aboutsummaryrefslogtreecommitdiffstats
path: root/common/recipes-kernel/linux/files/0056-drm-amd-powerplay-update-atomctrl-for-fiji.patch
diff options
context:
space:
mode:
Diffstat (limited to 'common/recipes-kernel/linux/files/0056-drm-amd-powerplay-update-atomctrl-for-fiji.patch')
-rw-r--r--common/recipes-kernel/linux/files/0056-drm-amd-powerplay-update-atomctrl-for-fiji.patch621
1 files changed, 621 insertions, 0 deletions
diff --git a/common/recipes-kernel/linux/files/0056-drm-amd-powerplay-update-atomctrl-for-fiji.patch b/common/recipes-kernel/linux/files/0056-drm-amd-powerplay-update-atomctrl-for-fiji.patch
new file mode 100644
index 00000000..49111cc2
--- /dev/null
+++ b/common/recipes-kernel/linux/files/0056-drm-amd-powerplay-update-atomctrl-for-fiji.patch
@@ -0,0 +1,621 @@
+From 5f8eb56f0aacf11a3701dcb226657cea26c44dad Mon Sep 17 00:00:00 2001
+From: Eric Huang <JinHuiEric.Huang@amd.com>
+Date: Mon, 9 Nov 2015 17:35:45 -0500
+Subject: [PATCH 0056/1110] drm/amd/powerplay: update atomctrl for fiji
+
+Add some new functions to support Fiji. Split out
+from the previous patch.
+
+Reviewed-by: Jammy Zhou <Jammy.Zhou@amd.com>
+Signed-off-by: Eric Huang <JinHuiEric.Huang@amd.com>
+---
+ drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.c | 489 +++++++++++++++++++++-
+ drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.h | 6 +
+ drivers/gpu/drm/amd/powerplay/hwmgr/tonga_hwmgr.c | 10 +-
+ 3 files changed, 496 insertions(+), 9 deletions(-)
+
+diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.c b/drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.c
+index 9af2f59..8b47ea0 100644
+--- a/drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.c
++++ b/drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.c
+@@ -28,6 +28,8 @@
+ #include "atombios.h"
+ #include "cgs_common.h"
+ #include "pp_debug.h"
++#include "ppevvmath.h"
++
+ #define MEM_ID_MASK 0xff000000
+ #define MEM_ID_SHIFT 24
+ #define CLOCK_RANGE_MASK 0x00ffffff
+@@ -94,7 +96,7 @@ static int atomctrl_retrieve_ac_timing(
+ * VBIOS set end of memory clock AC timing registers by ucPreRegDataLength bit6 = 1
+ * @param reg_block the address ATOM_INIT_REG_BLOCK
+ * @param table the address of MCRegTable
+- * @return PP_Result_OK
++ * @return 0
+ */
+ static int atomctrl_set_mc_reg_address_table(
+ ATOM_INIT_REG_BLOCK *reg_block,
+@@ -286,6 +288,31 @@ int atomctrl_get_memory_pll_dividers_si(
+ return result;
+ }
+
++/** atomctrl_get_memory_pll_dividers_vi().
++ *
++ * @param hwmgr input parameter: pointer to HwMgr
++ * @param clock_value input parameter: memory clock
++ * @param dividers output parameter: memory PLL dividers
++ */
++int atomctrl_get_memory_pll_dividers_vi(struct pp_hwmgr *hwmgr,
++ uint32_t clock_value, pp_atomctrl_memory_clock_param *mpll_param)
++{
++ COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_2 mpll_parameters;
++ int result;
++
++ mpll_parameters.ulClock.ulClock = (uint32_t)clock_value;
++
++ result = cgs_atom_exec_cmd_table(hwmgr->device,
++ GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
++ &mpll_parameters);
++
++ if (!result)
++ mpll_param->mpll_post_divider =
++ (uint32_t)mpll_parameters.ulClock.ucPostDiv;
++
++ return result;
++}
++
+ int atomctrl_get_engine_pll_dividers_vi(
+ struct pp_hwmgr *hwmgr,
+ uint32_t clock_value,
+@@ -387,7 +414,7 @@ uint32_t atomctrl_get_reference_clock(struct pp_hwmgr *hwmgr)
+ }
+
+ /**
+- * Returns 0 if the given voltage type is controlled by GPIO pins.
