aboutsummaryrefslogtreecommitdiffstats
path: root/common/recipes-kernel/linux/files/0056-drm-amd-powerplay-update-atomctrl-for-fiji.patch
diff options
context:
space:
mode:
Diffstat (limited to 'common/recipes-kernel/linux/files/0056-drm-amd-powerplay-update-atomctrl-for-fiji.patch')
-rw-r--r--common/recipes-kernel/linux/files/0056-drm-amd-powerplay-update-atomctrl-for-fiji.patch621
1 files changed, 0 insertions, 621 deletions
diff --git a/common/recipes-kernel/linux/files/0056-drm-amd-powerplay-update-atomctrl-for-fiji.patch b/common/recipes-kernel/linux/files/0056-drm-amd-powerplay-update-atomctrl-for-fiji.patch
deleted file mode 100644
index 49111cc2..00000000
--- a/common/recipes-kernel/linux/files/0056-drm-amd-powerplay-update-atomctrl-for-fiji.patch
+++ /dev/null
@@ -1,621 +0,0 @@
-From 5f8eb56f0aacf11a3701dcb226657cea26c44dad Mon Sep 17 00:00:00 2001
-From: Eric Huang <JinHuiEric.Huang@amd.com>
-Date: Mon, 9 Nov 2015 17:35:45 -0500
-Subject: [PATCH 0056/1110] drm/amd/powerplay: update atomctrl for fiji
-
-Add some new functions to support Fiji. Split out
-from the previous patch.
-
-Reviewed-by: Jammy Zhou <Jammy.Zhou@amd.com>
-Signed-off-by: Eric Huang <JinHuiEric.Huang@amd.com>
----
- drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.c | 489 +++++++++++++++++++++-
- drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.h | 6 +
- drivers/gpu/drm/amd/powerplay/hwmgr/tonga_hwmgr.c | 10 +-
- 3 files changed, 496 insertions(+), 9 deletions(-)
-
-diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.c b/drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.c
-index 9af2f59..8b47ea0 100644
---- a/drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.c
-+++ b/drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.c
-@@ -28,6 +28,8 @@
- #include "atombios.h"
- #include "cgs_common.h"
- #include "pp_debug.h"
-+#include "ppevvmath.h"
-+
- #define MEM_ID_MASK 0xff000000
- #define MEM_ID_SHIFT 24
- #define CLOCK_RANGE_MASK 0x00ffffff
-@@ -94,7 +96,7 @@ static int atomctrl_retrieve_ac_timing(
- * VBIOS set end of memory clock AC timing registers by ucPreRegDataLength bit6 = 1
- * @param reg_block the address ATOM_INIT_REG_BLOCK
- * @param table the address of MCRegTable
-- * @return PP_Result_OK
-+ * @return 0
- */
- static int atomctrl_set_mc_reg_address_table(
- ATOM_INIT_REG_BLOCK *reg_block,
-@@ -286,6 +288,31 @@ int atomctrl_get_memory_pll_dividers_si(
- return result;
- }
-
-+/** atomctrl_get_memory_pll_dividers_vi().
-+ *
-+ * @param hwmgr input parameter: pointer to HwMgr
-+ * @param clock_value input parameter: memory clock
-+ * @param dividers output parameter: memory PLL dividers
-+ */
-+int atomctrl_get_memory_pll_dividers_vi(struct pp_hwmgr *hwmgr,
-+ uint32_t clock_value, pp_atomctrl_memory_clock_param *mpll_param)
-+{
-+ COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_2 mpll_parameters;
-+ int result;
-+
-+ mpll_parameters.ulClock.ulClock = (uint32_t)clock_value;
-+
-+ result = cgs_atom_exec_cmd_table(hwmgr->device,
-+ GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
-+ &mpll_parameters);
-+
-+ if (!result)
-+ mpll_param->mpll_post_divider =
-+ (uint32_t)mpll_parameters.ulClock.ucPostDiv;
-+
-+ return result;
-+}
-+
- int atomctrl_get_engine_pll_dividers_vi(
- struct pp_hwmgr *hwmgr,
- uint32_t clock_value,
-@@ -387,7 +414,7 @@ uint32_t atomctrl_get_reference_clock(struct pp_hwmgr *hwmgr)
- }
-
- /**
-- * Returns 0 if the given voltage type is controlled by GPIO pins.
