aboutsummaryrefslogtreecommitdiffstats
path: root/common/recipes-kernel/linux/files/0054-drm-amd-powerplay-add-Tonga-dpm-support-v3.patch
diff options
context:
space:
mode:
Diffstat (limited to 'common/recipes-kernel/linux/files/0054-drm-amd-powerplay-add-Tonga-dpm-support-v3.patch')
-rw-r--r--common/recipes-kernel/linux/files/0054-drm-amd-powerplay-add-Tonga-dpm-support-v3.patch9546
1 files changed, 9546 insertions, 0 deletions
diff --git a/common/recipes-kernel/linux/files/0054-drm-amd-powerplay-add-Tonga-dpm-support-v3.patch b/common/recipes-kernel/linux/files/0054-drm-amd-powerplay-add-Tonga-dpm-support-v3.patch
new file mode 100644
index 00000000..bce50d08
--- /dev/null
+++ b/common/recipes-kernel/linux/files/0054-drm-amd-powerplay-add-Tonga-dpm-support-v3.patch
@@ -0,0 +1,9546 @@
+From c01e1ac0d1a1fdd320f91d8f367867f77bddeec6 Mon Sep 17 00:00:00 2001
+From: yanyang1 <young.yang@amd.com>
+Date: Tue, 18 Aug 2015 15:28:32 +0800
+Subject: [PATCH 0054/1110] drm/amd/powerplay: add Tonga dpm support (v3)
+
+This implements DPM for tonga. DPM handles dynamic
+clock and voltage scaling.
+
+v2: merge all the patches related with tonga dpm
+v3: merge dpm force level fix, cgs display fix, spelling fix
+
+Reviewed-by: Alex Deucher <alexander.deucher@amd.com>
+Reviewed-by: Jammy Zhou <Jammy.Zhou@amd.com>
+Signed-off-by: yanyang1 <young.yang@amd.com>
+Signed-off-by: Rex Zhu <Rex.Zhu@amd.com>
+Signed-off-by: Eric Huang <JinHuiEric.Huang@amd.com>
+---
+ drivers/gpu/drm/amd/powerplay/Makefile | 5 +-
+ drivers/gpu/drm/amd/powerplay/hwmgr/Makefile | 4 +-
+ drivers/gpu/drm/amd/powerplay/hwmgr/hwmgr.c | 10 +
+ drivers/gpu/drm/amd/powerplay/hwmgr/hwmgr_ppt.h | 105 +
+ drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.c | 704 +++
+ drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.h | 237 +
+ drivers/gpu/drm/amd/powerplay/hwmgr/ppinterrupt.h | 42 +
+ drivers/gpu/drm/amd/powerplay/hwmgr/pppcielanes.c | 64 +
+ drivers/gpu/drm/amd/powerplay/hwmgr/pppcielanes.h | 31 +
+ .../drm/amd/powerplay/hwmgr/tonga_dyn_defaults.h | 107 +
+ drivers/gpu/drm/amd/powerplay/hwmgr/tonga_hwmgr.c | 5714 ++++++++++++++++++++
+ drivers/gpu/drm/amd/powerplay/hwmgr/tonga_hwmgr.h | 427 ++
+ .../gpu/drm/amd/powerplay/hwmgr/tonga_powertune.h | 66 +
+ .../gpu/drm/amd/powerplay/hwmgr/tonga_pptable.h | 406 ++
+ .../amd/powerplay/hwmgr/tonga_processpptables.c | 1129 ++++
+ .../amd/powerplay/hwmgr/tonga_processpptables.h | 35 +
+ .../gpu/drm/amd/powerplay/inc/hardwaremanager.h | 18 +-
+ drivers/gpu/drm/amd/powerplay/inc/hwmgr.h | 90 +
+ drivers/gpu/drm/amd/powerplay/inc/pp_debug.h | 2 +-
+ .../gpu/drm/amd/powerplay/inc/smu_ucode_xfer_vi.h | 100 +
+ 20 files changed, 9284 insertions(+), 12 deletions(-)
+ create mode 100644 drivers/gpu/drm/amd/powerplay/hwmgr/hwmgr_ppt.h
+ create mode 100644 drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.c
+ create mode 100644 drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.h
+ create mode 100644 drivers/gpu/drm/amd/powerplay/hwmgr/ppinterrupt.h
+ create mode 100644 drivers/gpu/drm/amd/powerplay/hwmgr/pppcielanes.c
+ create mode 100644 drivers/gpu/drm/amd/powerplay/hwmgr/pppcielanes.h
+ create mode 100644 drivers/gpu/drm/amd/powerplay/hwmgr/tonga_dyn_defaults.h
+ create mode 100644 drivers/gpu/drm/amd/powerplay/hwmgr/tonga_hwmgr.c
+ create mode 100644 drivers/gpu/drm/amd/powerplay/hwmgr/tonga_hwmgr.h
+ create mode 100644 drivers/gpu/drm/amd/powerplay/hwmgr/tonga_powertune.h
+ create mode 100644 drivers/gpu/drm/amd/powerplay/hwmgr/tonga_pptable.h
+ create mode 100644 drivers/gpu/drm/amd/powerplay/hwmgr/tonga_processpptables.c
+ create mode 100644 drivers/gpu/drm/amd/powerplay/hwmgr/tonga_processpptables.h
+ create mode 100644 drivers/gpu/drm/amd/powerplay/inc/smu_ucode_xfer_vi.h
+
+diff --git a/drivers/gpu/drm/amd/powerplay/Makefile b/drivers/gpu/drm/amd/powerplay/Makefile
+index 0231021..e195bf5 100644
+--- a/drivers/gpu/drm/amd/powerplay/Makefile
++++ b/drivers/gpu/drm/amd/powerplay/Makefile
+@@ -2,7 +2,10 @@
+ subdir-ccflags-y += -Iinclude/drm \
+ -Idrivers/gpu/drm/amd/powerplay/inc/ \
+ -Idrivers/gpu/drm/amd/include/asic_reg \
+- -Idrivers/gpu/drm/amd/include
++ -Idrivers/gpu/drm/amd/include \
++ -Idrivers/gpu/drm/amd/powerplay/smumgr\
++ -Idrivers/gpu/drm/amd/powerplay/hwmgr \
++ -Idrivers/gpu/drm/amd/powerplay/eventmgr
+
+ AMD_PP_PATH = ../powerplay
+
+diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/Makefile b/drivers/gpu/drm/amd/powerplay/hwmgr/Makefile
+index 46cc494..fd73d3c 100644
+--- a/drivers/gpu/drm/amd/powerplay/hwmgr/Makefile
++++ b/drivers/gpu/drm/amd/powerplay/hwmgr/Makefile
+@@ -4,7 +4,9 @@
+
+ HARDWARE_MGR = hwmgr.o processpptables.o functiontables.o \
+ hardwaremanager.o pp_acpi.o cz_hwmgr.o \
+- cz_clockpowergating.o
++ cz_clockpowergating.o \
++ tonga_processpptables.o ppatomctrl.o \
++ tonga_hwmgr.o pppcielanes.o
+
+ AMD_PP_HWMGR = $(addprefix $(AMD_PP_PATH)/hwmgr/,$(HARDWARE_MGR))
+
+diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/hwmgr.c b/drivers/gpu/drm/amd/powerplay/hwmgr/hwmgr.c
+index 5d1ba90..407b2e3 100644
+--- a/drivers/gpu/drm/amd/powerplay/hwmgr/hwmgr.c
++++ b/drivers/gpu/drm/amd/powerplay/hwmgr/hwmgr.c
+@@ -28,6 +28,7 @@
+ #include "power_state.h"
+ #include "hwmgr.h"
+ #include "cz_hwmgr.h"
++#include "tonga_hwmgr.h"
+
+ int hwmgr_init(struct amd_pp_init *pp_init, struct pp_instance *handle)
+ {
+@@ -53,6 +54,15 @@ int hwmgr_init(struct amd_pp_init *pp_init, struct pp_instance *handle)
+ case AMD_FAMILY_CZ:
+ cz_hwmgr_init(hwmgr);
+ break;
++ case AMD_FAMILY_VI:
++ switch (hwmgr->chip_id) {
++ case CHIP_TONGA:
++ tonga_hwmgr_init(hwmgr);
++ break;
++ default:
++ return -EINVAL;
++ }
++ break;
+ default:
+ return -EINVAL;
+ }
+diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/hwmgr_ppt.h b/drivers/gpu/drm/amd/powerplay/hwmgr/hwmgr_ppt.h
+new file mode 100644
+index 0000000..c9e6c2d
+--- /dev/null
++++ b/drivers/gpu/drm/amd/powerplay/hwmgr/hwmgr_ppt.h
+@@ -0,0 +1,105 @@
++/*
++ * Copyright 2015 Advanced Micro Devices, Inc.
++ *
++ * Permission is hereby granted, free of charge, to any person obtaining a
++ * copy of this software and associated documentation files (the "Software"),
++ * to deal in the Software without restriction, including without limitation
++ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
++ * and/or sell copies of the Software, and to permit persons to whom the
++ * Software is furnished to do so, subject to the following conditions:
++ *
++ * The above copyright notice and this permission notice shall be included in
++ * all copies or substantial portions of the Software.
++ *
++ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
++ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
++ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
++ * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
++ * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
++ * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
++ * OTHER DEALINGS IN THE SOFTWARE.
++ *
++ */
++
++#ifndef PP_HWMGR_PPT_H
++#define PP_HWMGR_PPT_H
++
++#include "hardwaremanager.h"
++#include "smumgr.h"
++#include "atom-types.h"
++
++struct phm_ppt_v1_clock_voltage_dependency_record {
++ uint32_t clk;
++ uint8_t vddInd;
++ uint16_t vdd_offset;
++ uint16_t vddc;
++ uint16_t vddgfx;
++ uint16_t vddci;
++ uint16_t mvdd;
++ uint8_t phases;
++ uint8_t cks_enable;
++ uint8_t cks_voffset;
++};
++
++typedef struct phm_ppt_v1_clock_voltage_dependency_record phm_ppt_v1_clock_voltage_dependency_record;
++
++struct phm_ppt_v1_clock_voltage_dependency_table {
++ uint32_t count; /* Number of entries. */
++ phm_ppt_v1_clock_voltage_dependency_record entries[1]; /* Dynamically allocate count entries. */
++};
++
++typedef struct phm_ppt_v1_clock_voltage_dependency_table phm_ppt_v1_clock_voltage_dependency_table;
++
++
++/* Multimedia Clock Voltage Dependency records and table */
++struct phm_ppt_v1_mm_clock_voltage_dependency_record {
++ uint32_t dclk; /* UVD D-clock */
++ uint32_t vclk; /* UVD V-clock */
++ uint32_t eclk; /* VCE clock */
++ uint32_t aclk; /* ACP clock */
++ uint32_t samclock; /* SAMU clock */
++ uint8_t vddcInd;
++ uint16_t vddgfx_offset;
++ uint16_t vddc;
++ uint16_t vddgfx;
++ uint8_t phases;
++};
++typedef struct phm_ppt_v1_mm_clock_voltage_dependency_record phm_ppt_v1_mm_clock_voltage_dependency_record;
++
++struct phm_ppt_v1_mm_clock_voltage_dependency_table {
++ uint32_t count; /* Number of entries. */
++ phm_ppt_v1_mm_clock_voltage_dependency_record entries[1]; /* Dynamically allocate count entries. */
++};
++typedef struct phm_ppt_v1_mm_clock_voltage_dependency_table phm_ppt_v1_mm_clock_voltage_dependency_table;
++
++struct phm_ppt_v1_voltage_lookup_record {
++ uint16_t us_calculated;
++ uint16_t us_vdd; /* Base voltage */
++ uint16_t us_cac_low;
++ uint16_t us_cac_mid;
++ uint16_t us_cac_high;
++};
++typedef struct phm_ppt_v1_voltage_lookup_record phm_ppt_v1_voltage_lookup_record;
++
++struct phm_ppt_v1_voltage_lookup_table {
++ uint32_t count;
++ phm_ppt_v1_voltage_lookup_record entries[1]; /* Dynamically allocate count entries. */
++};
++typedef struct phm_ppt_v1_voltage_lookup_table phm_ppt_v1_voltage_lookup_table;
++
++/* PCIE records and Table */
++
++struct phm_ppt_v1_pcie_record {
++ uint8_t gen_speed;
++ uint8_t lane_width;
++};
++typedef struct phm_ppt_v1_pcie_record phm_ppt_v1_pcie_record;
++
++struct phm_ppt_v1_pcie_table {
++ uint32_t count; /* Number of entries. */
++ phm_ppt_v1_pcie_record entries[1]; /* Dynamically allocate count entries. */
++};
++typedef struct phm_ppt_v1_pcie_table phm_ppt_v1_pcie_table;
++
++#endif
++
+diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.c b/drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.c
+new file mode 100644
+index 0000000..9af2f59
+--- /dev/null
++++ b/drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.c
+@@ -0,0 +1,704 @@
++/*
++ * Copyright 2015 Advanced Micro Devices, Inc.
++ *
++ * Permission is hereby granted, free of charge, to any person obtaining a
++ * copy of this software and associated documentation files (the "Software"),
++ * to deal in the Software without restriction, including without limitation
++ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
++ * and/or sell copies of the Software, and to permit persons to whom the
++ * Software is furnished to do so, subject to the following conditions:
++ *
++ * The above copyright notice and this permission notice shall be included in
++ * all copies or substantial portions of the Software.
++ *
++ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
++ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
++ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
++ * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
++ * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
++ * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
++ * OTHER DEALINGS IN THE SOFTWARE.
++ *
++ */
++#include <linux/module.h>
++#include <linux/slab.h>
++#include <linux/fb.h>
++
++#include "ppatomctrl.h"
++#include "atombios.h"
++#include "cgs_common.h"
++#include "pp_debug.h"
++#define MEM_ID_MASK 0xff000000
++#define MEM_ID_SHIFT 24
++#define CLOCK_RANGE_MASK 0x00ffffff
++#define CLOCK_RANGE_SHIFT 0
++#define LOW_NIBBLE_MASK 0xf
++#define DATA_EQU_PREV 0
++#define DATA_FROM_TABLE 4
++
++union voltage_object_info {
++ struct _ATOM_VOLTAGE_OBJECT_INFO v1;
++ struct _ATOM_VOLTAGE_OBJECT_INFO_V2 v2;
++ struct _ATOM_VOLTAGE_OBJECT_INFO_V3_1 v3;
++};
++
++static int atomctrl_retrieve_ac_timing(
++ uint8_t index,
++ ATOM_INIT_REG_BLOCK *reg_block,
++ pp_atomctrl_mc_reg_table *table)
++{
++ uint32_t i, j;
++ uint8_t tmem_id;
++ ATOM_MEMORY_SETTING_DATA_BLOCK *reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *)
++ ((uint8_t *)reg_block + (2 * sizeof(uint16_t)) + le16_to_cpu(reg_block->usRegIndexTblSize));
++
++ uint8_t num_ranges = 0;
++
++ while (*(uint32_t *)reg_data != END_OF_REG_DATA_BLOCK &&
++ num_ranges < VBIOS_MAX_AC_TIMING_ENTRIES) {
++ tmem_id = (uint8_t)((*(uint32_t *)reg_data & MEM_ID_MASK) >> MEM_ID_SHIFT);
++
++ if (index == tmem_id) {
++ table->mc_reg_table_entry[num_ranges].mclk_max =
++ (uint32_t)((*(uint32_t *)reg_data & CLOCK_RANGE_MASK) >>
++ CLOCK_RANGE_SHIFT);
++
++ for (i = 0, j = 1; i < table->last; i++) {
++ if ((table->mc_reg_address[i].uc_pre_reg_data &
++ LOW_NIBBLE_MASK) == DATA_FROM_TABLE) {
++ table->mc_reg_table_entry[num_ranges].mc_data[i] =
++ (uint32_t)*((uint32_t *)reg_data + j);
++ j++;
++ } else if ((table->mc_reg_address[i].uc_pre_reg_data &
++ LOW_NIBBLE_MASK) == DATA_EQU_PREV) {
++ table->mc_reg_table_entry[num_ranges].mc_data[i] =
++ table->mc_reg_table_entry[num_ranges].mc_data[i-1];
++ }
++ }
++ num_ranges++;
++ }
++
++ reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *)
++ ((uint8_t *)reg_data + le16_to_cpu(reg_block->usRegDataBlkSize)) ;
++ }
++
++ PP_ASSERT_WITH_CODE((*(uint32_t *)reg_data == END_OF_REG_DATA_BLOCK),
++ "Invalid VramInfo table.", return -1);
++ table->num_entries = num_ranges;
++
++ return 0;
++}
++
++/**
++ * Get memory clock AC timing registers index from VBIOS table
++ * VBIOS set end of memory clock AC timing registers by ucPreRegDataLength bit6 = 1
++ * @param reg_block the address ATOM_INIT_REG_BLOCK
++ * @param table the address of MCRegTable
++ * @return PP_Result_OK
++ */
++static int atomctrl_set_mc_reg_address_table(
++ ATOM_INIT_REG_BLOCK *reg_block,
++ pp_atomctrl_mc_reg_table *table)
++{
++ uint8_t i = 0;
++ uint8_t num_entries = (uint8_t)((le16_to_cpu(reg_block->usRegIndexTblSize))
++ / sizeof(ATOM_INIT_REG_INDEX_FORMAT));
++ ATOM_INIT_REG_INDEX_FORMAT *format = &reg_block->asRegIndexBuf[0];
++
++ num_entries--; /* subtract 1 data end mark entry */
++
++ PP_ASSERT_WITH_CODE((num_entries <= VBIOS_MC_REGISTER_ARRAY_SIZE),
++ "Invalid VramInfo table.", return -1);
++
++ /* ucPreRegDataLength bit6 = 1 is the end of memory clock AC timing registers */
++ while ((!(format->ucPreRegDataLength & ACCESS_PLACEHOLDER)) &&
++ (i < num_entries)) {
++ table->mc_reg_address[i].s1 =
++ (uint16_t)(le16_to_cpu(format->usRegIndex));
++ table->mc_reg_address[i].uc_pre_reg_data =
++ format->ucPreRegDataLength;
++
++ i++;
++ format = (ATOM_INIT_REG_INDEX_FORMAT *)
++ ((uint8_t *)format + sizeof(ATOM_INIT_REG_INDEX_FORMAT));
++ }
++
++ table->last = i;
++ return 0;
++}
++
++
++int atomctrl_initialize_mc_reg_table(
++ struct pp_hwmgr *hwmgr,
++ uint8_t module_index,
++ pp_atomctrl_mc_reg_table *table)
++{
++ ATOM_VRAM_INFO_HEADER_V2_1 *vram_info;
++ ATOM_INIT_REG_BLOCK *reg_block;
++ int result = 0;
++ u8 frev, crev;
++ u16 size;
++
++ vram_info = (ATOM_VRAM_INFO_HEADER_V2_1 *)
++ cgs_atom_get_data_table(hwmgr->device,
++ GetIndexIntoMasterTable(DATA, VRAM_Info), &size, &frev, &crev);
++
++ if (module_index >= vram_info->ucNumOfVRAMModule) {
++ printk(KERN_ERR "[ powerplay ] Invalid VramInfo table.");
++ result = -1;
++ } else if (vram_info->sHeader.ucTableFormatRevision < 2) {
++ printk(KERN_ERR "[ powerplay ] Invalid VramInfo table.");
++ result = -1;
++ }
++
++ if (0 == result) {
++ reg_block = (ATOM_INIT_REG_BLOCK *)
++ ((uint8_t *)vram_info + le16_to_cpu(vram_info->usMemClkPatchTblOffset));
++ result = atomctrl_set_mc_reg_address_table(reg_block, table);
++ }
++
++ if (0 == result) {
++ result = atomctrl_retrieve_ac_timing(module_index,
++ reg_block, table);
++ }
++
++ return result;
++}
++
++/**
++ * Set DRAM timings based on engine clock and memory clock.
++ */
++int atomctrl_set_engine_dram_timings_rv770(
++ struct pp_hwmgr *hwmgr,
++ uint32_t engine_clock,
++ uint32_t memory_clock)
++{
++ SET_ENGINE_CLOCK_PS_ALLOCATION engine_clock_parameters;
++
++ /* They are both in 10KHz Units. */
++ engine_clock_parameters.ulTargetEngineClock =
++ (uint32_t) engine_clock & SET_CLOCK_FREQ_MASK;
++ engine_clock_parameters.ulTargetEngineClock |=
++ (COMPUTE_ENGINE_PLL_PARAM << 24);
++
++ /* in 10 khz units.*/
++ engine_clock_parameters.sReserved.ulClock =
++ (uint32_t) memory_clock & SET_CLOCK_FREQ_MASK;
++ return cgs_atom_exec_cmd_table(hwmgr->device,
++ GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings),
++ &engine_clock_parameters);
++}
++
++/**
++ * Private Function to get the PowerPlay Table Address.
++ * WARNING: The tabled returned by this function is in
++ * dynamically allocated memory.
++ * The caller has to release if by calling kfree.
++ */
++static ATOM_VOLTAGE_OBJECT_INFO *get_voltage_info_table(void *device)
++{
++ int index = GetIndexIntoMasterTable(DATA, VoltageObjectInfo);
++ u8 frev, crev;
++ u16 size;
++ union voltage_object_info *voltage_info;
++
++ voltage_info = (union voltage_object_info *)
++ cgs_atom_get_data_table(device, index,
++ &size, &frev, &crev);
++
++ if (voltage_info != NULL)
++ return (ATOM_VOLTAGE_OBJECT_INFO *) &(voltage_info->v3);
++ else
++ return NULL;
++}
++
++static const ATOM_VOLTAGE_OBJECT_V3 *atomctrl_lookup_voltage_type_v3(
++ const ATOM_VOLTAGE_OBJECT_INFO_V3_1 * voltage_object_info_table,
++ uint8_t voltage_type, uint8_t voltage_mode)
++{
++ unsigned int size = le16_to_cpu(voltage_object_info_table->sHeader.usStructureSize);
++ unsigned int offset = offsetof(ATOM_VOLTAGE_OBJECT_INFO_V3_1, asVoltageObj[0]);
++ uint8_t *start = (uint8_t *)voltage_object_info_table;
++
++ while (offset < size) {
++ const ATOM_VOLTAGE_OBJECT_V3 *voltage_object =
++ (const ATOM_VOLTAGE_OBJECT_V3 *)(start + offset);
++
++ if (voltage_type == voltage_object->asGpioVoltageObj.sHeader.ucVoltageType &&
++ voltage_mode == voltage_object->asGpioVoltageObj.sHeader.ucVoltageMode)
++ return voltage_object;
++
++ offset += le16_to_cpu(voltage_object->asGpioVoltageObj.sHeader.usSize);
++ }
++
++ return NULL;
++}
++
++/** atomctrl_get_memory_pll_dividers_si().
++ *
++ * @param hwmgr input parameter: pointer to HwMgr
++ * @param clock_value input parameter: memory clock
++ * @param dividers output parameter: memory PLL dividers
++ * @param strobe_mode input parameter: 1 for strobe mode, 0 for performance mode
++ */
++int atomctrl_get_memory_pll_dividers_si(
++ struct pp_hwmgr *hwmgr,
++ uint32_t clock_value,
++ pp_atomctrl_memory_clock_param *mpll_param,
++ bool strobe_mode)
++{
++ COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_1 mpll_parameters;
++ int result;
++
++ mpll_parameters.ulClock = (uint32_t) clock_value;
++ mpll_parameters.ucInputFlag = (uint8_t)((strobe_mode) ? 1 : 0);
++
++ result = cgs_atom_exec_cmd_table
++ (hwmgr->device,
++ GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
++ &mpll_parameters);
++
++ if (0 == result) {
++ mpll_param->mpll_fb_divider.clk_frac =
++ mpll_parameters.ulFbDiv.usFbDivFrac;
++ mpll_param->mpll_fb_divider.cl_kf =
++ mpll_parameters.ulFbDiv.usFbDiv;
++ mpll_param->mpll_post_divider =
++ (uint32_t)mpll_parameters.ucPostDiv;
++ mpll_param->vco_mode =
++ (uint32_t)(mpll_parameters.ucPllCntlFlag &
++ MPLL_CNTL_FLAG_VCO_MODE_MASK);
++ mpll_param->yclk_sel =
++ (uint32_t)((mpll_parameters.ucPllCntlFlag &
++ MPLL_CNTL_FLAG_BYPASS_DQ_PLL) ? 1 : 0);
++ mpll_param->qdr =
++ (uint32_t)((mpll_parameters.ucPllCntlFlag &
++ MPLL_CNTL_FLAG_QDR_ENABLE) ? 1 : 0);
++ mpll_param->half_rate =
++ (uint32_t)((mpll_parameters.ucPllCntlFlag &
++ MPLL_CNTL_FLAG_AD_HALF_RATE) ? 1 : 0);
++ mpll_param->dll_speed =
++ (uint32_t)(mpll_parameters.ucDllSpeed);
++ mpll_param->bw_ctrl =
++ (uint32_t)(mpll_parameters.ucBWCntl);
++ }
++
++ return result;
++}
++
++int atomctrl_get_engine_pll_dividers_vi(
++ struct pp_hwmgr *hwmgr,
++ uint32_t clock_value,
++ pp_atomctrl_clock_dividers_vi *dividers)
++{
++ COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 pll_patameters;
++ int result;
++
++ pll_patameters.ulClock.ulClock = clock_value;
++ pll_patameters.ulClock.ucPostDiv = COMPUTE_GPUCLK_INPUT_FLAG_SCLK;
++
++ result = cgs_atom_exec_cmd_table
++ (hwmgr->device,
++ GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
++ &pll_patameters);
++
++ if (0 == result) {
++ dividers->pll_post_divider =
++ pll_patameters.ulClock.ucPostDiv;
++ dividers->real_clock =
++ pll_patameters.ulClock.ulClock;
++
++ dividers->ul_fb_div.ul_fb_div_frac =
++ pll_patameters.ulFbDiv.usFbDivFrac;
++ dividers->ul_fb_div.ul_fb_div =
++ pll_patameters.ulFbDiv.usFbDiv;
++
++ dividers->uc_pll_ref_div =
++ pll_patameters.ucPllRefDiv;
++ dividers->uc_pll_post_div =
++ pll_patameters.ucPllPostDiv;
++ dividers->uc_pll_cntl_flag =
++ pll_patameters.ucPllCntlFlag;
++ }
++
++ return result;
++}
++
++int atomctrl_get_dfs_pll_dividers_vi(
++ struct pp_hwmgr *hwmgr,
++ uint32_t clock_value,
++ pp_atomctrl_clock_dividers_vi *dividers)
++{
++ COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 pll_patameters;
++ int result;
++
++ pll_patameters.ulClock.ulClock = clock_value;
++ pll_patameters.ulClock.ucPostDiv =
++ COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK;
++
++ result = cgs_atom_exec_cmd_table
++ (hwmgr->device,
++ GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
++ &pll_patameters);
++
++ if (0 == result) {
++ dividers->pll_post_divider =
++ pll_patameters.ulClock.ucPostDiv;
++ dividers->real_clock =
++ pll_patameters.ulClock.ulClock;
++
++ dividers->ul_fb_div.ul_fb_div_frac =
++ pll_patameters.ulFbDiv.usFbDivFrac;
++ dividers->ul_fb_div.ul_fb_div =
++ pll_patameters.ulFbDiv.usFbDiv;
++
++ dividers->uc_pll_ref_div =
++ pll_patameters.ucPllRefDiv;
++ dividers->uc_pll_post_div =
++ pll_patameters.ucPllPostDiv;
++ dividers->uc_pll_cntl_flag =
++ pll_patameters.ucPllCntlFlag;
++ }
++
++ return result;
++}
++
++/**
++ * Get the reference clock in 10KHz
++ */
++uint32_t atomctrl_get_reference_clock(struct pp_hwmgr *hwmgr)
++{
++ ATOM_FIRMWARE_INFO *fw_info;
++ u8 frev, crev;
++ u16 size;
++ uint32_t clock;
++
++ fw_info = (ATOM_FIRMWARE_INFO *)
++ cgs_atom_get_data_table(hwmgr->device,
++ GetIndexIntoMasterTable(DATA, FirmwareInfo),
++ &size, &frev, &crev);
++
++ if (fw_info == NULL)
++ clock = 2700;
++ else
++ clock = (uint32_t)(le16_to_cpu(fw_info->usReferenceClock));
++
++ return clock;
++}
++
++/**
++ * Returns 0 if the given voltage type is controlled by GPIO pins.
