0;
++}
++
++/**
++ * Initialize PowerGating States for different engines
++ *
++ * @param hwmgr the address of the powerplay hardware manager.
++ * @return always 0
++ */
++static int fiji_init_power_gate_state(struct pp_hwmgr *hwmgr)
++{
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++
++ data->uvd_power_gated = false;
++ data->vce_power_gated = false;
++ data->samu_power_gated = false;
++ data->acp_power_gated = false;
++ data->pg_acp_init = true;
++
++ return 0;
++}
++
++static int fiji_init_sclk_threshold(struct pp_hwmgr *hwmgr)
++{
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++ data->low_sclk_interrupt_threshold = 0;
++
++ return 0;
++}
++
++static int fiji_setup_asic_task(struct pp_hwmgr *hwmgr)
++{
++ int tmp_result, result = 0;
++
++ tmp_result = fiji_read_clock_registers(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == tmp_result),
++ "Failed to read clock registers!", result = tmp_result);
++
++ tmp_result = fiji_get_memory_type(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == tmp_result),
++ "Failed to get memory type!", result = tmp_result);
++
++ tmp_result = fiji_enable_acpi_power_management(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == tmp_result),
++ "Failed to enable ACPI power management!", result = tmp_result);
++
++ tmp_result = fiji_init_power_gate_state(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == tmp_result),
++ "Failed to init power gate state!", result = tmp_result);
++
++ tmp_result = tonga_get_mc_microcode_version(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == tmp_result),
++ "Failed to get MC microcode version!", result = tmp_result);
++
++ tmp_result = fiji_init_sclk_threshold(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == tmp_result),
++ "Failed to init sclk threshold!", result = tmp_result);
++
++ return result;
++}
++
++/**
++* Checks if we want to support voltage control
++*
++* @param hwmgr the address of the powerplay hardware manager.
++*/
++static bool fiji_voltage_control(const struct pp_hwmgr *hwmgr)
++{
++ const struct fiji_hwmgr *data =
++ (const struct fiji_hwmgr *)(hwmgr->backend);
++
++ return (FIJI_VOLTAGE_CONTROL_NONE != data->voltage_control);
++}
++
++/**
++* Enable voltage control
++*
++* @param hwmgr the address of the powerplay hardware manager.
++* @return always 0
++*/
++static int fiji_enable_voltage_control(struct pp_hwmgr *hwmgr)
++{
++ /* enable voltage control */
++ PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
++ GENERAL_PWRMGT, VOLT_PWRMGT_EN, 1);
++
++ return 0;
++}
++
++/**
++* Remove repeated voltage values and create table with unique values.
++*
++* @param hwmgr the address of the powerplay hardware manager.
++* @param vol_table the pointer to changing voltage table
++* @return 0 in success
++*/
++
++static int fiji_trim_voltage_table(struct pp_hwmgr *hwmgr,
++ struct pp_atomctrl_voltage_table *vol_table)
++{
++ uint32_t i, j;
++ uint16_t vvalue;
++ bool found = false;
++ struct pp_atomctrl_voltage_table *table;
++
++ PP_ASSERT_WITH_CODE((NULL != vol_table),
++ "Voltage Table empty.", return -EINVAL);
++ table = kzalloc(sizeof(struct pp_atomctrl_voltage_table),
++ GFP_KERNEL);
++
++ if (NULL == table)
++ return -EINVAL;
++
++ table->mask_low = vol_table->mask_low;
++ table->phase_delay = vol_table->phase_delay;
++
++ for (i = 0; i < vol_table->count; i++) {
++ vvalue = vol_table->entries[i].value;
++ found = false;
++
++ for (j = 0; j < table->count; j++) {
++ if (vvalue == table->entries[j].value) {
++ found = true;
++ break;
++ }
++ }
++
++ if (!found) {
++ table->entries[table->count].value = vvalue;
++ table->entries[table->count].smio_low =
++ vol_table->entries[i].smio_low;
++ table->count++;
++ }
++ }
++
++ memcpy(vol_table, table, sizeof(struct pp_atomctrl_voltage_table));
++ kfree(table);
++
++ return 0;
++}
++static int fiji_get_svi2_mvdd_voltage_table(struct pp_hwmgr *hwmgr,
++ phm_ppt_v1_clock_voltage_dependency_table *dep_table)
++{
++ uint32_t i;
++ int result;
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++ struct pp_atomctrl_voltage_table *vol_table = &(data->mvdd_voltage_table);
++
++ PP_ASSERT_WITH_CODE((0 != dep_table->count),
++ "Voltage Dependency Table empty.", return -EINVAL);
++
++ vol_table->mask_low = 0;
++ vol_table->phase_delay = 0;
++ vol_table->count = dep_table->count;
++
++ for (i = 0; i < dep_table->count; i++) {
++ vol_table->entries[i].value = dep_table->entries[i].mvdd;
++ vol_table->entries[i].smio_low = 0;
++ }
++
++ result = fiji_trim_voltage_table(hwmgr, vol_table);
++ PP_ASSERT_WITH_CODE((0 == result),
++ "Failed to trim MVDD table.", return result);
++
++ return 0;
++}
++
++static int fiji_get_svi2_vddci_voltage_table(struct pp_hwmgr *hwmgr,
++ phm_ppt_v1_clock_voltage_dependency_table *dep_table)
++{
++ uint32_t i;
++ int result;
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++ struct pp_atomctrl_voltage_table *vol_table = &(data->vddci_voltage_table);
++
++ PP_ASSERT_WITH_CODE((0 != dep_table->count),
++ "Voltage Dependency Table empty.", return -EINVAL);
++
++ vol_table->mask_low = 0;
++ vol_table->phase_delay = 0;
++ vol_table->count = dep_table->count;
++
++ for (i = 0; i < dep_table->count; i++) {
++ vol_table->entries[i].value = dep_table->entries[i].vddci;
++ vol_table->entries[i].smio_low = 0;
++ }
++
++ result = fiji_trim_voltage_table(hwmgr, vol_table);
++ PP_ASSERT_WITH_CODE((0 == result),
++ "Failed to trim VDDCI table.", return result);
++
++ return 0;
++}
++
++static int fiji_get_svi2_vdd_voltage_table(struct pp_hwmgr *hwmgr,
++ phm_ppt_v1_voltage_lookup_table *lookup_table)
++{
++ int i = 0;
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++ struct pp_atomctrl_voltage_table *vol_table = &(data->vddc_voltage_table);
++
++ PP_ASSERT_WITH_CODE((0 != lookup_table->count),
++ "Voltage Lookup Table empty.", return -EINVAL);
++
++ vol_table->mask_low = 0;
++ vol_table->phase_delay = 0;
++
++ vol_table->count = lookup_table->count;
++
++ for (i = 0; i < vol_table->count; i++) {
++ vol_table->entries[i].value = lookup_table->entries[i].us_vdd;
++ vol_table->entries[i].smio_low = 0;
++ }
++
++ return 0;
++}
++
++/* ---- Voltage Tables ----
++ * If the voltage table would be bigger than
++ * what will fit into the state table on
++ * the SMC keep only the higher entries.
++ */
++static void fiji_trim_voltage_table_to_fit_state_table(struct pp_hwmgr *hwmgr,
++ uint32_t max_vol_steps, struct pp_atomctrl_voltage_table *vol_table)
++{
++ unsigned int i, diff;
++
++ if (vol_table->count <= max_vol_steps)
++ return;
++
++ diff = vol_table->count - max_vol_steps;
++
++ for (i = 0; i < max_vol_steps; i++)
++ vol_table->entries[i] = vol_table->entries[i + diff];
++
++ vol_table->count = max_vol_steps;
++
++ return;
++}
++
++/**
++* Create Voltage Tables.
++*
++* @param hwmgr the address of the powerplay hardware manager.
++* @return always 0
++*/
++static int fiji_construct_voltage_tables(struct pp_hwmgr *hwmgr)
++{
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++ struct phm_ppt_v1_information *table_info =
++ (struct phm_ppt_v1_information *)hwmgr->pptable;
++ int result;
++
++ if (FIJI_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
++ result = atomctrl_get_voltage_table_v3(hwmgr,
++ VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT,
++ &(data->mvdd_voltage_table));
++ PP_ASSERT_WITH_CODE((0 == result),
++ "Failed to retrieve MVDD table.",
++ return result);
++ } else if (FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
++ result = fiji_get_svi2_mvdd_voltage_table(hwmgr,
++ table_info->vdd_dep_on_mclk);
++ PP_ASSERT_WITH_CODE((0 == result),
++ "Failed to retrieve SVI2 MVDD table from dependancy table.",
++ return result;);
++ }
++
++ if (FIJI_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
++ result = atomctrl_get_voltage_table_v3(hwmgr,
++ VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT,
++ &(data->vddci_voltage_table));
++ PP_ASSERT_WITH_CODE((0 == result),
++ "Failed to retrieve VDDCI table.",
++ return result);
++ } else if (FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
++ result = fiji_get_svi2_vddci_voltage_table(hwmgr,
++ table_info->vdd_dep_on_mclk);
++ PP_ASSERT_WITH_CODE((0 == result),
++ "Failed to retrieve SVI2 VDDCI table from dependancy table.",
++ return result);
++ }
++
++ if(FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
++ result = fiji_get_svi2_vdd_voltage_table(hwmgr,
++ table_info->vddc_lookup_table);
++ PP_ASSERT_WITH_CODE((0 == result),
++ "Failed to retrieve SVI2 VDDC table from lookup table.",
++ return result);
++ }
++
++ PP_ASSERT_WITH_CODE(
++ (data->vddc_voltage_table.count <= (SMU73_MAX_LEVELS_VDDC)),
++ "Too many voltage values for VDDC. Trimming to fit state table.",
++ fiji_trim_voltage_table_to_fit_state_table(hwmgr,
++ SMU73_MAX_LEVELS_VDDC, &(data->vddc_voltage_table)));
++
++ PP_ASSERT_WITH_CODE(
++ (data->vddci_voltage_table.count <= (SMU73_MAX_LEVELS_VDDCI)),
++ "Too many voltage values for VDDCI. Trimming to fit state table.",
++ fiji_trim_voltage_table_to_fit_state_table(hwmgr,
++ SMU73_MAX_LEVELS_VDDCI, &(data->vddci_voltage_table)));
++
++ PP_ASSERT_WITH_CODE(
++ (data->mvdd_voltage_table.count <= (SMU73_MAX_LEVELS_MVDD)),
++ "Too many voltage values for MVDD. Trimming to fit state table.",
++ fiji_trim_voltage_table_to_fit_state_table(hwmgr,
++ SMU73_MAX_LEVELS_MVDD, &(data->mvdd_voltage_table)));
++
++ return 0;
++}
++
++static int fiji_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
++{
++ /* Program additional LP registers
++ * that are no longer programmed by VBIOS
++ */
++ cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP,
++ cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
++ cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP,
++ cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
++ cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP,
++ cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
++ cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP,
++ cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
++ cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP,
++ cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
++ cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP,
++ cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
++ cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP,
++ cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
++
++ return 0;
++}
++
++/**
++* Programs static screed detection parameters
++*
++* @param hwmgr the address of the powerplay hardware manager.
++* @return always 0
++*/
++static int fiji_program_static_screen_threshold_parameters(
++ struct pp_hwmgr *hwmgr)
++{
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++
++ /* Set static screen threshold unit */
++ PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
++ CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD_UNIT,
++ data->static_screen_threshold_unit);
++ /* Set static screen threshold */
++ PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
++ CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD,
++ data->static_screen_threshold);
++
++ return 0;
++}
++
++/**
++* Setup display gap for glitch free memory clock switching.
++*
++* @param hwmgr the address of the powerplay hardware manager.
++* @return always 0
++*/
++static int fiji_enable_display_gap(struct pp_hwmgr *hwmgr)
++{
++ uint32_t displayGap =
++ cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
++ ixCG_DISPLAY_GAP_CNTL);
++
++ displayGap = PHM_SET_FIELD(displayGap, CG_DISPLAY_GAP_CNTL,
++ DISP_GAP, DISPLAY_GAP_IGNORE);
++
++ displayGap = PHM_SET_FIELD(displayGap, CG_DISPLAY_GAP_CNTL,
++ DISP_GAP_MCHG, DISPLAY_GAP_VBLANK);
++
++ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
++ ixCG_DISPLAY_GAP_CNTL, displayGap);
++
++ return 0;
++}
++
++/**
++* Programs activity state transition voting clients
++*
++* @param hwmgr the address of the powerplay hardware manager.
++* @return always 0
++*/
++static int fiji_program_voting_clients(struct pp_hwmgr *hwmgr)
++{
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++
++ /* Clear reset for voting clients before enabling DPM */
++ PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
++ SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 0);
++ PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
++ SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 0);
++
++ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
++ ixCG_FREQ_TRAN_VOTING_0, data->voting_rights_clients0);
++ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
++ ixCG_FREQ_TRAN_VOTING_1, data->voting_rights_clients1);
++ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
++ ixCG_FREQ_TRAN_VOTING_2, data->voting_rights_clients2);
++ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
++ ixCG_FREQ_TRAN_VOTING_3, data->voting_rights_clients3);
++ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
++ ixCG_FREQ_TRAN_VOTING_4, data->voting_rights_clients4);
++ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
++ ixCG_FREQ_TRAN_VOTING_5, data->voting_rights_clients5);
++ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
++ ixCG_FREQ_TRAN_VOTING_6, data->voting_rights_clients6);
++ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
++ ixCG_FREQ_TRAN_VOTING_7, data->voting_rights_clients7);
++
++ return 0;
++}
++
++/**
++* Get the location of various tables inside the FW image.
++*
++* @param hwmgr the address of the powerplay hardware manager.
++* @return always 0
++*/
++static int fiji_process_firmware_header(struct pp_hwmgr *hwmgr)
++{
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++ struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend);
++ uint32_t tmp;
++ int result;
++ bool error = false;
++
++ result = fiji_read_smc_sram_dword(hwmgr->smumgr,
++ SMU7_FIRMWARE_HEADER_LOCATION +
++ offsetof(SMU73_Firmware_Header, DpmTable),
++ &tmp, data->sram_end);
++
++ if (0 == result)
++ data->dpm_table_start = tmp;
++
++ error |= (0 != result);
++
++ result = fiji_read_smc_sram_dword(hwmgr->smumgr,
++ SMU7_FIRMWARE_HEADER_LOCATION +
++ offsetof(SMU73_Firmware_Header, SoftRegisters),
++ &tmp, data->sram_end);
++
++ if (!result) {
++ data->soft_regs_start = tmp;
++ smu_data->soft_regs_start = tmp;
++ }
++
++ error |= (0 != result);
++
++ result = fiji_read_smc_sram_dword(hwmgr->smumgr,
++ SMU7_FIRMWARE_HEADER_LOCATION +
++ offsetof(SMU73_Firmware_Header, mcRegisterTable),
++ &tmp, data->sram_end);
++
++ if (!result)
++ data->mc_reg_table_start = tmp;
++
++ result = fiji_read_smc_sram_dword(hwmgr->smumgr,
++ SMU7_FIRMWARE_HEADER_LOCATION +
++ offsetof(SMU73_Firmware_Header, FanTable),
++ &tmp, data->sram_end);
++
++ if (!result)
++ data->fan_table_start = tmp;
++
++ error |= (0 != result);
++
++ result = fiji_read_smc_sram_dword(hwmgr->smumgr,
++ SMU7_FIRMWARE_HEADER_LOCATION +
++ offsetof(SMU73_Firmware_Header, mcArbDramTimingTable),
++ &tmp, data->sram_end);
++
++ if (!result)
++ data->arb_table_start = tmp;
++
++ error |= (0 != result);
++
++ result = fiji_read_smc_sram_dword(hwmgr->smumgr,
++ SMU7_FIRMWARE_HEADER_LOCATION +
++ offsetof(SMU73_Firmware_Header, Version),
++ &tmp, data->sram_end);
++
++ if (!result)
++ hwmgr->microcode_version_info.SMC = tmp;
++
++ error |= (0 != result);
++
++ return error ? -1 : 0;
++}
++
++/* Copy one arb setting to another and then switch the active set.
++ * arb_src and arb_dest is one of the MC_CG_ARB_FREQ_Fx constants.
++ */
++static int fiji_copy_and_switch_arb_sets(struct pp_hwmgr *hwmgr,
++ uint32_t arb_src, uint32_t arb_dest)
++{
++ uint32_t mc_arb_dram_timing;
++ uint32_t mc_arb_dram_timing2;
++ uint32_t burst_time;
++ uint32_t mc_cg_config;
++
++ switch (arb_src) {
++ case MC_CG_ARB_FREQ_F0:
++ mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
++ mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
++ burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
++ break;
++ case MC_CG_ARB_FREQ_F1:
++ mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1);
++ mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1);
++ burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1);
++ break;
++ default:
++ return -EINVAL;
++ }
++
++ switch (arb_dest) {
++ case MC_CG_ARB_FREQ_F0:
++ cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING, mc_arb_dram_timing);
++ cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2, mc_arb_dram_timing2);
++ PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0, burst_time);
++ break;
++ case MC_CG_ARB_FREQ_F1:
++ cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1, mc_arb_dram_timing);
++ cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1, mc_arb_dram_timing2);
++ PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1, burst_time);
++ break;
++ default:
++ return -EINVAL;
++ }
++
++ mc_cg_config = cgs_read_register(hwmgr->device, mmMC_CG_CONFIG);
++ mc_cg_config |= 0x0000000F;
++ cgs_write_register(hwmgr->device, mmMC_CG_CONFIG, mc_cg_config);
++ PHM_WRITE_FIELD(hwmgr->device, MC_ARB_CG, CG_ARB_REQ, arb_dest);
++
++ return 0;
++}
++
++/**
++* Initial switch from ARB F0->F1
++*
++* @param hwmgr the address of the powerplay hardware manager.
++* @return always 0
++* This function is to be called from the SetPowerState table.
++*/
++static int fiji_initial_switch_from_arbf0_to_f1(struct pp_hwmgr *hwmgr)
++{
++ return fiji_copy_and_switch_arb_sets(hwmgr,
++ MC_CG_ARB_FREQ_F0, MC_CG_ARB_FREQ_F1);
++}
++
++static int fiji_reset_single_dpm_table(struct pp_hwmgr *hwmgr,
++ struct fiji_single_dpm_table *dpm_table, uint32_t count)
++{
++ int i;
++ PP_ASSERT_WITH_CODE(count <= MAX_REGULAR_DPM_NUMBER,
++ "Fatal error, can not set up single DPM table entries "
++ "to exceed max number!",);
++
++ dpm_table->count = count;
++ for (i = 0; i < MAX_REGULAR_DPM_NUMBER; i++)
++ dpm_table->dpm_levels[i].enabled = false;
++
++ return 0;
++}
++
++static void fiji_setup_pcie_table_entry(
++ struct fiji_single_dpm_table *dpm_table,
++ uint32_t index, uint32_t pcie_gen,
++ uint32_t pcie_lanes)
++{
++ dpm_table->dpm_levels[index].value = pcie_gen;
++ dpm_table->dpm_levels[index].param1 = pcie_lanes;
++ dpm_table->dpm_levels[index].enabled = 1;
++}
++
++static int fiji_setup_default_pcie_table(struct pp_hwmgr *hwmgr)
++{
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++ struct phm_ppt_v1_information *table_info =
++ (struct phm_ppt_v1_information *)(hwmgr->pptable);
++ struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
++ uint32_t i, max_entry;
++
++ PP_ASSERT_WITH_CODE((data->use_pcie_performance_levels ||
++ data->use_pcie_power_saving_levels), "No pcie performance levels!",
++ return -EINVAL);
++
++ if (data->use_pcie_performance_levels &&
++ !data->use_pcie_power_saving_levels) {
++ data->pcie_gen_power_saving = data->pcie_gen_performance;
++ data->pcie_lane_power_saving = data->pcie_lane_performance;
++ } else if (!data->use_pcie_performance_levels &&
++ data->use_pcie_power_saving_levels) {
++ data->pcie_gen_performance = data->pcie_gen_power_saving;
++ data->pcie_lane_performance = data->pcie_lane_power_saving;
++ }
++
++ fiji_reset_single_dpm_table(hwmgr,
++ &data->dpm_table.pcie_speed_table, SMU73_MAX_LEVELS_LINK);
++
++ if (pcie_table != NULL) {
++ /* max_entry is used to make sure we reserve one PCIE level
++ * for boot level (fix for A+A PSPP issue).
++ * If PCIE table from PPTable have ULV entry + 8 entries,
++ * then ignore the last entry.*/
++ max_entry = (SMU73_MAX_LEVELS_LINK < pcie_table->count) ?
++ SMU73_MAX_LEVELS_LINK : pcie_table->count;
++ for (i = 1; i < max_entry; i++) {
++ fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i - 1,
++ get_pcie_gen_support(data->pcie_gen_cap,
++ pcie_table->entries[i].gen_speed),
++ get_pcie_lane_support(data->pcie_lane_cap,
++ pcie_table->entries[i].lane_width));
++ }
++ data->dpm_table.pcie_speed_table.count = max_entry - 1;
++ } else {
++ /* Hardcode Pcie Table */
++ fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 0,
++ get_pcie_gen_support(data->pcie_gen_cap,
++ PP_Min_PCIEGen),
++ get_pcie_lane_support(data->pcie_lane_cap,
++ PP_Max_PCIELane));
++ fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 1,
++ get_pcie_gen_support(data->pcie_gen_cap,
++ PP_Min_PCIEGen),
++ get_pcie_lane_support(data->pcie_lane_cap,
++ PP_Max_PCIELane));
++ fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 2,
++ get_pcie_gen_support(data->pcie_gen_cap,
++ PP_Max_PCIEGen),
++ get_pcie_lane_support(data->pcie_lane_cap,
++ PP_Max_PCIELane));
++ fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 3,
++ get_pcie_gen_support(data->pcie_gen_cap,
++ PP_Max_PCIEGen),
++ get_pcie_lane_support(data->pcie_lane_cap,
++ PP_Max_PCIELane));
++ fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 4,
++ get_pcie_gen_support(data->pcie_gen_cap,
++ PP_Max_PCIEGen),
++ get_pcie_lane_support(data->pcie_lane_cap,
++ PP_Max_PCIELane));
++ fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 5,
++ get_pcie_gen_support(data->pcie_gen_cap,
++ PP_Max_PCIEGen),
++ get_pcie_lane_support(data->pcie_lane_cap,
++ PP_Max_PCIELane));
++
++ data->dpm_table.pcie_speed_table.count = 6;
++ }
++ /* Populate last level for boot PCIE level, but do not increment count. */
++ fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table,
++ data->dpm_table.pcie_speed_table.count,
++ get_pcie_gen_support(data->pcie_gen_cap,
++ PP_Min_PCIEGen),
++ get_pcie_lane_support(data->pcie_lane_cap,
++ PP_Max_PCIELane));
++
++ return 0;
++}
++
++/*
++ * This function is to initalize all DPM state tables
++ * for SMU7 based on the dependency table.
++ * Dynamic state patching function will then trim these
++ * state tables to the allowed range based
++ * on the power policy or external client requests,
++ * such as UVD request, etc.