-+ * Returns true if the given voltage type is controlled by GPIO pins.
- * voltage_type is one of SET_VOLTAGE_TYPE_ASIC_VDDC,
- * SET_VOLTAGE_TYPE_ASIC_MVDDC, SET_VOLTAGE_TYPE_ASIC_MVDDQ.
- * voltage_mode is one of ATOM_SET_VOLTAGE, ATOM_SET_VOLTAGE_PHASE
-@@ -402,10 +429,10 @@ bool atomctrl_is_voltage_controled_by_gpio_v3(
- bool ret;
-
- PP_ASSERT_WITH_CODE((NULL != voltage_info),
-- "Could not find Voltage Table in BIOS.", return -1;);
-+ "Could not find Voltage Table in BIOS.", return false;);
-
- ret = (NULL != atomctrl_lookup_voltage_type_v3
-- (voltage_info, voltage_type, voltage_mode)) ? 0 : 1;
-+ (voltage_info, voltage_type, voltage_mode)) ? true : false;
-
- return ret;
- }
-@@ -525,6 +552,441 @@ bool atomctrl_get_pp_assign_pin(
- return bRet;
- }
-
-+int atomctrl_calculate_voltage_evv_on_sclk(
-+ struct pp_hwmgr *hwmgr,
-+ uint8_t voltage_type,
-+ uint32_t sclk,
-+ uint16_t virtual_voltage_Id,
-+ uint16_t *voltage,
-+ uint16_t dpm_level,
-+ bool debug)
-+{
-+ ATOM_ASIC_PROFILING_INFO_V3_4 *getASICProfilingInfo;
-+
-+ EFUSE_LINEAR_FUNC_PARAM sRO_fuse;
-+ EFUSE_LINEAR_FUNC_PARAM sCACm_fuse;
-+ EFUSE_LINEAR_FUNC_PARAM sCACb_fuse;
-+ EFUSE_LOGISTIC_FUNC_PARAM sKt_Beta_fuse;
-+ EFUSE_LOGISTIC_FUNC_PARAM sKv_m_fuse;
-+ EFUSE_LOGISTIC_FUNC_PARAM sKv_b_fuse;
-+ EFUSE_INPUT_PARAMETER sInput_FuseValues;
-+ READ_EFUSE_VALUE_PARAMETER sOutput_FuseValues;
-+
-+ uint32_t ul_RO_fused, ul_CACb_fused, ul_CACm_fused, ul_Kt_Beta_fused, ul_Kv_m_fused, ul_Kv_b_fused;
-+ fInt fSM_A0, fSM_A1, fSM_A2, fSM_A3, fSM_A4, fSM_A5, fSM_A6, fSM_A7;
-+ fInt fMargin_RO_a, fMargin_RO_b, fMargin_RO_c, fMargin_fixed, fMargin_FMAX_mean, fMargin_Plat_mean, fMargin_FMAX_sigma, fMargin_Plat_sigma, fMargin_DC_sigma;
-+ fInt fLkg_FT, repeat;
-+ fInt fMicro_FMAX, fMicro_CR, fSigma_FMAX, fSigma_CR, fSigma_DC, fDC_SCLK, fSquared_Sigma_DC, fSquared_Sigma_CR, fSquared_Sigma_FMAX;
-+ fInt fRLL_LoadLine, fPowerDPMx, fDerateTDP, fVDDC_base, fA_Term, fC_Term, fB_Term, fRO_DC_margin;
-+ fInt fRO_fused, fCACm_fused, fCACb_fused, fKv_m_fused, fKv_b_fused, fKt_Beta_fused, fFT_Lkg_V0NORM;
-+ fInt fSclk_margin, fSclk, fEVV_V;
-+ fInt fV_min, fV_max, fT_prod, fLKG_Factor, fT_FT, fV_FT, fV_x, fTDP_Power, fTDP_Power_right, fTDP_Power_left, fTDP_Current, fV_NL;
-+ uint32_t ul_FT_Lkg_V0NORM;
-+ fInt fLn_MaxDivMin, fMin, fAverage, fRange;
-+ fInt fRoots[2];
-+ fInt fStepSize = GetScaledFraction(625, 100000);
-+
-+ int result;
-+
-+ getASICProfilingInfo = (ATOM_ASIC_PROFILING_INFO_V3_4 *)
-+ cgs_atom_get_data_table(hwmgr->device,
-+ GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
-+ NULL, NULL, NULL);
-+
-+ if (!getASICProfilingInfo)
-+ return -1;
-+
-+ if(getASICProfilingInfo->asHeader.ucTableFormatRevision < 3 ||
-+ (getASICProfilingInfo->asHeader.ucTableFormatRevision == 3 &&
-+ getASICProfilingInfo->asHeader.ucTableContentRevision < 4))
-+ return -1;
-+