++ * voltage_type is one of SET_VOLTAGE_TYPE_ASIC_VDDC,
++ * SET_VOLTAGE_TYPE_ASIC_MVDDC, SET_VOLTAGE_TYPE_ASIC_MVDDQ.
++ * voltage_mode is one of ATOM_SET_VOLTAGE, ATOM_SET_VOLTAGE_PHASE
++ */
++bool atomctrl_is_voltage_controled_by_gpio_v3(
++ struct pp_hwmgr *hwmgr,
++ uint8_t voltage_type,
++ uint8_t voltage_mode)
++{
++ ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
++ (ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->device);
++ bool ret;
++
++ PP_ASSERT_WITH_CODE((NULL != voltage_info),
++ "Could not find Voltage Table in BIOS.", return -1;);
++
++ ret = (NULL != atomctrl_lookup_voltage_type_v3
++ (voltage_info, voltage_type, voltage_mode)) ? 0 : 1;
++
++ return ret;
++}
++
++int atomctrl_get_voltage_table_v3(
++ struct pp_hwmgr *hwmgr,
++ uint8_t voltage_type,
++ uint8_t voltage_mode,
++ pp_atomctrl_voltage_table *voltage_table)
++{
++ ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
++ (ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->device);
++ const ATOM_VOLTAGE_OBJECT_V3 *voltage_object;
++ unsigned int i;
++
++ PP_ASSERT_WITH_CODE((NULL != voltage_info),
++ "Could not find Voltage Table in BIOS.", return -1;);
++
++ voltage_object = atomctrl_lookup_voltage_type_v3
++ (voltage_info, voltage_type, voltage_mode);
++
++ if (voltage_object == NULL)
++ return -1;
++
++ PP_ASSERT_WITH_CODE(
++ (voltage_object->asGpioVoltageObj.ucGpioEntryNum <=
++ PP_ATOMCTRL_MAX_VOLTAGE_ENTRIES),
++ "Too many voltage entries!",
++ return -1;
++ );
++
++ for (i = 0; i < voltage_object->asGpioVoltageObj.ucGpioEntryNum; i++) {
++ voltage_table->entries[i].value =
++ voltage_object->asGpioVoltageObj.asVolGpioLut[i].usVoltageValue;
++ voltage_table->entries[i].smio_low =
++ voltage_object->asGpioVoltageObj.asVolGpioLut[i].ulVoltageId;
++ }
++
++ voltage_table->mask_low =
++ voltage_object->asGpioVoltageObj.ulGpioMaskVal;
++ voltage_table->count =
++ voltage_object->asGpioVoltageObj.ucGpioEntryNum;
++ voltage_table->phase_delay =
++ voltage_object->asGpioVoltageObj.ucPhaseDelay;
++
++ return 0;
++}
++
++static bool atomctrl_lookup_gpio_pin(
++ ATOM_GPIO_PIN_LUT * gpio_lookup_table,
++ const uint32_t pinId,
++ pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment)
++{
++ unsigned int size = le16_to_cpu(gpio_lookup_table->sHeader.usStructureSize);
++ unsigned int offset = offsetof(ATOM_GPIO_PIN_LUT, asGPIO_Pin[0]);
++ uint8_t *start = (uint8_t *)gpio_lookup_table;
++
++ while (offset < size) {
++ const ATOM_GPIO_PIN_ASSIGNMENT *pin_assignment =
++ (const ATOM_GPIO_PIN_ASSIGNMENT *)(start + offset);
++
++ if (pinId == pin_assignment->ucGPIO_ID) {
++ gpio_pin_assignment->uc_gpio_pin_bit_shift =
++ pin_assignment->ucGpioPinBitShift;
++ gpio_pin_assignment->us_gpio_pin_aindex =
++ le16_to_cpu(pin_assignment->usGpioPin_AIndex);
++ return 0;
++ }
++
++ offset += offsetof(ATOM_GPIO_PIN_ASSIGNMENT, ucGPIO_ID) + 1;
++ }
++
++ return 1;
++}
++
++/**
++ * Private Function to get the PowerPlay Table Address.
++ * WARNING: The tabled returned by this function is in
++ * dynamically allocated memory.
++ * The caller has to release if by calling kfree.
++ */
++static ATOM_GPIO_PIN_LUT *get_gpio_lookup_table(void *device)
++{
++ u8 frev, crev;
++ u16 size;
++ void *table_address;
++
++ table_address = (ATOM_GPIO_PIN_LUT *)
++ cgs_atom_get_data_table(device,
++ GetIndexIntoMasterTable(DATA, GPIO_Pin_LUT),
++ &size, &frev, &crev);
++
++ PP_ASSERT_WITH_CODE((NULL != table_address),
++ "Error retrieving BIOS Table Address!", return NULL;);
++
++ return (ATOM_GPIO_PIN_LUT *)table_address;
++}
++
++/**
++ * Returns 1 if the given pin id find in lookup table.
++ */
++bool atomctrl_get_pp_assign_pin(
++ struct pp_hwmgr *hwmgr,
++ const uint32_t pinId,
++ pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment)
++{
++ bool bRet = 0;
++ ATOM_GPIO_PIN_LUT *gpio_lookup_table =
++ get_gpio_lookup_table(hwmgr->device);
++
++ PP_ASSERT_WITH_CODE((NULL != gpio_lookup_table),
++ "Could not find GPIO lookup Table in BIOS.", return -1);
++
++ bRet = atomctrl_lookup_gpio_pin(gpio_lookup_table, pinId,
++ gpio_pin_assignment);
++
++ return bRet;
++}
++
++/** atomctrl_get_voltage_evv_on_sclk gets voltage via call to ATOM COMMAND table.
++ * @param hwmgr input: pointer to hwManager
++ * @param voltage_type input: type of EVV voltage VDDC or VDDGFX
++ * @param sclk input: in 10Khz unit. DPM state SCLK frequency
++ * which is define in PPTable SCLK/VDDC dependence
++ * table associated with this virtual_voltage_Id
++ * @param virtual_voltage_Id input: voltage id which match per voltage DPM state: 0xff01, 0xff02.. 0xff08
++ * @param voltage output: real voltage level in unit of mv
++ */
++int atomctrl_get_voltage_evv_on_sclk(
++ struct pp_hwmgr *hwmgr,
++ uint8_t voltage_type,
++ uint32_t sclk, uint16_t virtual_voltage_Id,
++ uint16_t *voltage)
++{
++ int result;
++ GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_2 get_voltage_info_param_space;
++
++ get_voltage_info_param_space.ucVoltageType =
++ voltage_type;
++ get_voltage_info_param_space.ucVoltageMode =
++ ATOM_GET_VOLTAGE_EVV_VOLTAGE;
++ get_voltage_info_param_space.usVoltageLevel =
++ virtual_voltage_Id;
++ get_voltage_info_param_space.ulSCLKFreq =
++ sclk;
++
++ result = cgs_atom_exec_cmd_table(hwmgr->device,
++ GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
++ &get_voltage_info_param_space);
++
++ if (0 != result)
++ return result;
++
++ *voltage = ((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_2 *)
++ (&get_voltage_info_param_space))->usVoltageLevel;
++
++ return result;
++}
++
++/**
++ * Get the mpll reference clock in 10KHz
++ */
++uint32_t atomctrl_get_mpll_reference_clock(struct pp_hwmgr *hwmgr)
++{
++ ATOM_COMMON_TABLE_HEADER *fw_info;
++ uint32_t clock;
++ u8 frev, crev;
++ u16 size;
++
++ fw_info = (ATOM_COMMON_TABLE_HEADER *)
++ cgs_atom_get_data_table(hwmgr->device,
++ GetIndexIntoMasterTable(DATA, FirmwareInfo),
++ &size, &frev, &crev);
++
++ if (fw_info == NULL)
++ clock = 2700;
++ else {
++ if ((fw_info->ucTableFormatRevision == 2) &&
++ (le16_to_cpu(fw_info->usStructureSize) >= sizeof(ATOM_FIRMWARE_INFO_V2_1))) {
++ ATOM_FIRMWARE_INFO_V2_1 *fwInfo_2_1 =
++ (ATOM_FIRMWARE_INFO_V2_1 *)fw_info;
++ clock = (uint32_t)(le16_to_cpu(fwInfo_2_1->usMemoryReferenceClock));
++ } else {
++ ATOM_FIRMWARE_INFO *fwInfo_0_0 =
++ (ATOM_FIRMWARE_INFO *)fw_info;
++ clock = (uint32_t)(le16_to_cpu(fwInfo_0_0->usReferenceClock));
++ }
++ }
++
++ return clock;
++}
++
++/**
++ * Get the asic internal spread spectrum table
++ */
++static ATOM_ASIC_INTERNAL_SS_INFO *asic_internal_ss_get_ss_table(void *device)
++{
++ ATOM_ASIC_INTERNAL_SS_INFO *table = NULL;
++ u8 frev, crev;
++ u16 size;
++
++ table = (ATOM_ASIC_INTERNAL_SS_INFO *)
++ cgs_atom_get_data_table(device,
++ GetIndexIntoMasterTable(DATA, ASIC_InternalSS_Info),
++ &size, &frev, &crev);
++
++ return table;
++}
++
++/**
++ * Get the asic internal spread spectrum assignment
++ */
++static int asic_internal_ss_get_ss_asignment(struct pp_hwmgr *hwmgr,
++ const uint8_t clockSource,
++ const uint32_t clockSpeed,
++ pp_atomctrl_internal_ss_info *ssEntry)
++{
++ ATOM_ASIC_INTERNAL_SS_INFO *table;
++ ATOM_ASIC_SS_ASSIGNMENT *ssInfo;
++ int entry_found = 0;
++
++ memset(ssEntry, 0x00, sizeof(pp_atomctrl_internal_ss_info));
++
++ table = asic_internal_ss_get_ss_table(hwmgr->device);
++
++ if (NULL == table)
++ return -1;
++
++ ssInfo = &table->asSpreadSpectrum[0];
++
++ while (((uint8_t *)ssInfo - (uint8_t *)table) <
++ le16_to_cpu(table->sHeader.usStructureSize)) {
++ if ((clockSource == ssInfo->ucClockIndication) &&
++ ((uint32_t)clockSpeed <= le32_to_cpu(ssInfo->ulTargetClockRange))) {
++ entry_found = 1;
++ break;
++ }
++
++ ssInfo = (ATOM_ASIC_SS_ASSIGNMENT *)((uint8_t *)ssInfo +
++ sizeof(ATOM_ASIC_SS_ASSIGNMENT));
++ }
++
++ if (entry_found) {
++ ssEntry->speed_spectrum_percentage =
++ ssInfo->usSpreadSpectrumPercentage;
++ ssEntry->speed_spectrum_rate = ssInfo->usSpreadRateInKhz;
++
++ if (((GET_DATA_TABLE_MAJOR_REVISION(table) == 2) &&
++ (GET_DATA_TABLE_MINOR_REVISION(table) >= 2)) ||
++ (GET_DATA_TABLE_MAJOR_REVISION(table) == 3)) {
++ ssEntry->speed_spectrum_rate /= 100;
++ }
++
++ switch (ssInfo->ucSpreadSpectrumMode) {
++ case 0:
++ ssEntry->speed_spectrum_mode =
++ pp_atomctrl_spread_spectrum_mode_down;
++ break;
++ case 1:
++ ssEntry->speed_spectrum_mode =
++ pp_atomctrl_spread_spectrum_mode_center;
++ break;
++ default:
++ ssEntry->speed_spectrum_mode =
++ pp_atomctrl_spread_spectrum_mode_down;
++ break;
++ }
++ }
++
++ return entry_found ? 0 : 1;
++}
++
++/**
++ * Get the memory clock spread spectrum info
++ */
++int atomctrl_get_memory_clock_spread_spectrum(
++ struct pp_hwmgr *hwmgr,
++ const uint32_t memory_clock,
++ pp_atomctrl_internal_ss_info *ssInfo)
++{
++ return asic_internal_ss_get_ss_asignment(hwmgr,
++ ASIC_INTERNAL_MEMORY_SS, memory_clock, ssInfo);
++}
++/**
++ * Get the engine clock spread spectrum info
++ */
++int atomctrl_get_engine_clock_spread_spectrum(
++ struct pp_hwmgr *hwmgr,
++ const uint32_t engine_clock,
++ pp_atomctrl_internal_ss_info *ssInfo)
++{
++ return asic_internal_ss_get_ss_asignment(hwmgr,
++ ASIC_INTERNAL_ENGINE_SS, engine_clock, ssInfo);
++}
++
++
+diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.h b/drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.h
+new file mode 100644
+index 0000000..23da436
+--- /dev/null
++++ b/drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.h
+@@ -0,0 +1,237 @@
++/*
++ * Copyright 2015 Advanced Micro Devices, Inc.
++ *
++ * Permission is hereby granted, free of charge, to any person obtaining a
++ * copy of this software and associated documentation files (the "Software"),
++ * to deal in the Software without restriction, including without limitation
++ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
++ * and/or sell copies of the Software, and to permit persons to whom the
++ * Software is furnished to do so, subject to the following conditions:
++ *
++ * The above copyright notice and this permission notice shall be included in
++ * all copies or substantial portions of the Software.
++ *
++ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
++ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
++ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
++ * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
++ * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
++ * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
++ * OTHER DEALINGS IN THE SOFTWARE.
++ *
++ */
++
++#ifndef PP_ATOMVOLTAGECTRL_H
++#define PP_ATOMVOLTAGECTRL_H
++
++#include "hwmgr.h"
++
++#define MEM_TYPE_GDDR5 0x50
++#define MEM_TYPE_GDDR4 0x40
++#define MEM_TYPE_GDDR3 0x30
++#define MEM_TYPE_DDR2 0x20
++#define MEM_TYPE_GDDR1 0x10
++#define MEM_TYPE_DDR3 0xb0
++#define MEM_TYPE_MASK 0xF0
++
++
++/* As returned from PowerConnectorDetectionTable. */
++#define PP_ATOM_POWER_BUDGET_DISABLE_OVERDRIVE 0x80
++#define PP_ATOM_POWER_BUDGET_SHOW_WARNING 0x40
++#define PP_ATOM_POWER_BUDGET_SHOW_WAIVER 0x20
++#define PP_ATOM_POWER_POWER_BUDGET_BEHAVIOUR 0x0F
++
++/* New functions for Evergreen and beyond. */
++#define PP_ATOMCTRL_MAX_VOLTAGE_ENTRIES 32
++
++struct pp_atomctrl_clock_dividers {
++ uint32_t pll_post_divider;
++ uint32_t pll_feedback_divider;
++ uint32_t pll_ref_divider;
++ bool enable_post_divider;
++};
++
++typedef struct pp_atomctrl_clock_dividers pp_atomctrl_clock_dividers;
++
++union pp_atomctrl_tcipll_fb_divider {
++ struct {
++ uint32_t ul_fb_div_frac : 14;
++ uint32_t ul_fb_div : 12;
++ uint32_t un_used : 6;
++ };
++ uint32_t ul_fb_divider;
++};
++
++typedef union pp_atomctrl_tcipll_fb_divider pp_atomctrl_tcipll_fb_divider;
++
++struct pp_atomctrl_clock_dividers_rv730 {
++ uint32_t pll_post_divider;
++ pp_atomctrl_tcipll_fb_divider mpll_feedback_divider;
++ uint32_t pll_ref_divider;
++ bool enable_post_divider;
++ bool enable_dithen;
++ uint32_t vco_mode;
++};
++typedef struct pp_atomctrl_clock_dividers_rv730 pp_atomctrl_clock_dividers_rv730;
++
++
++struct pp_atomctrl_clock_dividers_kong {
++ uint32_t pll_post_divider;
++ uint32_t real_clock;
++};
++typedef struct pp_atomctrl_clock_dividers_kong pp_atomctrl_clock_dividers_kong;
++
++struct pp_atomctrl_clock_dividers_ci {
++ uint32_t pll_post_divider; /* post divider value */
++ uint32_t real_clock;
++ pp_atomctrl_tcipll_fb_divider ul_fb_div; /* Output Parameter: PLL FB divider */
++ uint8_t uc_pll_ref_div; /* Output Parameter: PLL ref divider */
++ uint8_t uc_pll_post_div; /* Output Parameter: PLL post divider */
++ uint8_t uc_pll_cntl_flag; /*Output Flags: control flag */
++};
++typedef struct pp_atomctrl_clock_dividers_ci pp_atomctrl_clock_dividers_ci;
++
++struct pp_atomctrl_clock_dividers_vi {
++ uint32_t pll_post_divider; /* post divider value */
++ uint32_t real_clock;
++ pp_atomctrl_tcipll_fb_divider ul_fb_div; /*Output Parameter: PLL FB divider */
++ uint8_t uc_pll_ref_div; /*Output Parameter: PLL ref divider */
++ uint8_t uc_pll_post_div; /*Output Parameter: PLL post divider */
++ uint8_t uc_pll_cntl_flag; /*Output Flags: control flag */
++};
++typedef struct pp_atomctrl_clock_dividers_vi pp_atomctrl_clock_dividers_vi;
++
++union pp_atomctrl_s_mpll_fb_divider {
++ struct {
++ uint32_t cl_kf : 12;
++ uint32_t clk_frac : 12;
++ uint32_t un_used : 8;
++ };
++ uint32_t ul_fb_divider;
++};
++typedef union pp_atomctrl_s_mpll_fb_divider pp_atomctrl_s_mpll_fb_divider;
++
++enum pp_atomctrl_spread_spectrum_mode {
++ pp_atomctrl_spread_spectrum_mode_down = 0,
++ pp_atomctrl_spread_spectrum_mode_center
++};
++typedef enum pp_atomctrl_spread_spectrum_mode pp_atomctrl_spread_spectrum_mode;
++
++struct pp_atomctrl_memory_clock_param {
++ pp_atomctrl_s_mpll_fb_divider mpll_fb_divider;
++ uint32_t mpll_post_divider;
++ uint32_t bw_ctrl;
++ uint32_t dll_speed;
++ uint32_t vco_mode;
++ uint32_t yclk_sel;
++ uint32_t qdr;
++ uint32_t half_rate;
++};
++typedef struct pp_atomctrl_memory_clock_param pp_atomctrl_memory_clock_param;
++
++struct pp_atomctrl_internal_ss_info {
++ uint32_t speed_spectrum_percentage; /* in 1/100 percentage */
++ uint32_t speed_spectrum_rate; /* in KHz */
++ pp_atomctrl_spread_spectrum_mode speed_spectrum_mode;
++};
++typedef struct pp_atomctrl_internal_ss_info pp_atomctrl_internal_ss_info;
++
++#ifndef NUMBER_OF_M3ARB_PARAMS
++#define NUMBER_OF_M3ARB_PARAMS 3
++#endif
++
++#ifndef NUMBER_OF_M3ARB_PARAM_SETS
++#define NUMBER_OF_M3ARB_PARAM_SETS 10
++#endif
++
++struct pp_atomctrl_kong_system_info {
++ uint32_t ul_bootup_uma_clock; /* in 10kHz unit */
++ uint16_t us_max_nb_voltage; /* high NB voltage, calculated using current VDDNB (D24F2xDC) and VDDNB offset fuse; */
++ uint16_t us_min_nb_voltage; /* low NB voltage, calculated using current VDDNB (D24F2xDC) and VDDNB offset fuse; */
++ uint16_t us_bootup_nb_voltage; /* boot up NB voltage */
++ uint8_t uc_htc_tmp_lmt; /* bit [22:16] of D24F3x64 Hardware Thermal Control (HTC) Register, may not be needed, TBD */
++ uint8_t uc_tj_offset; /* bit [28:22] of D24F3xE4 Thermtrip Status Register,may not be needed, TBD */
++ /* 0: default 1: uvd 2: fs-3d */
++ uint32_t ul_csr_m3_srb_cntl[NUMBER_OF_M3ARB_PARAM_SETS][NUMBER_OF_M3ARB_PARAMS];/* arrays with values for CSR M3 arbiter for default */
++};
++typedef struct pp_atomctrl_kong_system_info pp_atomctrl_kong_system_info;
++
++struct pp_atomctrl_memory_info {
++ uint8_t memory_vendor;
++ uint8_t memory_type;
++};
++typedef struct pp_atomctrl_memory_info pp_atomctrl_memory_info;
++
++#define MAX_AC_TIMING_ENTRIES 16
++
++struct pp_atomctrl_memory_clock_range_table {
++ uint8_t num_entries;
++ uint8_t rsv[3];
++
++ uint32_t mclk[MAX_AC_TIMING_ENTRIES];
++};
++typedef struct pp_atomctrl_memory_clock_range_table pp_atomctrl_memory_clock_range_table;
++
++struct pp_atomctrl_voltage_table_entry {
++ uint16_t value;
++ uint32_t smio_low;
++};
++
++typedef struct pp_atomctrl_voltage_table_entry pp_atomctrl_voltage_table_entry;
++
++struct pp_atomctrl_voltage_table {
++ uint32_t count;
++ uint32_t mask_low;
++ uint32_t phase_delay; /* Used for ATOM_GPIO_VOLTAGE_OBJECT_V3 and later */
++ pp_atomctrl_voltage_table_entry entries[PP_ATOMCTRL_MAX_VOLTAGE_ENTRIES];
++};
++
++typedef struct pp_atomctrl_voltage_table pp_atomctrl_voltage_table;
++
++#define VBIOS_MC_REGISTER_ARRAY_SIZE 32
++#define VBIOS_MAX_AC_TIMING_ENTRIES 20
++
++struct pp_atomctrl_mc_reg_entry {
++ uint32_t mclk_max;
++ uint32_t mc_data[VBIOS_MC_REGISTER_ARRAY_SIZE];
++};
++typedef struct pp_atomctrl_mc_reg_entry pp_atomctrl_mc_reg_entry;
++
++struct pp_atomctrl_mc_register_address {
++ uint16_t s1;
++ uint8_t uc_pre_reg_data;
++};
++
++typedef struct pp_atomctrl_mc_register_address pp_atomctrl_mc_register_address;
++
++struct pp_atomctrl_mc_reg_table {
++ uint8_t last; /* number of registers */
++ uint8_t num_entries; /* number of AC timing entries */
++ pp_atomctrl_mc_reg_entry mc_reg_table_entry[VBIOS_MAX_AC_TIMING_ENTRIES];
++ pp_atomctrl_mc_register_address mc_reg_address[VBIOS_MC_REGISTER_ARRAY_SIZE];
++};
++typedef struct pp_atomctrl_mc_reg_table pp_atomctrl_mc_reg_table;
++
++struct pp_atomctrl_gpio_pin_assignment {
++ uint16_t us_gpio_pin_aindex;
++ uint8_t uc_gpio_pin_bit_shift;
++};
++typedef struct pp_atomctrl_gpio_pin_assignment pp_atomctrl_gpio_pin_assignment;
++
++extern bool atomctrl_get_pp_assign_pin(struct pp_hwmgr *hwmgr, const uint32_t pinId, pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment);
++extern int atomctrl_get_voltage_evv_on_sclk(struct pp_hwmgr *hwmgr, uint8_t voltage_type, uint32_t sclk, uint16_t virtual_voltage_Id, uint16_t *voltage);
++extern uint32_t atomctrl_get_mpll_reference_clock(struct pp_hwmgr *hwmgr);
++extern int atomctrl_get_memory_clock_spread_spectrum(struct pp_hwmgr *hwmgr, const uint32_t memory_clock, pp_atomctrl_internal_ss_info *ssInfo);
++extern int atomctrl_get_engine_clock_spread_spectrum(struct pp_hwmgr *hwmgr, const uint32_t engine_clock, pp_atomctrl_internal_ss_info *ssInfo);
++extern int atomctrl_initialize_mc_reg_table(struct pp_hwmgr *hwmgr, uint8_t module_index, pp_atomctrl_mc_reg_table *table);
++extern int atomctrl_set_engine_dram_timings_rv770(struct pp_hwmgr *hwmgr, uint32_t engine_clock, uint32_t memory_clock);
++extern uint32_t atomctrl_get_reference_clock(struct pp_hwmgr *hwmgr);
++extern int atomctrl_get_memory_pll_dividers_si(struct pp_hwmgr *hwmgr, uint32_t clock_value, pp_atomctrl_memory_clock_param *mpll_param, bool strobe_mode);
++extern int atomctrl_get_engine_pll_dividers_vi(struct pp_hwmgr *hwmgr, uint32_t clock_value, pp_atomctrl_clock_dividers_vi *dividers);
++extern int atomctrl_get_dfs_pll_dividers_vi(struct pp_hwmgr *hwmgr, uint32_t clock_value, pp_atomctrl_clock_dividers_vi *dividers);
++extern bool atomctrl_is_voltage_controled_by_gpio_v3(struct pp_hwmgr *hwmgr, uint8_t voltage_type, uint8_t voltage_mode);
++extern int atomctrl_get_voltage_table_v3(struct pp_hwmgr *hwmgr, uint8_t voltage_type, uint8_t voltage_mode, pp_atomctrl_voltage_table *voltage_table);
++
++
++#endif
++
+diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/ppinterrupt.h b/drivers/gpu/drm/amd/powerplay/hwmgr/ppinterrupt.h
+new file mode 100644
+index 0000000..7269ac1
+--- /dev/null
++++ b/drivers/gpu/drm/amd/powerplay/hwmgr/ppinterrupt.h
+@@ -0,0 +1,42 @@
++/*
++ * Copyright 2015 Advanced Micro Devices, Inc.
++ *
++ * Permission is hereby granted, free of charge, to any person obtaining a
++ * copy of this software and associated documentation files (the "Software"),
++ * to deal in the Software without restriction, including without limitation
++ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
++ * and/or sell copies of the Software, and to permit persons to whom the
++ * Software is furnished to do so, subject to the following conditions:
++ *
++ * The above copyright notice and this permission notice shall be included in
++ * all copies or substantial portions of the Software.
++ *
++ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
++ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
++ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
++ * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
++ * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
++ * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
++ * OTHER DEALINGS IN THE SOFTWARE.
++ *
++ */
++#ifndef PP_INTERRUPT_H
++#define PP_INTERRUPT_H
++
++/**
++ * The type of the interrupt callback functions in PowerPlay
++ */
++typedef void (*pp_interrupt_callback) (void *context, uint32_t ul_context_data);
++
++/**
++ * Event Manager action chain list information
++ */
++struct pp_interrupt_registration_info {
++ pp_interrupt_callback callback; /* Pointer to callback function */
++ void *context; /* Pointer to callback function context */
++ uint32_t *interrupt_enable_id; /* Registered interrupt id */
++};
++
++typedef struct pp_interrupt_registration_info pp_interrupt_registration_info;
++
++#endif
+diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/pppcielanes.c b/drivers/gpu/drm/amd/powerplay/hwmgr/pppcielanes.c
+new file mode 100644
+index 0000000..186496a
+--- /dev/null
++++ b/drivers/gpu/drm/amd/powerplay/hwmgr/pppcielanes.c
+@@ -0,0 +1,64 @@
++/*
++ * Copyright 2015 Advanced Micro Devices, Inc.
++ *
++ * Permission is hereby granted, free of charge, to any person obtaining a
++ * copy of this software and associated documentation files (the "Software"),
++ * to deal in the Software without restriction, including without limitation
++ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
++ * and/or sell copies of the Software, and to permit persons to whom the
++ * Software is furnished to do so, subject to the following conditions:
++ *
++ * The above copyright notice and this permission notice shall be included in
++ * all copies or substantial portions of the Software.
++ *
++ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
++ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
++ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
++ * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
++ * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
++ * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
++ * OTHER DEALINGS IN THE SOFTWARE.
++ *
++ */
++
++#include <linux/types.h>
++#include "atom-types.h"
++#include "atombios.h"
++#include "pppcielanes.h"
++
++/** \file
++ * Functions related to PCIe lane changes.