++ * Returns true if the given voltage type is controlled by GPIO pins.
+ * voltage_type is one of SET_VOLTAGE_TYPE_ASIC_VDDC,
+ * SET_VOLTAGE_TYPE_ASIC_MVDDC, SET_VOLTAGE_TYPE_ASIC_MVDDQ.
+ * voltage_mode is one of ATOM_SET_VOLTAGE, ATOM_SET_VOLTAGE_PHASE
+@@ -402,10 +429,10 @@ bool atomctrl_is_voltage_controled_by_gpio_v3(
+ bool ret;
+
+ PP_ASSERT_WITH_CODE((NULL != voltage_info),
+- "Could not find Voltage Table in BIOS.", return -1;);
++ "Could not find Voltage Table in BIOS.", return false;);
+
+ ret = (NULL != atomctrl_lookup_voltage_type_v3
+- (voltage_info, voltage_type, voltage_mode)) ? 0 : 1;
++ (voltage_info, voltage_type, voltage_mode)) ? true : false;
+
+ return ret;
+ }
+@@ -525,6 +552,441 @@ bool atomctrl_get_pp_assign_pin(
+ return bRet;
+ }
+
++int atomctrl_calculate_voltage_evv_on_sclk(
++ struct pp_hwmgr *hwmgr,
++ uint8_t voltage_type,
++ uint32_t sclk,
++ uint16_t virtual_voltage_Id,
++ uint16_t *voltage,
++ uint16_t dpm_level,
++ bool debug)
++{
++ ATOM_ASIC_PROFILING_INFO_V3_4 *getASICProfilingInfo;
++
++ EFUSE_LINEAR_FUNC_PARAM sRO_fuse;
++ EFUSE_LINEAR_FUNC_PARAM sCACm_fuse;
++ EFUSE_LINEAR_FUNC_PARAM sCACb_fuse;
++ EFUSE_LOGISTIC_FUNC_PARAM sKt_Beta_fuse;
++ EFUSE_LOGISTIC_FUNC_PARAM sKv_m_fuse;
++ EFUSE_LOGISTIC_FUNC_PARAM sKv_b_fuse;
++ EFUSE_INPUT_PARAMETER sInput_FuseValues;
++ READ_EFUSE_VALUE_PARAMETER sOutput_FuseValues;
++
++ uint32_t ul_RO_fused, ul_CACb_fused, ul_CACm_fused, ul_Kt_Beta_fused, ul_Kv_m_fused, ul_Kv_b_fused;
++ fInt fSM_A0, fSM_A1, fSM_A2, fSM_A3, fSM_A4, fSM_A5, fSM_A6, fSM_A7;
++ fInt fMargin_RO_a, fMargin_RO_b, fMargin_RO_c, fMargin_fixed, fMargin_FMAX_mean, fMargin_Plat_mean, fMargin_FMAX_sigma, fMargin_Plat_sigma, fMargin_DC_sigma;
++ fInt fLkg_FT, repeat;
++ fInt fMicro_FMAX, fMicro_CR, fSigma_FMAX, fSigma_CR, fSigma_DC, fDC_SCLK, fSquared_Sigma_DC, fSquared_Sigma_CR, fSquared_Sigma_FMAX;
++ fInt fRLL_LoadLine, fPowerDPMx, fDerateTDP, fVDDC_base, fA_Term, fC_Term, fB_Term, fRO_DC_margin;
++ fInt fRO_fused, fCACm_fused, fCACb_fused, fKv_m_fused, fKv_b_fused, fKt_Beta_fused, fFT_Lkg_V0NORM;
++ fInt fSclk_margin, fSclk, fEVV_V;
++ fInt fV_min, fV_max, fT_prod, fLKG_Factor, fT_FT, fV_FT, fV_x, fTDP_Power, fTDP_Power_right, fTDP_Power_left, fTDP_Current, fV_NL;
++ uint32_t ul_FT_Lkg_V0NORM;
++ fInt fLn_MaxDivMin, fMin, fAverage, fRange;
++ fInt fRoots[2];
++ fInt fStepSize = GetScaledFraction(625, 100000);
++
++ int result;
++
++ getASICProfilingInfo = (ATOM_ASIC_PROFILING_INFO_V3_4 *)
++ cgs_atom_get_data_table(hwmgr->device,
++ GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
++ NULL, NULL, NULL);
++
++ if (!getASICProfilingInfo)
++ return -1;
++
++ if(getASICProfilingInfo->asHeader.ucTableFormatRevision < 3 ||
++ (getASICProfilingInfo->asHeader.ucTableFormatRevision == 3 &&
++ getASICProfilingInfo->asHeader.ucTableContentRevision < 4))
++ return -1;
++