-+ /*-----------------------------------------------------------
-+ *GETTING MULTI-STEP PARAMETERS RELATED TO CURRENT DPM LEVEL
-+ *-----------------------------------------------------------
-+ */
-+ fRLL_LoadLine = Divide(getASICProfilingInfo->ulLoadLineSlop, 1000);
-+
-+ switch (dpm_level) {
-+ case 1:
-+ fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm1);
-+ fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM1, 1000);
-+ break;
-+ case 2:
-+ fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm2);
-+ fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM2, 1000);
-+ break;
-+ case 3:
-+ fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm3);
-+ fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM3, 1000);
-+ break;
-+ case 4:
-+ fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm4);
-+ fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM4, 1000);
-+ break;
-+ case 5:
-+ fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm5);
-+ fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM5, 1000);
-+ break;
-+ case 6:
-+ fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm6);
-+ fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM6, 1000);
-+ break;
-+ case 7:
-+ fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm7);
-+ fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM7, 1000);
-+ break;
-+ default:
-+ printk(KERN_ERR "DPM Level not supported\n");
-+ fPowerDPMx = Convert_ULONG_ToFraction(1);
-+ fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM0, 1000);
-+ }
-+
-+ /*-------------------------
-+ * DECODING FUSE VALUES
-+ * ------------------------
-+ */
-+ /*Decode RO_Fused*/
-+ sRO_fuse = getASICProfilingInfo->sRoFuse;
-+
-+ sInput_FuseValues.usEfuseIndex = sRO_fuse.usEfuseIndex;
-+ sInput_FuseValues.ucBitShift = sRO_fuse.ucEfuseBitLSB;
-+ sInput_FuseValues.ucBitLength = sRO_fuse.ucEfuseLength;
-+
-+ sOutput_FuseValues.sEfuse = sInput_FuseValues;
-+
-+ result = cgs_atom_exec_cmd_table(hwmgr->device,
-+ GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
-+ &sOutput_FuseValues);
-+
-+ if (result)
-+ return result;
-+
-+ /* Finally, the actual fuse value */
-+ ul_RO_fused = sOutput_FuseValues.ulEfuseValue;
-+ fMin = GetScaledFraction(sRO_fuse.ulEfuseMin, 1);
-+ fRange = GetScaledFraction(sRO_fuse.ulEfuseEncodeRange, 1);
-+ fRO_fused = fDecodeLinearFuse(ul_RO_fused, fMin, fRange, sRO_fuse.ucEfuseLength);
-+
-+ sCACm_fuse = getASICProfilingInfo->sCACm;
-+
-+ sInput_FuseValues.usEfuseIndex = sCACm_fuse.usEfuseIndex;
-+ sInput_FuseValues.ucBitShift = sCACm_fuse.ucEfuseBitLSB;
-+ sInput_FuseValues.ucBitLength = sCACm_fuse.ucEfuseLength;
-+
-+ sOutput_FuseValues.sEfuse = sInput_FuseValues;
-+
-+ result = cgs_atom_exec_cmd_table(hwmgr->device,
-+ GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
-+ &sOutput_FuseValues);
-+
-+ if (result)
-+ return result;
-+
-+ ul_CACm_fused = sOutput_FuseValues.ulEfuseValue;