++ */
++static int fiji_setup_default_dpm_tables(struct pp_hwmgr *hwmgr)
++{
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++ struct phm_ppt_v1_information *table_info =
++ (struct phm_ppt_v1_information *)(hwmgr->pptable);
++ uint32_t i;
++
++ struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table =
++ table_info->vdd_dep_on_sclk;
++ struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
++ table_info->vdd_dep_on_mclk;
++
++ PP_ASSERT_WITH_CODE(dep_sclk_table != NULL,
++ "SCLK dependency table is missing. This table is mandatory",
++ return -EINVAL);
++ PP_ASSERT_WITH_CODE(dep_sclk_table->count >= 1,
++ "SCLK dependency table has to have is missing. "
++ "This table is mandatory",
++ return -EINVAL);
++
++ PP_ASSERT_WITH_CODE(dep_mclk_table != NULL,
++ "MCLK dependency table is missing. This table is mandatory",
++ return -EINVAL);
++ PP_ASSERT_WITH_CODE(dep_mclk_table->count >= 1,
++ "MCLK dependency table has to have is missing. "
++ "This table is mandatory",
++ return -EINVAL);
++
++ /* clear the state table to reset everything to default */
++ fiji_reset_single_dpm_table(hwmgr,
++ &data->dpm_table.sclk_table, SMU73_MAX_LEVELS_GRAPHICS);
++ fiji_reset_single_dpm_table(hwmgr,
++ &data->dpm_table.mclk_table, SMU73_MAX_LEVELS_MEMORY);
++
++ /* Initialize Sclk DPM table based on allow Sclk values */
++ data->dpm_table.sclk_table.count = 0;
++ for (i = 0; i < dep_sclk_table->count; i++) {
++ if (i == 0 || data->dpm_table.sclk_table.dpm_levels
++ [data->dpm_table.sclk_table.count - 1].value !=
++ dep_sclk_table->entries[i].clk) {
++ data->dpm_table.sclk_table.dpm_levels
++ [data->dpm_table.sclk_table.count].value =
++ dep_sclk_table->entries[i].clk;
++ data->dpm_table.sclk_table.dpm_levels
++ [data->dpm_table.sclk_table.count].enabled =
++ (i == 0) ? true : false;
++ data->dpm_table.sclk_table.count++;
++ }
++ }
++
++ /* Initialize Mclk DPM table based on allow Mclk values */
++ data->dpm_table.mclk_table.count = 0;
++ for (i=0; i<dep_mclk_table->count; i++) {
++ if ( i==0 || data->dpm_table.mclk_table.dpm_levels
++ [data->dpm_table.mclk_table.count - 1].value !=
++ dep_mclk_table->entries[i].clk) {
++ data->dpm_table.mclk_table.dpm_levels
++ [data->dpm_table.mclk_table.count].value =
++ dep_mclk_table->entries[i].clk;
++ data->dpm_table.mclk_table.dpm_levels
++ [data->dpm_table.mclk_table.count].enabled =
++ (i == 0) ? true : false;
++ data->dpm_table.mclk_table.count++;
++ }
++ }
++
++ /* setup PCIE gen speed levels */
++ fiji_setup_default_pcie_table(hwmgr);
++
++ /* save a copy of the default DPM table */
++ memcpy(&(data->golden_dpm_table), &(data->dpm_table),
++ sizeof(struct fiji_dpm_table));
++
++ return 0;
++}
++
++/**
++ * @brief PhwFiji_GetVoltageOrder
++ * Returns index of requested voltage record in lookup(table)
++ * @param lookup_table - lookup list to search in
++ * @param voltage - voltage to look for
++ * @return 0 on success
++ */
++uint8_t fiji_get_voltage_index(
++ struct phm_ppt_v1_voltage_lookup_table *lookup_table, uint16_t voltage)
++{
++ uint8_t count = (uint8_t) (lookup_table->count);
++ uint8_t i;
++
++ PP_ASSERT_WITH_CODE((NULL != lookup_table),
++ "Lookup Table empty.", return 0);
++ PP_ASSERT_WITH_CODE((0 != count),
++ "Lookup Table empty.", return 0);
++
++ for (i = 0; i < lookup_table->count; i++) {
++ /* find first voltage equal or bigger than requested */
++ if (lookup_table->entries[i].us_vdd >= voltage)
++ return i;
++ }
++ /* voltage is bigger than max voltage in the table */
++ return i - 1;
++}
++
++/**
++* Preparation of vddc and vddgfx CAC tables for SMC.
++*
++* @param hwmgr the address of the hardware manager
++* @param table the SMC DPM table structure to be populated
++* @return always 0
++*/
++static int fiji_populate_cac_table(struct pp_hwmgr *hwmgr,
++ struct SMU73_Discrete_DpmTable *table)
++{
++ uint32_t count;
++ uint8_t index;
++ int result = 0;
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++ struct phm_ppt_v1_information *table_info =
++ (struct phm_ppt_v1_information *)(hwmgr->pptable);
++ struct phm_ppt_v1_voltage_lookup_table *lookup_table =
++ table_info->vddc_lookup_table;
++ /* tables is already swapped, so in order to use the value from it,
++ * we need to swap it back.
++ * We are populating vddc CAC data to BapmVddc table
++ * in split and merged mode
++ */
++ for( count = 0; count<lookup_table->count; count++) {
++ index = fiji_get_voltage_index(lookup_table,
++ data->vddc_voltage_table.entries[count].value);
++ table->BapmVddcVidLoSidd[count] = (uint8_t) ((6200 -
++ (lookup_table->entries[index].us_cac_low *
++ VOLTAGE_SCALE)) / 25);
++ table->BapmVddcVidHiSidd[count] = (uint8_t) ((6200 -
++ (lookup_table->entries[index].us_cac_high *
++ VOLTAGE_SCALE)) / 25);
++ }
++
++ return result;
++}
++
++/**
++* Preparation of voltage tables for SMC.
++*
++* @param hwmgr the address of the hardware manager
++* @param table the SMC DPM table structure to be populated
++* @return always 0
++*/
++
++int fiji_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
++ struct SMU73_Discrete_DpmTable *table)
++{
++ int result;
++
++ result = fiji_populate_cac_table(hwmgr, table);
++ PP_ASSERT_WITH_CODE(0 == result,
++ "can not populate CAC voltage tables to SMC",
++ return -EINVAL);
++
++ return 0;
++}
++
++static int fiji_populate_ulv_level(struct pp_hwmgr *hwmgr,
++ struct SMU73_Discrete_Ulv *state)
++{
++ int result = 0;
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++ struct phm_ppt_v1_information *table_info =
++ (struct phm_ppt_v1_information *)(hwmgr->pptable);
++
++ state->CcPwrDynRm = 0;
++ state->CcPwrDynRm1 = 0;
++
++ state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset;
++ state->VddcOffsetVid = (uint8_t)( table_info->us_ulv_voltage_offset *
++ VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1 );
++
++ state->VddcPhase = (data->vddc_phase_shed_control) ? 0 : 1;
++
++ if (!result) {
++ CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
++ CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
++ CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
++ }
++ return result;
++}
++
++static int fiji_populate_ulv_state(struct pp_hwmgr *hwmgr,
++ struct SMU73_Discrete_DpmTable *table)
++{
++ return fiji_populate_ulv_level(hwmgr, &table->Ulv);
++}
++
++static int32_t fiji_get_dpm_level_enable_mask_value(
++ struct fiji_single_dpm_table* dpm_table)
++{
++ int32_t i;
++ int32_t mask = 0;
++
++ for (i = dpm_table->count; i > 0; i--) {
++ mask = mask << 1;
++ if (dpm_table->dpm_levels[i - 1].enabled)
++ mask |= 0x1;
++ else
++ mask &= 0xFFFFFFFE;
++ }
++ return mask;
++}
++
++static int fiji_populate_smc_link_level(struct pp_hwmgr *hwmgr,
++ struct SMU73_Discrete_DpmTable *table)
++{
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++ struct fiji_dpm_table *dpm_table = &data->dpm_table;
++ int i;
++
++ /* Index (dpm_table->pcie_speed_table.count)
++ * is reserved for PCIE boot level. */
++ for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
++ table->LinkLevel[i].PcieGenSpeed =
++ (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
++ table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width(
++ dpm_table->pcie_speed_table.dpm_levels[i].param1);
++ table->LinkLevel[i].EnabledForActivity = 1;
++ table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff);
++ table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5);
++ table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30);
++ }
++
++ data->smc_state_table.LinkLevelCount =
++ (uint8_t)dpm_table->pcie_speed_table.count;
++ data->dpm_level_enable_mask.pcie_dpm_enable_mask =
++ fiji_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
++
++ return 0;
++}
++
++/**
++* Calculates the SCLK dividers using the provided engine clock
++*
++* @param hwmgr the address of the hardware manager
++* @param clock the engine clock to use to populate the structure
++* @param sclk the SMC SCLK structure to be populated
++*/
++static int fiji_calculate_sclk_params(struct pp_hwmgr *hwmgr,
++ uint32_t clock, struct SMU73_Discrete_GraphicsLevel *sclk)
++{
++ const struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++ struct pp_atomctrl_clock_dividers_vi dividers;
++ uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
++ uint32_t spll_func_cntl_3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
++ uint32_t spll_func_cntl_4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
++ uint32_t cg_spll_spread_spectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
++ uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
++ uint32_t ref_clock;
++ uint32_t ref_divider;
++ uint32_t fbdiv;
++ int result;
++
++ /* get the engine clock dividers for this clock value */
++ result = atomctrl_get_engine_pll_dividers_vi(hwmgr, clock, &dividers);
++
++ PP_ASSERT_WITH_CODE(result == 0,
++ "Error retrieving Engine Clock dividers from VBIOS.",
++ return result);
++
++ /* To get FBDIV we need to multiply this by 16384 and divide it by Fref. */
++ ref_clock = atomctrl_get_reference_clock(hwmgr);
++ ref_divider = 1 + dividers.uc_pll_ref_div;
++
++ /* low 14 bits is fraction and high 12 bits is divider */
++ fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
++
++ /* SPLL_FUNC_CNTL setup */
++ spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
++ SPLL_REF_DIV, dividers.uc_pll_ref_div);
++ spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
++ SPLL_PDIV_A, dividers.uc_pll_post_div);
++
++ /* SPLL_FUNC_CNTL_3 setup*/
++ spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
++ SPLL_FB_DIV, fbdiv);
++
++ /* set to use fractional accumulation*/
++ spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
++ SPLL_DITHEN, 1);
++
++ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
++ struct pp_atomctrl_internal_ss_info ssInfo;
++
++ uint32_t vco_freq = clock * dividers.uc_pll_post_div;
++ if (!atomctrl_get_engine_clock_spread_spectrum(hwmgr,
++ vco_freq, &ssInfo)) {
++ /*
++ * ss_info.speed_spectrum_percentage -- in unit of 0.01%
++ * ss_info.speed_spectrum_rate -- in unit of khz
++ *
++ * clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2
++ */
++ uint32_t clk_s = ref_clock * 5 /
++ (ref_divider * ssInfo.speed_spectrum_rate);
++ /* clkv = 2 * D * fbdiv / NS */
++ uint32_t clk_v = 4 * ssInfo.speed_spectrum_percentage *
++ fbdiv / (clk_s * 10000);
++
++ cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
++ CG_SPLL_SPREAD_SPECTRUM, CLKS, clk_s);
++ cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
++ CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
++ cg_spll_spread_spectrum_2 = PHM_SET_FIELD(cg_spll_spread_spectrum_2,
++ CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clk_v);
++ }
++ }
++
++ sclk->SclkFrequency = clock;
++ sclk->CgSpllFuncCntl3 = spll_func_cntl_3;
++ sclk->CgSpllFuncCntl4 = spll_func_cntl_4;
++ sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum;
++ sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2;
++ sclk->SclkDid = (uint8_t)dividers.pll_post_divider;
++
++ return 0;
++}
++
++static uint16_t fiji_find_closest_vddci(struct pp_hwmgr *hwmgr, uint16_t vddci)
++{
++ uint32_t i;
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++ struct pp_atomctrl_voltage_table *vddci_table =
++ &(data->vddci_voltage_table);
++
++ for (i = 0; i < vddci_table->count; i++) {
++ if (vddci_table->entries[i].value >= vddci)
++ return vddci_table->entries[i].value;
++ }
++
++ PP_ASSERT_WITH_CODE(false,
++ "VDDCI is larger than max VDDCI in VDDCI Voltage Table!",
++ return vddci_table->entries[i].value);
++}
++
++static int fiji_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
++ struct phm_ppt_v1_clock_voltage_dependency_table* dep_table,
++ uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd)
++{
++ uint32_t i;
++ uint16_t vddci;
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++
++ *voltage = *mvdd = 0;
++
++ /* clock - voltage dependency table is empty table */
++ if (dep_table->count == 0)
++ return -EINVAL;
++
++ for (i = 0; i < dep_table->count; i++) {
++ /* find first sclk bigger than request */
++ if (dep_table->entries[i].clk >= clock) {
++ *voltage |= (dep_table->entries[i].vddc *
++ VOLTAGE_SCALE) << VDDC_SHIFT;
++ if (FIJI_VOLTAGE_CONTROL_NONE == data->vddci_control)
++ *voltage |= (data->vbios_boot_state.vddci_bootup_value *
++ VOLTAGE_SCALE) << VDDCI_SHIFT;
++ else if (dep_table->entries[i].vddci)
++ *voltage |= (dep_table->entries[i].vddci *
++ VOLTAGE_SCALE) << VDDCI_SHIFT;
++ else {
++ vddci = fiji_find_closest_vddci(hwmgr,
++ (dep_table->entries[i].vddc -
++ (uint16_t)data->vddc_vddci_delta));
++ *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
++ }
++
++ if (FIJI_VOLTAGE_CONTROL_NONE == data->mvdd_control)
++ *mvdd = data->vbios_boot_state.mvdd_bootup_value *
++ VOLTAGE_SCALE;
++ else if (dep_table->entries[i].mvdd)
++ *mvdd = (uint32_t) dep_table->entries[i].mvdd *
++ VOLTAGE_SCALE;
++
++ *voltage |= 1 << PHASES_SHIFT;
++ return 0;
++ }
++ }
++
++ /* sclk is bigger than max sclk in the dependence table */
++ *voltage |= (dep_table->entries[i - 1].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
++
++ if (FIJI_VOLTAGE_CONTROL_NONE == data->vddci_control)
++ *voltage |= (data->vbios_boot_state.vddci_bootup_value *
++ VOLTAGE_SCALE) << VDDCI_SHIFT;
++ else if (dep_table->entries[i-1].vddci) {
++ vddci = fiji_find_closest_vddci(hwmgr,
++ (dep_table->entries[i].vddc -
++ (uint16_t)data->vddc_vddci_delta));
++ *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
++ }
++
++ if (FIJI_VOLTAGE_CONTROL_NONE == data->mvdd_control)
++ *mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE;
++ else if (dep_table->entries[i].mvdd)
++ *mvdd = (uint32_t) dep_table->entries[i - 1].mvdd * VOLTAGE_SCALE;
++
++ return 0;
++}
++/**
++* Populates single SMC SCLK structure using the provided engine clock
++*
++* @param hwmgr the address of the hardware manager
++* @param clock the engine clock to use to populate the structure
++* @param sclk the SMC SCLK structure to be populated
++*/
++
++static int fiji_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
++ uint32_t clock, uint16_t sclk_al_threshold,
++ struct SMU73_Discrete_GraphicsLevel *level)
++{
++ int result;
++ /* PP_Clocks minClocks; */
++ uint32_t threshold, mvdd;
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++ struct phm_ppt_v1_information *table_info =
++ (struct phm_ppt_v1_information *)(hwmgr->pptable);
++
++ result = fiji_calculate_sclk_params(hwmgr, clock, level);
++
++ /* populate graphics levels */
++ result = fiji_get_dependency_volt_by_clk(hwmgr,
++ table_info->vdd_dep_on_sclk, clock,
++ &level->MinVoltage, &mvdd);
++ PP_ASSERT_WITH_CODE((0 == result),
++ "can not find VDDC voltage value for "
++ "VDDC engine clock dependency table",
++ return result);
++
++ level->SclkFrequency = clock;
++ level->ActivityLevel = sclk_al_threshold;
++ level->CcPwrDynRm = 0;
++ level->CcPwrDynRm1 = 0;
++ level->EnabledForActivity = 0;
++ level->EnabledForThrottle = 1;
++ level->UpHyst = 10;
++ level->DownHyst = 0;
++ level->VoltageDownHyst = 0;
++ level->PowerThrottle = 0;
++
++ threshold = clock * data->fast_watermark_threshold / 100;
++
++ /*
++ * TODO: get minimum clocks from dal configaration
++ * PECI_GetMinClockSettings(hwmgr->pPECI, &minClocks);
++ */
++ /* data->DisplayTiming.minClockInSR = minClocks.engineClockInSR; */
++
++ /* get level->DeepSleepDivId
++ if (phm_cap_enabled(hwmgr->platformDescriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep))
++ {
++ level->DeepSleepDivId = PhwFiji_GetSleepDividerIdFromClock(hwmgr, clock, minClocks.engineClockInSR);
++ } */
++
++ /* Default to slow, highest DPM level will be
++ * set to PPSMC_DISPLAY_WATERMARK_LOW later.
++ */
++ level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
++
++ CONVERT_FROM_HOST_TO_SMC_UL(level->MinVoltage);
++ CONVERT_FROM_HOST_TO_SMC_UL(level->SclkFrequency);
++ CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel);
++ CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl3);
++ CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl4);
++ CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum);
++ CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum2);
++ CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm);
++ CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1);
++
++ return 0;
++}
++/**
++* Populates all SMC SCLK levels' structure based on the trimmed allowed dpm engine clock states
++*
++* @param hwmgr the address of the hardware manager
++*/
++static int fiji_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
++{
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++ struct fiji_dpm_table *dpm_table = &data->dpm_table;
++ struct phm_ppt_v1_information *table_info =
++ (struct phm_ppt_v1_information *)(hwmgr->pptable);
++ struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
++ uint8_t pcie_entry_cnt = (uint8_t) data->dpm_table.pcie_speed_table.count;
++ int result = 0;
++ uint32_t array = data->dpm_table_start +
++ offsetof(SMU73_Discrete_DpmTable, GraphicsLevel);
++ uint32_t array_size = sizeof(struct SMU73_Discrete_GraphicsLevel) *
++ SMU73_MAX_LEVELS_GRAPHICS;
++ struct SMU73_Discrete_GraphicsLevel *levels =
++ data->smc_state_table.GraphicsLevel;
++ uint32_t i, max_entry;
++ uint8_t hightest_pcie_level_enabled = 0,
++ lowest_pcie_level_enabled = 0,
++ mid_pcie_level_enabled = 0,
++ count = 0;
++
++ for (i = 0; i < dpm_table->sclk_table.count; i++) {
++ result = fiji_populate_single_graphic_level(hwmgr,
++ dpm_table->sclk_table.dpm_levels[i].value,
++ (uint16_t)data->activity_target[i],
++ &levels[i]);
++ if (result)
++ return result;
++
++ /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
++ if (i > 1)
++ levels[i].DeepSleepDivId = 0;
++ }
++
++ /* Only enable level 0 for now.*/
++ levels[0].EnabledForActivity = 1;
++
++ /* set highest level watermark to high */
++ levels[dpm_table->sclk_table.count - 1].DisplayWatermark =
++ PPSMC_DISPLAY_WATERMARK_HIGH;
++
++ data->smc_state_table.GraphicsDpmLevelCount =
++ (uint8_t)dpm_table->sclk_table.count;
++ data->dpm_level_enable_mask.sclk_dpm_enable_mask =
++ fiji_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
++
++ if (pcie_table != NULL) {
++ PP_ASSERT_WITH_CODE((1 <= pcie_entry_cnt),
++ "There must be 1 or more PCIE levels defined in PPTable.",
++ return -EINVAL);
++ max_entry = pcie_entry_cnt - 1;
++ for (i = 0; i < dpm_table->sclk_table.count; i++)
++ levels[i].pcieDpmLevel =
++ (uint8_t) ((i < max_entry)? i : max_entry);
++ } else {
++ while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
++ ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
++ (1 << (hightest_pcie_level_enabled + 1))) != 0 ))
++ hightest_pcie_level_enabled++;
++
++ while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
++ ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
++ (1 << lowest_pcie_level_enabled)) == 0 ))
++ lowest_pcie_level_enabled++;
++
++ while ((count < hightest_pcie_level_enabled) &&
++ ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
++ (1 << (lowest_pcie_level_enabled + 1 + count))) == 0 ))
++ count++;
++
++ mid_pcie_level_enabled = (lowest_pcie_level_enabled + 1+ count) <
++ hightest_pcie_level_enabled?