++ /*-----------------------------------------------------------
++ *GETTING MULTI-STEP PARAMETERS RELATED TO CURRENT DPM LEVEL
++ *-----------------------------------------------------------
++ */
++ fRLL_LoadLine = Divide(getASICProfilingInfo->ulLoadLineSlop, 1000);
++
++ switch (dpm_level) {
++ case 1:
++ fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm1);
++ fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM1, 1000);
++ break;
++ case 2:
++ fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm2);
++ fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM2, 1000);
++ break;
++ case 3:
++ fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm3);
++ fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM3, 1000);
++ break;
++ case 4:
++ fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm4);
++ fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM4, 1000);
++ break;
++ case 5:
++ fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm5);
++ fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM5, 1000);
++ break;
++ case 6:
++ fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm6);
++ fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM6, 1000);
++ break;
++ case 7:
++ fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm7);
++ fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM7, 1000);
++ break;
++ default:
++ printk(KERN_ERR "DPM Level not supported\n");
++ fPowerDPMx = Convert_ULONG_ToFraction(1);
++ fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM0, 1000);
++ }
++
++ /*-------------------------
++ * DECODING FUSE VALUES
++ * ------------------------
++ */
++ /*Decode RO_Fused*/
++ sRO_fuse = getASICProfilingInfo->sRoFuse;
++
++ sInput_FuseValues.usEfuseIndex = sRO_fuse.usEfuseIndex;
++ sInput_FuseValues.ucBitShift = sRO_fuse.ucEfuseBitLSB;
++ sInput_FuseValues.ucBitLength = sRO_fuse.ucEfuseLength;
++
++ sOutput_FuseValues.sEfuse = sInput_FuseValues;
++
++ result = cgs_atom_exec_cmd_table(hwmgr->device,
++ GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
++ &sOutput_FuseValues);
++
++ if (result)
++ return result;
++
++ /* Finally, the actual fuse value */
++ ul_RO_fused = sOutput_FuseValues.ulEfuseValue;
++ fMin = GetScaledFraction(sRO_fuse.ulEfuseMin, 1);
++ fRange = GetScaledFraction(sRO_fuse.ulEfuseEncodeRange, 1);
++ fRO_fused = fDecodeLinearFuse(ul_RO_fused, fMin, fRange, sRO_fuse.ucEfuseLength);
++
++ sCACm_fuse = getASICProfilingInfo->sCACm;
++
++ sInput_FuseValues.usEfuseIndex = sCACm_fuse.usEfuseIndex;
++ sInput_FuseValues.ucBitShift = sCACm_fuse.ucEfuseBitLSB;
++ sInput_FuseValues.ucBitLength = sCACm_fuse.ucEfuseLength;
++
++ sOutput_FuseValues.sEfuse = sInput_FuseValues;
++
++ result = cgs_atom_exec_cmd_table(hwmgr->device,
++ GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
++ &sOutput_FuseValues);
++
++ if (result)
++ return result;
++
++ ul_CACm_fused = sOutput_FuseValues.ulEfuseValue;