-+ fMin = GetScaledFraction(sCACm_fuse.ulEfuseMin, 1000);
-+ fRange = GetScaledFraction(sCACm_fuse.ulEfuseEncodeRange, 1000);
-+
-+ fCACm_fused = fDecodeLinearFuse(ul_CACm_fused, fMin, fRange, sCACm_fuse.ucEfuseLength);
-+
-+ sCACb_fuse = getASICProfilingInfo->sCACb;
-+
-+ sInput_FuseValues.usEfuseIndex = sCACb_fuse.usEfuseIndex;
-+ sInput_FuseValues.ucBitShift = sCACb_fuse.ucEfuseBitLSB;
-+ sInput_FuseValues.ucBitLength = sCACb_fuse.ucEfuseLength;
-+ sOutput_FuseValues.sEfuse = sInput_FuseValues;
-+
-+ result = cgs_atom_exec_cmd_table(hwmgr->device,
-+ GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
-+ &sOutput_FuseValues);
-+
-+ if (result)
-+ return result;
-+
-+ ul_CACb_fused = sOutput_FuseValues.ulEfuseValue;
-+ fMin = GetScaledFraction(sCACb_fuse.ulEfuseMin, 1000);
-+ fRange = GetScaledFraction(sCACb_fuse.ulEfuseEncodeRange, 1000);
-+
-+ fCACb_fused = fDecodeLinearFuse(ul_CACb_fused, fMin, fRange, sCACb_fuse.ucEfuseLength);
-+
-+ sKt_Beta_fuse = getASICProfilingInfo->sKt_b;
-+
-+ sInput_FuseValues.usEfuseIndex = sKt_Beta_fuse.usEfuseIndex;
-+ sInput_FuseValues.ucBitShift = sKt_Beta_fuse.ucEfuseBitLSB;
-+ sInput_FuseValues.ucBitLength = sKt_Beta_fuse.ucEfuseLength;
-+
-+ sOutput_FuseValues.sEfuse = sInput_FuseValues;
-+
-+ result = cgs_atom_exec_cmd_table(hwmgr->device,
-+ GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
-+ &sOutput_FuseValues);
-+
-+ if (result)
-+ return result;
-+
-+ ul_Kt_Beta_fused = sOutput_FuseValues.ulEfuseValue;
-+ fAverage = GetScaledFraction(sKt_Beta_fuse.ulEfuseEncodeAverage, 1000);
-+ fRange = GetScaledFraction(sKt_Beta_fuse.ulEfuseEncodeRange, 1000);
-+
-+ fKt_Beta_fused = fDecodeLogisticFuse(ul_Kt_Beta_fused,
-+ fAverage, fRange, sKt_Beta_fuse.ucEfuseLength);
-+
-+ sKv_m_fuse = getASICProfilingInfo->sKv_m;
-+
-+ sInput_FuseValues.usEfuseIndex = sKv_m_fuse.usEfuseIndex;
-+ sInput_FuseValues.ucBitShift = sKv_m_fuse.ucEfuseBitLSB;
-+ sInput_FuseValues.ucBitLength = sKv_m_fuse.ucEfuseLength;
-+
-+ sOutput_FuseValues.sEfuse = sInput_FuseValues;
-+
-+ result = cgs_atom_exec_cmd_table(hwmgr->device,
-+ GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
-+ &sOutput_FuseValues);
-+ if (result)
-+ return result;
-+
-+ ul_Kv_m_fused = sOutput_FuseValues.ulEfuseValue;
-+ fAverage = GetScaledFraction(sKv_m_fuse.ulEfuseEncodeAverage, 1000);
-+ fRange = GetScaledFraction((sKv_m_fuse.ulEfuseEncodeRange & 0x7fffffff), 1000);
-+ fRange = fMultiply(fRange, ConvertToFraction(-1));
-+
-+ fKv_m_fused = fDecodeLogisticFuse(ul_Kv_m_fused,
-+ fAverage, fRange, sKv_m_fuse.ucEfuseLength);
-+
-+ sKv_b_fuse = getASICProfilingInfo->sKv_b;
-+
-+ sInput_FuseValues.usEfuseIndex = sKv_b_fuse.usEfuseIndex;
-+ sInput_FuseValues.ucBitShift = sKv_b_fuse.ucEfuseBitLSB;
-+ sInput_FuseValues.ucBitLength = sKv_b_fuse.ucEfuseLength;
-+ sOutput_FuseValues.sEfuse = sInput_FuseValues;
-+
-+ result = cgs_atom_exec_cmd_table(hwmgr->device,