++ (lowest_pcie_level_enabled + 1 + count) :
++ hightest_pcie_level_enabled;
++
++ /* set pcieDpmLevel to hightest_pcie_level_enabled */
++ for(i = 2; i < dpm_table->sclk_table.count; i++)
++ levels[i].pcieDpmLevel = hightest_pcie_level_enabled;
++
++ /* set pcieDpmLevel to lowest_pcie_level_enabled */
++ levels[0].pcieDpmLevel = lowest_pcie_level_enabled;
++
++ /* set pcieDpmLevel to mid_pcie_level_enabled */
++ levels[1].pcieDpmLevel = mid_pcie_level_enabled;
++ }
++ /* level count will send to smc once at init smc table and never change */
++ result = fiji_copy_bytes_to_smc(hwmgr->smumgr, array, (uint8_t *)levels,
++ (uint32_t)array_size, data->sram_end);
++
++ return result;
++}
++
++/**
++ * MCLK Frequency Ratio
++ * SEQ_CG_RESP Bit[31:24] - 0x0
++ * Bit[27:24] \96 DDR3 Frequency ratio
++ * 0x0 <= 100MHz, 450 < 0x8 <= 500MHz
++ * 100 < 0x1 <= 150MHz, 500 < 0x9 <= 550MHz
++ * 150 < 0x2 <= 200MHz, 550 < 0xA <= 600MHz
++ * 200 < 0x3 <= 250MHz, 600 < 0xB <= 650MHz
++ * 250 < 0x4 <= 300MHz, 650 < 0xC <= 700MHz
++ * 300 < 0x5 <= 350MHz, 700 < 0xD <= 750MHz
++ * 350 < 0x6 <= 400MHz, 750 < 0xE <= 800MHz
++ * 400 < 0x7 <= 450MHz, 800 < 0xF
++ */
++static uint8_t fiji_get_mclk_frequency_ratio(uint32_t mem_clock)
++{
++ if (mem_clock <= 10000) return 0x0;
++ if (mem_clock <= 15000) return 0x1;
++ if (mem_clock <= 20000) return 0x2;
++ if (mem_clock <= 25000) return 0x3;
++ if (mem_clock <= 30000) return 0x4;
++ if (mem_clock <= 35000) return 0x5;
++ if (mem_clock <= 40000) return 0x6;
++ if (mem_clock <= 45000) return 0x7;
++ if (mem_clock <= 50000) return 0x8;
++ if (mem_clock <= 55000) return 0x9;
++ if (mem_clock <= 60000) return 0xa;
++ if (mem_clock <= 65000) return 0xb;
++ if (mem_clock <= 70000) return 0xc;
++ if (mem_clock <= 75000) return 0xd;
++ if (mem_clock <= 80000) return 0xe;
++ /* mem_clock > 800MHz */
++ return 0xf;
++}
++
++/**
++* Populates the SMC MCLK structure using the provided memory clock
++*
++* @param hwmgr the address of the hardware manager
++* @param clock the memory clock to use to populate the structure
++* @param sclk the SMC SCLK structure to be populated
++*/
++static int fiji_calculate_mclk_params(struct pp_hwmgr *hwmgr,
++ uint32_t clock, struct SMU73_Discrete_MemoryLevel *mclk)
++{
++ struct pp_atomctrl_memory_clock_param mem_param;
++ int result;
++
++ result = atomctrl_get_memory_pll_dividers_vi(hwmgr, clock, &mem_param);
++ PP_ASSERT_WITH_CODE((0 == result),
++ "Failed to get Memory PLL Dividers.",);
++
++ /* Save the result data to outpupt memory level structure */
++ mclk->MclkFrequency = clock;
++ mclk->MclkDivider = (uint8_t)mem_param.mpll_post_divider;
++ mclk->FreqRange = fiji_get_mclk_frequency_ratio(clock);
++
++ return result;
++}
++
++static int fiji_populate_single_memory_level(struct pp_hwmgr *hwmgr,
++ uint32_t clock, struct SMU73_Discrete_MemoryLevel *mem_level)
++{
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++ struct phm_ppt_v1_information *table_info =
++ (struct phm_ppt_v1_information *)(hwmgr->pptable);
++ int result = 0;
++
++ if (table_info->vdd_dep_on_mclk) {
++ result = fiji_get_dependency_volt_by_clk(hwmgr,
++ table_info->vdd_dep_on_mclk, clock,
++ &mem_level->MinVoltage, &mem_level->MinMvdd);
++ PP_ASSERT_WITH_CODE((0 == result),
++ "can not find MinVddc voltage value from memory "
++ "VDDC voltage dependency table", return result);
++ }
++
++ mem_level->EnabledForThrottle = 1;
++ mem_level->EnabledForActivity = 0;
++ mem_level->UpHyst = 0;
++ mem_level->DownHyst = 100;
++ mem_level->VoltageDownHyst = 0;
++ mem_level->ActivityLevel = (uint16_t)data->mclk_activity_target;
++ mem_level->StutterEnable = false;
++
++ mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
++
++ /* enable stutter mode if all the follow condition applied
++ * PECI_GetNumberOfActiveDisplays(hwmgr->pPECI,
++ * &(data->DisplayTiming.numExistingDisplays));
++ */
++ data->display_timing.num_existing_displays = 1;
++
++ if ((data->mclk_stutter_mode_threshold) &&
++ (clock <= data->mclk_stutter_mode_threshold) &&
++ (!data->is_uvd_enabled) &&
++ (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL,
++ STUTTER_ENABLE) & 0x1))
++ mem_level->StutterEnable = true;
++
++ result = fiji_calculate_mclk_params(hwmgr, clock, mem_level);
++ if (!result) {
++ CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinMvdd);
++ CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MclkFrequency);
++ CONVERT_FROM_HOST_TO_SMC_US(mem_level->ActivityLevel);
++ CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinVoltage);
++ }
++ return result;
++}
++
++/**
++* Populates all SMC MCLK levels' structure based on the trimmed allowed dpm memory clock states
++*
++* @param hwmgr the address of the hardware manager
++*/
++static int fiji_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
++{
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++ struct fiji_dpm_table *dpm_table = &data->dpm_table;
++ int result;
++ /* populate MCLK dpm table to SMU7 */
++ uint32_t array = data->dpm_table_start +
++ offsetof(SMU73_Discrete_DpmTable, MemoryLevel);
++ uint32_t array_size = sizeof(SMU73_Discrete_MemoryLevel) *
++ SMU73_MAX_LEVELS_MEMORY;
++ struct SMU73_Discrete_MemoryLevel *levels =
++ data->smc_state_table.MemoryLevel;
++ uint32_t i;
++
++ for (i = 0; i < dpm_table->mclk_table.count; i++) {
++ PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
++ "can not populate memory level as memory clock is zero",
++ return -EINVAL);
++ result = fiji_populate_single_memory_level(hwmgr,
++ dpm_table->mclk_table.dpm_levels[i].value,
++ &levels[i]);
++ if (result)
++ return result;
++ }
++
++ /* Only enable level 0 for now. */
++ levels[0].EnabledForActivity = 1;
++
++ /* in order to prevent MC activity from stutter mode to push DPM up.
++ * the UVD change complements this by putting the MCLK in
++ * a higher state by default such that we are not effected by
++ * up threshold or and MCLK DPM latency.
++ */
++ levels[0].ActivityLevel = (uint16_t)data->mclk_dpm0_activity_target;
++ CONVERT_FROM_HOST_TO_SMC_US(levels[0].ActivityLevel);
++
++ data->smc_state_table.MemoryDpmLevelCount =
++ (uint8_t)dpm_table->mclk_table.count;
++ data->dpm_level_enable_mask.mclk_dpm_enable_mask =
++ fiji_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
++ /* set highest level watermark to high */
++ levels[dpm_table->mclk_table.count - 1].DisplayWatermark =
++ PPSMC_DISPLAY_WATERMARK_HIGH;
++
++ /* level count will send to smc once at init smc table and never change */
++ result = fiji_copy_bytes_to_smc(hwmgr->smumgr, array, (uint8_t *)levels,
++ (uint32_t)array_size, data->sram_end);
++
++ return result;
++}
++
++/**
++* Populates the SMC MVDD structure using the provided memory clock.
++*
++* @param hwmgr the address of the hardware manager
++* @param mclk the MCLK value to be used in the decision if MVDD should be high or low.
++* @param voltage the SMC VOLTAGE structure to be populated
++*/
++int fiji_populate_mvdd_value(struct pp_hwmgr *hwmgr,
++ uint32_t mclk, SMIO_Pattern *smio_pat)
++{
++ const struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++ struct phm_ppt_v1_information *table_info =
++ (struct phm_ppt_v1_information *)(hwmgr->pptable);
++ uint32_t i = 0;
++
++ if (FIJI_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
++ /* find mvdd value which clock is more than request */
++ for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) {
++ if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) {
++ smio_pat->Voltage = data->mvdd_voltage_table.entries[i].value;
++ break;
++ }
++ }
++ PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count,
++ "MVDD Voltage is outside the supported range.",
++ return -EINVAL);
++ } else
++ return -EINVAL;
++
++ return 0;
++}
++
++static int fiji_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
++ SMU73_Discrete_DpmTable *table)
++{
++ int result = 0;
++ const struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++ struct phm_ppt_v1_information *table_info =
++ (struct phm_ppt_v1_information *)(hwmgr->pptable);
++ struct pp_atomctrl_clock_dividers_vi dividers;
++ SMIO_Pattern vol_level;
++ uint32_t mvdd;
++ uint16_t us_mvdd;
++ uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
++ uint32_t spll_func_cntl_2 = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
++
++ table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
++
++ if (!data->sclk_dpm_key_disabled) {
++ /* Get MinVoltage and Frequency from DPM0,
++ * already converted to SMC_UL */
++ table->ACPILevel.SclkFrequency =
++ data->dpm_table.sclk_table.dpm_levels[0].value;
++ result = fiji_get_dependency_volt_by_clk(hwmgr,
++ table_info->vdd_dep_on_sclk,
++ table->ACPILevel.SclkFrequency,
++ &table->ACPILevel.MinVoltage, &mvdd);
++ PP_ASSERT_WITH_CODE((0 == result),
++ "Cannot find ACPI VDDC voltage value "
++ "in Clock Dependency Table",);
++ } else {
++ table->ACPILevel.SclkFrequency =
++ data->vbios_boot_state.sclk_bootup_value;
++ table->ACPILevel.MinVoltage =
++ data->vbios_boot_state.vddc_bootup_value * VOLTAGE_SCALE;
++ }
++
++ /* get the engine clock dividers for this clock value */
++ result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
++ table->ACPILevel.SclkFrequency, &dividers);
++ PP_ASSERT_WITH_CODE(result == 0,
++ "Error retrieving Engine Clock dividers from VBIOS.",
++ return result);
++
++ table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
++ table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
++ table->ACPILevel.DeepSleepDivId = 0;
++
++ spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
++ SPLL_PWRON, 0);
++ spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
++ SPLL_RESET, 1);
++ spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2, CG_SPLL_FUNC_CNTL_2,
++ SCLK_MUX_SEL, 4);
++
++ table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
++ table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
++ table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
++ table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
++ table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
++ table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
++ table->ACPILevel.CcPwrDynRm = 0;
++ table->ACPILevel.CcPwrDynRm1 = 0;
++
++ CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
++ CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
++ CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.MinVoltage);
++ CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
++ CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
++ CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
++ CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
++ CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
++ CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
++ CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
++ CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
++
++ if (!data->mclk_dpm_key_disabled) {
++ /* Get MinVoltage and Frequency from DPM0, already converted to SMC_UL */
++ table->MemoryACPILevel.MclkFrequency =
++ data->dpm_table.mclk_table.dpm_levels[0].value;
++ result = fiji_get_dependency_volt_by_clk(hwmgr,
++ table_info->vdd_dep_on_mclk,
++ table->MemoryACPILevel.MclkFrequency,
++ &table->MemoryACPILevel.MinVoltage, &mvdd);
++ PP_ASSERT_WITH_CODE((0 == result),
++ "Cannot find ACPI VDDCI voltage value "
++ "in Clock Dependency Table",);
++ } else {
++ table->MemoryACPILevel.MclkFrequency =
++ data->vbios_boot_state.mclk_bootup_value;
++ table->MemoryACPILevel.MinVoltage =
++ data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE;
++ }
++
++ us_mvdd = 0;
++ if ((FIJI_VOLTAGE_CONTROL_NONE == data->mvdd_control) ||
++ (data->mclk_dpm_key_disabled))
++ us_mvdd = data->vbios_boot_state.mvdd_bootup_value;
++ else {
++ if (!fiji_populate_mvdd_value(hwmgr,
++ data->dpm_table.mclk_table.dpm_levels[0].value,
++ &vol_level))
++ us_mvdd = vol_level.Voltage;
++ }
++
++ table->MemoryACPILevel.MinMvdd =
++ PP_HOST_TO_SMC_UL(us_mvdd * VOLTAGE_SCALE);
++
++ table->MemoryACPILevel.EnabledForThrottle = 0;
++ table->MemoryACPILevel.EnabledForActivity = 0;
++ table->MemoryACPILevel.UpHyst = 0;
++ table->MemoryACPILevel.DownHyst = 100;
++ table->MemoryACPILevel.VoltageDownHyst = 0;
++ table->MemoryACPILevel.ActivityLevel =
++ PP_HOST_TO_SMC_US((uint16_t)data->mclk_activity_target);
++
++ table->MemoryACPILevel.StutterEnable = false;
++ CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MclkFrequency);
++ CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);
++
++ return result;
++}
++
++static int fiji_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
++ SMU73_Discrete_DpmTable *table)
++{
++ int result = -EINVAL;
++ uint8_t count;
++ struct pp_atomctrl_clock_dividers_vi dividers;
++ struct phm_ppt_v1_information *table_info =
++ (struct phm_ppt_v1_information *)(hwmgr->pptable);
++ struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
++ table_info->mm_dep_table;
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++
++ table->VceLevelCount = (uint8_t)(mm_table->count);
++ table->VceBootLevel = 0;
++
++ for(count = 0; count < table->VceLevelCount; count++) {
++ table->VceLevel[count].Frequency = mm_table->entries[count].eclk;
++ table->VceLevel[count].MinVoltage |=
++ (mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
++ table->VceLevel[count].MinVoltage |=
++ ((mm_table->entries[count].vddc - data->vddc_vddci_delta) *
++ VOLTAGE_SCALE) << VDDCI_SHIFT;
++ table->VceLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
++
++ /*retrieve divider value for VBIOS */
++ result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
++ table->VceLevel[count].Frequency, &dividers);
++ PP_ASSERT_WITH_CODE((0 == result),
++ "can not find divide id for VCE engine clock",
++ return result);
++
++ table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
++
++ CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
++ CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].MinVoltage);
++ }
++ return result;
++}
++
++static int fiji_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
++ SMU73_Discrete_DpmTable *table)
++{
++ int result = -EINVAL;
++ uint8_t count;
++ struct pp_atomctrl_clock_dividers_vi dividers;
++ struct phm_ppt_v1_information *table_info =
++ (struct phm_ppt_v1_information *)(hwmgr->pptable);
++ struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
++ table_info->mm_dep_table;
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++
++ table->AcpLevelCount = (uint8_t)(mm_table->count);
++ table->AcpBootLevel = 0;
++
++ for (count = 0; count < table->AcpLevelCount; count++) {
++ table->AcpLevel[count].Frequency = mm_table->entries[count].aclk;
++ table->AcpLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
++ VOLTAGE_SCALE) << VDDC_SHIFT;
++ table->AcpLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
++ data->vddc_vddci_delta) * VOLTAGE_SCALE) << VDDCI_SHIFT;
++ table->AcpLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
++
++ /* retrieve divider value for VBIOS */
++ result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
++ table->AcpLevel[count].Frequency, &dividers);
++ PP_ASSERT_WITH_CODE((0 == result),
++ "can not find divide id for engine clock", return result);
++
++ table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
++
++ CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency);
++ CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].MinVoltage);
++ }
++ return result;
++}
++
++static int fiji_populate_smc_samu_level(struct pp_hwmgr *hwmgr,
++ SMU73_Discrete_DpmTable *table)
++{
++ int result = -EINVAL;
++ uint8_t count;
++ struct pp_atomctrl_clock_dividers_vi dividers;
++ struct phm_ppt_v1_information *table_info =
++ (struct phm_ppt_v1_information *)(hwmgr->pptable);
++ struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
++ table_info->mm_dep_table;
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++
++ table->SamuBootLevel = 0;
++ table->SamuLevelCount = (uint8_t)(mm_table->count);
++
++ for (count = 0; count < table->SamuLevelCount; count++) {
++ /* not sure whether we need evclk or not */
++ table->SamuLevel[count].Frequency = mm_table->entries[count].samclock;
++ table->SamuLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
++ VOLTAGE_SCALE) << VDDC_SHIFT;
++ table->SamuLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
++ data->vddc_vddci_delta) * VOLTAGE_SCALE) << VDDCI_SHIFT;
++ table->SamuLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
++
++ /* retrieve divider value for VBIOS */
++ result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
++ table->SamuLevel[count].Frequency, &dividers);
++ PP_ASSERT_WITH_CODE((0 == result),
++ "can not find divide id for samu clock", return result);
++
++ table->SamuLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
++
++ CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].Frequency);
++ CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].MinVoltage);
++ }
++ return result;
++}
++
++static int fiji_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr,
++ int32_t eng_clock, int32_t mem_clock,
++ struct SMU73_Discrete_MCArbDramTimingTableEntry *arb_regs)
++{
++ uint32_t dram_timing;
++ uint32_t dram_timing2;
++ uint32_t burstTime;
++ ULONG state, trrds, trrdl;
++ int result;
++
++ result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
++ eng_clock, mem_clock);
++ PP_ASSERT_WITH_CODE(result == 0,
++ "Error calling VBIOS to set DRAM_TIMING.", return result);
++
++ dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
++ dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
++ burstTime = cgs_read_register(hwmgr->device, mmMC_ARB_BURST_TIME);
++
++ state = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, STATE0);
++ trrds = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDS0);
++ trrdl = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDL0);
++
++ arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dram_timing);
++ arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dram_timing2);
++ arb_regs->McArbBurstTime = (uint8_t)burstTime;
++ arb_regs->TRRDS = (uint8_t)trrds;
++ arb_regs->TRRDL = (uint8_t)trrdl;
++
++ return 0;
++}
++
++static int fiji_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
++{
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++ struct SMU73_Discrete_MCArbDramTimingTable arb_regs;
++ uint32_t i, j;
++ int result = 0;
++
++ for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
++ for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
++ result = fiji_populate_memory_timing_parameters(hwmgr,
++ data->dpm_table.sclk_table.dpm_levels[i].value,
++ data->dpm_table.mclk_table.dpm_levels[j].value,
++ &arb_regs.entries[i][j]);
++ if (result)
++ break;
++ }
++ }
++
++ if (!result)
++ result = fiji_copy_bytes_to_smc(
++ hwmgr->smumgr,
++ data->arb_table_start,
++ (uint8_t *)&arb_regs,
++ sizeof(SMU73_Discrete_MCArbDramTimingTable),
++ data->sram_end);
++ return result;
++}
++
++static int fiji_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
++ struct SMU73_Discrete_DpmTable *table)
++{
++ int result = -EINVAL;
++ uint8_t count;
++ struct pp_atomctrl_clock_dividers_vi dividers;
++ struct phm_ppt_v1_information *table_info =
++ (struct phm_ppt_v1_information *)(hwmgr->pptable);
++ struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
++ table_info->mm_dep_table;
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++
++ table->UvdLevelCount = (uint8_t)(mm_table->count);
++ table->UvdBootLevel = 0;
++
++ for (count = 0; count < table->UvdLevelCount; count++) {
++ table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk;
++ table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk;
++ table->UvdLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
++ VOLTAGE_SCALE) << VDDC_SHIFT;
++ table->UvdLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
++ data->vddc_vddci_delta) * VOLTAGE_SCALE) << VDDCI_SHIFT;
++ table->UvdLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
++
++ /* retrieve divider value for VBIOS */
++ result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
++ table->UvdLevel[count].VclkFrequency, &dividers);
++ PP_ASSERT_WITH_CODE((0 == result),
++ "can not find divide id for Vclk clock", return result);
++
++ table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
++
++ result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
++ table->UvdLevel[count].DclkFrequency, &dividers);
++ PP_ASSERT_WITH_CODE((0 == result),
++ "can not find divide id for Dclk clock", return result);
++
++ table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
++
++ CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
++ CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
++ CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].MinVoltage);
++
++ }
++ return result;
++}
++
++static int fiji_find_boot_level(struct fiji_single_dpm_table *table,
++ uint32_t value, uint32_t *boot_level)
++{
++ int result = -EINVAL;
++ uint32_t i;
++
++ for (i = 0; i < table->count; i++) {
++ if (value == table->dpm_levels[i].value) {
++ *boot_level = i;
++ result = 0;
++ }
++ }
++ return result;
++}
++
++static int fiji_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
++ struct SMU73_Discrete_DpmTable *table)
++{
++ int result = 0;
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++
++ table->GraphicsBootLevel = 0;
++ table->MemoryBootLevel = 0;
++
++ /* find boot level from dpm table */
++ result = fiji_find_boot_level(&(data->dpm_table.sclk_table),
++ data->vbios_boot_state.sclk_bootup_value,
++ (uint32_t *)&(table->GraphicsBootLevel));
++
++ result = fiji_find_boot_level(&(data->dpm_table.mclk_table),
++ data->vbios_boot_state.mclk_bootup_value,
++ (uint32_t *)&(table->MemoryBootLevel));
++
++ table->BootVddc = data->vbios_boot_state.vddc_bootup_value *
++ VOLTAGE_SCALE;
++ table->BootVddci = data->vbios_boot_state.vddci_bootup_value *
++ VOLTAGE_SCALE;
++ table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value *
++ VOLTAGE_SCALE;
++
++ CONVERT_FROM_HOST_TO_SMC_US(table->BootVddc);
++ CONVERT_FROM_HOST_TO_SMC_US(table->BootVddci);
++ CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd);
++
++ return 0;
++}
++
++static int fiji_populate_smc_initailial_state(struct pp_hwmgr *hwmgr)
++{
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++ struct phm_ppt_v1_information *table_info =
++ (struct phm_ppt_v1_information *)(hwmgr->pptable);
++ uint8_t count, level;
++
++ count = (uint8_t)(table_info->vdd_dep_on_sclk->count);
++ for (level = 0; level < count; level++) {
++ if(table_info->vdd_dep_on_sclk->entries[level].clk >=
++ data->vbios_boot_state.sclk_bootup_value) {
++ data->smc_state_table.GraphicsBootLevel = level;
++ break;
++ }
++ }
++
++ count = (uint8_t)(table_info->vdd_dep_on_mclk->count);
++ for (level = 0; level < count; level++) {
++ if(table_info->vdd_dep_on_mclk->entries[level].clk >=
++ data->vbios_boot_state.mclk_bootup_value) {
++ data->smc_state_table.MemoryBootLevel = level;
++ break;
++ }
++ }
++
++ return 0;
++}
++
++static int fiji_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
++{
++ uint32_t ro, efuse, efuse2, clock_freq, volt_without_cks,
++ volt_with_cks, value;
++ uint16_t clock_freq_u16;
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++ uint8_t type, i, j, cks_setting, stretch_amount, stretch_amount2,
++ volt_offset = 0;
++ struct phm_ppt_v1_information *table_info =
++ (struct phm_ppt_v1_information *)(hwmgr->pptable);
++ struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
++ table_info->vdd_dep_on_sclk;
++
++ stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount;
++
++ /* Read SMU_Eefuse to read and calculate RO and determine
++ * if the part is SS or FF. if RO >= 1660MHz, part is FF.
++ */
++ efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
++ ixSMU_EFUSE_0 + (146 * 4));
++ efuse2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
++ ixSMU_EFUSE_0 + (148 * 4));
++ efuse &= 0xFF000000;
++ efuse = efuse >> 24;
++ efuse2 &= 0xF;
++
++ if (efuse2 == 1)
++ ro = (2300 - 1350) * efuse / 255 + 1350;
++ else
++ ro = (2500 - 1000) * efuse / 255 + 1000;
++
++ if (ro >= 1660)
++ type = 0;
++ else
++ type = 1;
++
++ /* Populate Stretch amount */
++ data->smc_state_table.ClockStretcherAmount = stretch_amount;
++
++ /* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */
++ for (i = 0; i < sclk_table->count; i++) {
++ data->smc_state_table.Sclk_CKS_masterEn0_7 |=
++ sclk_table->entries[i].cks_enable << i;
++ volt_without_cks = (uint32_t)((14041 *
++ (sclk_table->entries[i].clk/100) / 10000 + 3571 + 75 - ro) * 1000 /
++ (4026 - (13924 * (sclk_table->entries[i].clk/100) / 10000)));
++ volt_with_cks = (uint32_t)((13946 *
++ (sclk_table->entries[i].clk/100) / 10000 + 3320 + 45 - ro) * 1000 /
++ (3664 - (11454 * (sclk_table->entries[i].clk/100) / 10000)));
++ if (volt_without_cks >= volt_with_cks)
++ volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks +
++ sclk_table->entries[i].cks_voffset) * 100 / 625) + 1);
++ data->smc_state_table.Sclk_voltageOffset[i] = volt_offset;
++ }
++
++ PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
++ STRETCH_ENABLE, 0x0);
++ PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
++ masterReset, 0x1);
++ PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
++ staticEnable, 0x1);
++ PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
++ masterReset, 0x0);
++
++ /* Populate CKS Lookup Table */
++ if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5)
++ stretch_amount2 = 0;
++ else if (stretch_amount == 3 || stretch_amount == 4)
++ stretch_amount2 = 1;
++ else {
++ phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_ClockStretcher);
++ PP_ASSERT_WITH_CODE(false,
++ "Stretch Amount in PPTable not supported\n",
++ return -EINVAL);
++ }
++
++ value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
++ ixPWR_CKS_CNTL);
++ value &= 0xFFC2FF87;
++ data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].minFreq =
++ fiji_clock_stretcher_lookup_table[stretch_amount2][0];
++ data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].maxFreq =
++ fiji_clock_stretcher_lookup_table[stretch_amount2][1];
++ clock_freq_u16 = (uint16_t)(PP_SMC_TO_HOST_UL(data->smc_state_table.
++ GraphicsLevel[data->smc_state_table.GraphicsDpmLevelCount - 1].
++ SclkFrequency) / 100);
++ if (fiji_clock_stretcher_lookup_table[stretch_amount2][0] <
++ clock_freq_u16 &&
++ fiji_clock_stretcher_lookup_table[stretch_amount2][1] >
++ clock_freq_u16) {
++ /* Program PWR_CKS_CNTL. CKS_USE_FOR_LOW_FREQ */
++ value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 16;
++ /* Program PWR_CKS_CNTL. CKS_LDO_REFSEL */
++ value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][2]) << 18;
++ /* Program PWR_CKS_CNTL. CKS_STRETCH_AMOUNT */
++ value |= (fiji_clock_stretch_amount_conversion
++ [fiji_clock_stretcher_lookup_table[stretch_amount2][3]]
++ [stretch_amount]) << 3;
++ }
++ CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table.CKS_LOOKUPTable.