++ fMin = GetScaledFraction(sCACm_fuse.ulEfuseMin, 1000);
++ fRange = GetScaledFraction(sCACm_fuse.ulEfuseEncodeRange, 1000);
++
++ fCACm_fused = fDecodeLinearFuse(ul_CACm_fused, fMin, fRange, sCACm_fuse.ucEfuseLength);
++
++ sCACb_fuse = getASICProfilingInfo->sCACb;
++
++ sInput_FuseValues.usEfuseIndex = sCACb_fuse.usEfuseIndex;
++ sInput_FuseValues.ucBitShift = sCACb_fuse.ucEfuseBitLSB;
++ sInput_FuseValues.ucBitLength = sCACb_fuse.ucEfuseLength;
++ sOutput_FuseValues.sEfuse = sInput_FuseValues;
++
++ result = cgs_atom_exec_cmd_table(hwmgr->device,
++ GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
++ &sOutput_FuseValues);
++
++ if (result)
++ return result;
++
++ ul_CACb_fused = sOutput_FuseValues.ulEfuseValue;
++ fMin = GetScaledFraction(sCACb_fuse.ulEfuseMin, 1000);
++ fRange = GetScaledFraction(sCACb_fuse.ulEfuseEncodeRange, 1000);
++
++ fCACb_fused = fDecodeLinearFuse(ul_CACb_fused, fMin, fRange, sCACb_fuse.ucEfuseLength);
++
++ sKt_Beta_fuse = getASICProfilingInfo->sKt_b;
++
++ sInput_FuseValues.usEfuseIndex = sKt_Beta_fuse.usEfuseIndex;
++ sInput_FuseValues.ucBitShift = sKt_Beta_fuse.ucEfuseBitLSB;
++ sInput_FuseValues.ucBitLength = sKt_Beta_fuse.ucEfuseLength;
++
++ sOutput_FuseValues.sEfuse = sInput_FuseValues;
++
++ result = cgs_atom_exec_cmd_table(hwmgr->device,
++ GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
++ &sOutput_FuseValues);
++
++ if (result)
++ return result;
++
++ ul_Kt_Beta_fused = sOutput_FuseValues.ulEfuseValue;
++ fAverage = GetScaledFraction(sKt_Beta_fuse.ulEfuseEncodeAverage, 1000);
++ fRange = GetScaledFraction(sKt_Beta_fuse.ulEfuseEncodeRange, 1000);
++
++ fKt_Beta_fused = fDecodeLogisticFuse(ul_Kt_Beta_fused,
++ fAverage, fRange, sKt_Beta_fuse.ucEfuseLength);
++
++ sKv_m_fuse = getASICProfilingInfo->sKv_m;
++
++ sInput_FuseValues.usEfuseIndex = sKv_m_fuse.usEfuseIndex;
++ sInput_FuseValues.ucBitShift = sKv_m_fuse.ucEfuseBitLSB;
++ sInput_FuseValues.ucBitLength = sKv_m_fuse.ucEfuseLength;
++
++ sOutput_FuseValues.sEfuse = sInput_FuseValues;
++
++ result = cgs_atom_exec_cmd_table(hwmgr->device,
++ GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
++ &sOutput_FuseValues);
++ if (result)
++ return result;
++
++ ul_Kv_m_fused = sOutput_FuseValues.ulEfuseValue;
++ fAverage = GetScaledFraction(sKv_m_fuse.ulEfuseEncodeAverage, 1000);
++ fRange = GetScaledFraction((sKv_m_fuse.ulEfuseEncodeRange & 0x7fffffff), 1000);
++ fRange = fMultiply(fRange, ConvertToFraction(-1));
++
++ fKv_m_fused = fDecodeLogisticFuse(ul_Kv_m_fused,
++ fAverage, fRange, sKv_m_fuse.ucEfuseLength);
++
++ sKv_b_fuse = getASICProfilingInfo->sKv_b;
++
++ sInput_FuseValues.usEfuseIndex = sKv_b_fuse.usEfuseIndex;
++ sInput_FuseValues.ucBitShift = sKv_b_fuse.ucEfuseBitLSB;
++ sInput_FuseValues.ucBitLength = sKv_b_fuse.ucEfuseLength;
++ sOutput_FuseValues.sEfuse = sInput_FuseValues;
++
++ result = cgs_atom_exec_cmd_table(hwmgr->device,
++ GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
++ &sOutput_FuseValues);
++
++ if (result)
++ return result;
++
++ ul_Kv_b_fused = sOutput_FuseValues.ulEfuseValue;
++ fAverage = GetScaledFraction(sKv_b_fuse.ulEfuseEncodeAverage, 1000);
++ fRange = GetScaledFraction(sKv_b_fuse.ulEfuseEncodeRange, 1000);
++
++ fKv_b_fused = fDecodeLogisticFuse(ul_Kv_b_fused,
++ fAverage, fRange, sKv_b_fuse.ucEfuseLength);
++
++ /* Decoding the Leakage - No special struct container */
++ /*
++ * usLkgEuseIndex=56
++ * ucLkgEfuseBitLSB=6
++ * ucLkgEfuseLength=10
++ * ulLkgEncodeLn_MaxDivMin=69077
++ * ulLkgEncodeMax=1000000
++ * ulLkgEncodeMin=1000
++ * ulEfuseLogisticAlpha=13
++ */
++
++ sInput_FuseValues.usEfuseIndex = getASICProfilingInfo->usLkgEuseIndex;
++ sInput_FuseValues.ucBitShift = getASICProfilingInfo->ucLkgEfuseBitLSB;
++ sInput_FuseValues.ucBitLength = getASICProfilingInfo->ucLkgEfuseLength;
++
++ sOutput_FuseValues.sEfuse = sInput_FuseValues;
++
++ result = cgs_atom_exec_cmd_table(hwmgr->device,
++ GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
++ &sOutput_FuseValues);
++
++ if (result)
++ return result;
++
++ ul_FT_Lkg_V0NORM = sOutput_FuseValues.ulEfuseValue;
++ fLn_MaxDivMin = GetScaledFraction(getASICProfilingInfo->ulLkgEncodeLn_MaxDivMin, 10000);
++ fMin = GetScaledFraction(getASICProfilingInfo->ulLkgEncodeMin, 10000);
++
++ fFT_Lkg_V0NORM = fDecodeLeakageID(ul_FT_Lkg_V0NORM,
++ fLn_MaxDivMin, fMin, getASICProfilingInfo->ucLkgEfuseLength);
++ fLkg_FT = fFT_Lkg_V0NORM;
++
++ /*-------------------------------------------
++ * PART 2 - Grabbing all required values
++ *-------------------------------------------
++ */
++ fSM_A0 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A0, 1000000),
++ ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A0_sign)));
++ fSM_A1 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A1, 1000000),
++ ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A1_sign)));
++ fSM_A2 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A2, 100000),
++ ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A2_sign)));
++ fSM_A3 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A3, 1000000),
++ ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A3_sign)));
++ fSM_A4 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A4, 1000000),
++ ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A4_sign)));
++ fSM_A5 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A5, 1000),
++ ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A5_sign)));
++ fSM_A6 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A6, 1000),
++ ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A6_sign)));
++ fSM_A7 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A7, 1000),
++ ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A7_sign)));
++
++ fMargin_RO_a = ConvertToFraction(getASICProfilingInfo->ulMargin_RO_a);