-+ GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
-+ &sOutput_FuseValues);
-+
-+ if (result)
-+ return result;
-+
-+ ul_Kv_b_fused = sOutput_FuseValues.ulEfuseValue;
-+ fAverage = GetScaledFraction(sKv_b_fuse.ulEfuseEncodeAverage, 1000);
-+ fRange = GetScaledFraction(sKv_b_fuse.ulEfuseEncodeRange, 1000);
-+
-+ fKv_b_fused = fDecodeLogisticFuse(ul_Kv_b_fused,
-+ fAverage, fRange, sKv_b_fuse.ucEfuseLength);
-+
-+ /* Decoding the Leakage - No special struct container */
-+ /*
-+ * usLkgEuseIndex=56
-+ * ucLkgEfuseBitLSB=6
-+ * ucLkgEfuseLength=10
-+ * ulLkgEncodeLn_MaxDivMin=69077
-+ * ulLkgEncodeMax=1000000
-+ * ulLkgEncodeMin=1000
-+ * ulEfuseLogisticAlpha=13
-+ */
-+
-+ sInput_FuseValues.usEfuseIndex = getASICProfilingInfo->usLkgEuseIndex;
-+ sInput_FuseValues.ucBitShift = getASICProfilingInfo->ucLkgEfuseBitLSB;
-+ sInput_FuseValues.ucBitLength = getASICProfilingInfo->ucLkgEfuseLength;
-+
-+ sOutput_FuseValues.sEfuse = sInput_FuseValues;
-+
-+ result = cgs_atom_exec_cmd_table(hwmgr->device,
-+ GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
-+ &sOutput_FuseValues);
-+
-+ if (result)
-+ return result;
-+
-+ ul_FT_Lkg_V0NORM = sOutput_FuseValues.ulEfuseValue;
-+ fLn_MaxDivMin = GetScaledFraction(getASICProfilingInfo->ulLkgEncodeLn_MaxDivMin, 10000);
-+ fMin = GetScaledFraction(getASICProfilingInfo->ulLkgEncodeMin, 10000);
-+
-+ fFT_Lkg_V0NORM = fDecodeLeakageID(ul_FT_Lkg_V0NORM,
-+ fLn_MaxDivMin, fMin, getASICProfilingInfo->ucLkgEfuseLength);
-+ fLkg_FT = fFT_Lkg_V0NORM;
-+
-+ /*-------------------------------------------
-+ * PART 2 - Grabbing all required values
-+ *-------------------------------------------
-+ */
-+ fSM_A0 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A0, 1000000),
-+ ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A0_sign)));
-+ fSM_A1 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A1, 1000000),
-+ ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A1_sign)));
-+ fSM_A2 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A2, 100000),
-+ ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A2_sign)));
-+ fSM_A3 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A3, 1000000),
-+ ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A3_sign)));
-+ fSM_A4 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A4, 1000000),
-+ ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A4_sign)));
-+ fSM_A5 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A5, 1000),
-+ ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A5_sign)));
-+ fSM_A6 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A6, 1000),
-+ ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A6_sign)));
-+ fSM_A7 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A7, 1000),
-+ ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A7_sign)));
-+
-+ fMargin_RO_a = ConvertToFraction(getASICProfilingInfo->ulMargin_RO_a);