++ */
++
++/* For converting from number of lanes to lane bits. */
++static const unsigned char pp_r600_encode_lanes[] = {
++ 0, /* 0 Not Supported */
++ 1, /* 1 Lane */
++ 2, /* 2 Lanes */
++ 0, /* 3 Not Supported */
++ 3, /* 4 Lanes */
++ 0, /* 5 Not Supported */
++ 0, /* 6 Not Supported */
++ 0, /* 7 Not Supported */
++ 4, /* 8 Lanes */
++ 0, /* 9 Not Supported */
++ 0, /* 10 Not Supported */
++ 0, /* 11 Not Supported */
++ 5, /* 12 Lanes (Not actually supported) */
++ 0, /* 13 Not Supported */
++ 0, /* 14 Not Supported */
++ 0, /* 15 Not Supported */
++ 6 /* 16 Lanes */
++};
++
++static const unsigned char pp_r600_decoded_lanes[8] = { 16, 1, 2, 4, 8, 12, 16, };
++
++uint8_t encode_pcie_lane_width(uint32_t num_lanes)
++{
++ return pp_r600_encode_lanes[num_lanes];
++}
++
++uint8_t decode_pcie_lane_width(uint32_t num_lanes)
++{
++ return pp_r600_decoded_lanes[num_lanes];
++}
+diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/pppcielanes.h b/drivers/gpu/drm/amd/powerplay/hwmgr/pppcielanes.h
+new file mode 100644
+index 0000000..70b163b
+--- /dev/null
++++ b/drivers/gpu/drm/amd/powerplay/hwmgr/pppcielanes.h
+@@ -0,0 +1,31 @@
++/*
++ * Copyright 2015 Advanced Micro Devices, Inc.
++ *
++ * Permission is hereby granted, free of charge, to any person obtaining a
++ * copy of this software and associated documentation files (the "Software"),
++ * to deal in the Software without restriction, including without limitation
++ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
++ * and/or sell copies of the Software, and to permit persons to whom the
++ * Software is furnished to do so, subject to the following conditions:
++ *
++ * The above copyright notice and this permission notice shall be included in
++ * all copies or substantial portions of the Software.
++ *
++ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
++ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
++ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
++ * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
++ * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
++ * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
++ * OTHER DEALINGS IN THE SOFTWARE.
++ *
++ */
++
++#ifndef PP_PCIELANES_H
++#define PP_PCIELANES_H
++
++extern uint8_t encode_pcie_lane_width(uint32_t num_lanes);
++extern uint8_t decode_pcie_lane_width(uint32_t num_lanes);
++
++#endif
++
+diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_dyn_defaults.h b/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_dyn_defaults.h
+new file mode 100644
+index 0000000..080d69d
+--- /dev/null
++++ b/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_dyn_defaults.h
+@@ -0,0 +1,107 @@
++/*
++ * Copyright 2015 Advanced Micro Devices, Inc.
++ *
++ * Permission is hereby granted, free of charge, to any person obtaining a
++ * copy of this software and associated documentation files (the "Software"),
++ * to deal in the Software without restriction, including without limitation
++ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
++ * and/or sell copies of the Software, and to permit persons to whom the
++ * Software is furnished to do so, subject to the following conditions:
++ *
++ * The above copyright notice and this permission notice shall be included in
++ * all copies or substantial portions of the Software.
++ *
++ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
++ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
++ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
++ * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
++ * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
++ * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
++ * OTHER DEALINGS IN THE SOFTWARE.
++ *
++ */
++#ifndef TONGA_DYN_DEFAULTS_H
++#define TONGA_DYN_DEFAULTS_H
++
++
++/** \file
++ * Volcanic Islands Dynamic default parameters.
++ */
++
++enum TONGAdpm_TrendDetection {
++ TONGAdpm_TrendDetection_AUTO,
++ TONGAdpm_TrendDetection_UP,
++ TONGAdpm_TrendDetection_DOWN
++};
++typedef enum TONGAdpm_TrendDetection TONGAdpm_TrendDetection;
++
++/* Bit vector representing same fields as hardware register. */
++#define PPTONGA_VOTINGRIGHTSCLIENTS_DFLT0 0x3FFFC102 /* CP_Gfx_busy */
++/* HDP_busy */
++/* IH_busy */
++/* DRM_busy */
++/* DRMDMA_busy */
++/* UVD_busy */
++/* VCE_busy */
++/* ACP_busy */
++/* SAMU_busy */
++/* AVP_busy */
++/* SDMA enabled */
++#define PPTONGA_VOTINGRIGHTSCLIENTS_DFLT1 0x000400 /* FE_Gfx_busy - Intended for primary usage. Rest are for flexibility. */
++/* SH_Gfx_busy */
++/* RB_Gfx_busy */
++/* VCE_busy */
++
++#define PPTONGA_VOTINGRIGHTSCLIENTS_DFLT2 0xC00080 /* SH_Gfx_busy - Intended for primary usage. Rest are for flexibility. */
++/* FE_Gfx_busy */
++/* RB_Gfx_busy */
++/* ACP_busy */
++
++#define PPTONGA_VOTINGRIGHTSCLIENTS_DFLT3 0xC00200 /* RB_Gfx_busy - Intended for primary usage. Rest are for flexibility. */
++/* FE_Gfx_busy */
++/* SH_Gfx_busy */
++/* UVD_busy */
++
++#define PPTONGA_VOTINGRIGHTSCLIENTS_DFLT4 0xC01680 /* UVD_busy */
++/* VCE_busy */
++/* ACP_busy */
++/* SAMU_busy */
++
++#define PPTONGA_VOTINGRIGHTSCLIENTS_DFLT5 0xC00033 /* GFX, HDP, DRMDMA */
++#define PPTONGA_VOTINGRIGHTSCLIENTS_DFLT6 0xC00033 /* GFX, HDP, DRMDMA */
++#define PPTONGA_VOTINGRIGHTSCLIENTS_DFLT7 0x3FFFC000 /* GFX, HDP, DRMDMA */
++
++
++/* thermal protection counter (units).*/
++#define PPTONGA_THERMALPROTECTCOUNTER_DFLT 0x200 /* ~19us */
++
++/* static screen threshold unit */
++#define PPTONGA_STATICSCREENTHRESHOLDUNIT_DFLT 0
++
++/* static screen threshold */
++#define PPTONGA_STATICSCREENTHRESHOLD_DFLT 0x00C8
++
++/* gfx idle clock stop threshold */
++#define PPTONGA_GFXIDLECLOCKSTOPTHRESHOLD_DFLT 0x200 /* ~19us with static screen threshold unit of 0 */
++
++/* Fixed reference divider to use when building baby stepping tables. */
++#define PPTONGA_REFERENCEDIVIDER_DFLT 4
++
++/*
++ * ULV voltage change delay time
++ * Used to be delay_vreg in N.I. split for S.I.
++ * Using N.I. delay_vreg value as default
++ * ReferenceClock = 2700
++ * VoltageResponseTime = 1000
++ * VDDCDelayTime = (VoltageResponseTime * ReferenceClock) / 1600 = 1687
++ */
++
++#define PPTONGA_ULVVOLTAGECHANGEDELAY_DFLT 1687
++
++#define PPTONGA_CGULVPARAMETER_DFLT 0x00040035
++#define PPTONGA_CGULVCONTROL_DFLT 0x00007450
++#define PPTONGA_TARGETACTIVITY_DFLT 30 /*30% */
++#define PPTONGA_MCLK_TARGETACTIVITY_DFLT 10 /*10% */
++
++#endif
++
+diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_hwmgr.c b/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_hwmgr.c
+new file mode 100644
+index 0000000..0feb1a8
+--- /dev/null
++++ b/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_hwmgr.c
+@@ -0,0 +1,5714 @@
++/*
++ * Copyright 2015 Advanced Micro Devices, Inc.
++ *
++ * Permission is hereby granted, free of charge, to any person obtaining a
++ * copy of this software and associated documentation files (the "Software"),
++ * to deal in the Software without restriction, including without limitation
++ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
++ * and/or sell copies of the Software, and to permit persons to whom the
++ * Software is furnished to do so, subject to the following conditions:
++ *
++ * The above copyright notice and this permission notice shall be included in
++ * all copies or substantial portions of the Software.
++ *
++ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
++ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
++ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
++ * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
++ * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
++ * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
++ * OTHER DEALINGS IN THE SOFTWARE.
++ *
++ */
++#include <linux/module.h>
++#include <linux/slab.h>
++#include <linux/fb.h>
++#include "linux/delay.h"
++#include "pp_acpi.h"
++#include "hwmgr.h"
++#include <atombios.h>
++#include "tonga_hwmgr.h"
++#include "pptable.h"
++#include "processpptables.h"
++#include "tonga_processpptables.h"
++#include "tonga_pptable.h"
++#include "pp_debug.h"
++#include "tonga_ppsmc.h"
++#include "cgs_common.h"
++#include "pppcielanes.h"
++#include "tonga_dyn_defaults.h"
++#include "smumgr.h"
++#include "tonga_smumgr.h"
++
++#include "smu/smu_7_1_2_d.h"
++#include "smu/smu_7_1_2_sh_mask.h"
++
++#include "gmc/gmc_8_1_d.h"
++#include "gmc/gmc_8_1_sh_mask.h"
++
++#include "bif/bif_5_0_d.h"
++#include "bif/bif_5_0_sh_mask.h"
++
++#define MC_CG_ARB_FREQ_F0 0x0a
++#define MC_CG_ARB_FREQ_F1 0x0b
++#define MC_CG_ARB_FREQ_F2 0x0c
++#define MC_CG_ARB_FREQ_F3 0x0d
++
++#define MC_CG_SEQ_DRAMCONF_S0 0x05
++#define MC_CG_SEQ_DRAMCONF_S1 0x06
++#define MC_CG_SEQ_YCLK_SUSPEND 0x04
++#define MC_CG_SEQ_YCLK_RESUME 0x0a
++
++#define PCIE_BUS_CLK 10000
++#define TCLK (PCIE_BUS_CLK / 10)
++
++#define SMC_RAM_END 0x40000
++#define SMC_CG_IND_START 0xc0030000
++#define SMC_CG_IND_END 0xc0040000 /* First byte after SMC_CG_IND*/
++
++#define VOLTAGE_SCALE 4
++#define VOLTAGE_VID_OFFSET_SCALE1 625
++#define VOLTAGE_VID_OFFSET_SCALE2 100
++
++#define VDDC_VDDCI_DELTA 200
++#define VDDC_VDDGFX_DELTA 300
++
++#define MC_SEQ_MISC0_GDDR5_SHIFT 28
++#define MC_SEQ_MISC0_GDDR5_MASK 0xf0000000
++#define MC_SEQ_MISC0_GDDR5_VALUE 5
++
++typedef uint32_t PECI_RegistryValue;
++
++/* [2.5%,~2.5%] Clock stretched is multiple of 2.5% vs not and [Fmin, Fmax, LDO_REFSEL, USE_FOR_LOW_FREQ] */
++uint16_t PP_ClockStretcherLookupTable[2][4] = {
++ {600, 1050, 3, 0},
++ {600, 1050, 6, 1} };
++
++/* [FF, SS] type, [] 4 voltage ranges, and [Floor Freq, Boundary Freq, VID min , VID max] */
++uint32_t PP_ClockStretcherDDTTable[2][4][4] = {
++ { {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} },
++ { {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} } };
++
++/* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%] (coming from PWR_CKS_CNTL.stretch_amount reg spec) */
++uint8_t PP_ClockStretchAmountConversion[2][6] = {
++ {0, 1, 3, 2, 4, 5},
++ {0, 2, 4, 5, 6, 5} };
++
++/* Values for the CG_THERMAL_CTRL::DPM_EVENT_SRC field. */
++enum DPM_EVENT_SRC {
++ DPM_EVENT_SRC_ANALOG = 0, /* Internal analog trip point */
++ DPM_EVENT_SRC_EXTERNAL = 1, /* External (GPIO 17) signal */
++ DPM_EVENT_SRC_DIGITAL = 2, /* Internal digital trip point (DIG_THERM_DPM) */
++ DPM_EVENT_SRC_ANALOG_OR_EXTERNAL = 3, /* Internal analog or external */
++ DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL = 4 /* Internal digital or external */
++};
++typedef enum DPM_EVENT_SRC DPM_EVENT_SRC;
++
++enum DISPLAY_GAP {
++ DISPLAY_GAP_VBLANK_OR_WM = 0, /* Wait for vblank or MCHG watermark. */
++ DISPLAY_GAP_VBLANK = 1, /* Wait for vblank. */
++ DISPLAY_GAP_WATERMARK = 2, /* Wait for MCHG watermark. (Note that HW may deassert WM in VBI depending on DC_STUTTER_CNTL.) */
++ DISPLAY_GAP_IGNORE = 3 /* Do not wait. */
++};
++typedef enum DISPLAY_GAP DISPLAY_GAP;
++
++const unsigned long PhwTonga_Magic = (unsigned long)(PHM_VIslands_Magic);
++
++struct tonga_power_state *cast_phw_tonga_power_state(
++ struct pp_hw_power_state *hw_ps)
++{
++ PP_ASSERT_WITH_CODE((PhwTonga_Magic == hw_ps->magic),
++ "Invalid Powerstate Type!",
++ return NULL;);
++
++ return (struct tonga_power_state *)hw_ps;
++}
++
++const struct tonga_power_state *cast_const_phw_tonga_power_state(
++ const struct pp_hw_power_state *hw_ps)
++{
++ PP_ASSERT_WITH_CODE((PhwTonga_Magic == hw_ps->magic),
++ "Invalid Powerstate Type!",
++ return NULL;);
++
++ return (const struct tonga_power_state *)hw_ps;
++}
++
++int tonga_add_voltage(struct pp_hwmgr *hwmgr,
++ phm_ppt_v1_voltage_lookup_table *look_up_table,
++ phm_ppt_v1_voltage_lookup_record *record)
++{
++ uint32_t i;
++ PP_ASSERT_WITH_CODE((NULL != look_up_table),
++ "Lookup Table empty.", return -1;);
++ PP_ASSERT_WITH_CODE((0 != look_up_table->count),
++ "Lookup Table empty.", return -1;);
++ PP_ASSERT_WITH_CODE((SMU72_MAX_LEVELS_VDDGFX >= look_up_table->count),
++ "Lookup Table is full.", return -1;);
++
++ /* This is to avoid entering duplicate calculated records. */
++ for (i = 0; i < look_up_table->count; i++) {
++ if (look_up_table->entries[i].us_vdd == record->us_vdd) {
++ if (look_up_table->entries[i].us_calculated == 1)
++ return 0;
++ else
++ break;
++ }
++ }
++
++ look_up_table->entries[i].us_calculated = 1;
++ look_up_table->entries[i].us_vdd = record->us_vdd;
++ look_up_table->entries[i].us_cac_low = record->us_cac_low;
++ look_up_table->entries[i].us_cac_mid = record->us_cac_mid;
++ look_up_table->entries[i].us_cac_high = record->us_cac_high;
++ /* Only increment the count when we're appending, not replacing duplicate entry. */
++ if (i == look_up_table->count)
++ look_up_table->count++;
++
++ return 0;
++}
++
++uint8_t tonga_get_voltage_id(pp_atomctrl_voltage_table *voltage_table,
++ uint32_t voltage)
++{
++ uint8_t count = (uint8_t) (voltage_table->count);
++ uint8_t i = 0;
++
++ PP_ASSERT_WITH_CODE((NULL != voltage_table),
++ "Voltage Table empty.", return 0;);
++ PP_ASSERT_WITH_CODE((0 != count),
++ "Voltage Table empty.", return 0;);
++
++ for (i = 0; i < count; i++) {
++ /* find first voltage bigger than requested */
++ if (voltage_table->entries[i].value >= voltage)
++ return i;
++ }
++
++ /* voltage is bigger than max voltage in the table */
++ return i - 1;
++}
++
++/**
++ * @brief PhwTonga_GetVoltageOrder
++ * Returns index of requested voltage record in lookup(table)
++ * @param hwmgr - pointer to hardware manager
++ * @param lookupTable - lookup list to search in
++ * @param voltage - voltage to look for
++ * @return 0 on success
++ */
++uint8_t tonga_get_voltage_index(phm_ppt_v1_voltage_lookup_table *look_up_table,
++ uint16_t voltage)
++{
++ uint8_t count = (uint8_t) (look_up_table->count);
++ uint8_t i;
++
++ PP_ASSERT_WITH_CODE((NULL != look_up_table), "Lookup Table empty.", return 0;);
++ PP_ASSERT_WITH_CODE((0 != count), "Lookup Table empty.", return 0;);
++
++ for (i = 0; i < count; i++) {
++ /* find first voltage equal or bigger than requested */
++ if (look_up_table->entries[i].us_vdd >= voltage)
++ return i;
++ }
++
++ /* voltage is bigger than max voltage in the table */
++ return i-1;
++}
++
++bool tonga_is_dpm_running(struct pp_hwmgr *hwmgr)
++{
++ /*
++ * We return the status of Voltage Control instead of checking SCLK/MCLK DPM
++ * because we may have test scenarios that need us intentionly disable SCLK/MCLK DPM,
++ * whereas voltage control is a fundemental change that will not be disabled
++ */
++
++ return (0 == PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
++ FEATURE_STATUS, VOLTAGE_CONTROLLER_ON) ? 1 : 0);
++}
++
++/**
++ * Re-generate the DPM level mask value
++ * @param hwmgr the address of the hardware manager
++ */
++static uint32_t tonga_get_dpm_level_enable_mask_value(
++ struct tonga_single_dpm_table * dpm_table)
++{
++ uint32_t i;
++ uint32_t mask_value = 0;
++
++ for (i = dpm_table->count; i > 0; i--) {
++ mask_value = mask_value << 1;
++
++ if (dpm_table->dpm_levels[i-1].enabled)
++ mask_value |= 0x1;
++ else
++ mask_value &= 0xFFFFFFFE;
++ }
++ return mask_value;
++}
++
++/**
++ * Retrieve DPM default values from registry (if available)
++ *
++ * @param hwmgr the address of the powerplay hardware manager.
++ */
++void tonga_initialize_dpm_defaults(struct pp_hwmgr *hwmgr)
++{
++ tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
++ phw_tonga_ulv_parm *ulv = &(data->ulv);
++ uint32_t tmp;
++
++ ulv->ch_ulv_parameter = PPTONGA_CGULVPARAMETER_DFLT;
++ data->voting_rights_clients0 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT0;
++ data->voting_rights_clients1 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT1;
++ data->voting_rights_clients2 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT2;
++ data->voting_rights_clients3 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT3;
++ data->voting_rights_clients4 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT4;
++ data->voting_rights_clients5 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT5;
++ data->voting_rights_clients6 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT6;
++ data->voting_rights_clients7 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT7;
++
++ data->static_screen_threshold_unit = PPTONGA_STATICSCREENTHRESHOLDUNIT_DFLT;
++ data->static_screen_threshold = PPTONGA_STATICSCREENTHRESHOLD_DFLT;
++
++ phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_ABM);
++ phm_cap_set(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_NonABMSupportInPPLib);
++
++ tmp = 0;
++ if (tmp == 0)
++ phm_cap_set(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_DynamicACTiming);
++
++ tmp = 0;
++ if (0 != tmp)
++ phm_cap_set(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_DisableMemoryTransition);
++
++ data->mclk_strobe_mode_threshold = 40000;
++ data->mclk_stutter_mode_threshold = 30000;
++ data->mclk_edc_enable_threshold = 40000;
++ data->mclk_edc_wr_enable_threshold = 40000;
++
++ tmp = 0;
++ if (tmp != 0)
++ phm_cap_set(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_DisableMCLS);
++
++ data->pcie_gen_performance.max = PP_PCIEGen1;
++ data->pcie_gen_performance.min = PP_PCIEGen3;
++ data->pcie_gen_power_saving.max = PP_PCIEGen1;
++ data->pcie_gen_power_saving.min = PP_PCIEGen3;
++
++ data->pcie_lane_performance.max = 0;
++ data->pcie_lane_performance.min = 16;
++ data->pcie_lane_power_saving.max = 0;
++ data->pcie_lane_power_saving.min = 16;
++
++ tmp = 0;
++
++ if (tmp)
++ phm_cap_set(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_SclkThrottleLowNotification);
++
++ phm_cap_set(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_DynamicUVDState);
++
++}
++
++int tonga_update_sclk_threshold(struct pp_hwmgr *hwmgr)
++{
++ tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
++
++ int result = 0;
++ uint32_t low_sclk_interrupt_threshold = 0;
++
++ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_SclkThrottleLowNotification)
++ && (hwmgr->gfx_arbiter.sclk_threshold != data->low_sclk_interrupt_threshold)) {
++ data->low_sclk_interrupt_threshold = hwmgr->gfx_arbiter.sclk_threshold;
++ low_sclk_interrupt_threshold = data->low_sclk_interrupt_threshold;
++
++ CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
++
++ result = tonga_copy_bytes_to_smc(
++ hwmgr->smumgr,
++ data->dpm_table_start + offsetof(SMU72_Discrete_DpmTable,
++ LowSclkInterruptThreshold),
++ (uint8_t *)&low_sclk_interrupt_threshold,
++ sizeof(uint32_t),
++ data->sram_end
++ );
++ }
++
++ return result;
++}
++
++/**
++ * Find SCLK value that is associated with specified virtual_voltage_Id.
++ *
++ * @param hwmgr the address of the powerplay hardware manager.
++ * @param virtual_voltage_Id voltageId to look for.
++ * @param sclk output value .
++ * @return always 0 if success and 2 if association not found
++ */
++static int tonga_get_sclk_for_voltage_evv(struct pp_hwmgr *hwmgr,
++ phm_ppt_v1_voltage_lookup_table *lookup_table,
++ uint16_t virtual_voltage_id, uint32_t *sclk)
++{
++ uint8_t entryId;
++ uint8_t voltageId;
++ struct phm_ppt_v1_information *pptable_info =
++ (struct phm_ppt_v1_information *)(hwmgr->pptable);
++
++ PP_ASSERT_WITH_CODE(lookup_table->count != 0, "Lookup table is empty", return -1);
++
++ /* search for leakage voltage ID 0xff01 ~ 0xff08 and sckl */
++ for (entryId = 0; entryId < pptable_info->vdd_dep_on_sclk->count; entryId++) {
++ voltageId = pptable_info->vdd_dep_on_sclk->entries[entryId].vddInd;
++ if (lookup_table->entries[voltageId].us_vdd == virtual_voltage_id)
++ break;
++ }
++
++ PP_ASSERT_WITH_CODE(entryId < pptable_info->vdd_dep_on_sclk->count,
++ "Can't find requested voltage id in vdd_dep_on_sclk table!",
++ return -1;
++ );
++
++ *sclk = pptable_info->vdd_dep_on_sclk->entries[entryId].clk;
++
++ return 0;
++}
++
++/**
++ * Get Leakage VDDC based on leakage ID.
++ *
++ * @param hwmgr the address of the powerplay hardware manager.
++ * @return 2 if vddgfx returned is greater than 2V or if BIOS
++ */
++int tonga_get_evv_voltage(struct pp_hwmgr *hwmgr)
++{
++ tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
++ struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
++ phm_ppt_v1_clock_voltage_dependency_table *sclk_table = pptable_info->vdd_dep_on_sclk;
++ uint16_t virtual_voltage_id;
++ uint16_t vddc = 0;
++ uint16_t vddgfx = 0;
++ uint16_t i, j;
++ uint32_t sclk = 0;
++
++ /* retrieve voltage for leakage ID (0xff01 + i) */
++ for (i = 0; i < TONGA_MAX_LEAKAGE_COUNT; i++) {
++ virtual_voltage_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
++
++ /* in split mode we should have only vddgfx EVV leakages */
++ if (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) {
++ if (0 == tonga_get_sclk_for_voltage_evv(hwmgr,
++ pptable_info->vddgfx_lookup_table, virtual_voltage_id, &sclk)) {
++ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_ClockStretcher)) {
++ for (j = 1; j < sclk_table->count; j++) {
++ if (sclk_table->entries[j].clk == sclk &&
++ sclk_table->entries[j].cks_enable == 0) {
++ sclk += 5000;
++ break;
++ }
++ }
++ }
++ PP_ASSERT_WITH_CODE(0 == atomctrl_get_voltage_evv_on_sclk
++ (hwmgr, VOLTAGE_TYPE_VDDGFX, sclk,
++ virtual_voltage_id, &vddgfx),
++ "Error retrieving EVV voltage value!", continue);
++
++ /* need to make sure vddgfx is less than 2v or else, it could burn the ASIC. */
++ PP_ASSERT_WITH_CODE((vddgfx < 2000 && vddgfx != 0), "Invalid VDDGFX value!", return -1);
++
++ /* the voltage should not be zero nor equal to leakage ID */
++ if (vddgfx != 0 && vddgfx != virtual_voltage_id) {
++ data->vddcgfx_leakage.actual_voltage[data->vddcgfx_leakage.count] = vddgfx;
++ data->vddcgfx_leakage.leakage_id[data->vddcgfx_leakage.count] = virtual_voltage_id;
++ data->vddcgfx_leakage.count++;
++ }
++ }
++ } else {
++ /* in merged mode we have only vddc EVV leakages */
++ if (0 == tonga_get_sclk_for_voltage_evv(hwmgr,
++ pptable_info->vddc_lookup_table,
++ virtual_voltage_id, &sclk)) {
++ PP_ASSERT_WITH_CODE(0 == atomctrl_get_voltage_evv_on_sclk
++ (hwmgr, VOLTAGE_TYPE_VDDC, sclk,
++ virtual_voltage_id, &vddc),
++ "Error retrieving EVV voltage value!", continue);
++
++ /* need to make sure vddc is less than 2v or else, it could burn the ASIC. */
++ if (vddc > 2000)
++ printk(KERN_ERR "[ powerplay ] Invalid VDDC value! \n");
++
++ /* the voltage should not be zero nor equal to leakage ID */
++ if (vddc != 0 && vddc != virtual_voltage_id) {
++ data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = vddc;
++ data->vddc_leakage.leakage_id[data->vddc_leakage.count] = virtual_voltage_id;
++ data->vddc_leakage.count++;
++ }
++ }
++ }
++ }
++
++ return 0;
++}
++
++int tonga_enable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
++{
++ tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
++
++ /* enable SCLK dpm */
++ if (0 == data->sclk_dpm_key_disabled) {
++ PP_ASSERT_WITH_CODE(
++ (0 == smum_send_msg_to_smc(hwmgr->smumgr,
++ PPSMC_MSG_DPM_Enable)),
++ "Failed to enable SCLK DPM during DPM Start Function!",
++ return -1);
++ }
++
++ /* enable MCLK dpm */
++ if (0 == data->mclk_dpm_key_disabled) {
++ PP_ASSERT_WITH_CODE(
++ (0 == smum_send_msg_to_smc(hwmgr->smumgr,
++ PPSMC_MSG_MCLKDPM_Enable)),
++ "Failed to enable MCLK DPM during DPM Start Function!",
++ return -1);
++
++ PHM_WRITE_FIELD(hwmgr->device, MC_SEQ_CNTL_3, CAC_EN, 0x1);
++
++ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
++ ixLCAC_MC0_CNTL, 0x05);/* CH0,1 read */
++ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
++ ixLCAC_MC1_CNTL, 0x05);/* CH2,3 read */
++ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
++ ixLCAC_CPL_CNTL, 0x100005);/*Read */
++
++ udelay(10);
++
++ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
++ ixLCAC_MC0_CNTL, 0x400005);/* CH0,1 write */
++ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
++ ixLCAC_MC1_CNTL, 0x400005);/* CH2,3 write */
++ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
++ ixLCAC_CPL_CNTL, 0x500005);/* write */
++
++ }
++
++ return 0;
++}
++
++int tonga_start_dpm(struct pp_hwmgr *hwmgr)
++{
++ tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
++
++ /* enable general power management */
++ PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, GLOBAL_PWRMGT_EN, 1);
++ /* enable sclk deep sleep */
++ PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, DYNAMIC_PM_EN, 1);
++
++ /* prepare for PCIE DPM */
++ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, data->soft_regs_start +
++ offsetof(SMU72_SoftRegisters, VoltageChangeTimeout), 0x1000);
++
++ PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE, SWRST_COMMAND_1, RESETLC, 0x0);
++
++ PP_ASSERT_WITH_CODE(
++ (0 == smum_send_msg_to_smc(hwmgr->smumgr,
++ PPSMC_MSG_Voltage_Cntl_Enable)),
++ "Failed to enable voltage DPM during DPM Start Function!",
++ return -1);
++
++ if (0 != tonga_enable_sclk_mclk_dpm(hwmgr)) {
++ PP_ASSERT_WITH_CODE(0, "Failed to enable Sclk DPM and Mclk DPM!", return -1);
++ }
++
++ /* enable PCIE dpm */
++ if (0 == data->pcie_dpm_key_disabled) {
++ PP_ASSERT_WITH_CODE(
++ (0 == smum_send_msg_to_smc(hwmgr->smumgr,
++ PPSMC_MSG_PCIeDPM_Enable)),
++ "Failed to enable pcie DPM during DPM Start Function!",
++ return -1
++ );
++ }
++
++ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_Falcon_QuickTransition)) {
++ smum_send_msg_to_smc(hwmgr->smumgr,
++ PPSMC_MSG_EnableACDCGPIOInterrupt);
++ }
++
++ return 0;
++}
++
++int tonga_disable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
++{
++ tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
++
++ /* disable SCLK dpm */
++ if (0 == data->sclk_dpm_key_disabled) {
++ /* Checking if DPM is running. If we discover hang because of this, we should skip this message.*/
++ PP_ASSERT_WITH_CODE(
++ (0 == tonga_is_dpm_running(hwmgr)),
++ "Trying to Disable SCLK DPM when DPM is disabled",
++ return -1
++ );
++
++ PP_ASSERT_WITH_CODE(
++ (0 == smum_send_msg_to_smc(hwmgr->smumgr,
++ PPSMC_MSG_DPM_Disable)),
++ "Failed to disable SCLK DPM during DPM stop Function!",
++ return -1);
++ }
++
++ /* disable MCLK dpm */
++ if (0 == data->mclk_dpm_key_disabled) {
++ /* Checking if DPM is running. If we discover hang because of this, we should skip this message. */
++ PP_ASSERT_WITH_CODE(
++ (0 == tonga_is_dpm_running(hwmgr)),
++ "Trying to Disable MCLK DPM when DPM is disabled",
++ return -1
++ );
++
++ PP_ASSERT_WITH_CODE(
++ (0 == smum_send_msg_to_smc(hwmgr->smumgr,
++ PPSMC_MSG_MCLKDPM_Disable)),
++ "Failed to Disable MCLK DPM during DPM stop Function!",
++ return -1);
++ }
++
++ return 0;
++}
++
++int tonga_stop_dpm(struct pp_hwmgr *hwmgr)
++{
++ tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
++
++ PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, GLOBAL_PWRMGT_EN, 0);
++ /* disable sclk deep sleep*/
++ PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, DYNAMIC_PM_EN, 0);
++
++ /* disable PCIE dpm */
++ if (0 == data->pcie_dpm_key_disabled) {
++ /* Checking if DPM is running. If we discover hang because of this, we should skip this message.*/
++ PP_ASSERT_WITH_CODE(
++ (0 == tonga_is_dpm_running(hwmgr)),
++ "Trying to Disable PCIE DPM when DPM is disabled",
++ return -1
++ );
++ PP_ASSERT_WITH_CODE(
++ (0 == smum_send_msg_to_smc(hwmgr->smumgr,
++ PPSMC_MSG_PCIeDPM_Disable)),
++ "Failed to disable pcie DPM during DPM stop Function!",
++ return -1);
++ }
++
++ if (0 != tonga_disable_sclk_mclk_dpm(hwmgr))
++ PP_ASSERT_WITH_CODE(0, "Failed to disable Sclk DPM and Mclk DPM!", return -1);
++
++ /* Checking if DPM is running. If we discover hang because of this, we should skip this message.*/
++ PP_ASSERT_WITH_CODE(
++ (0 == tonga_is_dpm_running(hwmgr)),
++ "Trying to Disable Voltage CNTL when DPM is disabled",
++ return -1
++ );
++
++ PP_ASSERT_WITH_CODE(
++ (0 == smum_send_msg_to_smc(hwmgr->smumgr,
++ PPSMC_MSG_Voltage_Cntl_Disable)),
++ "Failed to disable voltage DPM during DPM stop Function!",
++ return -1);
++
++ return 0;
++}
++
++int tonga_enable_sclk_control(struct pp_hwmgr *hwmgr)
++{
++ PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, SCLK_PWRMGT_OFF, 0);
++
++ return 0;
++}
++
++/**
++ * Send a message to the SMC and return a parameter
++ *
++ * @param hwmgr: the address of the powerplay hardware manager.