++ fMargin_RO_b = ConvertToFraction(getASICProfilingInfo->ulMargin_RO_b);
++ fMargin_RO_c = ConvertToFraction(getASICProfilingInfo->ulMargin_RO_c);
++
++ fMargin_fixed = ConvertToFraction(getASICProfilingInfo->ulMargin_fixed);
++
++ fMargin_FMAX_mean = GetScaledFraction(
++ getASICProfilingInfo->ulMargin_Fmax_mean, 10000);
++ fMargin_Plat_mean = GetScaledFraction(
++ getASICProfilingInfo->ulMargin_plat_mean, 10000);
++ fMargin_FMAX_sigma = GetScaledFraction(
++ getASICProfilingInfo->ulMargin_Fmax_sigma, 10000);
++ fMargin_Plat_sigma = GetScaledFraction(
++ getASICProfilingInfo->ulMargin_plat_sigma, 10000);
++
++ fMargin_DC_sigma = GetScaledFraction(
++ getASICProfilingInfo->ulMargin_DC_sigma, 100);
++ fMargin_DC_sigma = fDivide(fMargin_DC_sigma, ConvertToFraction(1000));
++
++ fCACm_fused = fDivide(fCACm_fused, ConvertToFraction(100));
++ fCACb_fused = fDivide(fCACb_fused, ConvertToFraction(100));
++ fKt_Beta_fused = fDivide(fKt_Beta_fused, ConvertToFraction(100));
++ fKv_m_fused = fNegate(fDivide(fKv_m_fused, ConvertToFraction(100)));
++ fKv_b_fused = fDivide(fKv_b_fused, ConvertToFraction(10));
++
++ fSclk = GetScaledFraction(sclk, 100);
++
++ fV_max = fDivide(GetScaledFraction(
++ getASICProfilingInfo->ulMaxVddc, 1000), ConvertToFraction(4));
++ fT_prod = GetScaledFraction(getASICProfilingInfo->ulBoardCoreTemp, 10);
++ fLKG_Factor = GetScaledFraction(getASICProfilingInfo->ulEvvLkgFactor, 100);
++ fT_FT = GetScaledFraction(getASICProfilingInfo->ulLeakageTemp, 10);
++ fV_FT = fDivide(GetScaledFraction(
++ getASICProfilingInfo->ulLeakageVoltage, 1000), ConvertToFraction(4));
++ fV_min = fDivide(GetScaledFraction(
++ getASICProfilingInfo->ulMinVddc, 1000), ConvertToFraction(4));
++
++ /*-----------------------
++ * PART 3
++ *-----------------------
++ */
++
++ fA_Term = fAdd(fMargin_RO_a, fAdd(fMultiply(fSM_A4,fSclk), fSM_A5));
++ fB_Term = fAdd(fAdd(fMultiply(fSM_A2, fSclk), fSM_A6), fMargin_RO_b);
++ fC_Term = fAdd(fMargin_RO_c,
++ fAdd(fMultiply(fSM_A0,fLkg_FT),
++ fAdd(fMultiply(fSM_A1, fMultiply(fLkg_FT,fSclk)),
++ fAdd(fMultiply(fSM_A3, fSclk),
++ fSubtract(fSM_A7,fRO_fused)))));
++
++ fVDDC_base = fSubtract(fRO_fused,
++ fSubtract(fMargin_RO_c,
++ fSubtract(fSM_A3, fMultiply(fSM_A1, fSclk))));
++ fVDDC_base = fDivide(fVDDC_base, fAdd(fMultiply(fSM_A0,fSclk), fSM_A2));
++
++ repeat = fSubtract(fVDDC_base,
++ fDivide(fMargin_DC_sigma, ConvertToFraction(1000)));
++
++ fRO_DC_margin = fAdd(fMultiply(fMargin_RO_a,
++ fGetSquare(repeat)),
++ fAdd(fMultiply(fMargin_RO_b, repeat),
++ fMargin_RO_c));
++
++ fDC_SCLK = fSubtract(fRO_fused,
++ fSubtract(fRO_DC_margin,
++ fSubtract(fSM_A3,
++ fMultiply(fSM_A2, repeat))));
++ fDC_SCLK = fDivide(fDC_SCLK, fAdd(fMultiply(fSM_A0,repeat), fSM_A1));
++
++ fSigma_DC = fSubtract(fSclk, fDC_SCLK);
++
++ fMicro_FMAX = fMultiply(fSclk, fMargin_FMAX_mean);
++ fMicro_CR = fMultiply(fSclk, fMargin_Plat_mean);