++ CKS_LOOKUPTableEntry[0].minFreq);
++ CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table.CKS_LOOKUPTable.
++ CKS_LOOKUPTableEntry[0].maxFreq);
++ data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting =
++ fiji_clock_stretcher_lookup_table[stretch_amount2][2] & 0x7F;
++ data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting |=
++ (fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 7;
++
++ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
++ ixPWR_CKS_CNTL, value);
++
++ /* Populate DDT Lookup Table */
++ for (i = 0; i < 4; i++) {
++ /* Assign the minimum and maximum VID stored
++ * in the last row of Clock Stretcher Voltage Table.
++ */
++ data->smc_state_table.ClockStretcherDataTable.
++ ClockStretcherDataTableEntry[i].minVID =
++ (uint8_t) fiji_clock_stretcher_ddt_table[type][i][2];
++ data->smc_state_table.ClockStretcherDataTable.
++ ClockStretcherDataTableEntry[i].maxVID =
++ (uint8_t) fiji_clock_stretcher_ddt_table[type][i][3];
++ /* Loop through each SCLK and check the frequency
++ * to see if it lies within the frequency for clock stretcher.
++ */
++ for (j = 0; j < data->smc_state_table.GraphicsDpmLevelCount; j++) {
++ cks_setting = 0;
++ clock_freq = PP_SMC_TO_HOST_UL(
++ data->smc_state_table.GraphicsLevel[j].SclkFrequency);
++ /* Check the allowed frequency against the sclk level[j].
++ * Sclk's endianness has already been converted,
++ * and it's in 10Khz unit,
++ * as opposed to Data table, which is in Mhz unit.
++ */
++ if (clock_freq >=
++ (fiji_clock_stretcher_ddt_table[type][i][0]) * 100) {
++ cks_setting |= 0x2;
++ if (clock_freq <
++ (fiji_clock_stretcher_ddt_table[type][i][1]) * 100)
++ cks_setting |= 0x1;
++ }
++ data->smc_state_table.ClockStretcherDataTable.
++ ClockStretcherDataTableEntry[i].setting |= cks_setting << (j * 2);
++ }
++ CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table.
++ ClockStretcherDataTable.
++ ClockStretcherDataTableEntry[i].setting);
++ }
++
++ value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL);
++ value &= 0xFFFFFFFE;
++ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value);
++
++ return 0;
++}
++
++/**
++* Populates the SMC VRConfig field in DPM table.
++*
++* @param hwmgr the address of the hardware manager
++* @param table the SMC DPM table structure to be populated
++* @return always 0
++*/
++static int fiji_populate_vr_config(struct pp_hwmgr *hwmgr,
++ struct SMU73_Discrete_DpmTable *table)
++{
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++ uint16_t config;
++
++ config = VR_MERGED_WITH_VDDC;
++ table->VRConfig |= (config << VRCONF_VDDGFX_SHIFT);
++
++ /* Set Vddc Voltage Controller */
++ if(FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
++ config = VR_SVI2_PLANE_1;
++ table->VRConfig |= config;
++ } else {
++ PP_ASSERT_WITH_CODE(false,
++ "VDDC should be on SVI2 control in merged mode!",);
++ }
++ /* Set Vddci Voltage Controller */
++ if(FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
++ config = VR_SVI2_PLANE_2; /* only in merged mode */
++ table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
++ } else if (FIJI_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
++ config = VR_SMIO_PATTERN_1;
++ table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
++ } else {
++ config = VR_STATIC_VOLTAGE;
++ table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
++ }
++ /* Set Mvdd Voltage Controller */
++ if(FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
++ config = VR_SVI2_PLANE_2;
++ table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
++ } else if(FIJI_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
++ config = VR_SMIO_PATTERN_2;
++ table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
++ } else {
++ config = VR_STATIC_VOLTAGE;
++ table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
++ }
++
++ return 0;
++}
++
++/**
++* Initializes the SMC table and uploads it
++*
++* @param hwmgr the address of the powerplay hardware manager.
++* @param pInput the pointer to input data (PowerState)
++* @return always 0
++*/
++static int fiji_init_smc_table(struct pp_hwmgr *hwmgr)
++{
++ int result;
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++ struct phm_ppt_v1_information *table_info =
++ (struct phm_ppt_v1_information *)(hwmgr->pptable);
++ struct SMU73_Discrete_DpmTable *table = &(data->smc_state_table);
++ const struct fiji_ulv_parm *ulv = &(data->ulv);
++ uint8_t i;
++ struct pp_atomctrl_gpio_pin_assignment gpio_pin;
++
++ result = fiji_setup_default_dpm_tables(hwmgr);
++ PP_ASSERT_WITH_CODE(0 == result,
++ "Failed to setup default DPM tables!", return result);
++
++ if(FIJI_VOLTAGE_CONTROL_NONE != data->voltage_control)
++ fiji_populate_smc_voltage_tables(hwmgr, table);
++
++ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_AutomaticDCTransition))
++ table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
++
++ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_StepVddc))
++ table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
++
++ if (data->is_memory_gddr5)
++ table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
++
++ if (ulv->ulv_supported && table_info->us_ulv_voltage_offset) {
++ result = fiji_populate_ulv_state(hwmgr, table);
++ PP_ASSERT_WITH_CODE(0 == result,
++ "Failed to initialize ULV state!", return result);
++ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
++ ixCG_ULV_PARAMETER, ulv->cg_ulv_parameter);
++ }
++
++ result = fiji_populate_smc_link_level(hwmgr, table);
++ PP_ASSERT_WITH_CODE(0 == result,
++ "Failed to initialize Link Level!", return result);
++
++ result = fiji_populate_all_graphic_levels(hwmgr);
++ PP_ASSERT_WITH_CODE(0 == result,
++ "Failed to initialize Graphics Level!", return result);
++
++ result = fiji_populate_all_memory_levels(hwmgr);
++ PP_ASSERT_WITH_CODE(0 == result,
++ "Failed to initialize Memory Level!", return result);
++
++ result = fiji_populate_smc_acpi_level(hwmgr, table);
++ PP_ASSERT_WITH_CODE(0 == result,
++ "Failed to initialize ACPI Level!", return result);
++
++ result = fiji_populate_smc_vce_level(hwmgr, table);
++ PP_ASSERT_WITH_CODE(0 == result,
++ "Failed to initialize VCE Level!", return result);
++
++ result = fiji_populate_smc_acp_level(hwmgr, table);
++ PP_ASSERT_WITH_CODE(0 == result,
++ "Failed to initialize ACP Level!", return result);
++
++ result = fiji_populate_smc_samu_level(hwmgr, table);
++ PP_ASSERT_WITH_CODE(0 == result,
++ "Failed to initialize SAMU Level!", return result);
++
++ /* Since only the initial state is completely set up at this point
++ * (the other states are just copies of the boot state) we only
++ * need to populate the ARB settings for the initial state.
++ */
++ result = fiji_program_memory_timing_parameters(hwmgr);
++ PP_ASSERT_WITH_CODE(0 == result,
++ "Failed to Write ARB settings for the initial state.", return result);
++
++ result = fiji_populate_smc_uvd_level(hwmgr, table);
++ PP_ASSERT_WITH_CODE(0 == result,
++ "Failed to initialize UVD Level!", return result);
++
++ result = fiji_populate_smc_boot_level(hwmgr, table);
++ PP_ASSERT_WITH_CODE(0 == result,
++ "Failed to initialize Boot Level!", return result);
++
++ result = fiji_populate_smc_initailial_state(hwmgr);
++ PP_ASSERT_WITH_CODE(0 == result,
++ "Failed to initialize Boot State!", return result);
++
++ result = fiji_populate_bapm_parameters_in_dpm_table(hwmgr);
++ PP_ASSERT_WITH_CODE(0 == result,
++ "Failed to populate BAPM Parameters!", return result);
++
++ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_ClockStretcher)) {
++ result = fiji_populate_clock_stretcher_data_table(hwmgr);
++ PP_ASSERT_WITH_CODE(0 == result,
++ "Failed to populate Clock Stretcher Data Table!",
++ return result);
++ }
++
++ table->GraphicsVoltageChangeEnable = 1;
++ table->GraphicsThermThrottleEnable = 1;
++ table->GraphicsInterval = 1;
++ table->VoltageInterval = 1;
++ table->ThermalInterval = 1;
++ table->TemperatureLimitHigh =
++ table_info->cac_dtp_table->usTargetOperatingTemp *
++ FIJI_Q88_FORMAT_CONVERSION_UNIT;
++ table->TemperatureLimitLow =
++ (table_info->cac_dtp_table->usTargetOperatingTemp - 1) *
++ FIJI_Q88_FORMAT_CONVERSION_UNIT;
++ table->MemoryVoltageChangeEnable = 1;
++ table->MemoryInterval = 1;
++ table->VoltageResponseTime = 0;
++ table->PhaseResponseTime = 0;
++ table->MemoryThermThrottleEnable = 1;
++ table->PCIeBootLinkLevel = 0; /* 0:Gen1 1:Gen2 2:Gen3*/
++ table->PCIeGenInterval = 1;
++
++ result = fiji_populate_vr_config(hwmgr, table);
++ PP_ASSERT_WITH_CODE(0 == result,
++ "Failed to populate VRConfig setting!", return result);
++
++ table->ThermGpio = 17;
++ table->SclkStepSize = 0x4000;
++
++ if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin)) {
++ table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift;
++ phm_cap_set(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_RegulatorHot);
++ } else {
++ table->VRHotGpio = FIJI_UNUSED_GPIO_PIN;
++ phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_RegulatorHot);
++ }
++
++ if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID,
++ &gpio_pin)) {
++ table->AcDcGpio = gpio_pin.uc_gpio_pin_bit_shift;
++ phm_cap_set(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_AutomaticDCTransition);
++ } else {
++ table->AcDcGpio = FIJI_UNUSED_GPIO_PIN;
++ phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_AutomaticDCTransition);
++ }
++
++ /* Thermal Output GPIO */
++ if (atomctrl_get_pp_assign_pin(hwmgr, THERMAL_INT_OUTPUT_GPIO_PINID,
++ &gpio_pin)) {
++ phm_cap_set(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_ThermalOutGPIO);
++
++ table->ThermOutGpio = gpio_pin.uc_gpio_pin_bit_shift;
++
++ /* For porlarity read GPIOPAD_A with assigned Gpio pin
++ * since VBIOS will program this register to set 'inactive state',
++ * driver can then determine 'active state' from this and
++ * program SMU with correct polarity
++ */
++ table->ThermOutPolarity = (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) &
++ (1 << gpio_pin.uc_gpio_pin_bit_shift))) ? 1:0;
++ table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY;
++
++ /* if required, combine VRHot/PCC with thermal out GPIO */
++ if(phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_RegulatorHot) &&
++ phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_CombinePCCWithThermalSignal))
++ table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT;
++ } else {
++ phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_ThermalOutGPIO);
++ table->ThermOutGpio = 17;
++ table->ThermOutPolarity = 1;
++ table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE;
++ }
++
++ for (i = 0; i < SMU73_MAX_ENTRIES_SMIO; i++)
++ table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]);
++
++ CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
++ CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
++ CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1);
++ CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2);
++ CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
++ CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
++ CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
++ CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
++ CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
++
++ /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
++ result = fiji_copy_bytes_to_smc(hwmgr->smumgr,
++ data->dpm_table_start +
++ offsetof(SMU73_Discrete_DpmTable, SystemFlags),
++ (uint8_t *)&(table->SystemFlags),
++ sizeof(SMU73_Discrete_DpmTable) - 3 * sizeof(SMU73_PIDController),
++ data->sram_end);
++ PP_ASSERT_WITH_CODE(0 == result,
++ "Failed to upload dpm data to SMC memory!", return result);
++
++ return 0;
++}
++
++/**
++* Initialize the ARB DRAM timing table's index field.
++*
++* @param hwmgr the address of the powerplay hardware manager.
++* @return always 0
++*/
++static int fiji_init_arb_table_index(struct pp_hwmgr *hwmgr)
++{
++ const struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++ uint32_t tmp;
++ int result;
++
++ /* This is a read-modify-write on the first byte of the ARB table.
++ * The first byte in the SMU73_Discrete_MCArbDramTimingTable structure
++ * is the field 'current'.
++ * This solution is ugly, but we never write the whole table only
++ * individual fields in it.
++ * In reality this field should not be in that structure
++ * but in a soft register.
++ */
++ result = fiji_read_smc_sram_dword(hwmgr->smumgr,
++ data->arb_table_start, &tmp, data->sram_end);
++
++ if (result)
++ return result;
++
++ tmp &= 0x00FFFFFF;
++ tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24;
++
++ return fiji_write_smc_sram_dword(hwmgr->smumgr,
++ data->arb_table_start, tmp, data->sram_end);
++}
++
++static int fiji_enable_vrhot_gpio_interrupt(struct pp_hwmgr *hwmgr)
++{
++ if(phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_RegulatorHot))
++ return smum_send_msg_to_smc(hwmgr->smumgr,
++ PPSMC_MSG_EnableVRHotGPIOInterrupt);
++
++ return 0;
++}
++
++static int fiji_enable_sclk_control(struct pp_hwmgr *hwmgr)
++{
++ PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
++ SCLK_PWRMGT_OFF, 0);
++ return 0;
++}
++
++static int fiji_enable_ulv(struct pp_hwmgr *hwmgr)
++{
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++ struct fiji_ulv_parm *ulv = &(data->ulv);
++
++ if (ulv->ulv_supported)
++ return smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_EnableULV);
++
++ return 0;
++}
++
++static int fiji_enable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
++{
++ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_SclkDeepSleep)) {
++ if (smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_MASTER_DeepSleep_ON))
++ PP_ASSERT_WITH_CODE(false,
++ "Attempt to enable Master Deep Sleep switch failed!",
++ return -1);
++ } else {
++ if (smum_send_msg_to_smc(hwmgr->smumgr,
++ PPSMC_MSG_MASTER_DeepSleep_OFF)) {
++ PP_ASSERT_WITH_CODE(false,
++ "Attempt to disable Master Deep Sleep switch failed!",
++ return -1);
++ }
++ }
++
++ return 0;
++}
++
++static int fiji_enable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
++{
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++ uint32_t val, val0, val2;
++ uint32_t i, cpl_cntl, cpl_threshold, mc_threshold;
++
++ /* enable SCLK dpm */
++ if(!data->sclk_dpm_key_disabled)
++ PP_ASSERT_WITH_CODE(
++ (0 == smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_DPM_Enable)),
++ "Failed to enable SCLK DPM during DPM Start Function!",
++ return -1);
++
++ /* enable MCLK dpm */
++ if(0 == data->mclk_dpm_key_disabled) {
++ cpl_threshold = 0;
++ mc_threshold = 0;
++
++ /* Read per MCD tile (0 - 7) */
++ for (i = 0; i < 8; i++) {
++ PHM_WRITE_FIELD(hwmgr->device, MC_CONFIG_MCD, MC_RD_ENABLE, i);
++ val = cgs_read_register(hwmgr->device, mmMC_SEQ_RESERVE_0_S) & 0xf0000000;
++ if (0xf0000000 != val) {
++ /* count number of MCQ that has channel(s) enabled */
++ cpl_threshold++;
++ /* only harvest 3 or full 4 supported */
++ mc_threshold = val ? 3 : 4;
++ }
++ }
++ PP_ASSERT_WITH_CODE(0 != cpl_threshold,
++ "Number of MCQ is zero!", return -EINVAL;);
++
++ mc_threshold = ((mc_threshold & LCAC_MC0_CNTL__MC0_THRESHOLD_MASK) <<
++ LCAC_MC0_CNTL__MC0_THRESHOLD__SHIFT) |
++ LCAC_MC0_CNTL__MC0_ENABLE_MASK;
++ cpl_cntl = ((cpl_threshold & LCAC_CPL_CNTL__CPL_THRESHOLD_MASK) <<
++ LCAC_CPL_CNTL__CPL_THRESHOLD__SHIFT) |
++ LCAC_CPL_CNTL__CPL_ENABLE_MASK;
++ cpl_cntl = (cpl_cntl | (8 << LCAC_CPL_CNTL__CPL_BLOCK_ID__SHIFT));
++ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
++ ixLCAC_MC0_CNTL, mc_threshold);
++ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
++ ixLCAC_MC1_CNTL, mc_threshold);
++ if (8 == cpl_threshold) {
++ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
++ ixLCAC_MC2_CNTL, mc_threshold);
++ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
++ ixLCAC_MC3_CNTL, mc_threshold);
++ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
++ ixLCAC_MC4_CNTL, mc_threshold);
++ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
++ ixLCAC_MC5_CNTL, mc_threshold);
++ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
++ ixLCAC_MC6_CNTL, mc_threshold);
++ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
++ ixLCAC_MC7_CNTL, mc_threshold);
++ }
++ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
++ ixLCAC_CPL_CNTL, cpl_cntl);
++
++ udelay(5);
++
++ mc_threshold = mc_threshold |
++ (1 << LCAC_MC0_CNTL__MC0_SIGNAL_ID__SHIFT);
++ cpl_cntl = cpl_cntl | (1 << LCAC_CPL_CNTL__CPL_SIGNAL_ID__SHIFT);
++ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
++ ixLCAC_MC0_CNTL, mc_threshold);
++ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
++ ixLCAC_MC1_CNTL, mc_threshold);
++ if (8 == cpl_threshold) {
++ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
++ ixLCAC_MC2_CNTL, mc_threshold);
++ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
++ ixLCAC_MC3_CNTL, mc_threshold);
++ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
++ ixLCAC_MC4_CNTL, mc_threshold);
++ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
++ ixLCAC_MC5_CNTL, mc_threshold);
++ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
++ ixLCAC_MC6_CNTL, mc_threshold);
++ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
++ ixLCAC_MC7_CNTL, mc_threshold);
++ }
++ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
++ ixLCAC_CPL_CNTL, cpl_cntl);
++
++ /* Program CAC_EN per MCD (0-7) Tile */
++ val0 = val = cgs_read_register(hwmgr->device, mmMC_CONFIG_MCD);
++ val &= ~(MC_CONFIG_MCD__MCD0_WR_ENABLE_MASK |
++ MC_CONFIG_MCD__MCD1_WR_ENABLE_MASK |
++ MC_CONFIG_MCD__MCD2_WR_ENABLE_MASK |
++ MC_CONFIG_MCD__MCD3_WR_ENABLE_MASK |
++ MC_CONFIG_MCD__MCD4_WR_ENABLE_MASK |
++ MC_CONFIG_MCD__MCD5_WR_ENABLE_MASK |
++ MC_CONFIG_MCD__MCD6_WR_ENABLE_MASK |
++ MC_CONFIG_MCD__MCD7_WR_ENABLE_MASK |
++ MC_CONFIG_MCD__MC_RD_ENABLE_MASK);
++
++ for (i = 0; i < 8; i++) {
++ /* Enable MCD i Tile read & write */
++ val2 = (val | (i << MC_CONFIG_MCD__MC_RD_ENABLE__SHIFT) |
++ (1 << i));
++ cgs_write_register(hwmgr->device, mmMC_CONFIG_MCD, val2);
++ /* Enbale CAC_ON MCD i Tile */
++ val2 = cgs_read_register(hwmgr->device, mmMC_SEQ_CNTL);
++ val2 |= MC_SEQ_CNTL__CAC_EN_MASK;
++ cgs_write_register(hwmgr->device, mmMC_SEQ_CNTL, val2);
++ }
++ /* Set MC_CONFIG_MCD back to its default setting val0 */
++ cgs_write_register(hwmgr->device, mmMC_CONFIG_MCD, val0);
++
++ PP_ASSERT_WITH_CODE(
++ (0 == smum_send_msg_to_smc(hwmgr->smumgr,
++ PPSMC_MSG_MCLKDPM_Enable)),
++ "Failed to enable MCLK DPM during DPM Start Function!",
++ return -1);
++ }
++ return 0;
++}
++
++static int fiji_start_dpm(struct pp_hwmgr *hwmgr)
++{
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++
++ /*enable general power management */
++ PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
++ GLOBAL_PWRMGT_EN, 1);
++ /* enable sclk deep sleep */
++ PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
++ DYNAMIC_PM_EN, 1);
++ /* prepare for PCIE DPM */
++ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
++ data->soft_regs_start + offsetof(SMU73_SoftRegisters,
++ VoltageChangeTimeout), 0x1000);
++ PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE,
++ SWRST_COMMAND_1, RESETLC, 0x0);
++
++ PP_ASSERT_WITH_CODE(
++ (0 == smum_send_msg_to_smc(hwmgr->smumgr,
++ PPSMC_MSG_Voltage_Cntl_Enable)),
++ "Failed to enable voltage DPM during DPM Start Function!",
++ return -1);
++
++ if (fiji_enable_sclk_mclk_dpm(hwmgr)) {
++ printk(KERN_ERR "Failed to enable Sclk DPM and Mclk DPM!");
++ return -1;
++ }
++
++ /* enable PCIE dpm */
++ if(!data->pcie_dpm_key_disabled) {
++ PP_ASSERT_WITH_CODE(
++ (0 == smum_send_msg_to_smc(hwmgr->smumgr,
++ PPSMC_MSG_PCIeDPM_Enable)),
++ "Failed to enable pcie DPM during DPM Start Function!",
++ return -1);
++ }
++
++ return 0;
++}
++
++static void fiji_set_dpm_event_sources(struct pp_hwmgr *hwmgr,
++ uint32_t sources)
++{
++ bool protection;
++ enum DPM_EVENT_SRC src;
++
++ switch (sources) {
++ default:
++ printk(KERN_ERR "Unknown throttling event sources.");
++ /* fall through */
++ case 0:
++ protection = false;
++ /* src is unused */
++ break;
++ case (1 << PHM_AutoThrottleSource_Thermal):
++ protection = true;
++ src = DPM_EVENT_SRC_DIGITAL;
++ break;
++ case (1 << PHM_AutoThrottleSource_External):
++ protection = true;
++ src = DPM_EVENT_SRC_EXTERNAL;
++ break;
++ case (1 << PHM_AutoThrottleSource_External) |
++ (1 << PHM_AutoThrottleSource_Thermal):
++ protection = true;
++ src = DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL;
++ break;
++ }
++ /* Order matters - don't enable thermal protection for the wrong source. */
++ if (protection) {
++ PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_THERMAL_CTRL,
++ DPM_EVENT_SRC, src);
++ PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
++ THERMAL_PROTECTION_DIS,
++ phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_ThermalController));
++ } else
++ PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
++ THERMAL_PROTECTION_DIS, 1);
++}
++
++static int fiji_enable_auto_throttle_source(struct pp_hwmgr *hwmgr,
++ PHM_AutoThrottleSource source)
++{
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++
++ if (!(data->active_auto_throttle_sources & (1 << source))) {
++ data->active_auto_throttle_sources |= 1 << source;
++ fiji_set_dpm_event_sources(hwmgr, data->active_auto_throttle_sources);