++ * @param msg: the message to send.
++ * @param parameter: pointer to the received parameter
++ * @return The response that came from the SMC.
++ */
++PPSMC_Result tonga_send_msg_to_smc_return_parameter(
++ struct pp_hwmgr *hwmgr,
++ PPSMC_Msg msg,
++ uint32_t *parameter)
++{
++ int result;
++
++ result = smum_send_msg_to_smc(hwmgr->smumgr, msg);
++
++ if ((0 == result) && parameter) {
++ *parameter = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
++ }
++
++ return result;
++}
++
++/**
++ * force DPM power State
++ *
++ * @param hwmgr: the address of the powerplay hardware manager.
++ * @param n : DPM level
++ * @return The response that came from the SMC.
++ */
++int tonga_dpm_force_state(struct pp_hwmgr *hwmgr, uint32_t n)
++{
++ tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
++ uint32_t level_mask = 1 << n;
++
++ /* Checking if DPM is running. If we discover hang because of this, we should skip this message. */
++ PP_ASSERT_WITH_CODE(0 == tonga_is_dpm_running(hwmgr),
++ "Trying to force SCLK when DPM is disabled", return -1;);
++ if (0 == data->sclk_dpm_key_disabled)
++ return (0 == smum_send_msg_to_smc_with_parameter(
++ hwmgr->smumgr,
++ (PPSMC_Msg)(PPSMC_MSG_SCLKDPM_SetEnabledMask),
++ level_mask) ? 0 : 1);
++
++ return 0;
++}
++
++/**
++ * force DPM power State
++ *
++ * @param hwmgr: the address of the powerplay hardware manager.
++ * @param n : DPM level
++ * @return The response that came from the SMC.
++ */
++int tonga_dpm_force_state_mclk(struct pp_hwmgr *hwmgr, uint32_t n)
++{
++ tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
++ uint32_t level_mask = 1 << n;
++
++ /* Checking if DPM is running. If we discover hang because of this, we should skip this message. */
++ PP_ASSERT_WITH_CODE(0 == tonga_is_dpm_running(hwmgr),
++ "Trying to Force MCLK when DPM is disabled", return -1;);
++ if (0 == data->mclk_dpm_key_disabled)
++ return (0 == smum_send_msg_to_smc_with_parameter(
++ hwmgr->smumgr,
++ (PPSMC_Msg)(PPSMC_MSG_MCLKDPM_SetEnabledMask),
++ level_mask) ? 0 : 1);
++
++ return 0;
++}
++
++/**
++ * force DPM power State
++ *
++ * @param hwmgr: the address of the powerplay hardware manager.
++ * @param n : DPM level
++ * @return The response that came from the SMC.
++ */
++int tonga_dpm_force_state_pcie(struct pp_hwmgr *hwmgr, uint32_t n)
++{
++ tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
++
++ /* Checking if DPM is running. If we discover hang because of this, we should skip this message.*/
++ PP_ASSERT_WITH_CODE(0 == tonga_is_dpm_running(hwmgr),
++ "Trying to Force PCIE level when DPM is disabled", return -1;);
++ if (0 == data->pcie_dpm_key_disabled)
++ return (0 == smum_send_msg_to_smc_with_parameter(
++ hwmgr->smumgr,
++ (PPSMC_Msg)(PPSMC_MSG_PCIeDPM_ForceLevel),
++ n) ? 0 : 1);
++
++ return 0;
++}
++
++/**
++ * Set the initial state by calling SMC to switch to this state directly
++ *
++ * @param hwmgr the address of the powerplay hardware manager.
++ * @return always 0
++ */
++int tonga_set_boot_state(struct pp_hwmgr *hwmgr)
++{
++ /*
++ * SMC only stores one state that SW will ask to switch too,
++ * so we switch the the just uploaded one
++ */
++ return (0 == tonga_disable_sclk_mclk_dpm(hwmgr)) ? 0 : 1;
++}
++
++/**
++ * Get the location of various tables inside the FW image.
++ *
++ * @param hwmgr the address of the powerplay hardware manager.
++ * @return always 0
++ */
++int tonga_process_firmware_header(struct pp_hwmgr *hwmgr)
++{
++ tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
++ struct tonga_smumgr *tonga_smu = (struct tonga_smumgr *)(hwmgr->smumgr->backend);
++
++ uint32_t tmp;
++ int result;
++ bool error = 0;
++
++ result = tonga_read_smc_sram_dword(hwmgr->smumgr,
++ SMU72_FIRMWARE_HEADER_LOCATION +
++ offsetof(SMU72_Firmware_Header, DpmTable),
++ &tmp, data->sram_end);
++
++ if (0 == result) {
++ data->dpm_table_start = tmp;
++ }
++
++ error |= (0 != result);
++
++ result = tonga_read_smc_sram_dword(hwmgr->smumgr,
++ SMU72_FIRMWARE_HEADER_LOCATION +
++ offsetof(SMU72_Firmware_Header, SoftRegisters),
++ &tmp, data->sram_end);
++
++ if (0 == result) {
++ data->soft_regs_start = tmp;
++ tonga_smu->ulSoftRegsStart = tmp;
++ }
++
++ error |= (0 != result);
++
++
++ result = tonga_read_smc_sram_dword(hwmgr->smumgr,
++ SMU72_FIRMWARE_HEADER_LOCATION +
++ offsetof(SMU72_Firmware_Header, mcRegisterTable),
++ &tmp, data->sram_end);
++
++ if (0 == result) {
++ data->mc_reg_table_start = tmp;
++ }
++
++ result = tonga_read_smc_sram_dword(hwmgr->smumgr,
++ SMU72_FIRMWARE_HEADER_LOCATION +
++ offsetof(SMU72_Firmware_Header, FanTable),
++ &tmp, data->sram_end);
++
++ if (0 == result) {
++ data->fan_table_start = tmp;
++ }
++
++ error |= (0 != result);
++
++ result = tonga_read_smc_sram_dword(hwmgr->smumgr,
++ SMU72_FIRMWARE_HEADER_LOCATION +
++ offsetof(SMU72_Firmware_Header, mcArbDramTimingTable),
++ &tmp, data->sram_end);
++
++ if (0 == result) {
++ data->arb_table_start = tmp;
++ }
++
++ error |= (0 != result);
++
++
++ result = tonga_read_smc_sram_dword(hwmgr->smumgr,
++ SMU72_FIRMWARE_HEADER_LOCATION +
++ offsetof(SMU72_Firmware_Header, Version),
++ &tmp, data->sram_end);
++
++ if (0 == result) {
++ hwmgr->microcode_version_info.SMC = tmp;
++ }
++
++ error |= (0 != result);
++
++ return error ? 1 : 0;
++}
++
++/**
++ * Read clock related registers.
++ *
++ * @param hwmgr the address of the powerplay hardware manager.
++ * @return always 0
++ */
++int tonga_read_clock_registers(struct pp_hwmgr *hwmgr)
++{
++ tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
++
++ data->clock_registers.vCG_SPLL_FUNC_CNTL =
++ cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL);
++ data->clock_registers.vCG_SPLL_FUNC_CNTL_2 =
++ cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_2);
++ data->clock_registers.vCG_SPLL_FUNC_CNTL_3 =
++ cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_3);
++ data->clock_registers.vCG_SPLL_FUNC_CNTL_4 =
++ cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_4);
++ data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM =
++ cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_SPREAD_SPECTRUM);
++ data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2 =
++ cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_SPREAD_SPECTRUM_2);
++ data->clock_registers.vDLL_CNTL =
++ cgs_read_register(hwmgr->device, mmDLL_CNTL);
++ data->clock_registers.vMCLK_PWRMGT_CNTL =
++ cgs_read_register(hwmgr->device, mmMCLK_PWRMGT_CNTL);
++ data->clock_registers.vMPLL_AD_FUNC_CNTL =
++ cgs_read_register(hwmgr->device, mmMPLL_AD_FUNC_CNTL);
++ data->clock_registers.vMPLL_DQ_FUNC_CNTL =
++ cgs_read_register(hwmgr->device, mmMPLL_DQ_FUNC_CNTL);
++ data->clock_registers.vMPLL_FUNC_CNTL =
++ cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL);
++ data->clock_registers.vMPLL_FUNC_CNTL_1 =
++ cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL_1);
++ data->clock_registers.vMPLL_FUNC_CNTL_2 =
++ cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL_2);
++ data->clock_registers.vMPLL_SS1 =
++ cgs_read_register(hwmgr->device, mmMPLL_SS1);
++ data->clock_registers.vMPLL_SS2 =
++ cgs_read_register(hwmgr->device, mmMPLL_SS2);
++
++ return 0;
++}
++
++/**
++ * Find out if memory is GDDR5.
++ *
++ * @param hwmgr the address of the powerplay hardware manager.
++ * @return always 0
++ */
++int tonga_get_memory_type(struct pp_hwmgr *hwmgr)
++{
++ tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
++ uint32_t temp;
++
++ temp = cgs_read_register(hwmgr->device, mmMC_SEQ_MISC0);
++
++ data->is_memory_GDDR5 = (MC_SEQ_MISC0_GDDR5_VALUE ==
++ ((temp & MC_SEQ_MISC0_GDDR5_MASK) >>
++ MC_SEQ_MISC0_GDDR5_SHIFT));
++
++ return 0;
++}
++
++/**
++ * Enables Dynamic Power Management by SMC
++ *
++ * @param hwmgr the address of the powerplay hardware manager.
++ * @return always 0
++ */
++int tonga_enable_acpi_power_management(struct pp_hwmgr *hwmgr)
++{
++ PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, STATIC_PM_EN, 1);
++
++ return 0;
++}
++
++/**
++ * Initialize PowerGating States for different engines
++ *
++ * @param hwmgr the address of the powerplay hardware manager.
++ * @return always 0
++ */
++int tonga_init_power_gate_state(struct pp_hwmgr *hwmgr)
++{
++ tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
++
++ data->uvd_power_gated = 0;
++ data->vce_power_gated = 0;
++ data->samu_power_gated = 0;
++ data->acp_power_gated = 0;
++ data->pg_acp_init = 1;
++
++ return 0;
++}
++
++/**
++ * Checks if DPM is enabled
++ *
++ * @param hwmgr the address of the powerplay hardware manager.
++ * @return always 0
++ */
++int tonga_check_for_dpm_running(struct pp_hwmgr *hwmgr)
++{
++ /*
++ * We return the status of Voltage Control instead of checking SCLK/MCLK DPM
++ * because we may have test scenarios that need us intentionly disable SCLK/MCLK DPM,
++ * whereas voltage control is a fundemental change that will not be disabled
++ */
++ return (0 == tonga_is_dpm_running(hwmgr) ? 0 : 1);
++}
++
++/**
++ * Checks if DPM is stopped
++ *
++ * @param hwmgr the address of the powerplay hardware manager.
++ * @return always 0
++ */
++int tonga_check_for_dpm_stopped(struct pp_hwmgr *hwmgr)
++{
++ tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
++
++ if (0 != tonga_is_dpm_running(hwmgr)) {
++ /* If HW Virtualization is enabled, dpm_table_start will not have a valid value */
++ if (!data->dpm_table_start) {
++ return 1;
++ }
++ }
++
++ return 0;
++}
++
++/**
++ * Remove repeated voltage values and create table with unique values.
++ *
++ * @param hwmgr the address of the powerplay hardware manager.
++ * @param voltage_table the pointer to changing voltage table
++ * @return 1 in success
++ */
++
++static int tonga_trim_voltage_table(struct pp_hwmgr *hwmgr,
++ pp_atomctrl_voltage_table *voltage_table)
++{
++ uint32_t table_size, i, j;
++ uint16_t vvalue;
++ bool bVoltageFound = 0;
++ pp_atomctrl_voltage_table *table;
++
++ PP_ASSERT_WITH_CODE((NULL != voltage_table), "Voltage Table empty.", return -1;);
++ table_size = sizeof(pp_atomctrl_voltage_table);
++ table = kzalloc(table_size, GFP_KERNEL);
++
++ if (NULL == table)
++ return -ENOMEM;
++
++ memset(table, 0x00, table_size);
++ table->mask_low = voltage_table->mask_low;
++ table->phase_delay = voltage_table->phase_delay;
++
++ for (i = 0; i < voltage_table->count; i++) {
++ vvalue = voltage_table->entries[i].value;
++ bVoltageFound = 0;
++
++ for (j = 0; j < table->count; j++) {
++ if (vvalue == table->entries[j].value) {
++ bVoltageFound = 1;
++ break;
++ }
++ }
++
++ if (!bVoltageFound) {
++ table->entries[table->count].value = vvalue;
++ table->entries[table->count].smio_low =
++ voltage_table->entries[i].smio_low;
++ table->count++;
++ }
++ }
++
++ memcpy(table, voltage_table, sizeof(pp_atomctrl_voltage_table));
++
++ kfree(table);
++
++ return 0;
++}
++
++static int tonga_get_svi2_vdd_ci_voltage_table(
++ struct pp_hwmgr *hwmgr,
++ phm_ppt_v1_clock_voltage_dependency_table *voltage_dependency_table)
++{
++ uint32_t i;
++ int result;
++ tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
++ pp_atomctrl_voltage_table *vddci_voltage_table = &(data->vddci_voltage_table);
++
++ PP_ASSERT_WITH_CODE((0 != voltage_dependency_table->count),
++ "Voltage Dependency Table empty.", return -1;);
++
++ vddci_voltage_table->mask_low = 0;
++ vddci_voltage_table->phase_delay = 0;
++ vddci_voltage_table->count = voltage_dependency_table->count;
++
++ for (i = 0; i < voltage_dependency_table->count; i++) {
++ vddci_voltage_table->entries[i].value =
++ voltage_dependency_table->entries[i].vddci;
++ vddci_voltage_table->entries[i].smio_low = 0;
++ }
++
++ result = tonga_trim_voltage_table(hwmgr, vddci_voltage_table);
++ PP_ASSERT_WITH_CODE((0 == result),
++ "Failed to trim VDDCI table.", return result;);
++
++ return 0;
++}
++
++
++
++static int tonga_get_svi2_vdd_voltage_table(
++ struct pp_hwmgr *hwmgr,
++ phm_ppt_v1_voltage_lookup_table *look_up_table,
++ pp_atomctrl_voltage_table *voltage_table)
++{
++ uint8_t i = 0;
++
++ PP_ASSERT_WITH_CODE((0 != look_up_table->count),
++ "Voltage Lookup Table empty.", return -1;);
++
++ voltage_table->mask_low = 0;
++ voltage_table->phase_delay = 0;
++
++ voltage_table->count = look_up_table->count;
++
++ for (i = 0; i < voltage_table->count; i++) {
++ voltage_table->entries[i].value = look_up_table->entries[i].us_vdd;
++ voltage_table->entries[i].smio_low = 0;
++ }
++
++ return 0;
++}
++
++/*
++ * -------------------------------------------------------- Voltage Tables --------------------------------------------------------------------------
++ * If the voltage table would be bigger than what will fit into the state table on the SMC keep only the higher entries.
++ */
++
++static void tonga_trim_voltage_table_to_fit_state_table(
++ struct pp_hwmgr *hwmgr,
++ uint32_t max_voltage_steps,
++ pp_atomctrl_voltage_table *voltage_table)
++{
++ unsigned int i, diff;
++
++ if (voltage_table->count <= max_voltage_steps) {
++ return;
++ }
++
++ diff = voltage_table->count - max_voltage_steps;
++
++ for (i = 0; i < max_voltage_steps; i++) {
++ voltage_table->entries[i] = voltage_table->entries[i + diff];
++ }
++
++ voltage_table->count = max_voltage_steps;
++
++ return;
++}
++
++/**
++ * Create Voltage Tables.
++ *
++ * @param hwmgr the address of the powerplay hardware manager.
++ * @return always 0
++ */
++int tonga_construct_voltage_tables(struct pp_hwmgr *hwmgr)
++{
++ tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
++ struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
++ int result;
++
++ /* MVDD has only GPIO voltage control */
++ if (TONGA_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
++ result = atomctrl_get_voltage_table_v3(hwmgr,
++ VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT, &(data->mvdd_voltage_table));
++ PP_ASSERT_WITH_CODE((0 == result),
++ "Failed to retrieve MVDD table.", return result;);
++ }
++
++ if (TONGA_VOLTAGE_CONTROL_BY_GPIO == data->vdd_ci_control) {
++ /* GPIO voltage */
++ result = atomctrl_get_voltage_table_v3(hwmgr,
++ VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT, &(data->vddci_voltage_table));
++ PP_ASSERT_WITH_CODE((0 == result),
++ "Failed to retrieve VDDCI table.", return result;);
++ } else if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_ci_control) {
++ /* SVI2 voltage */
++ result = tonga_get_svi2_vdd_ci_voltage_table(hwmgr,
++ pptable_info->vdd_dep_on_mclk);
++ PP_ASSERT_WITH_CODE((0 == result),
++ "Failed to retrieve SVI2 VDDCI table from dependancy table.", return result;);
++ }
++
++ if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) {
++ /* VDDGFX has only SVI2 voltage control */
++ result = tonga_get_svi2_vdd_voltage_table(hwmgr,
++ pptable_info->vddgfx_lookup_table, &(data->vddgfx_voltage_table));
++ PP_ASSERT_WITH_CODE((0 == result),
++ "Failed to retrieve SVI2 VDDGFX table from lookup table.", return result;);
++ }
++
++ if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
++ /* VDDC has only SVI2 voltage control */
++ result = tonga_get_svi2_vdd_voltage_table(hwmgr,
++ pptable_info->vddc_lookup_table, &(data->vddc_voltage_table));
++ PP_ASSERT_WITH_CODE((0 == result),
++ "Failed to retrieve SVI2 VDDC table from lookup table.", return result;);
++ }
++
++ PP_ASSERT_WITH_CODE(
++ (data->vddc_voltage_table.count <= (SMU72_MAX_LEVELS_VDDC)),
++ "Too many voltage values for VDDC. Trimming to fit state table.",
++ tonga_trim_voltage_table_to_fit_state_table(hwmgr,
++ SMU72_MAX_LEVELS_VDDC, &(data->vddc_voltage_table));
++ );
++
++ PP_ASSERT_WITH_CODE(
++ (data->vddgfx_voltage_table.count <= (SMU72_MAX_LEVELS_VDDGFX)),
++ "Too many voltage values for VDDGFX. Trimming to fit state table.",
++ tonga_trim_voltage_table_to_fit_state_table(hwmgr,
++ SMU72_MAX_LEVELS_VDDGFX, &(data->vddgfx_voltage_table));
++ );
++
++ PP_ASSERT_WITH_CODE(
++ (data->vddci_voltage_table.count <= (SMU72_MAX_LEVELS_VDDCI)),
++ "Too many voltage values for VDDCI. Trimming to fit state table.",
++ tonga_trim_voltage_table_to_fit_state_table(hwmgr,
++ SMU72_MAX_LEVELS_VDDCI, &(data->vddci_voltage_table));
++ );
++
++ PP_ASSERT_WITH_CODE(
++ (data->mvdd_voltage_table.count <= (SMU72_MAX_LEVELS_MVDD)),
++ "Too many voltage values for MVDD. Trimming to fit state table.",
++ tonga_trim_voltage_table_to_fit_state_table(hwmgr,
++ SMU72_MAX_LEVELS_MVDD, &(data->mvdd_voltage_table));
++ );
++
++ return 0;
++}
++
++/**
++ * Vddc table preparation for SMC.
++ *
++ * @param hwmgr the address of the hardware manager
++ * @param table the SMC DPM table structure to be populated
++ * @return always 0
++ */
++static int tonga_populate_smc_vddc_table(struct pp_hwmgr *hwmgr,
++ SMU72_Discrete_DpmTable *table)
++{
++ unsigned int count;
++ tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
++
++ if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
++ table->VddcLevelCount = data->vddc_voltage_table.count;
++ for (count = 0; count < table->VddcLevelCount; count++) {
++ table->VddcTable[count] =
++ PP_HOST_TO_SMC_US(data->vddc_voltage_table.entries[count].value * VOLTAGE_SCALE);
++ }
++ CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount);
++ }
++ return 0;
++}
++
++/**
++ * VddGfx table preparation for SMC.
++ *
++ * @param hwmgr the address of the hardware manager
++ * @param table the SMC DPM table structure to be populated
++ * @return always 0
++ */
++static int tonga_populate_smc_vdd_gfx_table(struct pp_hwmgr *hwmgr,
++ SMU72_Discrete_DpmTable *table)
++{
++ unsigned int count;
++ tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
++
++ if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) {
++ table->VddGfxLevelCount = data->vddgfx_voltage_table.count;
++ for (count = 0; count < data->vddgfx_voltage_table.count; count++) {
++ table->VddGfxTable[count] =
++ PP_HOST_TO_SMC_US(data->vddgfx_voltage_table.entries[count].value * VOLTAGE_SCALE);
++ }
++ CONVERT_FROM_HOST_TO_SMC_UL(table->VddGfxLevelCount);
++ }
++ return 0;
++}
++
++/**
++ * Vddci table preparation for SMC.
++ *
++ * @param *hwmgr The address of the hardware manager.
++ * @param *table The SMC DPM table structure to be populated.
++ * @return 0
++ */
++static int tonga_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr,
++ SMU72_Discrete_DpmTable *table)
++{
++ tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
++ uint32_t count;
++
++ table->VddciLevelCount = data->vddci_voltage_table.count;
++ for (count = 0; count < table->VddciLevelCount; count++) {
++ if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_ci_control) {
++ table->VddciTable[count] =
++ PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE);
++ } else if (TONGA_VOLTAGE_CONTROL_BY_GPIO == data->vdd_ci_control) {
++ table->SmioTable1.Pattern[count].Voltage =
++ PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE);
++ /* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level. */
++ table->SmioTable1.Pattern[count].Smio =
++ (uint8_t) count;
++ table->Smio[count] |=
++ data->vddci_voltage_table.entries[count].smio_low;
++ table->VddciTable[count] =
++ PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE);
++ }
++ }
++
++ table->SmioMask1 = data->vddci_voltage_table.mask_low;
++ CONVERT_FROM_HOST_TO_SMC_UL(table->VddciLevelCount);
++
++ return 0;
++}
++
++/**
++ * Mvdd table preparation for SMC.
++ *
++ * @param *hwmgr The address of the hardware manager.
++ * @param *table The SMC DPM table structure to be populated.
++ * @return 0
++ */
++static int tonga_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
++ SMU72_Discrete_DpmTable *table)
++{
++ tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
++ uint32_t count;
++
++ if (TONGA_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
++ table->MvddLevelCount = data->mvdd_voltage_table.count;
++ for (count = 0; count < table->MvddLevelCount; count++) {
++ table->SmioTable2.Pattern[count].Voltage =
++ PP_HOST_TO_SMC_US(data->mvdd_voltage_table.entries[count].value * VOLTAGE_SCALE);
++ /* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level.*/
++ table->SmioTable2.Pattern[count].Smio =
++ (uint8_t) count;
++ table->Smio[count] |=
++ data->mvdd_voltage_table.entries[count].smio_low;
++ }
++ table->SmioMask2 = data->vddci_voltage_table.mask_low;
++
++ CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount);
++ }
++
++ return 0;
++}
++
++/**
++ * Convert a voltage value in mv unit to VID number required by SMU firmware
++ */
++static uint8_t convert_to_vid(uint16_t vddc)
++{
++ return (uint8_t) ((6200 - (vddc * VOLTAGE_SCALE)) / 25);
++}
++
++
++/**
++ * Preparation of vddc and vddgfx CAC tables for SMC.