-+ fMargin_RO_b = ConvertToFraction(getASICProfilingInfo->ulMargin_RO_b);
-+ fMargin_RO_c = ConvertToFraction(getASICProfilingInfo->ulMargin_RO_c);
-+
-+ fMargin_fixed = ConvertToFraction(getASICProfilingInfo->ulMargin_fixed);
-+
-+ fMargin_FMAX_mean = GetScaledFraction(
-+ getASICProfilingInfo->ulMargin_Fmax_mean, 10000);
-+ fMargin_Plat_mean = GetScaledFraction(
-+ getASICProfilingInfo->ulMargin_plat_mean, 10000);
-+ fMargin_FMAX_sigma = GetScaledFraction(
-+ getASICProfilingInfo->ulMargin_Fmax_sigma, 10000);
-+ fMargin_Plat_sigma = GetScaledFraction(
-+ getASICProfilingInfo->ulMargin_plat_sigma, 10000);
-+
-+ fMargin_DC_sigma = GetScaledFraction(
-+ getASICProfilingInfo->ulMargin_DC_sigma, 100);
-+ fMargin_DC_sigma = fDivide(fMargin_DC_sigma, ConvertToFraction(1000));
-+
-+ fCACm_fused = fDivide(fCACm_fused, ConvertToFraction(100));
-+ fCACb_fused = fDivide(fCACb_fused, ConvertToFraction(100));
-+ fKt_Beta_fused = fDivide(fKt_Beta_fused, ConvertToFraction(100));
-+ fKv_m_fused = fNegate(fDivide(fKv_m_fused, ConvertToFraction(100)));
-+ fKv_b_fused = fDivide(fKv_b_fused, ConvertToFraction(10));
-+
-+ fSclk = GetScaledFraction(sclk, 100);
-+
-+ fV_max = fDivide(GetScaledFraction(
-+ getASICProfilingInfo->ulMaxVddc, 1000), ConvertToFraction(4));
-+ fT_prod = GetScaledFraction(getASICProfilingInfo->ulBoardCoreTemp, 10);
-+ fLKG_Factor = GetScaledFraction(getASICProfilingInfo->ulEvvLkgFactor, 100);
-+ fT_FT = GetScaledFraction(getASICProfilingInfo->ulLeakageTemp, 10);
-+ fV_FT = fDivide(GetScaledFraction(
-+ getASICProfilingInfo->ulLeakageVoltage, 1000), ConvertToFraction(4));
-+ fV_min = fDivide(GetScaledFraction(
-+ getASICProfilingInfo->ulMinVddc, 1000), ConvertToFraction(4));
-+
-+ /*-----------------------
-+ * PART 3
-+ *-----------------------
-+ */
-+
-+ fA_Term = fAdd(fMargin_RO_a, fAdd(fMultiply(fSM_A4,fSclk), fSM_A5));
-+ fB_Term = fAdd(fAdd(fMultiply(fSM_A2, fSclk), fSM_A6), fMargin_RO_b);
-+ fC_Term = fAdd(fMargin_RO_c,
-+ fAdd(fMultiply(fSM_A0,fLkg_FT),
-+ fAdd(fMultiply(fSM_A1, fMultiply(fLkg_FT,fSclk)),
-+ fAdd(fMultiply(fSM_A3, fSclk),
-+ fSubtract(fSM_A7,fRO_fused)))));
-+
-+ fVDDC_base = fSubtract(fRO_fused,
-+ fSubtract(fMargin_RO_c,
-+ fSubtract(fSM_A3, fMultiply(fSM_A1, fSclk))));
-+ fVDDC_base = fDivide(fVDDC_base, fAdd(fMultiply(fSM_A0,fSclk), fSM_A2));
-+
-+ repeat = fSubtract(fVDDC_base,
-+ fDivide(fMargin_DC_sigma, ConvertToFraction(1000)));
-+
-+ fRO_DC_margin = fAdd(fMultiply(fMargin_RO_a,
-+ fGetSquare(repeat)),
-+ fAdd(fMultiply(fMargin_RO_b, repeat),
-+ fMargin_RO_c));
-+
-+ fDC_SCLK = fSubtract(fRO_fused,
-+ fSubtract(fRO_DC_margin,
-+ fSubtract(fSM_A3,
-+ fMultiply(fSM_A2, repeat))));
-+ fDC_SCLK = fDivide(fDC_SCLK, fAdd(fMultiply(fSM_A0,repeat), fSM_A1));
-+
-+ fSigma_DC = fSubtract(fSclk, fDC_SCLK);
-+
-+ fMicro_FMAX = fMultiply(fSclk, fMargin_FMAX_mean);
-+ fMicro_CR = fMultiply(fSclk, fMargin_Plat_mean);