++ }
++ return 0;
++}
++
++static int fiji_enable_thermal_auto_throttle(struct pp_hwmgr *hwmgr)
++{
++ return fiji_enable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal);
++}
++
++static int fiji_enable_dpm_tasks(struct pp_hwmgr *hwmgr)
++{
++ int tmp_result, result = 0;
++
++ tmp_result = (!fiji_is_dpm_running(hwmgr))? 0 : -1;
++ PP_ASSERT_WITH_CODE(result == 0,
++ "DPM is already running right now, no need to enable DPM!",
++ return 0);
++
++ if (fiji_voltage_control(hwmgr)) {
++ tmp_result = fiji_enable_voltage_control(hwmgr);
++ PP_ASSERT_WITH_CODE(tmp_result == 0,
++ "Failed to enable voltage control!",
++ result = tmp_result);
++ }
++
++ if (fiji_voltage_control(hwmgr)) {
++ tmp_result = fiji_construct_voltage_tables(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == tmp_result),
++ "Failed to contruct voltage tables!",
++ result = tmp_result);
++ }
++
++ tmp_result = fiji_initialize_mc_reg_table(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == tmp_result),
++ "Failed to initialize MC reg table!", result = tmp_result);
++
++ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_EngineSpreadSpectrumSupport))
++ PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
++ GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, 1);
++
++ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_ThermalController))
++ PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
++ GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 0);
++
++ tmp_result = fiji_program_static_screen_threshold_parameters(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == tmp_result),
++ "Failed to program static screen threshold parameters!",
++ result = tmp_result);
++
++ tmp_result = fiji_enable_display_gap(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == tmp_result),
++ "Failed to enable display gap!", result = tmp_result);
++
++ tmp_result = fiji_program_voting_clients(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == tmp_result),
++ "Failed to program voting clients!", result = tmp_result);
++
++ tmp_result = fiji_process_firmware_header(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == tmp_result),
++ "Failed to process firmware header!", result = tmp_result);
++
++ tmp_result = fiji_initial_switch_from_arbf0_to_f1(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == tmp_result),
++ "Failed to initialize switch from ArbF0 to F1!",
++ result = tmp_result);
++
++ tmp_result = fiji_init_smc_table(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == tmp_result),
++ "Failed to initialize SMC table!", result = tmp_result);
++
++ tmp_result = fiji_init_arb_table_index(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == tmp_result),
++ "Failed to initialize ARB table index!", result = tmp_result);
++
++ tmp_result = fiji_populate_pm_fuses(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == tmp_result),
++ "Failed to populate PM fuses!", result = tmp_result);
++
++ tmp_result = fiji_enable_vrhot_gpio_interrupt(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == tmp_result),
++ "Failed to enable VR hot GPIO interrupt!", result = tmp_result);
++
++ tmp_result = fiji_enable_sclk_control(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == tmp_result),
++ "Failed to enable SCLK control!", result = tmp_result);
++
++ tmp_result = fiji_enable_ulv(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == tmp_result),
++ "Failed to enable ULV!", result = tmp_result);
++
++ tmp_result = fiji_enable_deep_sleep_master_switch(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == tmp_result),
++ "Failed to enable deep sleep master switch!", result = tmp_result);
++
++ tmp_result = fiji_start_dpm(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == tmp_result),
++ "Failed to start DPM!", result = tmp_result);
++
++ tmp_result = fiji_enable_smc_cac(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == tmp_result),
++ "Failed to enable SMC CAC!", result = tmp_result);
++
++ tmp_result = fiji_enable_power_containment(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == tmp_result),
++ "Failed to enable power containment!", result = tmp_result);
++
++ tmp_result = fiji_power_control_set_level(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == tmp_result),
++ "Failed to power control set level!", result = tmp_result);
++
++ tmp_result = fiji_enable_thermal_auto_throttle(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == tmp_result),
++ "Failed to enable thermal auto throttle!", result = tmp_result);
++
++ return result;
++}
++
++static int fiji_force_dpm_highest(struct pp_hwmgr *hwmgr)
++{
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++ uint32_t level, tmp;
++
++ if (!data->sclk_dpm_key_disabled) {
++ if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
++ level = 0;
++ tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask;
++ while (tmp >>= 1)
++ level++;
++ if (level)
++ smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
++ PPSMC_MSG_SCLKDPM_SetEnabledMask,
++ (1 << level));
++ }
++ }
++
++ if (!data->mclk_dpm_key_disabled) {
++ if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
++ level = 0;
++ tmp = data->dpm_level_enable_mask.mclk_dpm_enable_mask;
++ while (tmp >>= 1)
++ level++;
++ if (level)
++ smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
++ PPSMC_MSG_MCLKDPM_SetEnabledMask,
++ (1 << level));
++ }
++ }
++
++ if (!data->pcie_dpm_key_disabled) {
++ if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) {
++ level = 0;
++ tmp = data->dpm_level_enable_mask.pcie_dpm_enable_mask;
++ while (tmp >>= 1)
++ level++;
++ if (level)
++ smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
++ PPSMC_MSG_PCIeDPM_ForceLevel,
++ (1 << level));
++ }
++ }
++ return 0;
++}
++
++static void fiji_apply_dal_min_voltage_request(struct pp_hwmgr *hwmgr)
++{
++ struct phm_ppt_v1_information *table_info =
++ (struct phm_ppt_v1_information *)hwmgr->pptable;
++ struct phm_clock_voltage_dependency_table *table =
++ table_info->vddc_dep_on_dal_pwrl;
++ struct phm_ppt_v1_clock_voltage_dependency_table *vddc_table;
++ enum PP_DAL_POWERLEVEL dal_power_level = hwmgr->dal_power_level;
++ uint32_t req_vddc = 0, req_volt, i;
++
++ if (!table && !(dal_power_level >= PP_DAL_POWERLEVEL_ULTRALOW &&
++ dal_power_level <= PP_DAL_POWERLEVEL_PERFORMANCE))
++ return;
++
++ for (i= 0; i < table->count; i++) {
++ if (dal_power_level == table->entries[i].clk) {
++ req_vddc = table->entries[i].v;
++ break;
++ }
++ }
++
++ vddc_table = table_info->vdd_dep_on_sclk;
++ for (i= 0; i < vddc_table->count; i++) {
++ if (req_vddc <= vddc_table->entries[i].vddc) {
++ req_volt = (((uint32_t)vddc_table->entries[i].vddc) * VOLTAGE_SCALE)
++ << VDDC_SHIFT;
++ smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
++ PPSMC_MSG_VddC_Request, req_volt);
++ return;
++ }
++ }
++ printk(KERN_ERR "DAL requested level can not"
++ " found a available voltage in VDDC DPM Table \n");
++}
++
++static int fiji_upload_dpmlevel_enable_mask(struct pp_hwmgr *hwmgr)
++{
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++
++ fiji_apply_dal_min_voltage_request(hwmgr);
++
++ if (!data->sclk_dpm_key_disabled) {
++ if (data->dpm_level_enable_mask.sclk_dpm_enable_mask)
++ smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
++ PPSMC_MSG_SCLKDPM_SetEnabledMask,
++ data->dpm_level_enable_mask.sclk_dpm_enable_mask);
++ }
++ return 0;
++}
++
++static int fiji_unforce_dpm_levels(struct pp_hwmgr *hwmgr)
++{
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++
++ if (!fiji_is_dpm_running(hwmgr))
++ return -EINVAL;
++
++ if (!data->pcie_dpm_key_disabled) {
++ smum_send_msg_to_smc(hwmgr->smumgr,
++ PPSMC_MSG_PCIeDPM_UnForceLevel);
++ }
++
++ return fiji_upload_dpmlevel_enable_mask(hwmgr);
++}
++
++static uint32_t fiji_get_lowest_enabled_level(
++ struct pp_hwmgr *hwmgr, uint32_t mask)
++{
++ uint32_t level = 0;
++
++ while(0 == (mask & (1 << level)))
++ level++;
++
++ return level;
++}
++
++static int fiji_force_dpm_lowest(struct pp_hwmgr *hwmgr)
++{
++ struct fiji_hwmgr *data =
++ (struct fiji_hwmgr *)(hwmgr->backend);
++ uint32_t level = 0;
++
++ /* Only force sclk for now */
++ if (!data->sclk_dpm_key_disabled)
++ if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
++ level = fiji_get_lowest_enabled_level(hwmgr,
++ data->dpm_level_enable_mask.sclk_dpm_enable_mask);
++ smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
++ PPSMC_MSG_SCLKDPM_SetEnabledMask,
++ (1 << level));
++
++ }
++ return 0;
++
++}
++static int fiji_dpm_force_dpm_level(struct pp_hwmgr *hwmgr,
++ enum amd_dpm_forced_level level)
++{
++ int ret = 0;
++
++ switch (level) {
++ case AMD_DPM_FORCED_LEVEL_HIGH:
++ ret = fiji_force_dpm_highest(hwmgr);
++ if (ret)
++ return ret;
++ break;
++ case AMD_DPM_FORCED_LEVEL_LOW:
++ ret = fiji_force_dpm_lowest(hwmgr);
++ if (ret)
++ return ret;
++ break;
++ case AMD_DPM_FORCED_LEVEL_AUTO:
++ ret = fiji_unforce_dpm_levels(hwmgr);
++ if (ret)
++ return ret;
++ break;
++ default:
++ break;
++ }
++
++ hwmgr->dpm_level = level;
++
++ return ret;
++}
++
++static int fiji_get_power_state_size(struct pp_hwmgr *hwmgr)
++{
++ return sizeof(struct fiji_power_state);
++}
++
++static int fiji_get_pp_table_entry_callback_func(struct pp_hwmgr *hwmgr,
++ void *state, struct pp_power_state *power_state,
++ void *pp_table, uint32_t classification_flag)
++{
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++ struct fiji_power_state *fiji_power_state =
++ (struct fiji_power_state *)(&(power_state->hardware));
++ struct fiji_performance_level *performance_level;
++ ATOM_Tonga_State *state_entry = (ATOM_Tonga_State *)state;
++ ATOM_Tonga_POWERPLAYTABLE *powerplay_table =
++ (ATOM_Tonga_POWERPLAYTABLE *)pp_table;
++ ATOM_Tonga_SCLK_Dependency_Table *sclk_dep_table =
++ (ATOM_Tonga_SCLK_Dependency_Table *)
++ (((unsigned long)powerplay_table) +
++ le16_to_cpu(powerplay_table->usSclkDependencyTableOffset));
++ ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table =
++ (ATOM_Tonga_MCLK_Dependency_Table *)
++ (((unsigned long)powerplay_table) +
++ le16_to_cpu(powerplay_table->usMclkDependencyTableOffset));
++
++ /* The following fields are not initialized here: id orderedList allStatesList */
++ power_state->classification.ui_label =
++ (le16_to_cpu(state_entry->usClassification) &
++ ATOM_PPLIB_CLASSIFICATION_UI_MASK) >>
++ ATOM_PPLIB_CLASSIFICATION_UI_SHIFT;
++ power_state->classification.flags = classification_flag;
++ /* NOTE: There is a classification2 flag in BIOS that is not being used right now */
++
++ power_state->classification.temporary_state = false;
++ power_state->classification.to_be_deleted = false;
++
++ power_state->validation.disallowOnDC =
++ (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) &
++ ATOM_Tonga_DISALLOW_ON_DC));
++
++ power_state->pcie.lanes = 0;
++
++ power_state->display.disableFrameModulation = false;
++ power_state->display.limitRefreshrate = false;
++ power_state->display.enableVariBright =
++ (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) &
++ ATOM_Tonga_ENABLE_VARIBRIGHT));
++
++ power_state->validation.supportedPowerLevels = 0;
++ power_state->uvd_clocks.VCLK = 0;
++ power_state->uvd_clocks.DCLK = 0;
++ power_state->temperatures.min = 0;
++ power_state->temperatures.max = 0;
++
++ performance_level = &(fiji_power_state->performance_levels
++ [fiji_power_state->performance_level_count++]);
++
++ PP_ASSERT_WITH_CODE(
++ (fiji_power_state->performance_level_count < SMU73_MAX_LEVELS_GRAPHICS),
++ "Performance levels exceeds SMC limit!",
++ return -1);
++
++ PP_ASSERT_WITH_CODE(
++ (fiji_power_state->performance_level_count <=
++ hwmgr->platform_descriptor.hardwareActivityPerformanceLevels),
++ "Performance levels exceeds Driver limit!",
++ return -1);
++
++ /* Performance levels are arranged from low to high. */
++ performance_level->memory_clock = mclk_dep_table->entries
++ [state_entry->ucMemoryClockIndexLow].ulMclk;
++ performance_level->engine_clock = sclk_dep_table->entries
++ [state_entry->ucEngineClockIndexLow].ulSclk;
++ performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap,
++ state_entry->ucPCIEGenLow);
++ performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap,
++ state_entry->ucPCIELaneHigh);
++
++ performance_level = &(fiji_power_state->performance_levels
++ [fiji_power_state->performance_level_count++]);
++ performance_level->memory_clock = mclk_dep_table->entries
++ [state_entry->ucMemoryClockIndexHigh].ulMclk;
++ performance_level->engine_clock = sclk_dep_table->entries
++ [state_entry->ucEngineClockIndexHigh].ulSclk;
++ performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap,
++ state_entry->ucPCIEGenHigh);
++ performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap,
++ state_entry->ucPCIELaneHigh);
++
++ return 0;
++}
++
++static int fiji_get_pp_table_entry(struct pp_hwmgr *hwmgr,
++ unsigned long entry_index, struct pp_power_state *state)
++{
++ int result;
++ struct fiji_power_state *ps;
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++ struct phm_ppt_v1_information *table_info =
++ (struct phm_ppt_v1_information *)(hwmgr->pptable);
++ struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
++ table_info->vdd_dep_on_mclk;
++
++ state->hardware.magic = PHM_VIslands_Magic;
++
++ ps = (struct fiji_power_state *)(&state->hardware);
++
++ result = tonga_get_powerplay_table_entry(hwmgr, entry_index, state,
++ fiji_get_pp_table_entry_callback_func);
++
++ /* This is the earliest time we have all the dependency table and the VBIOS boot state
++ * as PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot state
++ * if there is only one VDDCI/MCLK level, check if it's the same as VBIOS boot state
++ */
++ if (dep_mclk_table != NULL && dep_mclk_table->count == 1) {
++ if (dep_mclk_table->entries[0].clk !=
++ data->vbios_boot_state.mclk_bootup_value)
++ printk(KERN_ERR "Single MCLK entry VDDCI/MCLK dependency table "
++ "does not match VBIOS boot MCLK level");
++ if (dep_mclk_table->entries[0].vddci !=
++ data->vbios_boot_state.vddci_bootup_value)
++ printk(KERN_ERR "Single VDDCI entry VDDCI/MCLK dependency table "
++ "does not match VBIOS boot VDDCI level");
++ }
++
++ /* set DC compatible flag if this state supports DC */
++ if (!state->validation.disallowOnDC)
++ ps->dc_compatible = true;
++
++ if (state->classification.flags & PP_StateClassificationFlag_ACPI)
++ data->acpi_pcie_gen = ps->performance_levels[0].pcie_gen;
++
++ ps->uvd_clks.vclk = state->uvd_clocks.VCLK;
++ ps->uvd_clks.dclk = state->uvd_clocks.DCLK;
++
++ if (!result) {
++ uint32_t i;
++
++ switch (state->classification.ui_label) {
++ case PP_StateUILabel_Performance:
++ data->use_pcie_performance_levels = true;
++
++ for (i = 0; i < ps->performance_level_count; i++) {
++ if (data->pcie_gen_performance.max <
++ ps->performance_levels[i].pcie_gen)
++ data->pcie_gen_performance.max =
++ ps->performance_levels[i].pcie_gen;
++
++ if (data->pcie_gen_performance.min >
++ ps->performance_levels[i].pcie_gen)
++ data->pcie_gen_performance.min =
++ ps->performance_levels[i].pcie_gen;
++
++ if (data->pcie_lane_performance.max <
++ ps->performance_levels[i].pcie_lane)
++ data->pcie_lane_performance.max =
++ ps->performance_levels[i].pcie_lane;
++
++ if (data->pcie_lane_performance.min >
++ ps->performance_levels[i].pcie_lane)
++ data->pcie_lane_performance.min =
++ ps->performance_levels[i].pcie_lane;
++ }
++ break;
++ case PP_StateUILabel_Battery:
++ data->use_pcie_power_saving_levels = true;
++
++ for (i = 0; i < ps->performance_level_count; i++) {
++ if (data->pcie_gen_power_saving.max <
++ ps->performance_levels[i].pcie_gen)
++ data->pcie_gen_power_saving.max =
++ ps->performance_levels[i].pcie_gen;
++
++ if (data->pcie_gen_power_saving.min >
++ ps->performance_levels[i].pcie_gen)
++ data->pcie_gen_power_saving.min =
++ ps->performance_levels[i].pcie_gen;
++
++ if (data->pcie_lane_power_saving.max <
++ ps->performance_levels[i].pcie_lane)
++ data->pcie_lane_power_saving.max =
++ ps->performance_levels[i].pcie_lane;
++
++ if (data->pcie_lane_power_saving.min >
++ ps->performance_levels[i].pcie_lane)
++ data->pcie_lane_power_saving.min =
++ ps->performance_levels[i].pcie_lane;
++ }
++ break;
++ default:
++ break;
++ }
++ }
++ return 0;
++}
++
++static int fiji_apply_state_adjust_rules(struct pp_hwmgr *hwmgr,
++ struct pp_power_state *request_ps,
++ const struct pp_power_state *current_ps)
++{
++ struct fiji_power_state *fiji_ps =
++ cast_phw_fiji_power_state(&request_ps->hardware);
++ uint32_t sclk;
++ uint32_t mclk;
++ struct PP_Clocks minimum_clocks = {0};
++ bool disable_mclk_switching;
++ bool disable_mclk_switching_for_frame_lock;
++ struct cgs_display_info info = {0};
++ const struct phm_clock_and_voltage_limits *max_limits;
++ uint32_t i;
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++ struct phm_ppt_v1_information *table_info =
++ (struct phm_ppt_v1_information *)(hwmgr->pptable);
++ int32_t count;
++ int32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0;
++
++ data->battery_state = (PP_StateUILabel_Battery ==
++ request_ps->classification.ui_label);
++
++ PP_ASSERT_WITH_CODE(fiji_ps->performance_level_count == 2,
++ "VI should always have 2 performance levels",);
++
++ max_limits = (PP_PowerSource_AC == hwmgr->power_source) ?
++ &(hwmgr->dyn_state.max_clock_voltage_on_ac) :
++ &(hwmgr->dyn_state.max_clock_voltage_on_dc);
++
++ /* Cap clock DPM tables at DC MAX if it is in DC. */
++ if (PP_PowerSource_DC == hwmgr->power_source) {
++ for (i = 0; i < fiji_ps->performance_level_count; i++) {
++ if (fiji_ps->performance_levels[i].memory_clock > max_limits->mclk)
++ fiji_ps->performance_levels[i].memory_clock = max_limits->mclk;
++ if (fiji_ps->performance_levels[i].engine_clock > max_limits->sclk)
++ fiji_ps->performance_levels[i].engine_clock = max_limits->sclk;
++ }
++ }
++
++ fiji_ps->vce_clks.evclk = hwmgr->vce_arbiter.evclk;
++ fiji_ps->vce_clks.ecclk = hwmgr->vce_arbiter.ecclk;
++
++ fiji_ps->acp_clk = hwmgr->acp_arbiter.acpclk;
++
++ cgs_get_active_displays_info(hwmgr->device, &info);
++
++ /*TO DO result = PHM_CheckVBlankTime(hwmgr, &vblankTooShort);*/
++
++ /* TO DO GetMinClockSettings(hwmgr->pPECI, &minimum_clocks); */
++
++ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_StablePState)) {
++ max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac);
++ stable_pstate_sclk = (max_limits->sclk * 75) / 100;
++
++ for (count = table_info->vdd_dep_on_sclk->count - 1;
++ count >= 0; count--) {
++ if (stable_pstate_sclk >=
++ table_info->vdd_dep_on_sclk->entries[count].clk) {
++ stable_pstate_sclk =
++ table_info->vdd_dep_on_sclk->entries[count].clk;
++ break;
++ }
++ }
++
++ if (count < 0)
++ stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk;
++
++ stable_pstate_mclk = max_limits->mclk;
++
++ minimum_clocks.engineClock = stable_pstate_sclk;
++ minimum_clocks.memoryClock = stable_pstate_mclk;
++ }
++
++ if (minimum_clocks.engineClock < hwmgr->gfx_arbiter.sclk)
++ minimum_clocks.engineClock = hwmgr->gfx_arbiter.sclk;
++
++ if (minimum_clocks.memoryClock < hwmgr->gfx_arbiter.mclk)
++ minimum_clocks.memoryClock = hwmgr->gfx_arbiter.mclk;
++
++ fiji_ps->sclk_threshold = hwmgr->gfx_arbiter.sclk_threshold;
++
++ if (0 != hwmgr->gfx_arbiter.sclk_over_drive) {
++ PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.sclk_over_drive <=
++ hwmgr->platform_descriptor.overdriveLimit.engineClock),
++ "Overdrive sclk exceeds limit",
++ hwmgr->gfx_arbiter.sclk_over_drive =
++ hwmgr->platform_descriptor.overdriveLimit.engineClock);
++
++ if (hwmgr->gfx_arbiter.sclk_over_drive >= hwmgr->gfx_arbiter.sclk)
++ fiji_ps->performance_levels[1].engine_clock =
++ hwmgr->gfx_arbiter.sclk_over_drive;
++ }
++
++ if (0 != hwmgr->gfx_arbiter.mclk_over_drive) {
++ PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.mclk_over_drive <=
++ hwmgr->platform_descriptor.overdriveLimit.memoryClock),
++ "Overdrive mclk exceeds limit",
++ hwmgr->gfx_arbiter.mclk_over_drive =
++ hwmgr->platform_descriptor.overdriveLimit.memoryClock);
++
++ if (hwmgr->gfx_arbiter.mclk_over_drive >= hwmgr->gfx_arbiter.mclk)
++ fiji_ps->performance_levels[1].memory_clock =
++ hwmgr->gfx_arbiter.mclk_over_drive;
++ }
++
++ disable_mclk_switching_for_frame_lock = phm_cap_enabled(
++ hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_DisableMclkSwitchingForFrameLock);
++
++ disable_mclk_switching = (1 < info.display_count) ||
++ disable_mclk_switching_for_frame_lock;
++
++ sclk = fiji_ps->performance_levels[0].engine_clock;
++ mclk = fiji_ps->performance_levels[0].memory_clock;
++
++ if (disable_mclk_switching)
++ mclk = fiji_ps->performance_levels
++ [fiji_ps->performance_level_count - 1].memory_clock;
++
++ if (sclk < minimum_clocks.engineClock)
++ sclk = (minimum_clocks.engineClock > max_limits->sclk) ?
++ max_limits->sclk : minimum_clocks.engineClock;
++
++ if (mclk < minimum_clocks.memoryClock)
++ mclk = (minimum_clocks.memoryClock > max_limits->mclk) ?
++ max_limits->mclk : minimum_clocks.memoryClock;
++
++ fiji_ps->performance_levels[0].engine_clock = sclk;
++ fiji_ps->performance_levels[0].memory_clock = mclk;
++
++ fiji_ps->performance_levels[1].engine_clock =
++ (fiji_ps->performance_levels[1].engine_clock >=
++ fiji_ps->performance_levels[0].engine_clock) ?