++ *
++ * @param hwmgr the address of the hardware manager
++ * @param table the SMC DPM table structure to be populated
++ * @return always 0
++ */
++static int tonga_populate_cac_tables(struct pp_hwmgr *hwmgr,
++ SMU72_Discrete_DpmTable *table)
++{
++ uint32_t count;
++ uint8_t index;
++ int result = 0;
++ tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
++ struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
++ struct phm_ppt_v1_voltage_lookup_table *vddgfx_lookup_table = pptable_info->vddgfx_lookup_table;
++ struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table = pptable_info->vddc_lookup_table;
++
++ /* pTables is already swapped, so in order to use the value from it, we need to swap it back. */
++ uint32_t vddcLevelCount = PP_SMC_TO_HOST_UL(table->VddcLevelCount);
++ uint32_t vddgfxLevelCount = PP_SMC_TO_HOST_UL(table->VddGfxLevelCount);
++
++ for (count = 0; count < vddcLevelCount; count++) {
++ /* We are populating vddc CAC data to BapmVddc table in split and merged mode */
++ index = tonga_get_voltage_index(vddc_lookup_table,
++ data->vddc_voltage_table.entries[count].value);
++ table->BapmVddcVidLoSidd[count] =
++ convert_to_vid(vddc_lookup_table->entries[index].us_cac_low);
++ table->BapmVddcVidHiSidd[count] =
++ convert_to_vid(vddc_lookup_table->entries[index].us_cac_mid);
++ table->BapmVddcVidHiSidd2[count] =
++ convert_to_vid(vddc_lookup_table->entries[index].us_cac_high);
++ }
++
++ if ((data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2)) {
++ /* We are populating vddgfx CAC data to BapmVddgfx table in split mode */
++ for (count = 0; count < vddgfxLevelCount; count++) {
++ index = tonga_get_voltage_index(vddgfx_lookup_table,
++ data->vddgfx_voltage_table.entries[count].value);
++ table->BapmVddGfxVidLoSidd[count] =
++ convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_low);
++ table->BapmVddGfxVidHiSidd[count] =
++ convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_mid);
++ table->BapmVddGfxVidHiSidd2[count] =
++ convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_high);
++ }
++ } else {
++ for (count = 0; count < vddcLevelCount; count++) {
++ index = tonga_get_voltage_index(vddc_lookup_table,
++ data->vddc_voltage_table.entries[count].value);
++ table->BapmVddGfxVidLoSidd[count] =
++ convert_to_vid(vddc_lookup_table->entries[index].us_cac_low);
++ table->BapmVddGfxVidHiSidd[count] =
++ convert_to_vid(vddc_lookup_table->entries[index].us_cac_mid);
++ table->BapmVddGfxVidHiSidd2[count] =
++ convert_to_vid(vddc_lookup_table->entries[index].us_cac_high);
++ }
++ }
++
++ return result;
++}
++
++
++/**
++ * Preparation of voltage tables for SMC.
++ *
++ * @param hwmgr the address of the hardware manager
++ * @param table the SMC DPM table structure to be populated
++ * @return always 0
++ */
++
++int tonga_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
++ SMU72_Discrete_DpmTable *table)
++{
++ int result;
++
++ result = tonga_populate_smc_vddc_table(hwmgr, table);
++ PP_ASSERT_WITH_CODE(0 == result,
++ "can not populate VDDC voltage table to SMC", return -1);
++
++ result = tonga_populate_smc_vdd_ci_table(hwmgr, table);
++ PP_ASSERT_WITH_CODE(0 == result,
++ "can not populate VDDCI voltage table to SMC", return -1);
++
++ result = tonga_populate_smc_vdd_gfx_table(hwmgr, table);
++ PP_ASSERT_WITH_CODE(0 == result,
++ "can not populate VDDGFX voltage table to SMC", return -1);
++
++ result = tonga_populate_smc_mvdd_table(hwmgr, table);
++ PP_ASSERT_WITH_CODE(0 == result,
++ "can not populate MVDD voltage table to SMC", return -1);
++
++ result = tonga_populate_cac_tables(hwmgr, table);
++ PP_ASSERT_WITH_CODE(0 == result,
++ "can not populate CAC voltage tables to SMC", return -1);
++
++ return 0;
++}
++
++/**
++ * Populates the SMC VRConfig field in DPM table.
++ *
++ * @param hwmgr the address of the hardware manager
++ * @param table the SMC DPM table structure to be populated
++ * @return always 0
++ */
++static int tonga_populate_vr_config(struct pp_hwmgr *hwmgr,
++ SMU72_Discrete_DpmTable *table)
++{
++ tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
++ uint16_t config;
++
++ if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) {
++ /* Splitted mode */
++ config = VR_SVI2_PLANE_1;
++ table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT);
++
++ if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
++ config = VR_SVI2_PLANE_2;
++ table->VRConfig |= config;
++ } else {
++ printk(KERN_ERR "[ powerplay ] VDDC and VDDGFX should be both on SVI2 control in splitted mode! \n");
++ }
++ } else {
++ /* Merged mode */
++ config = VR_MERGED_WITH_VDDC;
++ table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT);
++
++ /* Set Vddc Voltage Controller */
++ if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
++ config = VR_SVI2_PLANE_1;
++ table->VRConfig |= config;
++ } else {
++ printk(KERN_ERR "[ powerplay ] VDDC should be on SVI2 control in merged mode! \n");
++ }
++ }
++
++ /* Set Vddci Voltage Controller */
++ if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_ci_control) {
++ config = VR_SVI2_PLANE_2; /* only in merged mode */
++ table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT);
++ } else if (TONGA_VOLTAGE_CONTROL_BY_GPIO == data->vdd_ci_control) {
++ config = VR_SMIO_PATTERN_1;
++ table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT);
++ }
++
++ /* Set Mvdd Voltage Controller */
++ if (TONGA_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
++ config = VR_SMIO_PATTERN_2;
++ table->VRConfig |= (config<<VRCONF_MVDD_SHIFT);
++ }
++
++ return 0;
++}
++
++static int tonga_get_dependecy_volt_by_clk(struct pp_hwmgr *hwmgr,
++ phm_ppt_v1_clock_voltage_dependency_table *allowed_clock_voltage_table,
++ uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd)
++{
++ uint32_t i = 0;
++ tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
++ struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
++
++ /* clock - voltage dependency table is empty table */
++ if (allowed_clock_voltage_table->count == 0)
++ return -1;
++
++ for (i = 0; i < allowed_clock_voltage_table->count; i++) {
++ /* find first sclk bigger than request */
++ if (allowed_clock_voltage_table->entries[i].clk >= clock) {
++ voltage->VddGfx = tonga_get_voltage_index(pptable_info->vddgfx_lookup_table,
++ allowed_clock_voltage_table->entries[i].vddgfx);
++
++ voltage->Vddc = tonga_get_voltage_index(pptable_info->vddc_lookup_table,
++ allowed_clock_voltage_table->entries[i].vddc);
++
++ if (allowed_clock_voltage_table->entries[i].vddci) {
++ voltage->Vddci = tonga_get_voltage_id(&data->vddci_voltage_table,
++ allowed_clock_voltage_table->entries[i].vddci);
++ } else {
++ voltage->Vddci = tonga_get_voltage_id(&data->vddci_voltage_table,
++ allowed_clock_voltage_table->entries[i].vddc - data->vddc_vddci_delta);
++ }
++
++ if (allowed_clock_voltage_table->entries[i].mvdd) {
++ *mvdd = (uint32_t) allowed_clock_voltage_table->entries[i].mvdd;
++ }
++
++ voltage->Phases = 1;
++ return 0;
++ }
++ }
++
++ /* sclk is bigger than max sclk in the dependence table */
++ voltage->VddGfx = tonga_get_voltage_index(pptable_info->vddgfx_lookup_table,
++ allowed_clock_voltage_table->entries[i-1].vddgfx);
++ voltage->Vddc = tonga_get_voltage_index(pptable_info->vddc_lookup_table,
++ allowed_clock_voltage_table->entries[i-1].vddc);
++
++ if (allowed_clock_voltage_table->entries[i-1].vddci) {
++ voltage->Vddci = tonga_get_voltage_id(&data->vddci_voltage_table,
++ allowed_clock_voltage_table->entries[i-1].vddci);
++ }
++ if (allowed_clock_voltage_table->entries[i-1].mvdd) {
++ *mvdd = (uint32_t) allowed_clock_voltage_table->entries[i-1].mvdd;
++ }
++
++ return 0;
++}
++
++/**
++ * Call SMC to reset S0/S1 to S1 and Reset SMIO to initial value
++ *
++ * @param hwmgr the address of the powerplay hardware manager.
++ * @return always 0
++ */
++int tonga_reset_to_default(struct pp_hwmgr *hwmgr)
++{
++ return (smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_ResetToDefaults) == 0) ? 0 : 1;
++}
++
++int tonga_populate_memory_timing_parameters(
++ struct pp_hwmgr *hwmgr,
++ uint32_t engine_clock,
++ uint32_t memory_clock,
++ struct SMU72_Discrete_MCArbDramTimingTableEntry *arb_regs
++ )
++{
++ uint32_t dramTiming;
++ uint32_t dramTiming2;
++ uint32_t burstTime;
++ int result;
++
++ result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
++ engine_clock, memory_clock);
++
++ PP_ASSERT_WITH_CODE(result == 0,
++ "Error calling VBIOS to set DRAM_TIMING.", return result);
++
++ dramTiming = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
++ dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
++ burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
++
++ arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dramTiming);
++ arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2);
++ arb_regs->McArbBurstTime = (uint8_t)burstTime;
++
++ return 0;
++}
++
++/**
++ * Setup parameters for the MC ARB.
++ *
++ * @param hwmgr the address of the powerplay hardware manager.
++ * @return always 0
++ * This function is to be called from the SetPowerState table.
++ */
++int tonga_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
++{
++ tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
++ int result = 0;
++ SMU72_Discrete_MCArbDramTimingTable arb_regs;
++ uint32_t i, j;
++
++ memset(&arb_regs, 0x00, sizeof(SMU72_Discrete_MCArbDramTimingTable));
++
++ for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
++ for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
++ result = tonga_populate_memory_timing_parameters
++ (hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value,
++ data->dpm_table.mclk_table.dpm_levels[j].value,
++ &arb_regs.entries[i][j]);
++
++ if (0 != result) {
++ break;
++ }
++ }
++ }
++
++ if (0 == result) {
++ result = tonga_copy_bytes_to_smc(
++ hwmgr->smumgr,
++ data->arb_table_start,
++ (uint8_t *)&arb_regs,
++ sizeof(SMU72_Discrete_MCArbDramTimingTable),
++ data->sram_end
++ );
++ }
++
++ return result;
++}
++
++static int tonga_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU72_Discrete_DpmTable *table)
++{
++ tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
++ struct tonga_dpm_table *dpm_table = &data->dpm_table;
++ uint32_t i;
++
++ /* Index (dpm_table->pcie_speed_table.count) is reserved for PCIE boot level. */
++ for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
++ table->LinkLevel[i].PcieGenSpeed =
++ (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
++ table->LinkLevel[i].PcieLaneCount =
++ (uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1);
++ table->LinkLevel[i].EnabledForActivity =
++ 1;
++ table->LinkLevel[i].SPC =
++ (uint8_t)(data->pcie_spc_cap & 0xff);
++ table->LinkLevel[i].DownThreshold =
++ PP_HOST_TO_SMC_UL(5);
++ table->LinkLevel[i].UpThreshold =
++ PP_HOST_TO_SMC_UL(30);
++ }
++
++ data->smc_state_table.LinkLevelCount =
++ (uint8_t)dpm_table->pcie_speed_table.count;
++ data->dpm_level_enable_mask.pcie_dpm_enable_mask =
++ tonga_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
++
++ return 0;
++}
++
++
++static int tonga_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
++ SMU72_Discrete_DpmTable *table)
++{
++ int result = 0;
++
++ uint8_t count;
++ pp_atomctrl_clock_dividers_vi dividers;
++ tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
++ struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
++ phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;
++
++ table->VceLevelCount = (uint8_t) (mm_table->count);
++ table->VceBootLevel = 0;
++
++ for (count = 0; count < table->VceLevelCount; count++) {
++ table->VceLevel[count].Frequency =
++ mm_table->entries[count].eclk;
++ table->VceLevel[count].MinVoltage.Vddc =
++ tonga_get_voltage_index(pptable_info->vddc_lookup_table,
++ mm_table->entries[count].vddc);
++ table->VceLevel[count].MinVoltage.VddGfx =
++ (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) ?
++ tonga_get_voltage_index(pptable_info->vddgfx_lookup_table,
++ mm_table->entries[count].vddgfx) : 0;
++ table->VceLevel[count].MinVoltage.Vddci =
++ tonga_get_voltage_id(&data->vddci_voltage_table,
++ mm_table->entries[count].vddc - data->vddc_vddci_delta);
++ table->VceLevel[count].MinVoltage.Phases = 1;
++
++ /* retrieve divider value for VBIOS */
++ result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
++ table->VceLevel[count].Frequency, &dividers);
++ PP_ASSERT_WITH_CODE((0 == result),
++ "can not find divide id for VCE engine clock", return result);
++
++ table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
++
++ CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
++ }
++
++ return result;
++}
++
++static int tonga_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
++ SMU72_Discrete_DpmTable *table)
++{
++ int result = 0;
++ uint8_t count;
++ pp_atomctrl_clock_dividers_vi dividers;
++ tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
++ struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
++ phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;
++
++ table->AcpLevelCount = (uint8_t) (mm_table->count);
++ table->AcpBootLevel = 0;
++
++ for (count = 0; count < table->AcpLevelCount; count++) {
++ table->AcpLevel[count].Frequency =
++ pptable_info->mm_dep_table->entries[count].aclk;
++ table->AcpLevel[count].MinVoltage.Vddc =
++ tonga_get_voltage_index(pptable_info->vddc_lookup_table,
++ mm_table->entries[count].vddc);
++ table->AcpLevel[count].MinVoltage.VddGfx =
++ (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) ?
++ tonga_get_voltage_index(pptable_info->vddgfx_lookup_table,
++ mm_table->entries[count].vddgfx) : 0;
++ table->AcpLevel[count].MinVoltage.Vddci =
++ tonga_get_voltage_id(&data->vddci_voltage_table,
++ mm_table->entries[count].vddc - data->vddc_vddci_delta);
++ table->AcpLevel[count].MinVoltage.Phases = 1;
++
++ /* retrieve divider value for VBIOS */
++ result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
++ table->AcpLevel[count].Frequency, &dividers);
++ PP_ASSERT_WITH_CODE((0 == result),
++ "can not find divide id for engine clock", return result);
++
++ table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
++
++ CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency);
++ }
++
++ return result;
++}
++
++static int tonga_populate_smc_samu_level(struct pp_hwmgr *hwmgr,
++ SMU72_Discrete_DpmTable *table)
++{
++ int result = 0;
++ uint8_t count;
++ pp_atomctrl_clock_dividers_vi dividers;
++ tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
++ struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
++ phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;
++
++ table->SamuBootLevel = 0;
++ table->SamuLevelCount = (uint8_t) (mm_table->count);
++
++ for (count = 0; count < table->SamuLevelCount; count++) {
++ /* not sure whether we need evclk or not */
++ table->SamuLevel[count].Frequency =
++ pptable_info->mm_dep_table->entries[count].samclock;
++ table->SamuLevel[count].MinVoltage.Vddc =
++ tonga_get_voltage_index(pptable_info->vddc_lookup_table,
++ mm_table->entries[count].vddc);
++ table->SamuLevel[count].MinVoltage.VddGfx =
++ (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) ?
++ tonga_get_voltage_index(pptable_info->vddgfx_lookup_table,
++ mm_table->entries[count].vddgfx) : 0;
++ table->SamuLevel[count].MinVoltage.Vddci =
++ tonga_get_voltage_id(&data->vddci_voltage_table,
++ mm_table->entries[count].vddc - data->vddc_vddci_delta);
++ table->SamuLevel[count].MinVoltage.Phases = 1;
++
++ /* retrieve divider value for VBIOS */
++ result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
++ table->SamuLevel[count].Frequency, &dividers);
++ PP_ASSERT_WITH_CODE((0 == result),
++ "can not find divide id for samu clock", return result);
++
++ table->SamuLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
++
++ CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].Frequency);
++ }
++
++ return result;
++}
++
++/**
++ * Populates the SMC MCLK structure using the provided memory clock
++ *
++ * @param hwmgr the address of the hardware manager
++ * @param memory_clock the memory clock to use to populate the structure
++ * @param sclk the SMC SCLK structure to be populated
++ */
++static int tonga_calculate_mclk_params(
++ struct pp_hwmgr *hwmgr,
++ uint32_t memory_clock,
++ SMU72_Discrete_MemoryLevel *mclk,
++ bool strobe_mode,
++ bool dllStateOn
++ )
++{
++ const tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
++ uint32_t dll_cntl = data->clock_registers.vDLL_CNTL;
++ uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
++ uint32_t mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL;
++ uint32_t mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL;
++ uint32_t mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL;
++ uint32_t mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1;
++ uint32_t mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2;
++ uint32_t mpll_ss1 = data->clock_registers.vMPLL_SS1;
++ uint32_t mpll_ss2 = data->clock_registers.vMPLL_SS2;
++
++ pp_atomctrl_memory_clock_param mpll_param;
++ int result;
++
++ result = atomctrl_get_memory_pll_dividers_si(hwmgr,
++ memory_clock, &mpll_param, strobe_mode);
++ PP_ASSERT_WITH_CODE(0 == result,
++ "Error retrieving Memory Clock Parameters from VBIOS.", return result);
++
++ /* MPLL_FUNC_CNTL setup*/
++ mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL, mpll_param.bw_ctrl);
++
++ /* MPLL_FUNC_CNTL_1 setup*/
++ mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,
++ MPLL_FUNC_CNTL_1, CLKF, mpll_param.mpll_fb_divider.cl_kf);
++ mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,
++ MPLL_FUNC_CNTL_1, CLKFRAC, mpll_param.mpll_fb_divider.clk_frac);
++ mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,
++ MPLL_FUNC_CNTL_1, VCO_MODE, mpll_param.vco_mode);
++
++ /* MPLL_AD_FUNC_CNTL setup*/
++ mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl,
++ MPLL_AD_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
++
++ if (data->is_memory_GDDR5) {
++ /* MPLL_DQ_FUNC_CNTL setup*/
++ mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl,
++ MPLL_DQ_FUNC_CNTL, YCLK_SEL, mpll_param.yclk_sel);
++ mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl,
++ MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
++ }
++
++ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_MemorySpreadSpectrumSupport)) {
++ /*
++ ************************************
++ Fref = Reference Frequency
++ NF = Feedback divider ratio
++ NR = Reference divider ratio
++ Fnom = Nominal VCO output frequency = Fref * NF / NR
++ Fs = Spreading Rate
++ D = Percentage down-spread / 2
++ Fint = Reference input frequency to PFD = Fref / NR
++ NS = Spreading rate divider ratio = int(Fint / (2 * Fs))
++ CLKS = NS - 1 = ISS_STEP_NUM[11:0]
++ NV = D * Fs / Fnom * 4 * ((Fnom/Fref * NR) ^ 2)
++ CLKV = 65536 * NV = ISS_STEP_SIZE[25:0]
++ *************************************
++ */
++ pp_atomctrl_internal_ss_info ss_info;
++ uint32_t freq_nom;
++ uint32_t tmp;
++ uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr);
++
++ /* for GDDR5 for all modes and DDR3 */
++ if (1 == mpll_param.qdr)
++ freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider);
++ else
++ freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider);
++
++ /* tmp = (freq_nom / reference_clock * reference_divider) ^ 2 Note: S.I. reference_divider = 1*/
++ tmp = (freq_nom / reference_clock);
++ tmp = tmp * tmp;
++
++ if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) {
++ /* ss_info.speed_spectrum_percentage -- in unit of 0.01% */
++ /* ss.Info.speed_spectrum_rate -- in unit of khz */
++ /* CLKS = reference_clock / (2 * speed_spectrum_rate * reference_divider) * 10 */
++ /* = reference_clock * 5 / speed_spectrum_rate */
++ uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate;
++
++ /* CLKV = 65536 * speed_spectrum_percentage / 2 * spreadSpecrumRate / freq_nom * 4 / 100000 * ((freq_nom / reference_clock) ^ 2) */
++ /* = 131 * speed_spectrum_percentage * speed_spectrum_rate / 100 * ((freq_nom / reference_clock) ^ 2) / freq_nom */
++ uint32_t clkv =
++ (uint32_t)((((131 * ss_info.speed_spectrum_percentage *
++ ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom);
++
++ mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv);
++ mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks);
++ }
++ }
++
++ /* MCLK_PWRMGT_CNTL setup */
++ mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
++ MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed);
++ mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
++ MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn);
++ mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
++ MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn);
++
++
++ /* Save the result data to outpupt memory level structure */
++ mclk->MclkFrequency = memory_clock;
++ mclk->MpllFuncCntl = mpll_func_cntl;
++ mclk->MpllFuncCntl_1 = mpll_func_cntl_1;
++ mclk->MpllFuncCntl_2 = mpll_func_cntl_2;
++ mclk->MpllAdFuncCntl = mpll_ad_func_cntl;
++ mclk->MpllDqFuncCntl = mpll_dq_func_cntl;
++ mclk->MclkPwrmgtCntl = mclk_pwrmgt_cntl;
++ mclk->DllCntl = dll_cntl;
++ mclk->MpllSs1 = mpll_ss1;
++ mclk->MpllSs2 = mpll_ss2;
++
++ return 0;
++}
++
++static uint8_t tonga_get_mclk_frequency_ratio(uint32_t memory_clock,
++ bool strobe_mode)
++{
++ uint8_t mc_para_index;
++
++ if (strobe_mode) {
++ if (memory_clock < 12500) {
++ mc_para_index = 0x00;
++ } else if (memory_clock > 47500) {
++ mc_para_index = 0x0f;
++ } else {
++ mc_para_index = (uint8_t)((memory_clock - 10000) / 2500);
++ }
++ } else {
++ if (memory_clock < 65000) {
++ mc_para_index = 0x00;
++ } else if (memory_clock > 135000) {
++ mc_para_index = 0x0f;
++ } else {
++ mc_para_index = (uint8_t)((memory_clock - 60000) / 5000);
++ }
++ }
++
++ return mc_para_index;
++}
++
++static uint8_t tonga_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock)
++{
++ uint8_t mc_para_index;
++
++ if (memory_clock < 10000) {
++ mc_para_index = 0;
++ } else if (memory_clock >= 80000) {
++ mc_para_index = 0x0f;
++ } else {
++ mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1);
++ }
++
++ return mc_para_index;
++}
++
++static int tonga_populate_single_memory_level(
++ struct pp_hwmgr *hwmgr,
++ uint32_t memory_clock,
++ SMU72_Discrete_MemoryLevel *memory_level
++ )
++{
++ uint32_t minMvdd = 0;
++ tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
++ struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
++ int result = 0;
++ bool dllStateOn;
++ struct cgs_display_info info = {0};
++
++
++ if (NULL != pptable_info->vdd_dep_on_mclk) {
++ result = tonga_get_dependecy_volt_by_clk(hwmgr,
++ pptable_info->vdd_dep_on_mclk, memory_clock, &memory_level->MinVoltage, &minMvdd);
++ PP_ASSERT_WITH_CODE((0 == result),
++ "can not find MinVddc voltage value from memory VDDC voltage dependency table", return result);
++ }
++
++ if (data->mvdd_control == TONGA_VOLTAGE_CONTROL_NONE) {
++ memory_level->MinMvdd = data->vbios_boot_state.mvdd_bootup_value;
++ } else {
++ memory_level->MinMvdd = minMvdd;
++ }
++ memory_level->EnabledForThrottle = 1;
++ memory_level->EnabledForActivity = 0;
++ memory_level->UpHyst = 0;
++ memory_level->DownHyst = 100;
++ memory_level->VoltageDownHyst = 0;
++
++ /* Indicates maximum activity level for this performance level.*/
++ memory_level->ActivityLevel = (uint16_t)data->mclk_activity_target;
++ memory_level->StutterEnable = 0;
++ memory_level->StrobeEnable = 0;
++ memory_level->EdcReadEnable = 0;
++ memory_level->EdcWriteEnable = 0;
++ memory_level->RttEnable = 0;
++
++ /* default set to low watermark. Highest level will be set to high later.*/
++ memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
++
++ cgs_get_active_displays_info(hwmgr->device, &info);
++ data->display_timing.num_existing_displays = info.display_count;
++
++ if ((data->mclk_stutter_mode_threshold != 0) &&
++ (memory_clock <= data->mclk_stutter_mode_threshold) &&
++ (data->is_uvd_enabled == 0)
++#if defined(LINUX)
++ && (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL, STUTTER_ENABLE) & 0x1)
++ && (data->display_timing.num_existing_displays <= 2)
++ && (data->display_timing.num_existing_displays != 0)
++#endif
++ )
++ memory_level->StutterEnable = 1;
++
++ /* decide strobe mode*/
++ memory_level->StrobeEnable = (data->mclk_strobe_mode_threshold != 0) &&
++ (memory_clock <= data->mclk_strobe_mode_threshold);
++
++ /* decide EDC mode and memory clock ratio*/
++ if (data->is_memory_GDDR5) {
++ memory_level->StrobeRatio = tonga_get_mclk_frequency_ratio(memory_clock,
++ memory_level->StrobeEnable);
++
++ if ((data->mclk_edc_enable_threshold != 0) &&
++ (memory_clock > data->mclk_edc_enable_threshold)) {
++ memory_level->EdcReadEnable = 1;
++ }
++
++ if ((data->mclk_edc_wr_enable_threshold != 0) &&
++ (memory_clock > data->mclk_edc_wr_enable_threshold)) {
++ memory_level->EdcWriteEnable = 1;
++ }
++
++ if (memory_level->StrobeEnable) {
++ if (tonga_get_mclk_frequency_ratio(memory_clock, 1) >=
++ ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7) >> 16) & 0xf)) {
++ dllStateOn = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
++ } else {
++ dllStateOn = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6) >> 1) & 0x1) ? 1 : 0;
++ }
++
++ } else {
++ dllStateOn = data->dll_defaule_on;
++ }
++ } else {
++ memory_level->StrobeRatio =
++ tonga_get_ddr3_mclk_frequency_ratio(memory_clock);
++ dllStateOn = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
++ }
++
++ result = tonga_calculate_mclk_params(hwmgr,
++ memory_clock, memory_level, memory_level->StrobeEnable, dllStateOn);
++
++ if (0 == result) {
++ CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinMvdd);
++ /* MCLK frequency in units of 10KHz*/
++ CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency);
++ /* Indicates maximum activity level for this performance level.*/
++ CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel);
++ CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl);
++ CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1);
++ CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2);
++ CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl);
++ CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl);
++ CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl);
++ CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl);
++ CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1);
++ CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2);
++ }
++
++ return result;
++}
++
++/**
++ * Populates the SMC MVDD structure using the provided memory clock.
++ *
++ * @param hwmgr the address of the hardware manager
++ * @param mclk the MCLK value to be used in the decision if MVDD should be high or low.