++ fSigma_FMAX = fMultiply(fSclk, fMargin_FMAX_sigma);
++ fSigma_CR = fMultiply(fSclk, fMargin_Plat_sigma);
++
++ fSquared_Sigma_DC = fGetSquare(fSigma_DC);
++ fSquared_Sigma_CR = fGetSquare(fSigma_CR);
++ fSquared_Sigma_FMAX = fGetSquare(fSigma_FMAX);
++
++ fSclk_margin = fAdd(fMicro_FMAX,
++ fAdd(fMicro_CR,
++ fAdd(fMargin_fixed,
++ fSqrt(fAdd(fSquared_Sigma_FMAX,
++ fAdd(fSquared_Sigma_DC, fSquared_Sigma_CR))))));
++ /*
++ fA_Term = fSM_A4 * (fSclk + fSclk_margin) + fSM_A5;
++ fB_Term = fSM_A2 * (fSclk + fSclk_margin) + fSM_A6;
++ fC_Term = fRO_DC_margin + fSM_A0 * fLkg_FT + fSM_A1 * fLkg_FT * (fSclk + fSclk_margin) + fSM_A3 * (fSclk + fSclk_margin) + fSM_A7 - fRO_fused;
++ */
++
++ fA_Term = fAdd(fMultiply(fSM_A4, fAdd(fSclk, fSclk_margin)), fSM_A5);
++ fB_Term = fAdd(fMultiply(fSM_A2, fAdd(fSclk, fSclk_margin)), fSM_A6);
++ fC_Term = fAdd(fRO_DC_margin,
++ fAdd(fMultiply(fSM_A0, fLkg_FT),
++ fAdd(fMultiply(fMultiply(fSM_A1, fLkg_FT),
++ fAdd(fSclk, fSclk_margin)),
++ fAdd(fMultiply(fSM_A3,
++ fAdd(fSclk, fSclk_margin)),
++ fSubtract(fSM_A7, fRO_fused)))));
++
++ SolveQuadracticEqn(fA_Term, fB_Term, fC_Term, fRoots);
++
++ if (GreaterThan(fRoots[0], fRoots[1]))
++ fEVV_V = fRoots[1];
++ else
++ fEVV_V = fRoots[0];
++
++ if (GreaterThan(fV_min, fEVV_V))
++ fEVV_V = fV_min;
++ else if (GreaterThan(fEVV_V, fV_max))
++ fEVV_V = fSubtract(fV_max, fStepSize);
++
++ fEVV_V = fRoundUpByStepSize(fEVV_V, fStepSize, 0);
++
++ /*-----------------
++ * PART 4
++ *-----------------
++ */
++
++ fV_x = fV_min;
++
++ while (GreaterThan(fAdd(fV_max, fStepSize), fV_x)) {
++ fTDP_Power_left = fMultiply(fMultiply(fMultiply(fAdd(
++ fMultiply(fCACm_fused, fV_x), fCACb_fused), fSclk),
++ fGetSquare(fV_x)), fDerateTDP);
++
++ fTDP_Power_right = fMultiply(fFT_Lkg_V0NORM, fMultiply(fLKG_Factor,
++ fMultiply(fExponential(fMultiply(fAdd(fMultiply(fKv_m_fused,
++ fT_prod), fKv_b_fused), fV_x)), fV_x)));
++ fTDP_Power_right = fMultiply(fTDP_Power_right, fExponential(fMultiply(
++ fKt_Beta_fused, fT_prod)));
++ fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply(
++ fAdd(fMultiply(fKv_m_fused, fT_prod), fKv_b_fused), fV_FT)));
++ fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply(
++ fKt_Beta_fused, fT_FT)));
++
++ fTDP_Power = fAdd(fTDP_Power_left, fTDP_Power_right);
++
++ fTDP_Current = fDivide(fTDP_Power, fV_x);
++
++ fV_NL = fAdd(fV_x, fDivide(fMultiply(fTDP_Current, fRLL_LoadLine),
++ ConvertToFraction(10)));
++
++ fV_NL = fRoundUpByStepSize(fV_NL, fStepSize, 0);
++
++ if (GreaterThan(fV_max, fV_NL) &&
++ (GreaterThan(fV_NL,fEVV_V) ||
++ Equal(fV_NL, fEVV_V))) {
++ fV_NL = fMultiply(fV_NL, ConvertToFraction(1000));
++
++ *voltage = (uint16_t)fV_NL.partial.real;
++ break;
++ } else
++ fV_x = fAdd(fV_x, fStepSize);
++ }
++
++ return result;
++}
++
+ /** atomctrl_get_voltage_evv_on_sclk gets voltage via call to ATOM COMMAND table.