++ fiji_ps->performance_levels[1].engine_clock :
++ fiji_ps->performance_levels[0].engine_clock;
++
++ if (disable_mclk_switching) {
++ if (mclk < fiji_ps->performance_levels[1].memory_clock)
++ mclk = fiji_ps->performance_levels[1].memory_clock;
++
++ fiji_ps->performance_levels[0].memory_clock = mclk;
++ fiji_ps->performance_levels[1].memory_clock = mclk;
++ } else {
++ if (fiji_ps->performance_levels[1].memory_clock <
++ fiji_ps->performance_levels[0].memory_clock)
++ fiji_ps->performance_levels[1].memory_clock =
++ fiji_ps->performance_levels[0].memory_clock;
++ }
++
++ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_StablePState)) {
++ for (i = 0; i < fiji_ps->performance_level_count; i++) {
++ fiji_ps->performance_levels[i].engine_clock = stable_pstate_sclk;
++ fiji_ps->performance_levels[i].memory_clock = stable_pstate_mclk;
++ fiji_ps->performance_levels[i].pcie_gen = data->pcie_gen_performance.max;
++ fiji_ps->performance_levels[i].pcie_lane = data->pcie_gen_performance.max;
++ }
++ }
++
++ return 0;
++}
++
++static int fiji_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input)
++{
++ const struct phm_set_power_state_input *states =
++ (const struct phm_set_power_state_input *)input;
++ const struct fiji_power_state *fiji_ps =
++ cast_const_phw_fiji_power_state(states->pnew_state);
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++ struct fiji_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
++ uint32_t sclk = fiji_ps->performance_levels
++ [fiji_ps->performance_level_count - 1].engine_clock;
++ struct fiji_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
++ uint32_t mclk = fiji_ps->performance_levels
++ [fiji_ps->performance_level_count - 1].memory_clock;
++ struct PP_Clocks min_clocks = {0};
++ uint32_t i;
++ struct cgs_display_info info = {0};
++
++ data->need_update_smu7_dpm_table = 0;
++
++ for (i = 0; i < sclk_table->count; i++) {
++ if (sclk == sclk_table->dpm_levels[i].value)
++ break;
++ }
++
++ if (i >= sclk_table->count)
++ data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
++ else {
++ /* TODO: Check SCLK in DAL's minimum clocks
++ * in case DeepSleep divider update is required.
++ */
++ if(data->display_timing.min_clock_in_sr != min_clocks.engineClockInSR)
++ data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_SCLK;
++ }
++
++ for (i = 0; i < mclk_table->count; i++) {
++ if (mclk == mclk_table->dpm_levels[i].value)
++ break;
++ }
++
++ if (i >= mclk_table->count)
++ data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
++
++ cgs_get_active_displays_info(hwmgr->device, &info);
++
++ if (data->display_timing.num_existing_displays != info.display_count)
++ data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_MCLK;
++
++ return 0;
++}
++
++static uint16_t fiji_get_maximum_link_speed(struct pp_hwmgr *hwmgr,
++ const struct fiji_power_state *fiji_ps)
++{
++ uint32_t i;
++ uint32_t sclk, max_sclk = 0;
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++ struct fiji_dpm_table *dpm_table = &data->dpm_table;
++
++ for (i = 0; i < fiji_ps->performance_level_count; i++) {
++ sclk = fiji_ps->performance_levels[i].engine_clock;
++ if (max_sclk < sclk)
++ max_sclk = sclk;
++ }
++
++ for (i = 0; i < dpm_table->sclk_table.count; i++) {
++ if (dpm_table->sclk_table.dpm_levels[i].value == max_sclk)
++ return (uint16_t) ((i >= dpm_table->pcie_speed_table.count) ?
++ dpm_table->pcie_speed_table.dpm_levels
++ [dpm_table->pcie_speed_table.count - 1].value :
++ dpm_table->pcie_speed_table.dpm_levels[i].value);
++ }
++
++ return 0;
++}
++
++static int fiji_request_link_speed_change_before_state_change(
++ struct pp_hwmgr *hwmgr, const void *input)
++{
++ const struct phm_set_power_state_input *states =
++ (const struct phm_set_power_state_input *)input;
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++ const struct fiji_power_state *fiji_nps =
++ cast_const_phw_fiji_power_state(states->pnew_state);
++ const struct fiji_power_state *fiji_cps =
++ cast_const_phw_fiji_power_state(states->pcurrent_state);
++
++ uint16_t target_link_speed = fiji_get_maximum_link_speed(hwmgr, fiji_nps);
++ uint16_t current_link_speed;
++
++ if (data->force_pcie_gen == PP_PCIEGenInvalid)
++ current_link_speed = fiji_get_maximum_link_speed(hwmgr, fiji_cps);
++ else
++ current_link_speed = data->force_pcie_gen;
++
++ data->force_pcie_gen = PP_PCIEGenInvalid;
++ data->pspp_notify_required = false;
++ if (target_link_speed > current_link_speed) {
++ switch(target_link_speed) {
++ case PP_PCIEGen3:
++ if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN3, false))
++ break;
++ data->force_pcie_gen = PP_PCIEGen2;
++ if (current_link_speed == PP_PCIEGen2)
++ break;
++ case PP_PCIEGen2:
++ if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN2, false))
++ break;
++ default:
++ data->force_pcie_gen = fiji_get_current_pcie_speed(hwmgr);
++ break;
++ }
++ } else {
++ if (target_link_speed < current_link_speed)
++ data->pspp_notify_required = true;
++ }
++
++ return 0;
++}
++
++static int fiji_freeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
++{
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++
++ if (0 == data->need_update_smu7_dpm_table)
++ return 0;
++
++ if ((0 == data->sclk_dpm_key_disabled) &&
++ (data->need_update_smu7_dpm_table &
++ (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {
++ PP_ASSERT_WITH_CODE(true == fiji_is_dpm_running(hwmgr),
++ "Trying to freeze SCLK DPM when DPM is disabled",);
++ PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
++ PPSMC_MSG_SCLKDPM_FreezeLevel),
++ "Failed to freeze SCLK DPM during FreezeSclkMclkDPM Function!",
++ return -1);
++ }
++
++ if ((0 == data->mclk_dpm_key_disabled) &&
++ (data->need_update_smu7_dpm_table &
++ DPMTABLE_OD_UPDATE_MCLK)) {
++ PP_ASSERT_WITH_CODE(true == fiji_is_dpm_running(hwmgr),
++ "Trying to freeze MCLK DPM when DPM is disabled",);
++ PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
++ PPSMC_MSG_MCLKDPM_FreezeLevel),
++ "Failed to freeze MCLK DPM during FreezeSclkMclkDPM Function!",
++ return -1);
++ }
++
++ return 0;
++}
++
++static int fiji_populate_and_upload_sclk_mclk_dpm_levels(
++ struct pp_hwmgr *hwmgr, const void *input)
++{
++ int result = 0;
++ const struct phm_set_power_state_input *states =
++ (const struct phm_set_power_state_input *)input;
++ const struct fiji_power_state *fiji_ps =
++ cast_const_phw_fiji_power_state(states->pnew_state);
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++ uint32_t sclk = fiji_ps->performance_levels
++ [fiji_ps->performance_level_count - 1].engine_clock;
++ uint32_t mclk = fiji_ps->performance_levels
++ [fiji_ps->performance_level_count - 1].memory_clock;
++ struct fiji_dpm_table *dpm_table = &data->dpm_table;
++
++ struct fiji_dpm_table *golden_dpm_table = &data->golden_dpm_table;
++ uint32_t dpm_count, clock_percent;
++ uint32_t i;
++
++ if (0 == data->need_update_smu7_dpm_table)
++ return 0;
++
++ if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) {
++ dpm_table->sclk_table.dpm_levels
++ [dpm_table->sclk_table.count - 1].value = sclk;
++
++ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_OD6PlusinACSupport) ||
++ phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_OD6PlusinDCSupport)) {
++ /* Need to do calculation based on the golden DPM table
++ * as the Heatmap GPU Clock axis is also based on the default values
++ */
++ PP_ASSERT_WITH_CODE(
++ (golden_dpm_table->sclk_table.dpm_levels
++ [golden_dpm_table->sclk_table.count - 1].value != 0),
++ "Divide by 0!",
++ return -1);
++ dpm_count = dpm_table->sclk_table.count < 2 ?
++ 0 : dpm_table->sclk_table.count - 2;
++ for (i = dpm_count; i > 1; i--) {
++ if (sclk > golden_dpm_table->sclk_table.dpm_levels
++ [golden_dpm_table->sclk_table.count-1].value) {
++ clock_percent =
++ ((sclk - golden_dpm_table->sclk_table.dpm_levels
++ [golden_dpm_table->sclk_table.count-1].value) * 100) /
++ golden_dpm_table->sclk_table.dpm_levels
++ [golden_dpm_table->sclk_table.count-1].value;
++
++ dpm_table->sclk_table.dpm_levels[i].value =
++ golden_dpm_table->sclk_table.dpm_levels[i].value +
++ (golden_dpm_table->sclk_table.dpm_levels[i].value *
++ clock_percent)/100;
++
++ } else if (golden_dpm_table->sclk_table.dpm_levels
++ [dpm_table->sclk_table.count-1].value > sclk) {
++ clock_percent =
++ ((golden_dpm_table->sclk_table.dpm_levels
++ [golden_dpm_table->sclk_table.count - 1].value - sclk) *
++ 100) /
++ golden_dpm_table->sclk_table.dpm_levels
++ [golden_dpm_table->sclk_table.count-1].value;
++
++ dpm_table->sclk_table.dpm_levels[i].value =
++ golden_dpm_table->sclk_table.dpm_levels[i].value -
++ (golden_dpm_table->sclk_table.dpm_levels[i].value *
++ clock_percent) / 100;
++ } else
++ dpm_table->sclk_table.dpm_levels[i].value =
++ golden_dpm_table->sclk_table.dpm_levels[i].value;
++ }
++ }
++ }
++
++ if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK) {
++ dpm_table->mclk_table.dpm_levels
++ [dpm_table->mclk_table.count - 1].value = mclk;
++
++ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_OD6PlusinACSupport) ||
++ phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_OD6PlusinDCSupport)) {
++
++ PP_ASSERT_WITH_CODE(
++ (golden_dpm_table->mclk_table.dpm_levels
++ [golden_dpm_table->mclk_table.count-1].value != 0),
++ "Divide by 0!",
++ return -1);
++ dpm_count = dpm_table->mclk_table.count < 2 ?
++ 0 : dpm_table->mclk_table.count - 2;
++ for (i = dpm_count; i > 1; i--) {
++ if (mclk > golden_dpm_table->mclk_table.dpm_levels
++ [golden_dpm_table->mclk_table.count-1].value) {
++ clock_percent = ((mclk -
++ golden_dpm_table->mclk_table.dpm_levels
++ [golden_dpm_table->mclk_table.count-1].value) * 100) /
++ golden_dpm_table->mclk_table.dpm_levels
++ [golden_dpm_table->mclk_table.count-1].value;
++
++ dpm_table->mclk_table.dpm_levels[i].value =
++ golden_dpm_table->mclk_table.dpm_levels[i].value +
++ (golden_dpm_table->mclk_table.dpm_levels[i].value *
++ clock_percent) / 100;
++
++ } else if (golden_dpm_table->mclk_table.dpm_levels
++ [dpm_table->mclk_table.count-1].value > mclk) {
++ clock_percent = ((golden_dpm_table->mclk_table.dpm_levels
++ [golden_dpm_table->mclk_table.count-1].value - mclk) * 100) /
++ golden_dpm_table->mclk_table.dpm_levels
++ [golden_dpm_table->mclk_table.count-1].value;
++
++ dpm_table->mclk_table.dpm_levels[i].value =
++ golden_dpm_table->mclk_table.dpm_levels[i].value -
++ (golden_dpm_table->mclk_table.dpm_levels[i].value *
++ clock_percent) / 100;
++ } else
++ dpm_table->mclk_table.dpm_levels[i].value =
++ golden_dpm_table->mclk_table.dpm_levels[i].value;
++ }
++ }
++ }
++
++ if (data->need_update_smu7_dpm_table &
++ (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK)) {
++ result = fiji_populate_all_memory_levels(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == result),
++ "Failed to populate SCLK during PopulateNewDPMClocksStates Function!",
++ return result);
++ }
++
++ if (data->need_update_smu7_dpm_table &
++ (DPMTABLE_OD_UPDATE_MCLK + DPMTABLE_UPDATE_MCLK)) {
++ /*populate MCLK dpm table to SMU7 */
++ result = fiji_populate_all_memory_levels(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == result),
++ "Failed to populate MCLK during PopulateNewDPMClocksStates Function!",
++ return result);
++ }
++
++ return result;
++}
++
++static int fiji_trim_single_dpm_states(struct pp_hwmgr *hwmgr,
++ struct fiji_single_dpm_table * dpm_table,
++ uint32_t low_limit, uint32_t high_limit)
++{
++ uint32_t i;
++
++ for (i = 0; i < dpm_table->count; i++) {
++ if ((dpm_table->dpm_levels[i].value < low_limit) ||
++ (dpm_table->dpm_levels[i].value > high_limit))
++ dpm_table->dpm_levels[i].enabled = false;
++ else
++ dpm_table->dpm_levels[i].enabled = true;
++ }
++ return 0;
++}
++
++static int fiji_trim_dpm_states(struct pp_hwmgr *hwmgr,
++ const struct fiji_power_state *fiji_ps)
++{
++ int result = 0;
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++ uint32_t high_limit_count;
++
++ PP_ASSERT_WITH_CODE((fiji_ps->performance_level_count >= 1),
++ "power state did not have any performance level",
++ return -1);
++
++ high_limit_count = (1 == fiji_ps->performance_level_count) ? 0 : 1;
++
++ fiji_trim_single_dpm_states(hwmgr,
++ &(data->dpm_table.sclk_table),
++ fiji_ps->performance_levels[0].engine_clock,
++ fiji_ps->performance_levels[high_limit_count].engine_clock);
++
++ fiji_trim_single_dpm_states(hwmgr,
++ &(data->dpm_table.mclk_table),
++ fiji_ps->performance_levels[0].memory_clock,
++ fiji_ps->performance_levels[high_limit_count].memory_clock);
++
++ return result;
++}
++
++static int fiji_generate_dpm_level_enable_mask(
++ struct pp_hwmgr *hwmgr, const void *input)
++{
++ int result;
++ const struct phm_set_power_state_input *states =
++ (const struct phm_set_power_state_input *)input;
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++ const struct fiji_power_state *fiji_ps =
++ cast_const_phw_fiji_power_state(states->pnew_state);
++
++ result = fiji_trim_dpm_states(hwmgr, fiji_ps);
++ if (result)
++ return result;
++
++ data->dpm_level_enable_mask.sclk_dpm_enable_mask =
++ fiji_get_dpm_level_enable_mask_value(&data->dpm_table.sclk_table);
++ data->dpm_level_enable_mask.mclk_dpm_enable_mask =
++ fiji_get_dpm_level_enable_mask_value(&data->dpm_table.mclk_table);
++ data->last_mclk_dpm_enable_mask =
++ data->dpm_level_enable_mask.mclk_dpm_enable_mask;
++
++ if (data->uvd_enabled) {
++ if (data->dpm_level_enable_mask.mclk_dpm_enable_mask & 1)
++ data->dpm_level_enable_mask.mclk_dpm_enable_mask &= 0xFFFFFFFE;
++ }
++
++ data->dpm_level_enable_mask.pcie_dpm_enable_mask =
++ fiji_get_dpm_level_enable_mask_value(&data->dpm_table.pcie_speed_table);
++
++ return 0;
++}
++
++static int fiji_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable)
++{
++ return smum_send_msg_to_smc(hwmgr->smumgr, enable?
++ PPSMC_MSG_VCEDPM_Enable :
++ PPSMC_MSG_VCEDPM_Disable);
++}
++
++static int fiji_update_vce_dpm(struct pp_hwmgr *hwmgr, const void *input)
++{
++ const struct phm_set_power_state_input *states =
++ (const struct phm_set_power_state_input *)input;
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++ const struct fiji_power_state *fiji_nps =
++ cast_const_phw_fiji_power_state(states->pnew_state);
++ const struct fiji_power_state *fiji_cps =
++ cast_const_phw_fiji_power_state(states->pcurrent_state);
++
++ uint32_t mm_boot_level_offset, mm_boot_level_value;
++ struct phm_ppt_v1_information *table_info =
++ (struct phm_ppt_v1_information *)(hwmgr->pptable);
++
++ if (fiji_nps->vce_clks.evclk >0 &&
++ (fiji_cps == NULL || fiji_cps->vce_clks.evclk == 0)) {
++ data->smc_state_table.VceBootLevel =
++ (uint8_t) (table_info->mm_dep_table->count - 1);
++
++ mm_boot_level_offset = data->dpm_table_start +
++ offsetof(SMU73_Discrete_DpmTable, VceBootLevel);
++ mm_boot_level_offset /= 4;
++ mm_boot_level_offset *= 4;
++ mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
++ CGS_IND_REG__SMC, mm_boot_level_offset);
++ mm_boot_level_value &= 0xFF00FFFF;
++ mm_boot_level_value |= data->smc_state_table.VceBootLevel << 16;
++ cgs_write_ind_register(hwmgr->device,
++ CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
++
++ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_StablePState)) {
++ smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
++ PPSMC_MSG_VCEDPM_SetEnabledMask,
++ (uint32_t)1 << data->smc_state_table.VceBootLevel);
++
++ fiji_enable_disable_vce_dpm(hwmgr, true);
++ } else if (fiji_nps->vce_clks.evclk == 0 &&
++ fiji_cps != NULL &&
++ fiji_cps->vce_clks.evclk > 0)
++ fiji_enable_disable_vce_dpm(hwmgr, false);
++ }
++
++ return 0;
++}
++
++static int fiji_update_sclk_threshold(struct pp_hwmgr *hwmgr)
++{
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++
++ int result = 0;
++ uint32_t low_sclk_interrupt_threshold = 0;
++
++ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_SclkThrottleLowNotification)
++ && (hwmgr->gfx_arbiter.sclk_threshold !=
++ data->low_sclk_interrupt_threshold)) {
++ data->low_sclk_interrupt_threshold =
++ hwmgr->gfx_arbiter.sclk_threshold;
++ low_sclk_interrupt_threshold =
++ data->low_sclk_interrupt_threshold;
++
++ CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
++
++ result = fiji_copy_bytes_to_smc(
++ hwmgr->smumgr,
++ data->dpm_table_start +
++ offsetof(SMU73_Discrete_DpmTable,
++ LowSclkInterruptThreshold),
++ (uint8_t *)&low_sclk_interrupt_threshold,
++ sizeof(uint32_t),
++ data->sram_end);
++ }
++
++ return result;
++}
++
++static int fiji_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
++{
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++
++ if (data->need_update_smu7_dpm_table &
++ (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
++ return fiji_program_memory_timing_parameters(hwmgr);
++
++ return 0;
++}
++
++static int fiji_unfreeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
++{
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++
++ if (0 == data->need_update_smu7_dpm_table)
++ return 0;
++
++ if ((0 == data->sclk_dpm_key_disabled) &&
++ (data->need_update_smu7_dpm_table &
++ (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {
++
++ PP_ASSERT_WITH_CODE(true == fiji_is_dpm_running(hwmgr),
++ "Trying to Unfreeze SCLK DPM when DPM is disabled",);
++ PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
++ PPSMC_MSG_SCLKDPM_UnfreezeLevel),
++ "Failed to unfreeze SCLK DPM during UnFreezeSclkMclkDPM Function!",
++ return -1);
++ }
++
++ if ((0 == data->mclk_dpm_key_disabled) &&
++ (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) {
++
++ PP_ASSERT_WITH_CODE(true == fiji_is_dpm_running(hwmgr),
++ "Trying to Unfreeze MCLK DPM when DPM is disabled",);
++ PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
++ PPSMC_MSG_SCLKDPM_UnfreezeLevel),
++ "Failed to unfreeze MCLK DPM during UnFreezeSclkMclkDPM Function!",
++ return -1);
++ }
++
++ data->need_update_smu7_dpm_table = 0;
++
++ return 0;
++}
++
++/* Look up the voltaged based on DAL's requested level.
++ * and then send the requested VDDC voltage to SMC
++ */
++static void fiji_apply_dal_minimum_voltage_request(struct pp_hwmgr *hwmgr)
++{
++ return;
++}
++
++int fiji_upload_dpm_level_enable_mask(struct pp_hwmgr *hwmgr)
++{
++ int result;
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++
++ /* Apply minimum voltage based on DAL's request level */
++ fiji_apply_dal_minimum_voltage_request(hwmgr);
++
++ if (0 == data->sclk_dpm_key_disabled) {
++ /* Checking if DPM is running. If we discover hang because of this,
++ * we should skip this message.
++ */
++ if (!fiji_is_dpm_running(hwmgr))
++ printk(KERN_ERR "[ powerplay ] "
++ "Trying to set Enable Mask when DPM is disabled \n");
++
++ if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
++ result = smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
++ PPSMC_MSG_SCLKDPM_SetEnabledMask,
++ data->dpm_level_enable_mask.sclk_dpm_enable_mask);
++ PP_ASSERT_WITH_CODE((0 == result),
++ "Set Sclk Dpm enable Mask failed", return -1);
++ }
++ }
++
++ if (0 == data->mclk_dpm_key_disabled) {
++ /* Checking if DPM is running. If we discover hang because of this,
++ * we should skip this message.