++ * @param voltage the SMC VOLTAGE structure to be populated
++ */
++int tonga_populate_mvdd_value(struct pp_hwmgr *hwmgr, uint32_t mclk, SMIO_Pattern *smio_pattern)
++{
++ const tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
++ struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
++ uint32_t i = 0;
++
++ if (TONGA_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
++ /* find mvdd value which clock is more than request */
++ for (i = 0; i < pptable_info->vdd_dep_on_mclk->count; i++) {
++ if (mclk <= pptable_info->vdd_dep_on_mclk->entries[i].clk) {
++ /* Always round to higher voltage. */
++ smio_pattern->Voltage = data->mvdd_voltage_table.entries[i].value;
++ break;
++ }
++ }
++
++ PP_ASSERT_WITH_CODE(i < pptable_info->vdd_dep_on_mclk->count,
++ "MVDD Voltage is outside the supported range.", return -1);
++
++ } else {
++ return -1;
++ }
++
++ return 0;
++}
++
++
++static int tonga_populate_smv_acpi_level(struct pp_hwmgr *hwmgr,
++ SMU72_Discrete_DpmTable *table)
++{
++ int result = 0;
++ const tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
++ pp_atomctrl_clock_dividers_vi dividers;
++ SMIO_Pattern voltage_level;
++ uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
++ uint32_t spll_func_cntl_2 = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
++ uint32_t dll_cntl = data->clock_registers.vDLL_CNTL;
++ uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
++
++ /* The ACPI state should not do DPM on DC (or ever).*/
++ table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
++
++ table->ACPILevel.MinVoltage = data->smc_state_table.GraphicsLevel[0].MinVoltage;
++
++ /* assign zero for now*/
++ table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr);
++
++ /* get the engine clock dividers for this clock value*/
++ result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
++ table->ACPILevel.SclkFrequency, &dividers);
++
++ PP_ASSERT_WITH_CODE(result == 0,
++ "Error retrieving Engine Clock dividers from VBIOS.", return result);
++
++ /* divider ID for required SCLK*/
++ table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
++ table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
++ table->ACPILevel.DeepSleepDivId = 0;
++
++ spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
++ CG_SPLL_FUNC_CNTL, SPLL_PWRON, 0);
++ spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
++ CG_SPLL_FUNC_CNTL, SPLL_RESET, 1);
++ spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2,
++ CG_SPLL_FUNC_CNTL_2, SCLK_MUX_SEL, 4);
++
++ table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
++ table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
++ table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
++ table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
++ table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
++ table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
++ table->ACPILevel.CcPwrDynRm = 0;
++ table->ACPILevel.CcPwrDynRm1 = 0;
++
++
++ /* For various features to be enabled/disabled while this level is active.*/
++ CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
++ /* SCLK frequency in units of 10KHz*/
++ CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
++ CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
++ CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
++ CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
++ CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
++ CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
++ CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
++ CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
++ CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
++
++ /* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/
++ table->MemoryACPILevel.MinVoltage = data->smc_state_table.MemoryLevel[0].MinVoltage;
++
++ /* CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);*/
++
++ if (0 == tonga_populate_mvdd_value(hwmgr, 0, &voltage_level))
++ table->MemoryACPILevel.MinMvdd =
++ PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE);
++ else
++ table->MemoryACPILevel.MinMvdd = 0;
++
++ /* Force reset on DLL*/
++ mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
++ MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1);
++ mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
++ MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1);
++
++ /* Disable DLL in ACPIState*/
++ mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
++ MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0);
++ mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
++ MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0);
++
++ /* Enable DLL bypass signal*/
++ dll_cntl = PHM_SET_FIELD(dll_cntl,
++ DLL_CNTL, MRDCK0_BYPASS, 0);
++ dll_cntl = PHM_SET_FIELD(dll_cntl,
++ DLL_CNTL, MRDCK1_BYPASS, 0);
++
++ table->MemoryACPILevel.DllCntl =
++ PP_HOST_TO_SMC_UL(dll_cntl);
++ table->MemoryACPILevel.MclkPwrmgtCntl =
++ PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl);
++ table->MemoryACPILevel.MpllAdFuncCntl =
++ PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL);
++ table->MemoryACPILevel.MpllDqFuncCntl =
++ PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL);
++ table->MemoryACPILevel.MpllFuncCntl =
++ PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL);
++ table->MemoryACPILevel.MpllFuncCntl_1 =
++ PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1);
++ table->MemoryACPILevel.MpllFuncCntl_2 =
++ PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2);
++ table->MemoryACPILevel.MpllSs1 =
++ PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1);
++ table->MemoryACPILevel.MpllSs2 =
++ PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2);
++
++ table->MemoryACPILevel.EnabledForThrottle = 0;
++ table->MemoryACPILevel.EnabledForActivity = 0;
++ table->MemoryACPILevel.UpHyst = 0;
++ table->MemoryACPILevel.DownHyst = 100;
++ table->MemoryACPILevel.VoltageDownHyst = 0;
++ /* Indicates maximum activity level for this performance level.*/
++ table->MemoryACPILevel.ActivityLevel = PP_HOST_TO_SMC_US((uint16_t)data->mclk_activity_target);
++
++ table->MemoryACPILevel.StutterEnable = 0;
++ table->MemoryACPILevel.StrobeEnable = 0;
++ table->MemoryACPILevel.EdcReadEnable = 0;
++ table->MemoryACPILevel.EdcWriteEnable = 0;
++ table->MemoryACPILevel.RttEnable = 0;
++
++ return result;
++}
++
++static int tonga_find_boot_level(struct tonga_single_dpm_table *table, uint32_t value, uint32_t *boot_level)
++{
++ int result = 0;
++ uint32_t i;
++
++ for (i = 0; i < table->count; i++) {
++ if (value == table->dpm_levels[i].value) {
++ *boot_level = i;
++ result = 0;
++ }
++ }
++ return result;
++}
++
++static int tonga_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
++ SMU72_Discrete_DpmTable *table)
++{
++ int result = 0;
++ tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
++
++ table->GraphicsBootLevel = 0; /* 0 == DPM[0] (low), etc. */
++ table->MemoryBootLevel = 0; /* 0 == DPM[0] (low), etc. */
++
++ /* find boot level from dpm table*/
++ result = tonga_find_boot_level(&(data->dpm_table.sclk_table),
++ data->vbios_boot_state.sclk_bootup_value,
++ (uint32_t *)&(data->smc_state_table.GraphicsBootLevel));
++
++ if (0 != result) {
++ data->smc_state_table.GraphicsBootLevel = 0;
++ printk(KERN_ERR "[ powerplay ] VBIOS did not find boot engine clock value \
++ in dependency table. Using Graphics DPM level 0!");
++ result = 0;
++ }
++
++ result = tonga_find_boot_level(&(data->dpm_table.mclk_table),
++ data->vbios_boot_state.mclk_bootup_value,
++ (uint32_t *)&(data->smc_state_table.MemoryBootLevel));
++
++ if (0 != result) {
++ data->smc_state_table.MemoryBootLevel = 0;
++ printk(KERN_ERR "[ powerplay ] VBIOS did not find boot engine clock value \
++ in dependency table. Using Memory DPM level 0!");
++ result = 0;
++ }
++
++ table->BootVoltage.Vddc =
++ tonga_get_voltage_id(&(data->vddc_voltage_table),
++ data->vbios_boot_state.vddc_bootup_value);
++ table->BootVoltage.VddGfx =
++ tonga_get_voltage_id(&(data->vddgfx_voltage_table),
++ data->vbios_boot_state.vddgfx_bootup_value);
++ table->BootVoltage.Vddci =
++ tonga_get_voltage_id(&(data->vddci_voltage_table),
++ data->vbios_boot_state.vddci_bootup_value);
++ table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value;
++
++ CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd);
++
++ return result;
++}
++
++
++/**
++ * Calculates the SCLK dividers using the provided engine clock
++ *
++ * @param hwmgr the address of the hardware manager
++ * @param engine_clock the engine clock to use to populate the structure
++ * @param sclk the SMC SCLK structure to be populated
++ */
++int tonga_calculate_sclk_params(struct pp_hwmgr *hwmgr,
++ uint32_t engine_clock, SMU72_Discrete_GraphicsLevel *sclk)
++{
++ const tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
++ pp_atomctrl_clock_dividers_vi dividers;
++ uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
++ uint32_t spll_func_cntl_3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
++ uint32_t spll_func_cntl_4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
++ uint32_t cg_spll_spread_spectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
++ uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
++ uint32_t reference_clock;
++ uint32_t reference_divider;
++ uint32_t fbdiv;
++ int result;
++
++ /* get the engine clock dividers for this clock value*/
++ result = atomctrl_get_engine_pll_dividers_vi(hwmgr, engine_clock, &dividers);
++
++ PP_ASSERT_WITH_CODE(result == 0,
++ "Error retrieving Engine Clock dividers from VBIOS.", return result);
++
++ /* To get FBDIV we need to multiply this by 16384 and divide it by Fref.*/
++ reference_clock = atomctrl_get_reference_clock(hwmgr);
++
++ reference_divider = 1 + dividers.uc_pll_ref_div;
++
++ /* low 14 bits is fraction and high 12 bits is divider*/
++ fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
++
++ /* SPLL_FUNC_CNTL setup*/
++ spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
++ CG_SPLL_FUNC_CNTL, SPLL_REF_DIV, dividers.uc_pll_ref_div);
++ spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
++ CG_SPLL_FUNC_CNTL, SPLL_PDIV_A, dividers.uc_pll_post_div);
++
++ /* SPLL_FUNC_CNTL_3 setup*/
++ spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3,
++ CG_SPLL_FUNC_CNTL_3, SPLL_FB_DIV, fbdiv);
++
++ /* set to use fractional accumulation*/
++ spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3,
++ CG_SPLL_FUNC_CNTL_3, SPLL_DITHEN, 1);
++
++ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
++ pp_atomctrl_internal_ss_info ss_info;
++
++ uint32_t vcoFreq = engine_clock * dividers.uc_pll_post_div;
++ if (0 == atomctrl_get_engine_clock_spread_spectrum(hwmgr, vcoFreq, &ss_info)) {
++ /*
++ * ss_info.speed_spectrum_percentage -- in unit of 0.01%
++ * ss_info.speed_spectrum_rate -- in unit of khz
++ */
++ /* clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2 */
++ uint32_t clkS = reference_clock * 5 / (reference_divider * ss_info.speed_spectrum_rate);
++
++ /* clkv = 2 * D * fbdiv / NS */
++ uint32_t clkV = 4 * ss_info.speed_spectrum_percentage * fbdiv / (clkS * 10000);
++
++ cg_spll_spread_spectrum =
++ PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, CLKS, clkS);
++ cg_spll_spread_spectrum =
++ PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
++ cg_spll_spread_spectrum_2 =
++ PHM_SET_FIELD(cg_spll_spread_spectrum_2, CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clkV);
++ }
++ }
++
++ sclk->SclkFrequency = engine_clock;
++ sclk->CgSpllFuncCntl3 = spll_func_cntl_3;
++ sclk->CgSpllFuncCntl4 = spll_func_cntl_4;
++ sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum;
++ sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2;
++ sclk->SclkDid = (uint8_t)dividers.pll_post_divider;
++
++ return 0;
++}
++
++/**
++ * Populates single SMC SCLK structure using the provided engine clock
++ *
++ * @param hwmgr the address of the hardware manager
++ * @param engine_clock the engine clock to use to populate the structure
++ * @param sclk the SMC SCLK structure to be populated
++ */
++static int tonga_populate_single_graphic_level(struct pp_hwmgr *hwmgr, uint32_t engine_clock, uint16_t sclk_activity_level_threshold, SMU72_Discrete_GraphicsLevel *graphic_level)
++{
++ int result;
++ uint32_t threshold;
++ uint32_t mvdd;
++ tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
++ struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
++
++ result = tonga_calculate_sclk_params(hwmgr, engine_clock, graphic_level);
++
++
++ /* populate graphics levels*/
++ result = tonga_get_dependecy_volt_by_clk(hwmgr,
++ pptable_info->vdd_dep_on_sclk, engine_clock,
++ &graphic_level->MinVoltage, &mvdd);
++ PP_ASSERT_WITH_CODE((0 == result),
++ "can not find VDDC voltage value for VDDC \
++ engine clock dependency table", return result);
++
++ /* SCLK frequency in units of 10KHz*/
++ graphic_level->SclkFrequency = engine_clock;
++
++ /* Indicates maximum activity level for this performance level. 50% for now*/
++ graphic_level->ActivityLevel = sclk_activity_level_threshold;
++
++ graphic_level->CcPwrDynRm = 0;
++ graphic_level->CcPwrDynRm1 = 0;
++ /* this level can be used if activity is high enough.*/
++ graphic_level->EnabledForActivity = 0;
++ /* this level can be used for throttling.*/
++ graphic_level->EnabledForThrottle = 1;
++ graphic_level->UpHyst = 0;
++ graphic_level->DownHyst = 0;
++ graphic_level->VoltageDownHyst = 0;
++ graphic_level->PowerThrottle = 0;
++
++ threshold = engine_clock * data->fast_watemark_threshold / 100;
++/*
++ *get the DAL clock. do it in funture.
++ PECI_GetMinClockSettings(hwmgr->peci, &minClocks);
++ data->display_timing.min_clock_insr = minClocks.engineClockInSR;
++
++ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep))
++ {
++ graphic_level->DeepSleepDivId = PhwTonga_GetSleepDividerIdFromClock(hwmgr, engine_clock, minClocks.engineClockInSR);
++ }
++*/
++
++ /* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/
++ graphic_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
++
++ if (0 == result) {
++ /* CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVoltage);*/
++ /* CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVddcPhases);*/
++ CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SclkFrequency);
++ CONVERT_FROM_HOST_TO_SMC_US(graphic_level->ActivityLevel);
++ CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl3);
++ CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl4);
++ CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum);
++ CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum2);
++ CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm);
++ CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm1);
++ }
++
++ return result;
++}
++
++/**
++ * Populates all SMC SCLK levels' structure based on the trimmed allowed dpm engine clock states
++ *
++ * @param hwmgr the address of the hardware manager
++ */
++static int tonga_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
++{
++ tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
++ struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
++ struct tonga_dpm_table *dpm_table = &data->dpm_table;
++ phm_ppt_v1_pcie_table *pcie_table = pptable_info->pcie_table;
++ uint8_t pcie_entry_count = (uint8_t) data->dpm_table.pcie_speed_table.count;
++ int result = 0;
++ uint32_t level_array_adress = data->dpm_table_start +
++ offsetof(SMU72_Discrete_DpmTable, GraphicsLevel);
++ uint32_t level_array_size = sizeof(SMU72_Discrete_GraphicsLevel) *
++ SMU72_MAX_LEVELS_GRAPHICS; /* 64 -> long; 32 -> int*/
++ SMU72_Discrete_GraphicsLevel *levels = data->smc_state_table.GraphicsLevel;
++ uint32_t i, maxEntry;
++ uint8_t highest_pcie_level_enabled = 0, lowest_pcie_level_enabled = 0, mid_pcie_level_enabled = 0, count = 0;
++ PECI_RegistryValue reg_value;
++ memset(levels, 0x00, level_array_size);
++
++ for (i = 0; i < dpm_table->sclk_table.count; i++) {
++ result = tonga_populate_single_graphic_level(hwmgr,
++ dpm_table->sclk_table.dpm_levels[i].value,
++ (uint16_t)data->activity_target[i],
++ &(data->smc_state_table.GraphicsLevel[i]));
++
++ if (0 != result)
++ return result;
++
++ /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
++ if (i > 1)
++ data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0;
++
++ if (0 == i) {
++ reg_value = 0;
++ if (reg_value != 0)
++ data->smc_state_table.GraphicsLevel[0].UpHyst = (uint8_t)reg_value;
++ }
++
++ if (1 == i) {
++ reg_value = 0;
++ if (reg_value != 0)
++ data->smc_state_table.GraphicsLevel[1].UpHyst = (uint8_t)reg_value;
++ }
++ }
++
++ /* Only enable level 0 for now. */
++ data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1;
++
++ /* set highest level watermark to high */
++ if (dpm_table->sclk_table.count > 1)
++ data->smc_state_table.GraphicsLevel[dpm_table->sclk_table.count-1].DisplayWatermark =
++ PPSMC_DISPLAY_WATERMARK_HIGH;
++
++ data->smc_state_table.GraphicsDpmLevelCount =
++ (uint8_t)dpm_table->sclk_table.count;
++ data->dpm_level_enable_mask.sclk_dpm_enable_mask =
++ tonga_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
++
++ if (pcie_table != NULL) {
++ PP_ASSERT_WITH_CODE((pcie_entry_count >= 1),
++ "There must be 1 or more PCIE levels defined in PPTable.", return -1);
++ maxEntry = pcie_entry_count - 1; /* for indexing, we need to decrement by 1.*/
++ for (i = 0; i < dpm_table->sclk_table.count; i++) {
++ data->smc_state_table.GraphicsLevel[i].pcieDpmLevel =
++ (uint8_t) ((i < maxEntry) ? i : maxEntry);
++ }
++ } else {
++ if (0 == data->dpm_level_enable_mask.pcie_dpm_enable_mask)
++ printk(KERN_ERR "[ powerplay ] Pcie Dpm Enablemask is 0!");
++
++ while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
++ ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
++ (1<<(highest_pcie_level_enabled+1))) != 0)) {
++ highest_pcie_level_enabled++;
++ }
++
++ while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
++ ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
++ (1<<lowest_pcie_level_enabled)) == 0)) {
++ lowest_pcie_level_enabled++;
++ }
++
++ while ((count < highest_pcie_level_enabled) &&
++ ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
++ (1<<(lowest_pcie_level_enabled+1+count))) == 0)) {
++ count++;
++ }
++ mid_pcie_level_enabled = (lowest_pcie_level_enabled+1+count) < highest_pcie_level_enabled ?
++ (lowest_pcie_level_enabled+1+count) : highest_pcie_level_enabled;
++
++
++ /* set pcieDpmLevel to highest_pcie_level_enabled*/
++ for (i = 2; i < dpm_table->sclk_table.count; i++) {
++ data->smc_state_table.GraphicsLevel[i].pcieDpmLevel = highest_pcie_level_enabled;
++ }
++
++ /* set pcieDpmLevel to lowest_pcie_level_enabled*/
++ data->smc_state_table.GraphicsLevel[0].pcieDpmLevel = lowest_pcie_level_enabled;
++
++ /* set pcieDpmLevel to mid_pcie_level_enabled*/
++ data->smc_state_table.GraphicsLevel[1].pcieDpmLevel = mid_pcie_level_enabled;
++ }
++ /* level count will send to smc once at init smc table and never change*/
++ result = tonga_copy_bytes_to_smc(hwmgr->smumgr, level_array_adress, (uint8_t *)levels, (uint32_t)level_array_size, data->sram_end);
++
++ if (0 != result)
++ return result;
++
++ return 0;
++}
++
++/**
++ * Populates all SMC MCLK levels' structure based on the trimmed allowed dpm memory clock states
++ *
++ * @param hwmgr the address of the hardware manager
++ */
++
++static int tonga_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
++{
++ tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
++ struct tonga_dpm_table *dpm_table = &data->dpm_table;
++ int result;
++ /* populate MCLK dpm table to SMU7 */
++ uint32_t level_array_adress = data->dpm_table_start + offsetof(SMU72_Discrete_DpmTable, MemoryLevel);
++ uint32_t level_array_size = sizeof(SMU72_Discrete_MemoryLevel) * SMU72_MAX_LEVELS_MEMORY;
++ SMU72_Discrete_MemoryLevel *levels = data->smc_state_table.MemoryLevel;
++ uint32_t i;
++
++ memset(levels, 0x00, level_array_size);
++
++ for (i = 0; i < dpm_table->mclk_table.count; i++) {
++ PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
++ "can not populate memory level as memory clock is zero", return -1);
++ result = tonga_populate_single_memory_level(hwmgr, dpm_table->mclk_table.dpm_levels[i].value,
++ &(data->smc_state_table.MemoryLevel[i]));
++ if (0 != result) {
++ return result;
++ }
++ }
++
++ /* Only enable level 0 for now.*/
++ data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1;
++
++ /*
++ * in order to prevent MC activity from stutter mode to push DPM up.
++ * the UVD change complements this by putting the MCLK in a higher state
++ * by default such that we are not effected by up threshold or and MCLK DPM latency.
++ */
++ data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F;
++ CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table.MemoryLevel[0].ActivityLevel);
++
++ data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count;
++ data->dpm_level_enable_mask.mclk_dpm_enable_mask = tonga_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
++ /* set highest level watermark to high*/
++ data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH;
++
++ /* level count will send to smc once at init smc table and never change*/
++ result = tonga_copy_bytes_to_smc(hwmgr->smumgr,
++ level_array_adress, (uint8_t *)levels, (uint32_t)level_array_size, data->sram_end);
++
++ if (0 != result) {
++ return result;
++ }
++
++ return 0;
++}
++
++struct TONGA_DLL_SPEED_SETTING {
++ uint16_t Min; /* Minimum Data Rate*/
++ uint16_t Max; /* Maximum Data Rate*/
++ uint32_t dll_speed; /* The desired DLL_SPEED setting*/
++};
++
++static int tonga_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
++{
++ return 0;
++}
++
++/* ---------------------------------------- ULV related functions ----------------------------------------------------*/
++
++
++static int tonga_reset_single_dpm_table(
++ struct pp_hwmgr *hwmgr,
++ struct tonga_single_dpm_table *dpm_table,
++ uint32_t count)
++{
++ uint32_t i;
++ if (!(count <= MAX_REGULAR_DPM_NUMBER))
++ printk(KERN_ERR "[ powerplay ] Fatal error, can not set up single DPM \
++ table entries to exceed max number! \n");
++
++ dpm_table->count = count;
++ for (i = 0; i < MAX_REGULAR_DPM_NUMBER; i++) {
++ dpm_table->dpm_levels[i].enabled = 0;
++ }
++
++ return 0;
++}
++
++static void tonga_setup_pcie_table_entry(
++ struct tonga_single_dpm_table *dpm_table,
++ uint32_t index, uint32_t pcie_gen,
++ uint32_t pcie_lanes)
++{
++ dpm_table->dpm_levels[index].value = pcie_gen;
++ dpm_table->dpm_levels[index].param1 = pcie_lanes;
++ dpm_table->dpm_levels[index].enabled = 1;
++}
++
++bool is_pcie_gen3_supported(uint32_t pcie_link_speed_cap)
++{
++ if (pcie_link_speed_cap & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3)
++ return 1;
++
++ return 0;
++}
++
++bool is_pcie_gen2_supported(uint32_t pcie_link_speed_cap)
++{
++ if (pcie_link_speed_cap & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2)
++ return 1;
++
++ return 0;
++}
++
++/* Get the new PCIE speed given the ASIC PCIE Cap and the NewState's requested PCIE speed*/
++uint16_t get_pcie_gen_support(uint32_t pcie_link_speed_cap, uint16_t ns_pcie_gen)
++{
++ uint32_t asic_pcie_link_speed_cap = (pcie_link_speed_cap &
++ CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_MASK);
++ uint32_t sys_pcie_link_speed_cap = (pcie_link_speed_cap &
++ CAIL_PCIE_LINK_SPEED_SUPPORT_MASK);
++
++ switch (asic_pcie_link_speed_cap) {
++ case CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN1:
++ return PP_PCIEGen1;
++
++ case CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN2:
++ return PP_PCIEGen2;
++
++ case CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN3:
++ return PP_PCIEGen3;
++
++ default:
++ if (is_pcie_gen3_supported(sys_pcie_link_speed_cap) &&
++ (ns_pcie_gen == PP_PCIEGen3)) {
++ return PP_PCIEGen3;
++ } else if (is_pcie_gen2_supported(sys_pcie_link_speed_cap) &&
++ ((ns_pcie_gen == PP_PCIEGen3) || (ns_pcie_gen == PP_PCIEGen2))) {
++ return PP_PCIEGen2;
++ }
++ }
++
++ return PP_PCIEGen1;
++}
++
++uint16_t get_pcie_lane_support(uint32_t pcie_lane_width_cap, uint16_t ns_pcie_lanes)
++{
++ int i, j;
++ uint16_t new_pcie_lanes = ns_pcie_lanes;
++ uint16_t pcie_lanes[7] = {1, 2, 4, 8, 12, 16, 32};
++
++ switch (pcie_lane_width_cap) {
++ case 0:
++ printk(KERN_ERR "[ powerplay ] No valid PCIE lane width reported by CAIL!");
++ break;
++ case CAIL_PCIE_LINK_WIDTH_SUPPORT_X1:
++ new_pcie_lanes = 1;
++ break;
++ case CAIL_PCIE_LINK_WIDTH_SUPPORT_X2:
++ new_pcie_lanes = 2;
++ break;
++ case CAIL_PCIE_LINK_WIDTH_SUPPORT_X4:
++ new_pcie_lanes = 4;
++ break;
++ case CAIL_PCIE_LINK_WIDTH_SUPPORT_X8:
++ new_pcie_lanes = 8;
++ break;
++ case CAIL_PCIE_LINK_WIDTH_SUPPORT_X12:
++ new_pcie_lanes = 12;
++ break;
++ case CAIL_PCIE_LINK_WIDTH_SUPPORT_X16:
++ new_pcie_lanes = 16;
++ break;
++ case CAIL_PCIE_LINK_WIDTH_SUPPORT_X32:
++ new_pcie_lanes = 32;
++ break;
++ default:
++ for (i = 0; i < 7; i++) {
++ if (ns_pcie_lanes == pcie_lanes[i]) {
++ if (pcie_lane_width_cap & (0x10000 << i)) {
++ break;
++ } else {
++ for (j = i - 1; j >= 0; j--) {
++ if (pcie_lane_width_cap & (0x10000 << j)) {
++ new_pcie_lanes = pcie_lanes[j];
++ break;
++ }
++ }
++
++ if (j < 0) {
++ for (j = i + 1; j < 7; j++) {
++ if (pcie_lane_width_cap & (0x10000 << j)) {
++ new_pcie_lanes = pcie_lanes[j];
++ break;
++ }
++ }
++ if (j > 7)
++ printk(KERN_ERR "[ powerplay ] Cannot find a valid PCIE lane width!");
++ }
++ }
++ break;
++ }
++ }
++ break;
++ }
++
++ return new_pcie_lanes;
++}
++
++static int tonga_setup_default_pcie_tables(struct pp_hwmgr *hwmgr)
++{
++ tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
++ struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
++ phm_ppt_v1_pcie_table *pcie_table = pptable_info->pcie_table;
++ uint32_t i, maxEntry;
++
++ if (data->use_pcie_performance_levels && !data->use_pcie_power_saving_levels) {
++ data->pcie_gen_power_saving = data->pcie_gen_performance;
++ data->pcie_lane_power_saving = data->pcie_lane_performance;
++ } else if (!data->use_pcie_performance_levels && data->use_pcie_power_saving_levels) {
++ data->pcie_gen_performance = data->pcie_gen_power_saving;
++ data->pcie_lane_performance = data->pcie_lane_power_saving;
++ }
++
++ tonga_reset_single_dpm_table(hwmgr, &data->dpm_table.pcie_speed_table, SMU72_MAX_LEVELS_LINK);
++
++ if (pcie_table != NULL) {
++ /*
++ * maxEntry is used to make sure we reserve one PCIE level for boot level (fix for A+A PSPP issue).
++ * If PCIE table from PPTable have ULV entry + 8 entries, then ignore the last entry.
++ */
++ maxEntry = (SMU72_MAX_LEVELS_LINK < pcie_table->count) ?
++ SMU72_MAX_LEVELS_LINK : pcie_table->count;
++ for (i = 1; i < maxEntry; i++) {
++ tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i-1,
++ get_pcie_gen_support(data->pcie_gen_cap, pcie_table->entries[i].gen_speed),
++ get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
++ }
++ data->dpm_table.pcie_speed_table.count = maxEntry - 1;
++ } else {
++ /* Hardcode Pcie Table */
++ tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 0,
++ get_pcie_gen_support(data->pcie_gen_cap, PP_Min_PCIEGen),
++ get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
++ tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 1,
++ get_pcie_gen_support(data->pcie_gen_cap, PP_Min_PCIEGen),
++ get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
++ tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 2,
++ get_pcie_gen_support(data->pcie_gen_cap, PP_Max_PCIEGen),
++ get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
++ tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 3,
++ get_pcie_gen_support(data->pcie_gen_cap, PP_Max_PCIEGen),
++ get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
++ tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 4,
++ get_pcie_gen_support(data->pcie_gen_cap, PP_Max_PCIEGen),
++ get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
++ tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 5,
++ get_pcie_gen_support(data->pcie_gen_cap, PP_Max_PCIEGen),
++ get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
++ data->dpm_table.pcie_speed_table.count = 6;
++ }
++ /* Populate last level for boot PCIE level, but do not increment count. */
++ tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table,
++ data->dpm_table.pcie_speed_table.count,
++ get_pcie_gen_support(data->pcie_gen_cap, PP_Min_PCIEGen),
++ get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
++
++ return 0;
++
++}
++
++/*
++ * This function is to initalize all DPM state tables for SMU7 based on the dependency table.
++ * Dynamic state patching function will then trim these state tables to the allowed range based
++ * on the power policy or external client requests, such as UVD request, etc.