-+ fSigma_FMAX = fMultiply(fSclk, fMargin_FMAX_sigma);
-+ fSigma_CR = fMultiply(fSclk, fMargin_Plat_sigma);
-+
-+ fSquared_Sigma_DC = fGetSquare(fSigma_DC);
-+ fSquared_Sigma_CR = fGetSquare(fSigma_CR);
-+ fSquared_Sigma_FMAX = fGetSquare(fSigma_FMAX);
-+
-+ fSclk_margin = fAdd(fMicro_FMAX,
-+ fAdd(fMicro_CR,
-+ fAdd(fMargin_fixed,
-+ fSqrt(fAdd(fSquared_Sigma_FMAX,
-+ fAdd(fSquared_Sigma_DC, fSquared_Sigma_CR))))));
-+ /*
-+ fA_Term = fSM_A4 * (fSclk + fSclk_margin) + fSM_A5;
-+ fB_Term = fSM_A2 * (fSclk + fSclk_margin) + fSM_A6;
-+ fC_Term = fRO_DC_margin + fSM_A0 * fLkg_FT + fSM_A1 * fLkg_FT * (fSclk + fSclk_margin) + fSM_A3 * (fSclk + fSclk_margin) + fSM_A7 - fRO_fused;
-+ */
-+
-+ fA_Term = fAdd(fMultiply(fSM_A4, fAdd(fSclk, fSclk_margin)), fSM_A5);
-+ fB_Term = fAdd(fMultiply(fSM_A2, fAdd(fSclk, fSclk_margin)), fSM_A6);
-+ fC_Term = fAdd(fRO_DC_margin,
-+ fAdd(fMultiply(fSM_A0, fLkg_FT),
-+ fAdd(fMultiply(fMultiply(fSM_A1, fLkg_FT),
-+ fAdd(fSclk, fSclk_margin)),
-+ fAdd(fMultiply(fSM_A3,
-+ fAdd(fSclk, fSclk_margin)),
-+ fSubtract(fSM_A7, fRO_fused)))));
-+
-+ SolveQuadracticEqn(fA_Term, fB_Term, fC_Term, fRoots);
-+
-+ if (GreaterThan(fRoots[0], fRoots[1]))
-+ fEVV_V = fRoots[1];
-+ else
-+ fEVV_V = fRoots[0];
-+
-+ if (GreaterThan(fV_min, fEVV_V))
-+ fEVV_V = fV_min;
-+ else if (GreaterThan(fEVV_V, fV_max))
-+ fEVV_V = fSubtract(fV_max, fStepSize);
-+
-+ fEVV_V = fRoundUpByStepSize(fEVV_V, fStepSize, 0);
-+
-+ /*-----------------
-+ * PART 4
-+ *-----------------
-+ */
-+
-+ fV_x = fV_min;
-+
-+ while (GreaterThan(fAdd(fV_max, fStepSize), fV_x)) {
-+ fTDP_Power_left = fMultiply(fMultiply(fMultiply(fAdd(
-+ fMultiply(fCACm_fused, fV_x), fCACb_fused), fSclk),
-+ fGetSquare(fV_x)), fDerateTDP);
-+
-+ fTDP_Power_right = fMultiply(fFT_Lkg_V0NORM, fMultiply(fLKG_Factor,
-+ fMultiply(fExponential(fMultiply(fAdd(fMultiply(fKv_m_fused,
-+ fT_prod), fKv_b_fused), fV_x)), fV_x)));
-+ fTDP_Power_right = fMultiply(fTDP_Power_right, fExponential(fMultiply(
-+ fKt_Beta_fused, fT_prod)));
-+ fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply(
-+ fAdd(fMultiply(fKv_m_fused, fT_prod), fKv_b_fused), fV_FT)));
-+ fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply(
-+ fKt_Beta_fused, fT_FT)));
-+
-+ fTDP_Power = fAdd(fTDP_Power_left, fTDP_Power_right);
-+
-+ fTDP_Current = fDivide(fTDP_Power, fV_x);
-+
-+ fV_NL = fAdd(fV_x, fDivide(fMultiply(fTDP_Current, fRLL_LoadLine),
-+ ConvertToFraction(10)));
-+
-+ fV_NL = fRoundUpByStepSize(fV_NL, fStepSize, 0);
-+
-+ if (GreaterThan(fV_max, fV_NL) &&
-+ (GreaterThan(fV_NL,fEVV_V) ||
-+ Equal(fV_NL, fEVV_V))) {
-+ fV_NL = fMultiply(fV_NL, ConvertToFraction(1000));
-+
-+ *voltage = (uint16_t)fV_NL.partial.real;
-+ break;
-+ } else
-+ fV_x = fAdd(fV_x, fStepSize);
-+ }
-+
-+ return result;
-+}
-+
- /** atomctrl_get_voltage_evv_on_sclk gets voltage via call to ATOM COMMAND table.