+ * @param hwmgr input: pointer to hwManager
+ * @param voltage_type input: type of EVV voltage VDDC or VDDGFX
+@@ -701,4 +1163,23 @@ int atomctrl_get_engine_clock_spread_spectrum(
+ ASIC_INTERNAL_ENGINE_SS, engine_clock, ssInfo);
+ }
+
++int atomctrl_read_efuse(void *device, uint16_t start_index,
++ uint16_t end_index, uint32_t mask, uint32_t *efuse)
++{
++ int result;
++ READ_EFUSE_VALUE_PARAMETER efuse_param;
++
++ efuse_param.sEfuse.usEfuseIndex = (start_index / 32) * 4;
++ efuse_param.sEfuse.ucBitShift = (uint8_t)
++ (start_index - ((start_index / 32) * 32));
++ efuse_param.sEfuse.ucBitLength = (uint8_t)
++ ((end_index - start_index) + 1);
+
++ result = cgs_atom_exec_cmd_table(device,
++ GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
++ &efuse_param);
++ if (!result)
++ *efuse = efuse_param.ulEfuseValue & mask;
++
++ return result;
++}
+diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.h b/drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.h
+index 23da436..b5ba371 100644
+--- a/drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.h
++++ b/drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.h
+@@ -231,6 +231,12 @@ extern int atomctrl_get_engine_pll_dividers_vi(struct pp_hwmgr *hwmgr, uint32_t
+ extern int atomctrl_get_dfs_pll_dividers_vi(struct pp_hwmgr *hwmgr, uint32_t clock_value, pp_atomctrl_clock_dividers_vi *dividers);
+ extern bool atomctrl_is_voltage_controled_by_gpio_v3(struct pp_hwmgr *hwmgr, uint8_t voltage_type, uint8_t voltage_mode);
+ extern int atomctrl_get_voltage_table_v3(struct pp_hwmgr *hwmgr, uint8_t voltage_type, uint8_t voltage_mode, pp_atomctrl_voltage_table *voltage_table);
++extern int atomctrl_get_memory_pll_dividers_vi(struct pp_hwmgr *hwmgr,
++ uint32_t clock_value, pp_atomctrl_memory_clock_param *mpll_param);
++extern int atomctrl_read_efuse(void *device, uint16_t start_index,
++ uint16_t end_index, uint32_t mask, uint32_t *efuse);
++extern int atomctrl_calculate_voltage_evv_on_sclk(struct pp_hwmgr *hwmgr, uint8_t voltage_type,
++ uint32_t sclk, uint16_t virtual_voltage_Id, uint16_t *voltage, uint16_t dpm_level, bool debug);
+
+
+ #endif
+diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_hwmgr.c b/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_hwmgr.c
+index 0feb1a8..1a02c7d 100644
+--- a/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_hwmgr.c
++++ b/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_hwmgr.c
+@@ -4507,14 +4507,14 @@ int tonga_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
+ data->vdd_gfx_control = TONGA_VOLTAGE_CONTROL_NONE;
+ data->mvdd_control = TONGA_VOLTAGE_CONTROL_NONE;
+
+- if (0 == atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
++ if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
+ VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2)) {
+ data->voltage_control = TONGA_VOLTAGE_CONTROL_BY_SVID2;
+ }
+
+ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
+ PHM_PlatformCaps_ControlVDDGFX)) {
+- if (0 == atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
++ if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
+ VOLTAGE_TYPE_VDDGFX, VOLTAGE_OBJ_SVID2)) {
+ data->vdd_gfx_control = TONGA_VOLTAGE_CONTROL_BY_SVID2;
+ }
+@@ -4527,7 +4527,7 @@ int tonga_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
+
+ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
+ PHM_PlatformCaps_EnableMVDDControl)) {
+- if (0 == atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
++ if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
+ VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT)) {
+ data->mvdd_control = TONGA_VOLTAGE_CONTROL_BY_GPIO;
+ }
+@@ -4540,10 +4540,10 @@ int tonga_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
+
+ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
+ PHM_PlatformCaps_ControlVDDCI)) {
+- if (0 == atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
++ if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
+ VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT))
+ data->vdd_ci_control = TONGA_VOLTAGE_CONTROL_BY_GPIO;
+- else if (0 == atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
++ else if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
+ VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_SVID2))
+ data->vdd_ci_control = TONGA_VOLTAGE_CONTROL_BY_SVID2;
+ }
+--
+2.7.4
+