++ */
++static int tonga_setup_default_dpm_tables(struct pp_hwmgr *hwmgr)
++{
++ tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
++ struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
++ uint32_t i;
++
++ phm_ppt_v1_clock_voltage_dependency_table *allowed_vdd_sclk_table =
++ pptable_info->vdd_dep_on_sclk;
++ phm_ppt_v1_clock_voltage_dependency_table *allowed_vdd_mclk_table =
++ pptable_info->vdd_dep_on_mclk;
++
++ PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table != NULL,
++ "SCLK dependency table is missing. This table is mandatory", return -1);
++ PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table->count >= 1,
++ "SCLK dependency table has to have is missing. This table is mandatory", return -1);
++
++ PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table != NULL,
++ "MCLK dependency table is missing. This table is mandatory", return -1);
++ PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table->count >= 1,
++ "VMCLK dependency table has to have is missing. This table is mandatory", return -1);
++
++ /* clear the state table to reset everything to default */
++ memset(&(data->dpm_table), 0x00, sizeof(data->dpm_table));
++ tonga_reset_single_dpm_table(hwmgr, &data->dpm_table.sclk_table, SMU72_MAX_LEVELS_GRAPHICS);
++ tonga_reset_single_dpm_table(hwmgr, &data->dpm_table.mclk_table, SMU72_MAX_LEVELS_MEMORY);
++ /* tonga_reset_single_dpm_table(hwmgr, &tonga_hwmgr->dpm_table.VddcTable, SMU72_MAX_LEVELS_VDDC); */
++ /* tonga_reset_single_dpm_table(hwmgr, &tonga_hwmgr->dpm_table.vdd_gfx_table, SMU72_MAX_LEVELS_VDDGFX);*/
++ /* tonga_reset_single_dpm_table(hwmgr, &tonga_hwmgr->dpm_table.vdd_ci_table, SMU72_MAX_LEVELS_VDDCI);*/
++ /* tonga_reset_single_dpm_table(hwmgr, &tonga_hwmgr->dpm_table.mvdd_table, SMU72_MAX_LEVELS_MVDD);*/
++
++ PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table != NULL,
++ "SCLK dependency table is missing. This table is mandatory", return -1);
++ /* Initialize Sclk DPM table based on allow Sclk values*/
++ data->dpm_table.sclk_table.count = 0;
++
++ for (i = 0; i < allowed_vdd_sclk_table->count; i++) {
++ if (i == 0 || data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count-1].value !=
++ allowed_vdd_sclk_table->entries[i].clk) {
++ data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].value =
++ allowed_vdd_sclk_table->entries[i].clk;
++ data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].enabled = 1; /*(i==0) ? 1 : 0; to do */
++ data->dpm_table.sclk_table.count++;
++ }
++ }
++
++ PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table != NULL,
++ "MCLK dependency table is missing. This table is mandatory", return -1);
++ /* Initialize Mclk DPM table based on allow Mclk values */
++ data->dpm_table.mclk_table.count = 0;
++ for (i = 0; i < allowed_vdd_mclk_table->count; i++) {
++ if (i == 0 || data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count-1].value !=
++ allowed_vdd_mclk_table->entries[i].clk) {
++ data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].value =
++ allowed_vdd_mclk_table->entries[i].clk;
++ data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].enabled = 1; /*(i==0) ? 1 : 0; */
++ data->dpm_table.mclk_table.count++;
++ }
++ }
++
++ /* Initialize Vddc DPM table based on allow Vddc values. And populate corresponding std values. */
++ for (i = 0; i < allowed_vdd_sclk_table->count; i++) {
++ data->dpm_table.vddc_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].vddc;
++ /* tonga_hwmgr->dpm_table.VddcTable.dpm_levels[i].param1 = stdVoltageTable->entries[i].Leakage; */
++ /* param1 is for corresponding std voltage */
++ data->dpm_table.vddc_table.dpm_levels[i].enabled = 1;
++ }
++ data->dpm_table.vddc_table.count = allowed_vdd_sclk_table->count;
++
++ if (NULL != allowed_vdd_mclk_table) {
++ /* Initialize Vddci DPM table based on allow Mclk values */
++ for (i = 0; i < allowed_vdd_mclk_table->count; i++) {
++ data->dpm_table.vdd_ci_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].vddci;
++ data->dpm_table.vdd_ci_table.dpm_levels[i].enabled = 1;
++ data->dpm_table.mvdd_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].mvdd;
++ data->dpm_table.mvdd_table.dpm_levels[i].enabled = 1;
++ }
++ data->dpm_table.vdd_ci_table.count = allowed_vdd_mclk_table->count;
++ data->dpm_table.mvdd_table.count = allowed_vdd_mclk_table->count;
++ }
++
++ /* setup PCIE gen speed levels*/
++ tonga_setup_default_pcie_tables(hwmgr);
++
++ /* save a copy of the default DPM table*/
++ memcpy(&(data->golden_dpm_table), &(data->dpm_table), sizeof(struct tonga_dpm_table));
++
++ return 0;
++}
++
++int tonga_populate_smc_initial_state(struct pp_hwmgr *hwmgr,
++ const struct tonga_power_state *bootState)
++{
++ tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
++ struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
++ uint8_t count, level;
++
++ count = (uint8_t) (pptable_info->vdd_dep_on_sclk->count);
++ for (level = 0; level < count; level++) {
++ if (pptable_info->vdd_dep_on_sclk->entries[level].clk >=
++ bootState->performance_levels[0].engine_clock) {
++ data->smc_state_table.GraphicsBootLevel = level;
++ break;
++ }
++ }
++
++ count = (uint8_t) (pptable_info->vdd_dep_on_mclk->count);
++ for (level = 0; level < count; level++) {
++ if (pptable_info->vdd_dep_on_mclk->entries[level].clk >=
++ bootState->performance_levels[0].memory_clock) {
++ data->smc_state_table.MemoryBootLevel = level;
++ break;
++ }
++ }
++
++ return 0;
++}
++
++/**
++ * Initializes the SMC table and uploads it
++ *
++ * @param hwmgr the address of the powerplay hardware manager.
++ * @param pInput the pointer to input data (PowerState)
++ * @return always 0
++ */
++int tonga_init_smc_table(struct pp_hwmgr *hwmgr)
++{
++ int result;
++ tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
++ struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
++ SMU72_Discrete_DpmTable *table = &(data->smc_state_table);
++ const phw_tonga_ulv_parm *ulv = &(data->ulv);
++ uint8_t i;
++ PECI_RegistryValue reg_value;
++ pp_atomctrl_gpio_pin_assignment gpio_pin_assignment;
++
++ result = tonga_setup_default_dpm_tables(hwmgr);
++ PP_ASSERT_WITH_CODE(0 == result,
++ "Failed to setup default DPM tables!", return result;);
++ memset(&(data->smc_state_table), 0x00, sizeof(data->smc_state_table));
++ if (TONGA_VOLTAGE_CONTROL_NONE != data->voltage_control) {
++ tonga_populate_smc_voltage_tables(hwmgr, table);
++ }
++
++ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_AutomaticDCTransition)) {
++ table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
++ }
++
++ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_StepVddc)) {
++ table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
++ }
++
++ if (data->is_memory_GDDR5) {
++ table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
++ }
++
++ i = PHM_READ_FIELD(hwmgr->device, CC_MC_MAX_CHANNEL, NOOFCHAN);
++
++ if (i == 1 || i == 0) {
++ table->SystemFlags |= PPSMC_SYSTEMFLAG_12CHANNEL;
++ }
++
++ if (ulv->ulv_supported && pptable_info->us_ulv_voltage_offset) {
++ PP_ASSERT_WITH_CODE(0 == result,
++ "Failed to initialize ULV state!", return result;);
++
++ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
++ ixCG_ULV_PARAMETER, ulv->ch_ulv_parameter);
++ }
++
++ result = tonga_populate_smc_link_level(hwmgr, table);
++ PP_ASSERT_WITH_CODE(0 == result,
++ "Failed to initialize Link Level!", return result;);
++
++ result = tonga_populate_all_graphic_levels(hwmgr);
++ PP_ASSERT_WITH_CODE(0 == result,
++ "Failed to initialize Graphics Level!", return result;);
++
++ result = tonga_populate_all_memory_levels(hwmgr);
++ PP_ASSERT_WITH_CODE(0 == result,
++ "Failed to initialize Memory Level!", return result;);
++
++ result = tonga_populate_smv_acpi_level(hwmgr, table);
++ PP_ASSERT_WITH_CODE(0 == result,
++ "Failed to initialize ACPI Level!", return result;);
++
++ result = tonga_populate_smc_vce_level(hwmgr, table);
++ PP_ASSERT_WITH_CODE(0 == result,
++ "Failed to initialize VCE Level!", return result;);
++
++ result = tonga_populate_smc_acp_level(hwmgr, table);
++ PP_ASSERT_WITH_CODE(0 == result,
++ "Failed to initialize ACP Level!", return result;);
++
++ result = tonga_populate_smc_samu_level(hwmgr, table);
++ PP_ASSERT_WITH_CODE(0 == result,
++ "Failed to initialize SAMU Level!", return result;);
++
++ /* Since only the initial state is completely set up at this point (the other states are just copies of the boot state) we only */
++ /* need to populate the ARB settings for the initial state. */
++ result = tonga_program_memory_timing_parameters(hwmgr);
++ PP_ASSERT_WITH_CODE(0 == result,
++ "Failed to Write ARB settings for the initial state.", return result;);
++
++ result = tonga_populate_smc_boot_level(hwmgr, table);
++ PP_ASSERT_WITH_CODE(0 == result,
++ "Failed to initialize Boot Level!", return result;);
++
++ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_ClockStretcher)) {
++ result = tonga_populate_clock_stretcher_data_table(hwmgr);
++ PP_ASSERT_WITH_CODE(0 == result,
++ "Failed to populate Clock Stretcher Data Table!", return result;);
++ }
++ table->GraphicsVoltageChangeEnable = 1;
++ table->GraphicsThermThrottleEnable = 1;
++ table->GraphicsInterval = 1;
++ table->VoltageInterval = 1;
++ table->ThermalInterval = 1;
++ table->TemperatureLimitHigh =
++ pptable_info->cac_dtp_table->usTargetOperatingTemp *
++ TONGA_Q88_FORMAT_CONVERSION_UNIT;
++ table->TemperatureLimitLow =
++ (pptable_info->cac_dtp_table->usTargetOperatingTemp - 1) *
++ TONGA_Q88_FORMAT_CONVERSION_UNIT;
++ table->MemoryVoltageChangeEnable = 1;
++ table->MemoryInterval = 1;
++ table->VoltageResponseTime = 0;
++ table->PhaseResponseTime = 0;
++ table->MemoryThermThrottleEnable = 1;
++
++ /*
++ * Cail reads current link status and reports it as cap (we cannot change this due to some previous issues we had)
++ * SMC drops the link status to lowest level after enabling DPM by PowerPlay. After pnp or toggling CF, driver gets reloaded again
++ * but this time Cail reads current link status which was set to low by SMC and reports it as cap to powerplay
++ * To avoid it, we set PCIeBootLinkLevel to highest dpm level
++ */
++ PP_ASSERT_WITH_CODE((1 <= data->dpm_table.pcie_speed_table.count),
++ "There must be 1 or more PCIE levels defined in PPTable.",
++ return -1);
++
++ table->PCIeBootLinkLevel = (uint8_t) (data->dpm_table.pcie_speed_table.count);
++
++ table->PCIeGenInterval = 1;
++
++ result = tonga_populate_vr_config(hwmgr, table);
++ PP_ASSERT_WITH_CODE(0 == result,
++ "Failed to populate VRConfig setting!", return result);
++
++ table->ThermGpio = 17;
++ table->SclkStepSize = 0x4000;
++
++ reg_value = 0;
++ if ((0 == reg_value) &&
++ (0 == atomctrl_get_pp_assign_pin(hwmgr,
++ VDDC_VRHOT_GPIO_PINID, &gpio_pin_assignment))) {
++ table->VRHotGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift;
++ phm_cap_set(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_RegulatorHot);
++ } else {
++ table->VRHotGpio = TONGA_UNUSED_GPIO_PIN;
++ phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_RegulatorHot);
++ }
++
++ /* ACDC Switch GPIO */
++ reg_value = 0;
++ if ((0 == reg_value) &&
++ (0 == atomctrl_get_pp_assign_pin(hwmgr,
++ PP_AC_DC_SWITCH_GPIO_PINID, &gpio_pin_assignment))) {
++ table->AcDcGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift;
++ phm_cap_set(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_AutomaticDCTransition);
++ } else {
++ table->AcDcGpio = TONGA_UNUSED_GPIO_PIN;
++ phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_AutomaticDCTransition);
++ }
++
++ phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_Falcon_QuickTransition);
++
++ reg_value = 0;
++ if (1 == reg_value) {
++ phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_AutomaticDCTransition);
++ phm_cap_set(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_Falcon_QuickTransition);
++ }
++
++ reg_value = 0;
++ if ((0 == reg_value) &&
++ (0 == atomctrl_get_pp_assign_pin(hwmgr,
++ THERMAL_INT_OUTPUT_GPIO_PINID, &gpio_pin_assignment))) {
++ phm_cap_set(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_ThermalOutGPIO);
++
++ table->ThermOutGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift;
++
++ table->ThermOutPolarity =
++ (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) &
++ (1 << gpio_pin_assignment.uc_gpio_pin_bit_shift))) ? 1:0;
++
++ table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY;
++
++ /* if required, combine VRHot/PCC with thermal out GPIO*/
++ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_RegulatorHot) &&
++ phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_CombinePCCWithThermalSignal)){
++ table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT;
++ }
++ } else {
++ phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_ThermalOutGPIO);
++
++ table->ThermOutGpio = 17;
++ table->ThermOutPolarity = 1;
++ table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE;
++ }
++
++ for (i = 0; i < SMU72_MAX_ENTRIES_SMIO; i++) {
++ table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]);
++ }
++ CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
++ CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
++ CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1);
++ CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2);
++ CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
++ CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
++ CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
++ CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
++ CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
++
++ /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
++ result = tonga_copy_bytes_to_smc(hwmgr->smumgr, data->dpm_table_start +
++ offsetof(SMU72_Discrete_DpmTable, SystemFlags),
++ (uint8_t *)&(table->SystemFlags),
++ sizeof(SMU72_Discrete_DpmTable)-3 * sizeof(SMU72_PIDController),
++ data->sram_end);
++
++ PP_ASSERT_WITH_CODE(0 == result,
++ "Failed to upload dpm data to SMC memory!", return result;);
++
++ return result;
++}
++
++/* Look up the voltaged based on DAL's requested level. and then send the requested VDDC voltage to SMC*/
++static void tonga_apply_dal_minimum_voltage_request(struct pp_hwmgr *hwmgr)
++{
++ return;
++}
++
++int tonga_upload_dpm_level_enable_mask(struct pp_hwmgr *hwmgr)
++{
++ PPSMC_Result result;
++ tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
++
++ /* Apply minimum voltage based on DAL's request level */
++ tonga_apply_dal_minimum_voltage_request(hwmgr);
++
++ if (0 == data->sclk_dpm_key_disabled) {
++ /* Checking if DPM is running. If we discover hang because of this, we should skip this message.*/
++ if (0 != tonga_is_dpm_running(hwmgr))
++ printk(KERN_ERR "[ powerplay ] Trying to set Enable Mask when DPM is disabled \n");
++
++ if (0 != data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
++ result = smum_send_msg_to_smc_with_parameter(
++ hwmgr->smumgr,
++ (PPSMC_Msg)PPSMC_MSG_SCLKDPM_SetEnabledMask,
++ data->dpm_level_enable_mask.sclk_dpm_enable_mask);
++ PP_ASSERT_WITH_CODE((0 == result),
++ "Set Sclk Dpm enable Mask failed", return -1);
++ }
++ }
++
++ if (0 == data->mclk_dpm_key_disabled) {
++ /* Checking if DPM is running. If we discover hang because of this, we should skip this message.*/
++ if (0 != tonga_is_dpm_running(hwmgr))
++ printk(KERN_ERR "[ powerplay ] Trying to set Enable Mask when DPM is disabled \n");
++
++ if (0 != data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
++ result = smum_send_msg_to_smc_with_parameter(
++ hwmgr->smumgr,
++ (PPSMC_Msg)PPSMC_MSG_MCLKDPM_SetEnabledMask,
++ data->dpm_level_enable_mask.mclk_dpm_enable_mask);
++ PP_ASSERT_WITH_CODE((0 == result),
++ "Set Mclk Dpm enable Mask failed", return -1);
++ }
++ }
++
++ return 0;
++}
++
++
++int tonga_force_dpm_highest(struct pp_hwmgr *hwmgr)
++{
++ uint32_t level, tmp;
++ tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
++
++ if (0 == data->pcie_dpm_key_disabled) {
++ /* PCIE */
++ if (data->dpm_level_enable_mask.pcie_dpm_enable_mask != 0) {
++ level = 0;
++ tmp = data->dpm_level_enable_mask.pcie_dpm_enable_mask;
++ while (tmp >>= 1)
++ level++ ;
++
++ if (0 != level) {
++ PP_ASSERT_WITH_CODE((0 == tonga_dpm_force_state_pcie(hwmgr, level)),
++ "force highest pcie dpm state failed!", return -1);
++ }
++ }
++ }
++
++ if (0 == data->sclk_dpm_key_disabled) {
++ /* SCLK */
++ if (data->dpm_level_enable_mask.sclk_dpm_enable_mask != 0) {
++ level = 0;
++ tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask;
++ while (tmp >>= 1)
++ level++ ;
++
++ if (0 != level) {
++ PP_ASSERT_WITH_CODE((0 == tonga_dpm_force_state(hwmgr, level)),
++ "force highest sclk dpm state failed!", return -1);
++ if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
++ CGS_IND_REG__SMC, TARGET_AND_CURRENT_PROFILE_INDEX, CURR_SCLK_INDEX) != level)
++ printk(KERN_ERR "[ powerplay ] Target_and_current_Profile_Index. \
++ Curr_Sclk_Index does not match the level \n");
++
++ }
++ }
++ }
++
++ if (0 == data->mclk_dpm_key_disabled) {
++ /* MCLK */
++ if (data->dpm_level_enable_mask.mclk_dpm_enable_mask != 0) {
++ level = 0;
++ tmp = data->dpm_level_enable_mask.mclk_dpm_enable_mask;
++ while (tmp >>= 1)
++ level++ ;
++
++ if (0 != level) {
++ PP_ASSERT_WITH_CODE((0 == tonga_dpm_force_state_mclk(hwmgr, level)),
++ "force highest mclk dpm state failed!", return -1);
++ if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
++ TARGET_AND_CURRENT_PROFILE_INDEX, CURR_MCLK_INDEX) != level)
++ printk(KERN_ERR "[ powerplay ] Target_and_current_Profile_Index. \
++ Curr_Sclk_Index does not match the level \n");
++ }
++ }
++ }
++
++ return 0;
++}
++
++/**
++ * Find the MC microcode version and store it in the HwMgr struct
++ *
++ * @param hwmgr the address of the powerplay hardware manager.
++ * @return always 0
++ */
++int tonga_get_mc_microcode_version (struct pp_hwmgr *hwmgr)
++{
++ cgs_write_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_INDEX, 0x9F);
++
++ hwmgr->microcode_version_info.MC = cgs_read_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_DATA);
++
++ return 0;
++}
++
++/**
++ * Initialize Dynamic State Adjustment Rule Settings
++ *
++ * @param hwmgr the address of the powerplay hardware manager.
++ */
++int tonga_initializa_dynamic_state_adjustment_rule_settings(struct pp_hwmgr *hwmgr)
++{
++ uint32_t table_size;
++ struct phm_clock_voltage_dependency_table *table_clk_vlt;
++ struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
++
++ hwmgr->dyn_state.mclk_sclk_ratio = 4;
++ hwmgr->dyn_state.sclk_mclk_delta = 15000; /* 150 MHz */
++ hwmgr->dyn_state.vddc_vddci_delta = 200; /* 200mV */
++
++ /* initialize vddc_dep_on_dal_pwrl table */
++ table_size = sizeof(uint32_t) + 4 * sizeof(struct phm_clock_voltage_dependency_record);
++ table_clk_vlt = (struct phm_clock_voltage_dependency_table *)kzalloc(table_size, GFP_KERNEL);
++
++ if (NULL == table_clk_vlt) {
++ printk(KERN_ERR "[ powerplay ] Can not allocate space for vddc_dep_on_dal_pwrl! \n");
++ return -ENOMEM;
++ } else {
++ table_clk_vlt->count = 4;
++ table_clk_vlt->entries[0].clk = PP_DAL_POWERLEVEL_ULTRALOW;
++ table_clk_vlt->entries[0].v = 0;
++ table_clk_vlt->entries[1].clk = PP_DAL_POWERLEVEL_LOW;
++ table_clk_vlt->entries[1].v = 720;
++ table_clk_vlt->entries[2].clk = PP_DAL_POWERLEVEL_NOMINAL;
++ table_clk_vlt->entries[2].v = 810;
++ table_clk_vlt->entries[3].clk = PP_DAL_POWERLEVEL_PERFORMANCE;
++ table_clk_vlt->entries[3].v = 900;
++ pptable_info->vddc_dep_on_dal_pwrl = table_clk_vlt;
++ hwmgr->dyn_state.vddc_dep_on_dal_pwrl = table_clk_vlt;
++ }
++
++ return 0;
++}
++
++static int tonga_set_private_var_based_on_pptale(struct pp_hwmgr *hwmgr)
++{
++ tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
++ struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
++
++ phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table =
++ pptable_info->vdd_dep_on_sclk;
++ phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table =
++ pptable_info->vdd_dep_on_mclk;
++
++ PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table != NULL,
++ "VDD dependency on SCLK table is missing. \
++ This table is mandatory", return -1);
++ PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1,
++ "VDD dependency on SCLK table has to have is missing. \
++ This table is mandatory", return -1);
++
++ PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table != NULL,
++ "VDD dependency on MCLK table is missing. \
++ This table is mandatory", return -1);
++ PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1,
++ "VDD dependency on MCLK table has to have is missing. \
++ This table is mandatory", return -1);
++
++ data->min_vddc_in_pp_table = (uint16_t)allowed_sclk_vdd_table->entries[0].vddc;
++ data->max_vddc_in_pp_table = (uint16_t)allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
++
++ pptable_info->max_clock_voltage_on_ac.sclk =
++ allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk;
++ pptable_info->max_clock_voltage_on_ac.mclk =
++ allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk;
++ pptable_info->max_clock_voltage_on_ac.vddc =
++ allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
++ pptable_info->max_clock_voltage_on_ac.vddci =
++ allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci;
++
++ hwmgr->dyn_state.max_clock_voltage_on_ac.sclk =
++ pptable_info->max_clock_voltage_on_ac.sclk;
++ hwmgr->dyn_state.max_clock_voltage_on_ac.mclk =
++ pptable_info->max_clock_voltage_on_ac.mclk;
++ hwmgr->dyn_state.max_clock_voltage_on_ac.vddc =
++ pptable_info->max_clock_voltage_on_ac.vddc;
++ hwmgr->dyn_state.max_clock_voltage_on_ac.vddci =
++ pptable_info->max_clock_voltage_on_ac.vddci;
++
++ return 0;
++}
++
++int tonga_unforce_dpm_levels(struct pp_hwmgr *hwmgr)
++{
++ tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
++ int result = 1;
++
++ PP_ASSERT_WITH_CODE (0 == tonga_is_dpm_running(hwmgr),
++ "Trying to Unforce DPM when DPM is disabled. Returning without sending SMC message.",
++ return result);
++
++ if (0 == data->pcie_dpm_key_disabled) {
++ PP_ASSERT_WITH_CODE((0 == smum_send_msg_to_smc(
++ hwmgr->smumgr,
++ PPSMC_MSG_PCIeDPM_UnForceLevel)),
++ "unforce pcie level failed!",
++ return -1);
++ }
++
++ result = tonga_upload_dpm_level_enable_mask(hwmgr);
++
++ return result;
++}
++
++static uint32_t tonga_get_lowest_enable_level(
++ struct pp_hwmgr *hwmgr, uint32_t level_mask)
++{
++ uint32_t level = 0;
++
++ while (0 == (level_mask & (1 << level)))
++ level++;
++
++ return level;
++}
++
++static int tonga_force_dpm_lowest(struct pp_hwmgr *hwmgr)
++{
++ uint32_t level = 0;
++ tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
++
++ /* for now force only sclk */
++ if (0 != data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
++ level = tonga_get_lowest_enable_level(hwmgr,
++ data->dpm_level_enable_mask.sclk_dpm_enable_mask);
++
++ PP_ASSERT_WITH_CODE((0 == tonga_dpm_force_state(hwmgr, level)),
++ "force sclk dpm state failed!", return -1);
++
++ if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
++ CGS_IND_REG__SMC, TARGET_AND_CURRENT_PROFILE_INDEX, CURR_SCLK_INDEX) != level)
++ printk(KERN_ERR "[ powerplay ] Target_and_current_Profile_Index. \
++ Curr_Sclk_Index does not match the level \n");
++ }
++
++ return 0;
++}
++
++static int tonga_patch_voltage_dependency_tables_with_lookup_table(struct pp_hwmgr *hwmgr)
++{
++ uint8_t entryId;
++ uint8_t voltageId;
++ tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
++ struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
++
++ phm_ppt_v1_clock_voltage_dependency_table *sclk_table = pptable_info->vdd_dep_on_sclk;
++ phm_ppt_v1_clock_voltage_dependency_table *mclk_table = pptable_info->vdd_dep_on_mclk;
++ phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;
++
++ if (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) {
++ for (entryId = 0; entryId < sclk_table->count; ++entryId) {
++ voltageId = sclk_table->entries[entryId].vddInd;
++ sclk_table->entries[entryId].vddgfx =
++ pptable_info->vddgfx_lookup_table->entries[voltageId].us_vdd;
++ }
++ } else {
++ for (entryId = 0; entryId < sclk_table->count; ++entryId) {
++ voltageId = sclk_table->entries[entryId].vddInd;
++ sclk_table->entries[entryId].vddc =
++ pptable_info->vddc_lookup_table->entries[voltageId].us_vdd;
++ }
++ }
++
++ for (entryId = 0; entryId < mclk_table->count; ++entryId) {
++ voltageId = mclk_table->entries[entryId].vddInd;
++ mclk_table->entries[entryId].vddc =
++ pptable_info->vddc_lookup_table->entries[voltageId].us_vdd;
++ }
++
++ for (entryId = 0; entryId < mm_table->count; ++entryId) {
++ voltageId = mm_table->entries[entryId].vddcInd;
++ mm_table->entries[entryId].vddc =
++ pptable_info->vddc_lookup_table->entries[voltageId].us_vdd;
++ }
++
++ return 0;
++
++}
++
++static int tonga_calc_voltage_dependency_tables(struct pp_hwmgr *hwmgr)
++{
++ uint8_t entryId;
++ phm_ppt_v1_voltage_lookup_record v_record;
++ tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
++ struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
++
++ phm_ppt_v1_clock_voltage_dependency_table *sclk_table = pptable_info->vdd_dep_on_sclk;
++ phm_ppt_v1_clock_voltage_dependency_table *mclk_table = pptable_info->vdd_dep_on_mclk;
++
++ if (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) {
++ for (entryId = 0; entryId < sclk_table->count; ++entryId) {
++ if (sclk_table->entries[entryId].vdd_offset & (1 << 15))
++ v_record.us_vdd = sclk_table->entries[entryId].vddgfx +
++ sclk_table->entries[entryId].vdd_offset - 0xFFFF;
++ else
++ v_record.us_vdd = sclk_table->entries[entryId].vddgfx +
++ sclk_table->entries[entryId].vdd_offset;
++
++ sclk_table->entries[entryId].vddc =
++ v_record.us_cac_low = v_record.us_cac_mid =
++ v_record.us_cac_high = v_record.us_vdd;
++
++ tonga_add_voltage(hwmgr, pptable_info->vddc_lookup_table, &v_record);
++ }
++
++ for (entryId = 0; entryId < mclk_table->count; ++entryId) {
++ if (mclk_table->entries[entryId].vdd_offset & (1 << 15))
++ v_record.us_vdd = mclk_table->entries[entryId].vddc +
++ mclk_table->entries[entryId].vdd_offset - 0xFFFF;
++ else
++ v_record.us_vdd = mclk_table->entries[entryId].vddc +
++ mclk_table->entries[entryId].vdd_offset;
++
++ mclk_table->entries[entryId].vddgfx = v_record.us_cac_low =
++ v_record.us_cac_mid = v_record.us_cac_high = v_record.us_vdd;
++ tonga_add_voltage(hwmgr, pptable_info->vddgfx_lookup_table, &v_record);
++ }
++ }
++
++ return 0;
++
++}
++
++static int tonga_calc_mm_voltage_dependency_table(struct pp_hwmgr *hwmgr)
++{
++ uint32_t entryId;
++ phm_ppt_v1_voltage_lookup_record v_record;
++ tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
++ struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
++ phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;
++
++ if (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) {
++ for (entryId = 0; entryId < mm_table->count; entryId++) {
++ if (mm_table->entries[entryId].vddgfx_offset & (1 << 15))
++ v_record.us_vdd = mm_table->entries[entryId].vddc +
++ mm_table->entries[entryId].vddgfx_offset - 0xFFFF;
++ else
++ v_record.us_vdd = mm_table->entries[entryId].vddc +
++ mm_table->entries[entryId].vddgfx_offset;
++
++ /* Add the calculated VDDGFX to the VDDGFX lookup table */
++ mm_table->entries[entryId].vddgfx = v_record.us_cac_low =
++ v_record.us_cac_mid = v_record.us_cac_high = v_record.us_vdd;
++ tonga_add_voltage(hwmgr, pptable_info->vddgfx_lookup_table, &v_record);
++ }
++ }
++ return 0;
++}
++
++
++/**
++ * Change virtual leakage voltage to actual value.