++ */
++ if (!fiji_is_dpm_running(hwmgr))
++ printk(KERN_ERR "[ powerplay ]"
++ " Trying to set Enable Mask when DPM is disabled \n");
++
++ if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
++ result = smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
++ PPSMC_MSG_MCLKDPM_SetEnabledMask,
++ data->dpm_level_enable_mask.mclk_dpm_enable_mask);
++ PP_ASSERT_WITH_CODE((0 == result),
++ "Set Mclk Dpm enable Mask failed", return -1);
++ }
++ }
++
++ return 0;
++}
++
++static int fiji_notify_link_speed_change_after_state_change(
++ struct pp_hwmgr *hwmgr, const void *input)
++{
++ const struct phm_set_power_state_input *states =
++ (const struct phm_set_power_state_input *)input;
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++ const struct fiji_power_state *fiji_ps =
++ cast_const_phw_fiji_power_state(states->pnew_state);
++ uint16_t target_link_speed = fiji_get_maximum_link_speed(hwmgr, fiji_ps);
++ uint8_t request;
++
++ if (data->pspp_notify_required) {
++ if (target_link_speed == PP_PCIEGen3)
++ request = PCIE_PERF_REQ_GEN3;
++ else if (target_link_speed == PP_PCIEGen2)
++ request = PCIE_PERF_REQ_GEN2;
++ else
++ request = PCIE_PERF_REQ_GEN1;
++
++ if(request == PCIE_PERF_REQ_GEN1 &&
++ fiji_get_current_pcie_speed(hwmgr) > 0)
++ return 0;
++
++ if (acpi_pcie_perf_request(hwmgr->device, request, false)) {
++ if (PP_PCIEGen2 == target_link_speed)
++ printk("PSPP request to switch to Gen2 from Gen3 Failed!");
++ else
++ printk("PSPP request to switch to Gen1 from Gen2 Failed!");
++ }
++ }
++
++ return 0;
++}
++
++static int fiji_set_power_state_tasks(struct pp_hwmgr *hwmgr,
++ const void *input)
++{
++ int tmp_result, result = 0;
++
++ tmp_result = fiji_find_dpm_states_clocks_in_dpm_table(hwmgr, input);
++ PP_ASSERT_WITH_CODE((0 == tmp_result),
++ "Failed to find DPM states clocks in DPM table!",
++ result = tmp_result);
++
++ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_PCIEPerformanceRequest)) {
++ tmp_result =
++ fiji_request_link_speed_change_before_state_change(hwmgr, input);
++ PP_ASSERT_WITH_CODE((0 == tmp_result),
++ "Failed to request link speed change before state change!",
++ result = tmp_result);
++ }
++
++ tmp_result = fiji_freeze_sclk_mclk_dpm(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == tmp_result),
++ "Failed to freeze SCLK MCLK DPM!", result = tmp_result);
++
++ tmp_result = fiji_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input);
++ PP_ASSERT_WITH_CODE((0 == tmp_result),
++ "Failed to populate and upload SCLK MCLK DPM levels!",
++ result = tmp_result);
++
++ tmp_result = fiji_generate_dpm_level_enable_mask(hwmgr, input);
++ PP_ASSERT_WITH_CODE((0 == tmp_result),
++ "Failed to generate DPM level enabled mask!",
++ result = tmp_result);
++
++ tmp_result = fiji_update_vce_dpm(hwmgr, input);
++ PP_ASSERT_WITH_CODE((0 == tmp_result),
++ "Failed to update VCE DPM!",
++ result = tmp_result);
++
++ tmp_result = fiji_update_sclk_threshold(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == tmp_result),
++ "Failed to update SCLK threshold!",
++ result = tmp_result);
++
++ tmp_result = fiji_program_mem_timing_parameters(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == tmp_result),
++ "Failed to program memory timing parameters!",
++ result = tmp_result);
++
++ tmp_result = fiji_unfreeze_sclk_mclk_dpm(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == tmp_result),
++ "Failed to unfreeze SCLK MCLK DPM!",
++ result = tmp_result);
++
++ tmp_result = fiji_upload_dpm_level_enable_mask(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == tmp_result),
++ "Failed to upload DPM level enabled mask!",
++ result = tmp_result);
++
++ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_PCIEPerformanceRequest)) {
++ tmp_result =
++ fiji_notify_link_speed_change_after_state_change(hwmgr, input);
++ PP_ASSERT_WITH_CODE((0 == tmp_result),
++ "Failed to notify link speed change after state change!",
++ result = tmp_result);
++ }
++
++ return result;
++}
++
++static int fiji_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
++{
++ struct pp_power_state *ps;
++ struct fiji_power_state *fiji_ps;
++
++ if (hwmgr == NULL)
++ return -EINVAL;
++
++ ps = hwmgr->request_ps;
++
++ if (ps == NULL)
++ return -EINVAL;
++
++ fiji_ps = cast_phw_fiji_power_state(&ps->hardware);
++
++ if (low)
++ return fiji_ps->performance_levels[0].engine_clock;
++ else
++ return fiji_ps->performance_levels
++ [fiji_ps->performance_level_count-1].engine_clock;
++}
++
++static int fiji_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
++{
++ struct pp_power_state *ps;
++ struct fiji_power_state *fiji_ps;
++
++ if (hwmgr == NULL)
++ return -EINVAL;
++
++ ps = hwmgr->request_ps;
++
++ if (ps == NULL)
++ return -EINVAL;
++
++ fiji_ps = cast_phw_fiji_power_state(&ps->hardware);
++
++ if (low)
++ return fiji_ps->performance_levels[0].memory_clock;
++ else
++ return fiji_ps->performance_levels
++ [fiji_ps->performance_level_count-1].memory_clock;
++}
++
++static void fiji_print_current_perforce_level(
++ struct pp_hwmgr *hwmgr, struct seq_file *m)
++{
++ uint32_t sclk, mclk;
++
++ smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetSclkFrequency);
++
++ sclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
++
++ smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetMclkFrequency);
++
++ mclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
++ seq_printf(m, "\n [ mclk ]: %u MHz\n\n [ sclk ]: %u MHz\n",
++ mclk / 100, sclk / 100);
++}
++
++static const struct pp_hwmgr_func fiji_hwmgr_funcs = {
++ .backend_init = &fiji_hwmgr_backend_init,
++ .backend_fini = &tonga_hwmgr_backend_fini,
++ .asic_setup = &fiji_setup_asic_task,
++ .dynamic_state_management_enable = &fiji_enable_dpm_tasks,
++ .force_dpm_level = &fiji_dpm_force_dpm_level,
++ .get_num_of_pp_table_entries = &tonga_get_number_of_powerplay_table_entries,
++ .get_power_state_size = &fiji_get_power_state_size,
++ .get_pp_table_entry = &fiji_get_pp_table_entry,
++ .patch_boot_state = &fiji_patch_boot_state,
++ .apply_state_adjust_rules = &fiji_apply_state_adjust_rules,
++ .power_state_set = &fiji_set_power_state_tasks,
++ .get_sclk = &fiji_dpm_get_sclk,
++ .get_mclk = &fiji_dpm_get_mclk,
++ .print_current_perforce_level = &fiji_print_current_perforce_level,
++};
++
++int fiji_hwmgr_init(struct pp_hwmgr *hwmgr)
++{
++ struct fiji_hwmgr *data;
++ int ret = 0;
++
++ data = kzalloc(sizeof(struct fiji_hwmgr), GFP_KERNEL);
++ if (data == NULL)
++ return -ENOMEM;
++
++ hwmgr->backend = data;
++ hwmgr->hwmgr_func = &fiji_hwmgr_funcs;
++ hwmgr->pptable_func = &tonga_pptable_funcs;
++ return ret;
++}
+diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/fiji_hwmgr.h b/drivers/gpu/drm/amd/powerplay/hwmgr/fiji_hwmgr.h
+new file mode 100644
+index 0000000..38dbe49
+--- /dev/null
++++ b/drivers/gpu/drm/amd/powerplay/hwmgr/fiji_hwmgr.h
+@@ -0,0 +1,356 @@
++/*
++ * Copyright 2015 Advanced Micro Devices, Inc.
++ *
++ * Permission is hereby granted, free of charge, to any person obtaining a
++ * copy of this software and associated documentation files (the "Software"),
++ * to deal in the Software without restriction, including without limitation
++ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
++ * and/or sell copies of the Software, and to permit persons to whom the
++ * Software is furnished to do so, subject to the following conditions:
++ *
++ * The above copyright notice and this permission notice shall be included in
++ * all copies or substantial portions of the Software.
++ *
++ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
++ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
++ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
++ * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
++ * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
++ * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
++ * OTHER DEALINGS IN THE SOFTWARE.
++ *
++ */
++
++#ifndef _FIJI_HWMGR_H_
++#define _FIJI_HWMGR_H_
++
++#include "hwmgr.h"
++#include "smu73.h"
++#include "smu73_discrete.h"
++#include "ppatomctrl.h"
++#include "fiji_ppsmc.h"
++
++#define FIJI_MAX_HARDWARE_POWERLEVELS 2
++#define FIJI_AT_DFLT 30
++
++#define FIJI_VOLTAGE_CONTROL_NONE 0x0
++#define FIJI_VOLTAGE_CONTROL_BY_GPIO 0x1
++#define FIJI_VOLTAGE_CONTROL_BY_SVID2 0x2
++#define FIJI_VOLTAGE_CONTROL_MERGED 0x3
++
++#define DPMTABLE_OD_UPDATE_SCLK 0x00000001
++#define DPMTABLE_OD_UPDATE_MCLK 0x00000002
++#define DPMTABLE_UPDATE_SCLK 0x00000004
++#define DPMTABLE_UPDATE_MCLK 0x00000008
++
++struct fiji_performance_level {
++ uint32_t memory_clock;
++ uint32_t engine_clock;
++ uint16_t pcie_gen;
++ uint16_t pcie_lane;
++};
++
++struct fiji_uvd_clocks {
++ uint32_t vclk;
++ uint32_t dclk;
++};
++
++struct fiji_vce_clocks {
++ uint32_t evclk;
++ uint32_t ecclk;
++};
++
++struct fiji_power_state {
++ uint32_t magic;
++ struct fiji_uvd_clocks uvd_clks;
++ struct fiji_vce_clocks vce_clks;
++ uint32_t sam_clk;
++ uint32_t acp_clk;
++ uint16_t performance_level_count;
++ bool dc_compatible;
++ uint32_t sclk_threshold;
++ struct fiji_performance_level performance_levels[FIJI_MAX_HARDWARE_POWERLEVELS];
++};
++
++struct fiji_dpm_level {
++ bool enabled;
++ uint32_t value;
++ uint32_t param1;
++};
++
++#define FIJI_MAX_DEEPSLEEP_DIVIDER_ID 5
++#define MAX_REGULAR_DPM_NUMBER 8
++#define FIJI_MINIMUM_ENGINE_CLOCK 2500
++
++struct fiji_single_dpm_table {
++ uint32_t count;
++ struct fiji_dpm_level dpm_levels[MAX_REGULAR_DPM_NUMBER];
++};
++
++struct fiji_dpm_table {
++ struct fiji_single_dpm_table sclk_table;
++ struct fiji_single_dpm_table mclk_table;
++ struct fiji_single_dpm_table pcie_speed_table;
++ struct fiji_single_dpm_table vddc_table;
++ struct fiji_single_dpm_table vddci_table;
++ struct fiji_single_dpm_table mvdd_table;
++};
++
++struct fiji_clock_registers {
++ uint32_t vCG_SPLL_FUNC_CNTL;
++ uint32_t vCG_SPLL_FUNC_CNTL_2;
++ uint32_t vCG_SPLL_FUNC_CNTL_3;
++ uint32_t vCG_SPLL_FUNC_CNTL_4;
++ uint32_t vCG_SPLL_SPREAD_SPECTRUM;
++ uint32_t vCG_SPLL_SPREAD_SPECTRUM_2;
++ uint32_t vDLL_CNTL;
++ uint32_t vMCLK_PWRMGT_CNTL;
++ uint32_t vMPLL_AD_FUNC_CNTL;
++ uint32_t vMPLL_DQ_FUNC_CNTL;
++ uint32_t vMPLL_FUNC_CNTL;
++ uint32_t vMPLL_FUNC_CNTL_1;
++ uint32_t vMPLL_FUNC_CNTL_2;
++ uint32_t vMPLL_SS1;
++ uint32_t vMPLL_SS2;
++};
++
++struct fiji_voltage_smio_registers {
++ uint32_t vS0_VID_LOWER_SMIO_CNTL;
++};
++
++#define FIJI_MAX_LEAKAGE_COUNT 8
++struct fiji_leakage_voltage {
++ uint16_t count;
++ uint16_t leakage_id[FIJI_MAX_LEAKAGE_COUNT];
++ uint16_t actual_voltage[FIJI_MAX_LEAKAGE_COUNT];
++};
++
++struct fiji_vbios_boot_state {
++ uint16_t mvdd_bootup_value;
++ uint16_t vddc_bootup_value;
++ uint16_t vddci_bootup_value;
++ uint32_t sclk_bootup_value;
++ uint32_t mclk_bootup_value;
++ uint16_t pcie_gen_bootup_value;
++ uint16_t pcie_lane_bootup_value;
++};
++
++struct fiji_bacos {
++ uint32_t best_match;
++ uint32_t baco_flags;
++ struct fiji_performance_level performance_level;
++};
++
++/* Ultra Low Voltage parameter structure */
++struct fiji_ulv_parm {
++ bool ulv_supported;
++ uint32_t cg_ulv_parameter;
++ uint32_t ulv_volt_change_delay;
++ struct fiji_performance_level ulv_power_level;
++};
++
++struct fiji_display_timing {
++ uint32_t min_clock_in_sr;
++ uint32_t num_existing_displays;
++};
++
++struct fiji_dpmlevel_enable_mask {
++ uint32_t uvd_dpm_enable_mask;
++ uint32_t vce_dpm_enable_mask;
++ uint32_t acp_dpm_enable_mask;
++ uint32_t samu_dpm_enable_mask;
++ uint32_t sclk_dpm_enable_mask;
++ uint32_t mclk_dpm_enable_mask;
++ uint32_t pcie_dpm_enable_mask;
++};
++
++struct fiji_pcie_perf_range {
++ uint16_t max;
++ uint16_t min;
++};
++
++struct fiji_hwmgr {
++ struct fiji_dpm_table dpm_table;
++ struct fiji_dpm_table golden_dpm_table;
++
++ uint32_t voting_rights_clients0;
++ uint32_t voting_rights_clients1;
++ uint32_t voting_rights_clients2;
++ uint32_t voting_rights_clients3;
++ uint32_t voting_rights_clients4;
++ uint32_t voting_rights_clients5;
++ uint32_t voting_rights_clients6;
++ uint32_t voting_rights_clients7;
++ uint32_t static_screen_threshold_unit;
++ uint32_t static_screen_threshold;
++ uint32_t voltage_control;
++ uint32_t vddc_vddci_delta;
++
++ uint32_t active_auto_throttle_sources;
++
++ struct fiji_clock_registers clock_registers;
++ struct fiji_voltage_smio_registers voltage_smio_registers;
++
++ bool is_memory_gddr5;
++ uint16_t acpi_vddc;
++ bool pspp_notify_required;
++ uint16_t force_pcie_gen;
++ uint16_t acpi_pcie_gen;
++ uint32_t pcie_gen_cap;
++ uint32_t pcie_lane_cap;
++ uint32_t pcie_spc_cap;
++ struct fiji_leakage_voltage vddc_leakage;
++ struct fiji_leakage_voltage Vddci_leakage;
++
++ uint32_t mvdd_control;
++ uint32_t vddc_mask_low;
++ uint32_t mvdd_mask_low;
++ uint16_t max_vddc_in_pptable;
++ uint16_t min_vddc_in_pptable;
++ uint16_t max_vddci_in_pptable;
++ uint16_t min_vddci_in_pptable;
++ uint32_t mclk_strobe_mode_threshold;
++ uint32_t mclk_stutter_mode_threshold;
++ uint32_t mclk_edc_enable_threshold;
++ uint32_t mclk_edcwr_enable_threshold;
++ bool is_uvd_enabled;
++ struct fiji_vbios_boot_state vbios_boot_state;
++
++ bool battery_state;
++ bool is_tlu_enabled;
++
++ /* ---- SMC SRAM Address of firmware header tables ---- */
++ uint32_t sram_end;
++ uint32_t dpm_table_start;
++ uint32_t soft_regs_start;
++ uint32_t mc_reg_table_start;
++ uint32_t fan_table_start;
++ uint32_t arb_table_start;
++ struct SMU73_Discrete_DpmTable smc_state_table;
++ struct SMU73_Discrete_Ulv ulv_setting;
++
++ /* ---- Stuff originally coming from Evergreen ---- */
++ uint32_t vddci_control;
++ struct pp_atomctrl_voltage_table vddc_voltage_table;
++ struct pp_atomctrl_voltage_table vddci_voltage_table;
++ struct pp_atomctrl_voltage_table mvdd_voltage_table;
++
++ uint32_t mgcg_cgtt_local2;
++ uint32_t mgcg_cgtt_local3;
++ uint32_t gpio_debug;
++ uint32_t mc_micro_code_feature;
++ uint32_t highest_mclk;
++ uint16_t acpi_vddci;
++ uint8_t mvdd_high_index;
++ uint8_t mvdd_low_index;
++ bool dll_default_on;
++ bool performance_request_registered;
++
++ /* ---- Low Power Features ---- */
++ struct fiji_bacos bacos;
++ struct fiji_ulv_parm ulv;
++
++ /* ---- CAC Stuff ---- */
++ uint32_t cac_table_start;
++ bool cac_configuration_required;
++ bool driver_calculate_cac_leakage;
++ bool cac_enabled;
++
++ /* ---- DPM2 Parameters ---- */
++ uint32_t power_containment_features;
++ bool enable_dte_feature;
++ bool enable_tdc_limit_feature;
++ bool enable_pkg_pwr_tracking_feature;
++ bool disable_uvd_power_tune_feature;
++ struct fiji_pt_defaults *power_tune_defaults;
++ struct SMU73_Discrete_PmFuses power_tune_table;
++ uint32_t dte_tj_offset;
++ uint32_t fast_watermark_threshold;
++
++ /* ---- Phase Shedding ---- */
++ bool vddc_phase_shed_control;
++
++ /* ---- DI/DT ---- */
++ struct fiji_display_timing display_timing;
++
++ /* ---- Thermal Temperature Setting ---- */
++ struct fiji_dpmlevel_enable_mask dpm_level_enable_mask;
++ uint32_t need_update_smu7_dpm_table;
++ uint32_t sclk_dpm_key_disabled;
++ uint32_t mclk_dpm_key_disabled;
++ uint32_t pcie_dpm_key_disabled;
++ uint32_t min_engine_clocks;
++ struct fiji_pcie_perf_range pcie_gen_performance;
++ struct fiji_pcie_perf_range pcie_lane_performance;
++ struct fiji_pcie_perf_range pcie_gen_power_saving;
++ struct fiji_pcie_perf_range pcie_lane_power_saving;
++ bool use_pcie_performance_levels;
++ bool use_pcie_power_saving_levels;
++ uint32_t activity_target[SMU73_MAX_LEVELS_GRAPHICS];
++ uint32_t mclk_activity_target;
++ uint32_t mclk_dpm0_activity_target;
++ uint32_t low_sclk_interrupt_threshold;
++ uint32_t last_mclk_dpm_enable_mask;
++ bool uvd_enabled;
++
++ /* ---- Power Gating States ---- */
++ bool uvd_power_gated;
++ bool vce_power_gated;
++ bool samu_power_gated;
++ bool acp_power_gated;
++ bool pg_acp_init;
++ bool frtc_enabled;
++ bool frtc_status_changed;
++};
++
++/* To convert to Q8.8 format for firmware */
++#define FIJI_Q88_FORMAT_CONVERSION_UNIT 256
++
++enum Fiji_I2CLineID {
++ Fiji_I2CLineID_DDC1 = 0x90,
++ Fiji_I2CLineID_DDC2 = 0x91,
++ Fiji_I2CLineID_DDC3 = 0x92,
++ Fiji_I2CLineID_DDC4 = 0x93,
++ Fiji_I2CLineID_DDC5 = 0x94,
++ Fiji_I2CLineID_DDC6 = 0x95,
++ Fiji_I2CLineID_SCLSDA = 0x96,
++ Fiji_I2CLineID_DDCVGA = 0x97
++};
++
++#define Fiji_I2C_DDC1DATA 0
++#define Fiji_I2C_DDC1CLK 1
++#define Fiji_I2C_DDC2DATA 2
++#define Fiji_I2C_DDC2CLK 3
++#define Fiji_I2C_DDC3DATA 4
++#define Fiji_I2C_DDC3CLK 5
++#define Fiji_I2C_SDA 40
++#define Fiji_I2C_SCL 41
++#define Fiji_I2C_DDC4DATA 65
++#define Fiji_I2C_DDC4CLK 66
++#define Fiji_I2C_DDC5DATA 0x48
++#define Fiji_I2C_DDC5CLK 0x49
++#define Fiji_I2C_DDC6DATA 0x4a
++#define Fiji_I2C_DDC6CLK 0x4b
++#define Fiji_I2C_DDCVGADATA 0x4c
++#define Fiji_I2C_DDCVGACLK 0x4d
++
++#define FIJI_UNUSED_GPIO_PIN 0x7F
++
++extern int tonga_initializa_dynamic_state_adjustment_rule_settings(struct pp_hwmgr *hwmgr);
++extern int tonga_hwmgr_backend_fini(struct pp_hwmgr *hwmgr);
++extern int tonga_get_mc_microcode_version (struct pp_hwmgr *hwmgr);
++extern uint16_t get_pcie_gen_support(uint32_t pcie_link_speed_cap, uint16_t ns_pcie_gen);
++extern uint16_t get_pcie_lane_support(uint32_t pcie_lane_width_cap, uint16_t ns_pcie_lanes);
++
++#define PP_HOST_TO_SMC_UL(X) cpu_to_be32(X)
++#define PP_SMC_TO_HOST_UL(X) be32_to_cpu(X)
++
++#define PP_HOST_TO_SMC_US(X) cpu_to_be16(X)
++#define PP_SMC_TO_HOST_US(X) be16_to_cpu(X)
++
++#define CONVERT_FROM_HOST_TO_SMC_UL(X) ((X) = PP_HOST_TO_SMC_UL(X))
++#define CONVERT_FROM_SMC_TO_HOST_UL(X) ((X) = PP_SMC_TO_HOST_UL(X))
++
++#define CONVERT_FROM_HOST_TO_SMC_US(X) ((X) = PP_HOST_TO_SMC_US(X))
++
++#endif /* _FIJI_HWMGR_H_ */
+diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/fiji_powertune.c b/drivers/gpu/drm/amd/powerplay/hwmgr/fiji_powertune.c
+new file mode 100644
+index 0000000..f89c98f
+--- /dev/null
++++ b/drivers/gpu/drm/amd/powerplay/hwmgr/fiji_powertune.c
+@@ -0,0 +1,553 @@
++/*
++ * Copyright 2015 Advanced Micro Devices, Inc.
++ *
++ * Permission is hereby granted, free of charge, to any person obtaining a
++ * copy of this software and associated documentation files (the "Software"),
++ * to deal in the Software without restriction, including without limitation
++ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
++ * and/or sell copies of the Software, and to permit persons to whom the
++ * Software is furnished to do so, subject to the following conditions:
++ *
++ * The above copyright notice and this permission notice shall be included in
++ * all copies or substantial portions of the Software.
++ *
++ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
++ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
++ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
++ * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
++ * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
++ * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
++ * OTHER DEALINGS IN THE SOFTWARE.
++ *
++ */
++
++#include "hwmgr.h"
++#include "smumgr.h"
++#include "fiji_hwmgr.h"
++#include "fiji_powertune.h"
++#include "fiji_smumgr.h"
++#include "smu73_discrete.h"
++#include "pp_debug.h"
++
++#define VOLTAGE_SCALE 4
++#define POWERTUNE_DEFAULT_SET_MAX 1
++
++struct fiji_pt_defaults fiji_power_tune_data_set_array[POWERTUNE_DEFAULT_SET_MAX] = {
++ /*sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc */
++ {1, 0xF, 0xFD,
++ /* TDC_MAWt, TdcWaterfallCtl, DTEAmbientTempBase */
++ 0x19, 5, 45}
++};
++
++void fiji_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
++{
++ struct fiji_hwmgr *fiji_hwmgr = (struct fiji_hwmgr *)(hwmgr->backend);
++ struct phm_ppt_v1_information *table_info =
++ (struct phm_ppt_v1_information *)(hwmgr->pptable);
++ uint32_t tmp = 0;
++
++ if(table_info &&
++ table_info->cac_dtp_table->usPowerTuneDataSetID <= POWERTUNE_DEFAULT_SET_MAX &&
++ table_info->cac_dtp_table->usPowerTuneDataSetID)
++ fiji_hwmgr->power_tune_defaults =
++ &fiji_power_tune_data_set_array
++ [table_info->cac_dtp_table->usPowerTuneDataSetID - 1];
++ else
++ fiji_hwmgr->power_tune_defaults = &fiji_power_tune_data_set_array[0];
++
++ /* Assume disabled */
++ phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_PowerContainment);
++ phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_CAC);
++ phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_SQRamping);
++ phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_DBRamping);
++ phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_TDRamping);
++ phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_TCPRamping);
++
++ fiji_hwmgr->dte_tj_offset = tmp;
++
++ if (!tmp) {
++ phm_cap_set(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_PowerContainment);
++
++ phm_cap_set(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_CAC);
++
++ fiji_hwmgr->fast_watermark_threshold = 100;
++
++ tmp = 1;
++ fiji_hwmgr->enable_dte_feature = tmp ? false : true;
++ fiji_hwmgr->enable_tdc_limit_feature = tmp ? true : false;
++ fiji_hwmgr->enable_pkg_pwr_tracking_feature = tmp ? true : false;
++ }
++}
++
++/* PPGen has the gain setting generated in x * 100 unit
++ * This function is to convert the unit to x * 4096(0x1000) unit.