- * @param hwmgr input: pointer to hwManager
- * @param voltage_type input: type of EVV voltage VDDC or VDDGFX
-@@ -701,4 +1163,23 @@ int atomctrl_get_engine_clock_spread_spectrum(
- ASIC_INTERNAL_ENGINE_SS, engine_clock, ssInfo);
- }
-
-+int atomctrl_read_efuse(void *device, uint16_t start_index,
-+ uint16_t end_index, uint32_t mask, uint32_t *efuse)
-+{
-+ int result;
-+ READ_EFUSE_VALUE_PARAMETER efuse_param;
-+
-+ efuse_param.sEfuse.usEfuseIndex = (start_index / 32) * 4;
-+ efuse_param.sEfuse.ucBitShift = (uint8_t)
-+ (start_index - ((start_index / 32) * 32));
-+ efuse_param.sEfuse.ucBitLength = (uint8_t)
-+ ((end_index - start_index) + 1);
-
-+ result = cgs_atom_exec_cmd_table(device,
-+ GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
-+ &efuse_param);
-+ if (!result)
-+ *efuse = efuse_param.ulEfuseValue & mask;
-+
-+ return result;
-+}
-diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.h b/drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.h
-index 23da436..b5ba371 100644
---- a/drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.h
-+++ b/drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.h
-@@ -231,6 +231,12 @@ extern int atomctrl_get_engine_pll_dividers_vi(struct pp_hwmgr *hwmgr, uint32_t
- extern int atomctrl_get_dfs_pll_dividers_vi(struct pp_hwmgr *hwmgr, uint32_t clock_value, pp_atomctrl_clock_dividers_vi *dividers);
- extern bool atomctrl_is_voltage_controled_by_gpio_v3(struct pp_hwmgr *hwmgr, uint8_t voltage_type, uint8_t voltage_mode);
- extern int atomctrl_get_voltage_table_v3(struct pp_hwmgr *hwmgr, uint8_t voltage_type, uint8_t voltage_mode, pp_atomctrl_voltage_table *voltage_table);
-+extern int atomctrl_get_memory_pll_dividers_vi(struct pp_hwmgr *hwmgr,
-+ uint32_t clock_value, pp_atomctrl_memory_clock_param *mpll_param);
-+extern int atomctrl_read_efuse(void *device, uint16_t start_index,
-+ uint16_t end_index, uint32_t mask, uint32_t *efuse);
-+extern int atomctrl_calculate_voltage_evv_on_sclk(struct pp_hwmgr *hwmgr, uint8_t voltage_type,
-+ uint32_t sclk, uint16_t virtual_voltage_Id, uint16_t *voltage, uint16_t dpm_level, bool debug);
-
-
- #endif
-diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_hwmgr.c b/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_hwmgr.c
-index 0feb1a8..1a02c7d 100644
---- a/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_hwmgr.c
-+++ b/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_hwmgr.c
-@@ -4507,14 +4507,14 @@ int tonga_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
- data->vdd_gfx_control = TONGA_VOLTAGE_CONTROL_NONE;
- data->mvdd_control = TONGA_VOLTAGE_CONTROL_NONE;
-
-- if (0 == atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
-+ if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
- VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2)) {
- data->voltage_control = TONGA_VOLTAGE_CONTROL_BY_SVID2;
- }
-
- if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
- PHM_PlatformCaps_ControlVDDGFX)) {
-- if (0 == atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
-+ if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
- VOLTAGE_TYPE_VDDGFX, VOLTAGE_OBJ_SVID2)) {
- data->vdd_gfx_control = TONGA_VOLTAGE_CONTROL_BY_SVID2;
- }
-@@ -4527,7 +4527,7 @@ int tonga_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
-
- if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
- PHM_PlatformCaps_EnableMVDDControl)) {
-- if (0 == atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
-+ if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
- VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT)) {
- data->mvdd_control = TONGA_VOLTAGE_CONTROL_BY_GPIO;
- }
-@@ -4540,10 +4540,10 @@ int tonga_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
-
- if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
- PHM_PlatformCaps_ControlVDDCI)) {
-- if (0 == atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
-+ if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
- VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT))
- data->vdd_ci_control = TONGA_VOLTAGE_CONTROL_BY_GPIO;
-- else if (0 == atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
-+ else if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
- VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_SVID2))
- data->vdd_ci_control = TONGA_VOLTAGE_CONTROL_BY_SVID2;
- }
---
-2.7.4
-