++ * This is the unit expected by SMC firmware
++ */
++static uint16_t scale_fan_gain_settings(uint16_t raw_setting)
++{
++ uint32_t tmp;
++ tmp = raw_setting * 4096 / 100;
++ return (uint16_t)tmp;
++}
++
++static void get_scl_sda_value(uint8_t line, uint8_t *scl, uint8_t* sda)
++{
++ switch (line) {
++ case Fiji_I2CLineID_DDC1 :
++ *scl = Fiji_I2C_DDC1CLK;
++ *sda = Fiji_I2C_DDC1DATA;
++ break;
++ case Fiji_I2CLineID_DDC2 :
++ *scl = Fiji_I2C_DDC2CLK;
++ *sda = Fiji_I2C_DDC2DATA;
++ break;
++ case Fiji_I2CLineID_DDC3 :
++ *scl = Fiji_I2C_DDC3CLK;
++ *sda = Fiji_I2C_DDC3DATA;
++ break;
++ case Fiji_I2CLineID_DDC4 :
++ *scl = Fiji_I2C_DDC4CLK;
++ *sda = Fiji_I2C_DDC4DATA;
++ break;
++ case Fiji_I2CLineID_DDC5 :
++ *scl = Fiji_I2C_DDC5CLK;
++ *sda = Fiji_I2C_DDC5DATA;
++ break;
++ case Fiji_I2CLineID_DDC6 :
++ *scl = Fiji_I2C_DDC6CLK;
++ *sda = Fiji_I2C_DDC6DATA;
++ break;
++ case Fiji_I2CLineID_SCLSDA :
++ *scl = Fiji_I2C_SCL;
++ *sda = Fiji_I2C_SDA;
++ break;
++ case Fiji_I2CLineID_DDCVGA :
++ *scl = Fiji_I2C_DDCVGACLK;
++ *sda = Fiji_I2C_DDCVGADATA;
++ break;
++ default:
++ *scl = 0;
++ *sda = 0;
++ break;
++ }
++}
++
++int fiji_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
++{
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++ struct fiji_pt_defaults *defaults = data->power_tune_defaults;
++ SMU73_Discrete_DpmTable *dpm_table = &(data->smc_state_table);
++ struct phm_ppt_v1_information *table_info =
++ (struct phm_ppt_v1_information *)(hwmgr->pptable);
++ struct phm_cac_tdp_table *cac_dtp_table = table_info->cac_dtp_table;
++ struct pp_advance_fan_control_parameters *fan_table=
++ &hwmgr->thermal_controller.advanceFanControlParameters;
++ uint8_t uc_scl, uc_sda;
++
++ /* TDP number of fraction bits are changed from 8 to 7 for Fiji
++ * as requested by SMC team
++ */
++ dpm_table->DefaultTdp = PP_HOST_TO_SMC_US(
++ (uint16_t)(cac_dtp_table->usTDP * 128));
++ dpm_table->TargetTdp = PP_HOST_TO_SMC_US(
++ (uint16_t)(cac_dtp_table->usTDP * 128));
++
++ PP_ASSERT_WITH_CODE(cac_dtp_table->usTargetOperatingTemp <= 255,
++ "Target Operating Temp is out of Range!",);
++
++ dpm_table->GpuTjMax = (uint8_t)(cac_dtp_table->usTargetOperatingTemp);
++ dpm_table->GpuTjHyst = 8;
++
++ dpm_table->DTEAmbientTempBase = defaults->DTEAmbientTempBase;
++
++ /* The following are for new Fiji Multi-input fan/thermal control */
++ dpm_table->TemperatureLimitEdge = PP_HOST_TO_SMC_US(
++ cac_dtp_table->usTargetOperatingTemp * 256);
++ dpm_table->TemperatureLimitHotspot = PP_HOST_TO_SMC_US(
++ cac_dtp_table->usTemperatureLimitHotspot * 256);
++ dpm_table->TemperatureLimitLiquid1 = PP_HOST_TO_SMC_US(
++ cac_dtp_table->usTemperatureLimitLiquid1 * 256);
++ dpm_table->TemperatureLimitLiquid2 = PP_HOST_TO_SMC_US(
++ cac_dtp_table->usTemperatureLimitLiquid2 * 256);
++ dpm_table->TemperatureLimitVrVddc = PP_HOST_TO_SMC_US(
++ cac_dtp_table->usTemperatureLimitVrVddc * 256);
++ dpm_table->TemperatureLimitVrMvdd = PP_HOST_TO_SMC_US(
++ cac_dtp_table->usTemperatureLimitVrMvdd * 256);
++ dpm_table->TemperatureLimitPlx = PP_HOST_TO_SMC_US(
++ cac_dtp_table->usTemperatureLimitPlx * 256);
++
++ dpm_table->FanGainEdge = PP_HOST_TO_SMC_US(
++ scale_fan_gain_settings(fan_table->usFanGainEdge));
++ dpm_table->FanGainHotspot = PP_HOST_TO_SMC_US(
++ scale_fan_gain_settings(fan_table->usFanGainHotspot));
++ dpm_table->FanGainLiquid = PP_HOST_TO_SMC_US(
++ scale_fan_gain_settings(fan_table->usFanGainLiquid));
++ dpm_table->FanGainVrVddc = PP_HOST_TO_SMC_US(
++ scale_fan_gain_settings(fan_table->usFanGainVrVddc));
++ dpm_table->FanGainVrMvdd = PP_HOST_TO_SMC_US(
++ scale_fan_gain_settings(fan_table->usFanGainVrMvdd));
++ dpm_table->FanGainPlx = PP_HOST_TO_SMC_US(
++ scale_fan_gain_settings(fan_table->usFanGainPlx));
++ dpm_table->FanGainHbm = PP_HOST_TO_SMC_US(
++ scale_fan_gain_settings(fan_table->usFanGainHbm));
++
++ dpm_table->Liquid1_I2C_address = cac_dtp_table->ucLiquid1_I2C_address;
++ dpm_table->Liquid2_I2C_address = cac_dtp_table->ucLiquid2_I2C_address;
++ dpm_table->Vr_I2C_address = cac_dtp_table->ucVr_I2C_address;
++ dpm_table->Plx_I2C_address = cac_dtp_table->ucPlx_I2C_address;
++
++ get_scl_sda_value(cac_dtp_table->ucLiquid_I2C_Line, &uc_scl, &uc_sda);
++ dpm_table->Liquid_I2C_LineSCL = uc_scl;
++ dpm_table->Liquid_I2C_LineSDA = uc_sda;
++
++ get_scl_sda_value(cac_dtp_table->ucVr_I2C_Line, &uc_scl, &uc_sda);
++ dpm_table->Vr_I2C_LineSCL = uc_scl;
++ dpm_table->Vr_I2C_LineSDA = uc_sda;
++
++ get_scl_sda_value(cac_dtp_table->ucPlx_I2C_Line, &uc_scl, &uc_sda);
++ dpm_table->Plx_I2C_LineSCL = uc_scl;
++ dpm_table->Plx_I2C_LineSDA = uc_sda;
++
++ return 0;
++}
++
++static int fiji_populate_svi_load_line(struct pp_hwmgr *hwmgr)
++{
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++ struct fiji_pt_defaults *defaults = data->power_tune_defaults;
++
++ data->power_tune_table.SviLoadLineEn = defaults->SviLoadLineEn;
++ data->power_tune_table.SviLoadLineVddC = defaults->SviLoadLineVddC;
++ data->power_tune_table.SviLoadLineTrimVddC = 3;
++ data->power_tune_table.SviLoadLineOffsetVddC = 0;
++
++ return 0;
++}
++
++static int fiji_populate_tdc_limit(struct pp_hwmgr *hwmgr)
++{
++ uint16_t tdc_limit;
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++ struct phm_ppt_v1_information *table_info =
++ (struct phm_ppt_v1_information *)(hwmgr->pptable);
++ struct fiji_pt_defaults *defaults = data->power_tune_defaults;
++
++ /* TDC number of fraction bits are changed from 8 to 7
++ * for Fiji as requested by SMC team
++ */
++ tdc_limit = (uint16_t)(table_info->cac_dtp_table->usTDC * 128);
++ data->power_tune_table.TDC_VDDC_PkgLimit =
++ CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
++ data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
++ defaults->TDC_VDDC_ThrottleReleaseLimitPerc;
++ data->power_tune_table.TDC_MAWt = defaults->TDC_MAWt;
++
++ return 0;
++}
++
++static int fiji_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
++{
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++ struct fiji_pt_defaults *defaults = data->power_tune_defaults;
++ uint32_t temp;
++
++ if (fiji_read_smc_sram_dword(hwmgr->smumgr,
++ fuse_table_offset +
++ offsetof(SMU73_Discrete_PmFuses, TdcWaterfallCtl),
++ (uint32_t *)&temp, data->sram_end))
++ PP_ASSERT_WITH_CODE(false,
++ "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",
++ return -EINVAL);
++ else {
++ data->power_tune_table.TdcWaterfallCtl = defaults->TdcWaterfallCtl;
++ data->power_tune_table.LPMLTemperatureMin =
++ (uint8_t)((temp >> 16) & 0xff);
++ data->power_tune_table.LPMLTemperatureMax =
++ (uint8_t)((temp >> 8) & 0xff);
++ data->power_tune_table.Reserved = (uint8_t)(temp & 0xff);
++ }
++ return 0;
++}
++
++static int fiji_populate_temperature_scaler(struct pp_hwmgr *hwmgr)
++{
++ int i;
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++
++ /* Currently not used. Set all to zero. */
++ for (i = 0; i < 16; i++)
++ data->power_tune_table.LPMLTemperatureScaler[i] = 0;
++
++ return 0;
++}
++
++static int fiji_populate_fuzzy_fan(struct pp_hwmgr *hwmgr)
++{
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++
++ if( (hwmgr->thermal_controller.advanceFanControlParameters.
++ usFanOutputSensitivity & (1 << 15)) ||
++ 0 == hwmgr->thermal_controller.advanceFanControlParameters.
++ usFanOutputSensitivity )
++ hwmgr->thermal_controller.advanceFanControlParameters.
++ usFanOutputSensitivity = hwmgr->thermal_controller.
++ advanceFanControlParameters.usDefaultFanOutputSensitivity;
++
++ data->power_tune_table.FuzzyFan_PwmSetDelta =
++ PP_HOST_TO_SMC_US(hwmgr->thermal_controller.
++ advanceFanControlParameters.usFanOutputSensitivity);
++ return 0;
++}
++
++static int fiji_populate_gnb_lpml(struct pp_hwmgr *hwmgr)
++{
++ int i;
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++
++ /* Currently not used. Set all to zero. */
++ for (i = 0; i < 16; i++)
++ data->power_tune_table.GnbLPML[i] = 0;
++
++ return 0;
++}
++
++static int fiji_min_max_vgnb_lpml_id_from_bapm_vddc(struct pp_hwmgr *hwmgr)
++{
++ /* int i, min, max;
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++ uint8_t * pHiVID = data->power_tune_table.BapmVddCVidHiSidd;
++ uint8_t * pLoVID = data->power_tune_table.BapmVddCVidLoSidd;
++
++ min = max = pHiVID[0];
++ for (i = 0; i < 8; i++) {
++ if (0 != pHiVID[i]) {
++ if (min > pHiVID[i])
++ min = pHiVID[i];
++ if (max < pHiVID[i])
++ max = pHiVID[i];
++ }
++
++ if (0 != pLoVID[i]) {
++ if (min > pLoVID[i])
++ min = pLoVID[i];
++ if (max < pLoVID[i])
++ max = pLoVID[i];
++ }
++ }
++
++ PP_ASSERT_WITH_CODE((0 != min) && (0 != max), "BapmVddcVidSidd table does not exist!", return int_Failed);
++ data->power_tune_table.GnbLPMLMaxVid = (uint8_t)max;
++ data->power_tune_table.GnbLPMLMinVid = (uint8_t)min;
++*/
++ return 0;
++}
++
++static int fiji_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
++{
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++ struct phm_ppt_v1_information *table_info =
++ (struct phm_ppt_v1_information *)(hwmgr->pptable);
++ uint16_t HiSidd = data->power_tune_table.BapmVddCBaseLeakageHiSidd;
++ uint16_t LoSidd = data->power_tune_table.BapmVddCBaseLeakageLoSidd;
++ struct phm_cac_tdp_table *cac_table = table_info->cac_dtp_table;
++
++ HiSidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
++ LoSidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
++
++ data->power_tune_table.BapmVddCBaseLeakageHiSidd =
++ CONVERT_FROM_HOST_TO_SMC_US(HiSidd);
++ data->power_tune_table.BapmVddCBaseLeakageLoSidd =
++ CONVERT_FROM_HOST_TO_SMC_US(LoSidd);
++
++ return 0;
++}
++
++int fiji_populate_pm_fuses(struct pp_hwmgr *hwmgr)
++{
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++ uint32_t pm_fuse_table_offset;
++
++ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_PowerContainment)) {
++ if (fiji_read_smc_sram_dword(hwmgr->smumgr,
++ SMU7_FIRMWARE_HEADER_LOCATION +
++ offsetof(SMU73_Firmware_Header, PmFuseTable),
++ &pm_fuse_table_offset, data->sram_end))
++ PP_ASSERT_WITH_CODE(false,
++ "Attempt to get pm_fuse_table_offset Failed!",
++ return -EINVAL);
++
++ /* DW6 */
++ if (fiji_populate_svi_load_line(hwmgr))
++ PP_ASSERT_WITH_CODE(false,
++ "Attempt to populate SviLoadLine Failed!",
++ return -EINVAL);
++ /* DW7 */
++ if (fiji_populate_tdc_limit(hwmgr))
++ PP_ASSERT_WITH_CODE(false,
++ "Attempt to populate TDCLimit Failed!", return -EINVAL);
++ /* DW8 */
++ if (fiji_populate_dw8(hwmgr, pm_fuse_table_offset))
++ PP_ASSERT_WITH_CODE(false,
++ "Attempt to populate TdcWaterfallCtl, "
++ "LPMLTemperature Min and Max Failed!",
++ return -EINVAL);
++
++ /* DW9-DW12 */
++ if (0 != fiji_populate_temperature_scaler(hwmgr))
++ PP_ASSERT_WITH_CODE(false,
++ "Attempt to populate LPMLTemperatureScaler Failed!",
++ return -EINVAL);
++
++ /* DW13-DW14 */
++ if(fiji_populate_fuzzy_fan(hwmgr))
++ PP_ASSERT_WITH_CODE(false,
++ "Attempt to populate Fuzzy Fan Control parameters Failed!",
++ return -EINVAL);
++
++ /* DW15-DW18 */
++ if (fiji_populate_gnb_lpml(hwmgr))
++ PP_ASSERT_WITH_CODE(false,
++ "Attempt to populate GnbLPML Failed!",
++ return -EINVAL);
++
++ /* DW19 */
++ if (fiji_min_max_vgnb_lpml_id_from_bapm_vddc(hwmgr))
++ PP_ASSERT_WITH_CODE(false,
++ "Attempt to populate GnbLPML Min and Max Vid Failed!",
++ return -EINVAL);
++
++ /* DW20 */
++ if (fiji_populate_bapm_vddc_base_leakage_sidd(hwmgr))
++ PP_ASSERT_WITH_CODE(false,
++ "Attempt to populate BapmVddCBaseLeakage Hi and Lo "
++ "Sidd Failed!", return -EINVAL);
++
++ if (fiji_copy_bytes_to_smc(hwmgr->smumgr, pm_fuse_table_offset,
++ (uint8_t *)&data->power_tune_table,
++ sizeof(struct SMU73_Discrete_PmFuses), data->sram_end))
++ PP_ASSERT_WITH_CODE(false,
++ "Attempt to download PmFuseTable Failed!",
++ return -EINVAL);
++ }
++ return 0;
++}
++
++int fiji_enable_smc_cac(struct pp_hwmgr *hwmgr)
++{
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++ int result = 0;
++
++ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_CAC)) {
++ int smc_result;
++ smc_result = smum_send_msg_to_smc(hwmgr->smumgr,
++ (uint16_t)(PPSMC_MSG_EnableCac));
++ PP_ASSERT_WITH_CODE((0 == smc_result),
++ "Failed to enable CAC in SMC.", result = -1);
++
++ data->cac_enabled = (0 == smc_result) ? true : false;
++ }
++ return result;
++}
++
++int fiji_set_power_limit(struct pp_hwmgr *hwmgr, uint32_t n)
++{
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++
++ if(data->power_containment_features &
++ POWERCONTAINMENT_FEATURE_PkgPwrLimit)
++ return smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
++ PPSMC_MSG_PkgPwrSetLimit, n);
++ return 0;
++}
++
++static int fiji_set_overdriver_target_tdp(struct pp_hwmgr *pHwMgr, uint32_t target_tdp)
++{
++ return smum_send_msg_to_smc_with_parameter(pHwMgr->smumgr,
++ PPSMC_MSG_OverDriveSetTargetTdp, target_tdp);
++}
++
++int fiji_enable_power_containment(struct pp_hwmgr *hwmgr)
++{
++ struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
++ struct phm_ppt_v1_information *table_info =
++ (struct phm_ppt_v1_information *)(hwmgr->pptable);
++ int smc_result;
++ int result = 0;
++
++ data->power_containment_features = 0;
++ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_PowerContainment)) {
++ if (data->enable_dte_feature) {
++ smc_result = smum_send_msg_to_smc(hwmgr->smumgr,
++ (uint16_t)(PPSMC_MSG_EnableDTE));
++ PP_ASSERT_WITH_CODE((0 == smc_result),
++ "Failed to enable DTE in SMC.", result = -1;);
++ if (0 == smc_result)
++ data->power_containment_features |= POWERCONTAINMENT_FEATURE_DTE;
++ }
++
++ if (data->enable_tdc_limit_feature) {
++ smc_result = smum_send_msg_to_smc(hwmgr->smumgr,
++ (uint16_t)(PPSMC_MSG_TDCLimitEnable));
++ PP_ASSERT_WITH_CODE((0 == smc_result),
++ "Failed to enable TDCLimit in SMC.", result = -1;);
++ if (0 == smc_result)
++ data->power_containment_features |=
++ POWERCONTAINMENT_FEATURE_TDCLimit;
++ }
++
++ if (data->enable_pkg_pwr_tracking_feature) {
++ smc_result = smum_send_msg_to_smc(hwmgr->smumgr,
++ (uint16_t)(PPSMC_MSG_PkgPwrLimitEnable));
++ PP_ASSERT_WITH_CODE((0 == smc_result),
++ "Failed to enable PkgPwrTracking in SMC.", result = -1;);
++ if (0 == smc_result) {
++ struct phm_cac_tdp_table *cac_table =
++ table_info->cac_dtp_table;
++ uint32_t default_limit =
++ (uint32_t)(cac_table->usMaximumPowerDeliveryLimit * 256);
++
++ data->power_containment_features |=
++ POWERCONTAINMENT_FEATURE_PkgPwrLimit;
++
++ if (fiji_set_power_limit(hwmgr, default_limit))
++ printk(KERN_ERR "Failed to set Default Power Limit in SMC!");
++ }
++ }
++ }
++ return result;
++}
++
++int fiji_power_control_set_level(struct pp_hwmgr *hwmgr)
++{
++ struct phm_ppt_v1_information *table_info =
++ (struct phm_ppt_v1_information *)(hwmgr->pptable);
++ struct phm_cac_tdp_table *cac_table = table_info->cac_dtp_table;
++ int adjust_percent, target_tdp;
++ int result = 0;
++
++ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_PowerContainment)) {
++ /* adjustment percentage has already been validated */
++ adjust_percent = hwmgr->platform_descriptor.TDPAdjustmentPolarity ?
++ hwmgr->platform_descriptor.TDPAdjustment :
++ (-1 * hwmgr->platform_descriptor.TDPAdjustment);
++ /* SMC requested that target_tdp to be 7 bit fraction in DPM table
++ * but message to be 8 bit fraction for messages
++ */
++ target_tdp = ((100 + adjust_percent) * (int)(cac_table->usTDP * 256)) / 100;
++ result = fiji_set_overdriver_target_tdp(hwmgr, (uint32_t)target_tdp);
++ }
++
++ return result;
++}
+diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/fiji_powertune.h b/drivers/gpu/drm/amd/powerplay/hwmgr/fiji_powertune.h
+new file mode 100644
+index 0000000..55e5820
+--- /dev/null
++++ b/drivers/gpu/drm/amd/powerplay/hwmgr/fiji_powertune.h
+@@ -0,0 +1,66 @@
++/*
++ * Copyright 2015 Advanced Micro Devices, Inc.
++ *
++ * Permission is hereby granted, free of charge, to any person obtaining a
++ * copy of this software and associated documentation files (the "Software"),
++ * to deal in the Software without restriction, including without limitation
++ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
++ * and/or sell copies of the Software, and to permit persons to whom the
++ * Software is furnished to do so, subject to the following conditions:
++ *
++ * The above copyright notice and this permission notice shall be included in
++ * all copies or substantial portions of the Software.
++ *
++ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
++ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
++ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
++ * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
++ * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
++ * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
++ * OTHER DEALINGS IN THE SOFTWARE.
++ *
++ */
++#ifndef FIJI_POWERTUNE_H
++#define FIJI_POWERTUNE_H
++
++enum fiji_pt_config_reg_type {
++ FIJI_CONFIGREG_MMR = 0,
++ FIJI_CONFIGREG_SMC_IND,
++ FIJI_CONFIGREG_DIDT_IND,
++ FIJI_CONFIGREG_CACHE,
++ FIJI_CONFIGREG_MAX
++};
++
++/* PowerContainment Features */
++#define POWERCONTAINMENT_FEATURE_DTE 0x00000001
++#define POWERCONTAINMENT_FEATURE_TDCLimit 0x00000002
++#define POWERCONTAINMENT_FEATURE_PkgPwrLimit 0x00000004
++
++struct fiji_pt_config_reg {
++ uint32_t offset;
++ uint32_t mask;
++ uint32_t shift;
++ uint32_t value;
++ enum fiji_pt_config_reg_type type;
++};
++
++struct fiji_pt_defaults
++{
++ uint8_t SviLoadLineEn;
++ uint8_t SviLoadLineVddC;
++ uint8_t TDC_VDDC_ThrottleReleaseLimitPerc;
++ uint8_t TDC_MAWt;
++ uint8_t TdcWaterfallCtl;
++ uint8_t DTEAmbientTempBase;
++};
++
++void fiji_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr);
++int fiji_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr);
++int fiji_populate_pm_fuses(struct pp_hwmgr *hwmgr);
++int fiji_enable_smc_cac(struct pp_hwmgr *hwmgr);
++int fiji_enable_power_containment(struct pp_hwmgr *hwmgr);
++int fiji_set_power_limit(struct pp_hwmgr *hwmgr, uint32_t n);
++int fiji_power_control_set_level(struct pp_hwmgr *hwmgr);
++
++#endif /* FIJI_POWERTUNE_H */
++
+diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/hwmgr.c b/drivers/gpu/drm/amd/powerplay/hwmgr/hwmgr.c
+index 407b2e3..f243e40 100644
+--- a/drivers/gpu/drm/amd/powerplay/hwmgr/hwmgr.c
++++ b/drivers/gpu/drm/amd/powerplay/hwmgr/hwmgr.c
+@@ -30,6 +30,8 @@
+ #include "cz_hwmgr.h"
+ #include "tonga_hwmgr.h"
+
++extern int fiji_hwmgr_init(struct pp_hwmgr *hwmgr);
++
+ int hwmgr_init(struct amd_pp_init *pp_init, struct pp_instance *handle)
+ {
+ struct pp_hwmgr *hwmgr;
+@@ -59,6 +61,9 @@ int hwmgr_init(struct amd_pp_init *pp_init, struct pp_instance *handle)
+ case CHIP_TONGA:
+ tonga_hwmgr_init(hwmgr);
+ break;
++ case CHIP_FIJI:
++ fiji_hwmgr_init(hwmgr);
++ break;
+ default:
+ return -EINVAL;
+ }
+--
+2.7.4
+