++ *
++ * @param hwmgr the address of the powerplay hardware manager.
++ * @param pointer to changing voltage
++ * @param pointer to leakage table
++ */
++static void tonga_patch_with_vdd_leakage(struct pp_hwmgr *hwmgr,
++ uint16_t *voltage, phw_tonga_leakage_voltage *pLeakageTable)
++{
++ uint32_t leakage_index;
++
++ /* search for leakage voltage ID 0xff01 ~ 0xff08 */
++ for (leakage_index = 0; leakage_index < pLeakageTable->count; leakage_index++) {
++ /* if this voltage matches a leakage voltage ID */
++ /* patch with actual leakage voltage */
++ if (pLeakageTable->leakage_id[leakage_index] == *voltage) {
++ *voltage = pLeakageTable->actual_voltage[leakage_index];
++ break;
++ }
++ }
++
++ if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
++ printk(KERN_ERR "[ powerplay ] Voltage value looks like a Leakage ID but it's not patched \n");
++}
++
++/**
++ * Patch voltage lookup table by EVV leakages.
++ *
++ * @param hwmgr the address of the powerplay hardware manager.
++ * @param pointer to voltage lookup table
++ * @param pointer to leakage table
++ * @return always 0
++ */
++static int tonga_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr,
++ phm_ppt_v1_voltage_lookup_table *lookup_table,
++ phw_tonga_leakage_voltage *pLeakageTable)
++{
++ uint32_t i;
++
++ for (i = 0; i < lookup_table->count; i++) {
++ tonga_patch_with_vdd_leakage(hwmgr,
++ &lookup_table->entries[i].us_vdd, pLeakageTable);
++ }
++
++ return 0;
++}
++
++static int tonga_patch_clock_voltage_lomits_with_vddc_leakage(struct pp_hwmgr *hwmgr,
++ phw_tonga_leakage_voltage *pLeakageTable, uint16_t *Vddc)
++{
++ struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
++
++ tonga_patch_with_vdd_leakage(hwmgr, (uint16_t *)Vddc, pLeakageTable);
++ hwmgr->dyn_state.max_clock_voltage_on_dc.vddc =
++ pptable_info->max_clock_voltage_on_dc.vddc;
++
++ return 0;
++}
++
++static int tonga_patch_clock_voltage_limits_with_vddgfx_leakage(
++ struct pp_hwmgr *hwmgr, phw_tonga_leakage_voltage *pLeakageTable,
++ uint16_t *Vddgfx)
++{
++ tonga_patch_with_vdd_leakage(hwmgr, (uint16_t *)Vddgfx, pLeakageTable);
++ return 0;
++}
++
++int tonga_sort_lookup_table(struct pp_hwmgr *hwmgr,
++ phm_ppt_v1_voltage_lookup_table *lookup_table)
++{
++ uint32_t table_size, i, j;
++ phm_ppt_v1_voltage_lookup_record tmp_voltage_lookup_record;
++ table_size = lookup_table->count;
++
++ PP_ASSERT_WITH_CODE(0 != lookup_table->count,
++ "Lookup table is empty", return -1);
++
++ /* Sorting voltages */
++ for (i = 0; i < table_size - 1; i++) {
++ for (j = i + 1; j > 0; j--) {
++ if (lookup_table->entries[j].us_vdd < lookup_table->entries[j-1].us_vdd) {
++ tmp_voltage_lookup_record = lookup_table->entries[j-1];
++ lookup_table->entries[j-1] = lookup_table->entries[j];
++ lookup_table->entries[j] = tmp_voltage_lookup_record;
++ }
++ }
++ }
++
++ return 0;
++}
++
++static int tonga_complete_dependency_tables(struct pp_hwmgr *hwmgr)
++{
++ int result = 0;
++ int tmp_result;
++ tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
++ struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
++
++ if (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) {
++ tmp_result = tonga_patch_lookup_table_with_leakage(hwmgr,
++ pptable_info->vddgfx_lookup_table, &(data->vddcgfx_leakage));
++ if (tmp_result != 0)
++ result = tmp_result;
++
++ tmp_result = tonga_patch_clock_voltage_limits_with_vddgfx_leakage(hwmgr,
++ &(data->vddcgfx_leakage), &pptable_info->max_clock_voltage_on_dc.vddgfx);
++ if (tmp_result != 0)
++ result = tmp_result;
++ } else {
++ tmp_result = tonga_patch_lookup_table_with_leakage(hwmgr,
++ pptable_info->vddc_lookup_table, &(data->vddc_leakage));
++ if (tmp_result != 0)
++ result = tmp_result;
++
++ tmp_result = tonga_patch_clock_voltage_lomits_with_vddc_leakage(hwmgr,
++ &(data->vddc_leakage), &pptable_info->max_clock_voltage_on_dc.vddc);
++ if (tmp_result != 0)
++ result = tmp_result;
++ }
++
++ tmp_result = tonga_patch_voltage_dependency_tables_with_lookup_table(hwmgr);
++ if (tmp_result != 0)
++ result = tmp_result;
++
++ tmp_result = tonga_calc_voltage_dependency_tables(hwmgr);
++ if (tmp_result != 0)
++ result = tmp_result;
++
++ tmp_result = tonga_calc_mm_voltage_dependency_table(hwmgr);
++ if (tmp_result != 0)
++ result = tmp_result;
++
++ tmp_result = tonga_sort_lookup_table(hwmgr, pptable_info->vddgfx_lookup_table);
++ if (tmp_result != 0)
++ result = tmp_result;
++
++ tmp_result = tonga_sort_lookup_table(hwmgr, pptable_info->vddc_lookup_table);
++ if (tmp_result != 0)
++ result = tmp_result;
++
++ return result;
++}
++
++int tonga_init_sclk_threshold(struct pp_hwmgr *hwmgr)
++{
++ tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
++ data->low_sclk_interrupt_threshold = 0;
++
++ return 0;
++}
++
++int tonga_setup_asic_task(struct pp_hwmgr *hwmgr)
++{
++ int tmp_result, result = 0;
++
++ tmp_result = tonga_read_clock_registers(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == tmp_result),
++ "Failed to read clock registers!", result = tmp_result);
++
++ tmp_result = tonga_get_memory_type(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == tmp_result),
++ "Failed to get memory type!", result = tmp_result);
++
++ tmp_result = tonga_enable_acpi_power_management(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == tmp_result),
++ "Failed to enable ACPI power management!", result = tmp_result);
++
++ tmp_result = tonga_init_power_gate_state(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == tmp_result),
++ "Failed to init power gate state!", result = tmp_result);
++
++ tmp_result = tonga_get_mc_microcode_version(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == tmp_result),
++ "Failed to get MC microcode version!", result = tmp_result);
++
++ tmp_result = tonga_init_sclk_threshold(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == tmp_result),
++ "Failed to init sclk threshold!", result = tmp_result);
++
++ return result;
++}
++
++/**
++ * Enable voltage control
++ *
++ * @param hwmgr the address of the powerplay hardware manager.
++ * @return always 0
++ */
++int tonga_enable_voltage_control(struct pp_hwmgr *hwmgr)
++{
++ /* enable voltage control */
++ PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, VOLT_PWRMGT_EN, 1);
++
++ return 0;
++}
++
++/**
++ * Checks if we want to support voltage control
++ *
++ * @param hwmgr the address of the powerplay hardware manager.
++ */
++bool cf_tonga_voltage_control(const struct pp_hwmgr *hwmgr)
++{
++ const struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
++
++ return(TONGA_VOLTAGE_CONTROL_NONE != data->voltage_control);
++}
++
++/*---------------------------MC----------------------------*/
++
++uint8_t tonga_get_memory_modile_index(struct pp_hwmgr *hwmgr)
++{
++ return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4) >> 16));
++}
++
++bool tonga_check_s0_mc_reg_index(uint16_t inReg, uint16_t *outReg)
++{
++ bool result = 1;
++
++ switch (inReg) {
++ case mmMC_SEQ_RAS_TIMING:
++ *outReg = mmMC_SEQ_RAS_TIMING_LP;
++ break;
++
++ case mmMC_SEQ_DLL_STBY:
++ *outReg = mmMC_SEQ_DLL_STBY_LP;
++ break;
++
++ case mmMC_SEQ_G5PDX_CMD0:
++ *outReg = mmMC_SEQ_G5PDX_CMD0_LP;
++ break;
++
++ case mmMC_SEQ_G5PDX_CMD1:
++ *outReg = mmMC_SEQ_G5PDX_CMD1_LP;
++ break;
++
++ case mmMC_SEQ_G5PDX_CTRL:
++ *outReg = mmMC_SEQ_G5PDX_CTRL_LP;
++ break;
++
++ case mmMC_SEQ_CAS_TIMING:
++ *outReg = mmMC_SEQ_CAS_TIMING_LP;
++ break;
++
++ case mmMC_SEQ_MISC_TIMING:
++ *outReg = mmMC_SEQ_MISC_TIMING_LP;
++ break;
++
++ case mmMC_SEQ_MISC_TIMING2:
++ *outReg = mmMC_SEQ_MISC_TIMING2_LP;
++ break;
++
++ case mmMC_SEQ_PMG_DVS_CMD:
++ *outReg = mmMC_SEQ_PMG_DVS_CMD_LP;
++ break;
++
++ case mmMC_SEQ_PMG_DVS_CTL:
++ *outReg = mmMC_SEQ_PMG_DVS_CTL_LP;
++ break;
++
++ case mmMC_SEQ_RD_CTL_D0:
++ *outReg = mmMC_SEQ_RD_CTL_D0_LP;
++ break;
++
++ case mmMC_SEQ_RD_CTL_D1:
++ *outReg = mmMC_SEQ_RD_CTL_D1_LP;
++ break;
++
++ case mmMC_SEQ_WR_CTL_D0:
++ *outReg = mmMC_SEQ_WR_CTL_D0_LP;
++ break;
++
++ case mmMC_SEQ_WR_CTL_D1:
++ *outReg = mmMC_SEQ_WR_CTL_D1_LP;
++ break;
++
++ case mmMC_PMG_CMD_EMRS:
++ *outReg = mmMC_SEQ_PMG_CMD_EMRS_LP;
++ break;
++
++ case mmMC_PMG_CMD_MRS:
++ *outReg = mmMC_SEQ_PMG_CMD_MRS_LP;
++ break;
++
++ case mmMC_PMG_CMD_MRS1:
++ *outReg = mmMC_SEQ_PMG_CMD_MRS1_LP;
++ break;
++
++ case mmMC_SEQ_PMG_TIMING:
++ *outReg = mmMC_SEQ_PMG_TIMING_LP;
++ break;
++
++ case mmMC_PMG_CMD_MRS2:
++ *outReg = mmMC_SEQ_PMG_CMD_MRS2_LP;
++ break;
++
++ case mmMC_SEQ_WR_CTL_2:
++ *outReg = mmMC_SEQ_WR_CTL_2_LP;
++ break;
++
++ default:
++ result = 0;
++ break;
++ }
++
++ return result;
++}
++
++int tonga_set_s0_mc_reg_index(phw_tonga_mc_reg_table *table)
++{
++ uint32_t i;
++ uint16_t address;
++
++ for (i = 0; i < table->last; i++) {
++ table->mc_reg_address[i].s0 =
++ tonga_check_s0_mc_reg_index(table->mc_reg_address[i].s1, &address)
++ ? address : table->mc_reg_address[i].s1;
++ }
++ return 0;
++}
++
++int tonga_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table, phw_tonga_mc_reg_table *ni_table)
++{
++ uint8_t i, j;
++
++ PP_ASSERT_WITH_CODE((table->last <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
++ "Invalid VramInfo table.", return -1);
++ PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES),
++ "Invalid VramInfo table.", return -1);
++
++ for (i = 0; i < table->last; i++) {
++ ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1;
++ }
++ ni_table->last = table->last;
++
++ for (i = 0; i < table->num_entries; i++) {
++ ni_table->mc_reg_table_entry[i].mclk_max =
++ table->mc_reg_table_entry[i].mclk_max;
++ for (j = 0; j < table->last; j++) {
++ ni_table->mc_reg_table_entry[i].mc_data[j] =
++ table->mc_reg_table_entry[i].mc_data[j];
++ }
++ }
++ ni_table->num_entries = table->num_entries;
++
++ return 0;
++}
++
++/**
++ * VBIOS omits some information to reduce size, we need to recover them here.
++ * 1. when we see mmMC_SEQ_MISC1, bit[31:16] EMRS1, need to be write to mmMC_PMG_CMD_EMRS /_LP[15:0].
++ * Bit[15:0] MRS, need to be update mmMC_PMG_CMD_MRS/_LP[15:0]
++ * 2. when we see mmMC_SEQ_RESERVE_M, bit[15:0] EMRS2, need to be write to mmMC_PMG_CMD_MRS1/_LP[15:0].
++ * 3. need to set these data for each clock range
++ *
++ * @param hwmgr the address of the powerplay hardware manager.
++ * @param table the address of MCRegTable
++ * @return always 0
++ */
++int tonga_set_mc_special_registers(struct pp_hwmgr *hwmgr, phw_tonga_mc_reg_table *table)
++{
++ uint8_t i, j, k;
++ uint32_t temp_reg;
++ const tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
++
++ for (i = 0, j = table->last; i < table->last; i++) {
++ PP_ASSERT_WITH_CODE((j < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
++ "Invalid VramInfo table.", return -1);
++ switch (table->mc_reg_address[i].s1) {
++ /*
++ * mmMC_SEQ_MISC1, bit[31:16] EMRS1, need to be write to mmMC_PMG_CMD_EMRS /_LP[15:0].
++ * Bit[15:0] MRS, need to be update mmMC_PMG_CMD_MRS/_LP[15:0]
++ */
++ case mmMC_SEQ_MISC1:
++ temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS);
++ table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS;
++ table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP;
++ for (k = 0; k < table->num_entries; k++) {
++ table->mc_reg_table_entry[k].mc_data[j] =
++ ((temp_reg & 0xffff0000)) |
++ ((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16);
++ }
++ j++;
++ PP_ASSERT_WITH_CODE((j < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
++ "Invalid VramInfo table.", return -1);
++
++ temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS);
++ table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS;
++ table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP;
++ for (k = 0; k < table->num_entries; k++) {
++ table->mc_reg_table_entry[k].mc_data[j] =
++ (temp_reg & 0xffff0000) |
++ (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
++
++ if (!data->is_memory_GDDR5) {
++ table->mc_reg_table_entry[k].mc_data[j] |= 0x100;
++ }
++ }
++ j++;
++ PP_ASSERT_WITH_CODE((j <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
++ "Invalid VramInfo table.", return -1);
++
++ if (!data->is_memory_GDDR5) {
++ table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD;
++ table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD;
++ for (k = 0; k < table->num_entries; k++) {
++ table->mc_reg_table_entry[k].mc_data[j] =
++ (table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16;
++ }
++ j++;
++ PP_ASSERT_WITH_CODE((j <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
++ "Invalid VramInfo table.", return -1);
++ }
++
++ break;
++
++ case mmMC_SEQ_RESERVE_M:
++ temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1);
++ table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS1;
++ table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP;
++ for (k = 0; k < table->num_entries; k++) {
++ table->mc_reg_table_entry[k].mc_data[j] =
++ (temp_reg & 0xffff0000) |
++ (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
++ }
++ j++;
++ PP_ASSERT_WITH_CODE((j <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
++ "Invalid VramInfo table.", return -1);
++ break;
++
++ default:
++ break;
++ }
++
++ }
++
++ table->last = j;
++
++ return 0;
++}
++
++int tonga_set_valid_flag(phw_tonga_mc_reg_table *table)
++{
++ uint8_t i, j;
++ for (i = 0; i < table->last; i++) {
++ for (j = 1; j < table->num_entries; j++) {
++ if (table->mc_reg_table_entry[j-1].mc_data[i] !=
++ table->mc_reg_table_entry[j].mc_data[i]) {
++ table->validflag |= (1<<i);
++ break;
++ }
++ }
++ }
++
++ return 0;
++}
++
++int tonga_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
++{
++ int result;
++ tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
++ pp_atomctrl_mc_reg_table *table;
++ phw_tonga_mc_reg_table *ni_table = &data->tonga_mc_reg_table;
++ uint8_t module_index = tonga_get_memory_modile_index(hwmgr);
++
++ table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL);
++
++ if (NULL == table)
++ return -1;
++
++ /* Program additional LP registers that are no longer programmed by VBIOS */
++ cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
++ cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
++ cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY));
++ cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0));
++ cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1));
++ cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL));
++ cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD));
++ cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL));
++ cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING));
++ cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
++ cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS));
++ cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS));
++ cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1));
++ cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0));
++ cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
++ cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
++ cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
++ cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
++ cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2));
++ cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2));
++
++ memset(table, 0x00, sizeof(pp_atomctrl_mc_reg_table));
++
++ result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table);
++
++ if (0 == result)
++ result = tonga_copy_vbios_smc_reg_table(table, ni_table);
++
++ if (0 == result) {
++ tonga_set_s0_mc_reg_index(ni_table);
++ result = tonga_set_mc_special_registers(hwmgr, ni_table);
++ }
++
++ if (0 == result)
++ tonga_set_valid_flag(ni_table);
++
++ kfree(table);
++ return result;
++}
++
++/*
++* Copy one arb setting to another and then switch the active set.
++* arbFreqSrc and arbFreqDest is one of the MC_CG_ARB_FREQ_Fx constants.
++*/
++int tonga_copy_and_switch_arb_sets(struct pp_hwmgr *hwmgr,
++ uint32_t arbFreqSrc, uint32_t arbFreqDest)
++{
++ uint32_t mc_arb_dram_timing;
++ uint32_t mc_arb_dram_timing2;
++ uint32_t burst_time;
++ uint32_t mc_cg_config;
++
++ switch (arbFreqSrc) {
++ case MC_CG_ARB_FREQ_F0:
++ mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
++ mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
++ burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
++ break;
++
++ case MC_CG_ARB_FREQ_F1:
++ mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1);
++ mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1);
++ burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1);
++ break;
++
++ default:
++ return -1;
++ }
++
++ switch (arbFreqDest) {
++ case MC_CG_ARB_FREQ_F0:
++ cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING, mc_arb_dram_timing);
++ cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2, mc_arb_dram_timing2);
++ PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0, burst_time);
++ break;
++
++ case MC_CG_ARB_FREQ_F1:
++ cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1, mc_arb_dram_timing);
++ cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1, mc_arb_dram_timing2);
++ PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1, burst_time);
++ break;
++
++ default:
++ return -1;
++ }
++
++ mc_cg_config = cgs_read_register(hwmgr->device, mmMC_CG_CONFIG);
++ mc_cg_config |= 0x0000000F;
++ cgs_write_register(hwmgr->device, mmMC_CG_CONFIG, mc_cg_config);
++ PHM_WRITE_FIELD(hwmgr->device, MC_ARB_CG, CG_ARB_REQ, arbFreqDest);
++
++ return 0;
++}
++
++/**
++ * Initial switch from ARB F0->F1
++ *
++ * @param hwmgr the address of the powerplay hardware manager.
++ * @return always 0
++ * This function is to be called from the SetPowerState table.
++ */
++int tonga_initial_switch_from_arb_f0_to_f1(struct pp_hwmgr *hwmgr)
++{
++ return tonga_copy_and_switch_arb_sets(hwmgr, MC_CG_ARB_FREQ_F0, MC_CG_ARB_FREQ_F1);
++}
++
++/**
++ * Initialize the ARB DRAM timing table's index field.
++ *
++ * @param hwmgr the address of the powerplay hardware manager.
++ * @return always 0
++ */
++int tonga_init_arb_table_index(struct pp_hwmgr *hwmgr)
++{
++ const tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
++ uint32_t tmp;
++ int result;
++
++ /*
++ * This is a read-modify-write on the first byte of the ARB table.
++ * The first byte in the SMU72_Discrete_MCArbDramTimingTable structure is the field 'current'.
++ * This solution is ugly, but we never write the whole table only individual fields in it.
++ * In reality this field should not be in that structure but in a soft register.
++ */
++ result = tonga_read_smc_sram_dword(hwmgr->smumgr,
++ data->arb_table_start, &tmp, data->sram_end);
++
++ if (0 != result)
++ return result;
++
++ tmp &= 0x00FFFFFF;
++ tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24;
++
++ return tonga_write_smc_sram_dword(hwmgr->smumgr,
++ data->arb_table_start, tmp, data->sram_end);
++}
++
++int tonga_populate_mc_reg_address(struct pp_hwmgr *hwmgr, SMU72_Discrete_MCRegisters *mc_reg_table)
++{
++ const struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
++
++ uint32_t i, j;
++
++ for (i = 0, j = 0; j < data->tonga_mc_reg_table.last; j++) {
++ if (data->tonga_mc_reg_table.validflag & 1<<j) {
++ PP_ASSERT_WITH_CODE(i < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE,
++ "Index of mc_reg_table->address[] array out of boundary", return -1);
++ mc_reg_table->address[i].s0 =
++ PP_HOST_TO_SMC_US(data->tonga_mc_reg_table.mc_reg_address[j].s0);
++ mc_reg_table->address[i].s1 =
++ PP_HOST_TO_SMC_US(data->tonga_mc_reg_table.mc_reg_address[j].s1);
++ i++;
++ }
++ }
++
++ mc_reg_table->last = (uint8_t)i;
++
++ return 0;
++}
++
++/*convert register values from driver to SMC format */
++void tonga_convert_mc_registers(
++ const phw_tonga_mc_reg_entry * pEntry,
++ SMU72_Discrete_MCRegisterSet *pData,
++ uint32_t numEntries, uint32_t validflag)
++{
++ uint32_t i, j;
++
++ for (i = 0, j = 0; j < numEntries; j++) {
++ if (validflag & 1<<j) {
++ pData->value[i] = PP_HOST_TO_SMC_UL(pEntry->mc_data[j]);
++ i++;
++ }
++ }
++}
++
++/* find the entry in the memory range table, then populate the value to SMC's tonga_mc_reg_table */
++int tonga_convert_mc_reg_table_entry_to_smc(
++ struct pp_hwmgr *hwmgr,
++ const uint32_t memory_clock,
++ SMU72_Discrete_MCRegisterSet *mc_reg_table_data
++ )
++{
++ const tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
++ uint32_t i = 0;
++
++ for (i = 0; i < data->tonga_mc_reg_table.num_entries; i++) {
++ if (memory_clock <=
++ data->tonga_mc_reg_table.mc_reg_table_entry[i].mclk_max) {
++ break;
++ }
++ }
++
++ if ((i == data->tonga_mc_reg_table.num_entries) && (i > 0))
++ --i;
++
++ tonga_convert_mc_registers(&data->tonga_mc_reg_table.mc_reg_table_entry[i],
++ mc_reg_table_data, data->tonga_mc_reg_table.last, data->tonga_mc_reg_table.validflag);
++
++ return 0;
++}
++
++int tonga_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr,
++ SMU72_Discrete_MCRegisters *mc_reg_table)
++{
++ int result = 0;
++ tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
++ int res;
++ uint32_t i;
++
++ for (i = 0; i < data->dpm_table.mclk_table.count; i++) {
++ res = tonga_convert_mc_reg_table_entry_to_smc(
++ hwmgr,
++ data->dpm_table.mclk_table.dpm_levels[i].value,
++ &mc_reg_table->data[i]
++ );
++
++ if (0 != res)
++ result = res;
++ }
++
++ return result;
++}
++
++int tonga_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr)
++{
++ int result;
++ struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
++
++ memset(&data->mc_reg_table, 0x00, sizeof(SMU72_Discrete_MCRegisters));
++ result = tonga_populate_mc_reg_address(hwmgr, &(data->mc_reg_table));
++ PP_ASSERT_WITH_CODE(0 == result,
++ "Failed to initialize MCRegTable for the MC register addresses!", return result;);
++
++ result = tonga_convert_mc_reg_table_to_smc(hwmgr, &data->mc_reg_table);
++ PP_ASSERT_WITH_CODE(0 == result,
++ "Failed to initialize MCRegTable for driver state!", return result;);
++
++ return tonga_copy_bytes_to_smc(hwmgr->smumgr, data->mc_reg_table_start,
++ (uint8_t *)&data->mc_reg_table, sizeof(SMU72_Discrete_MCRegisters), data->sram_end);
++}
++
++/**
++ * Programs static screed detection parameters
++ *
++ * @param hwmgr the address of the powerplay hardware manager.
++ * @return always 0
++ */
++int tonga_program_static_screen_threshold_parameters(struct pp_hwmgr *hwmgr)
++{
++ tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
++
++ /* Set static screen threshold unit*/
++ PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device,
++ CGS_IND_REG__SMC, CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD_UNIT,
++ data->static_screen_threshold_unit);
++ /* Set static screen threshold*/
++ PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device,
++ CGS_IND_REG__SMC, CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD,
++ data->static_screen_threshold);
++
++ return 0;
++}
++
++/**
++ * Setup display gap for glitch free memory clock switching.
++ *
++ * @param hwmgr the address of the powerplay hardware manager.
++ * @return always 0
++ */
++int tonga_enable_display_gap(struct pp_hwmgr *hwmgr)
++{
++ uint32_t display_gap = cgs_read_ind_register(hwmgr->device,
++ CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL);
++
++ display_gap = PHM_SET_FIELD(display_gap,
++ CG_DISPLAY_GAP_CNTL, DISP_GAP, DISPLAY_GAP_IGNORE);
++
++ display_gap = PHM_SET_FIELD(display_gap,
++ CG_DISPLAY_GAP_CNTL, DISP_GAP_MCHG, DISPLAY_GAP_VBLANK);
++
++ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
++ ixCG_DISPLAY_GAP_CNTL, display_gap);
++
++ return 0;
++}
++
++/**
++ * Programs activity state transition voting clients
++ *
++ * @param hwmgr the address of the powerplay hardware manager.
++ * @return always 0
++ */
++int tonga_program_voting_clients(struct pp_hwmgr *hwmgr)
++{
++ tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
++
++ /* Clear reset for voting clients before enabling DPM */
++ PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
++ SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 0);
++ PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
++ SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 0);
++
++ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
++ ixCG_FREQ_TRAN_VOTING_0, data->voting_rights_clients0);
++ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
++ ixCG_FREQ_TRAN_VOTING_1, data->voting_rights_clients1);
++ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
++ ixCG_FREQ_TRAN_VOTING_2, data->voting_rights_clients2);
++ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
++ ixCG_FREQ_TRAN_VOTING_3, data->voting_rights_clients3);
++ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
++ ixCG_FREQ_TRAN_VOTING_4, data->voting_rights_clients4);
++ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
++ ixCG_FREQ_TRAN_VOTING_5, data->voting_rights_clients5);
++ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
++ ixCG_FREQ_TRAN_VOTING_6, data->voting_rights_clients6);
++ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
++ ixCG_FREQ_TRAN_VOTING_7, data->voting_rights_clients7);
++
++ return 0;
++}
++
++
++int tonga_enable_dpm_tasks(struct pp_hwmgr *hwmgr)
++{
++ int tmp_result, result = 0;
++
++ tmp_result = tonga_check_for_dpm_stopped(hwmgr);
++
++ if (cf_tonga_voltage_control(hwmgr)) {
++ tmp_result = tonga_enable_voltage_control(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == tmp_result),
++ "Failed to enable voltage control!", result = tmp_result);
++
++ tmp_result = tonga_construct_voltage_tables(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == tmp_result),
++ "Failed to contruct voltage tables!", result = tmp_result);
++ }
++
++ tmp_result = tonga_initialize_mc_reg_table(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == tmp_result),
++ "Failed to initialize MC reg table!", result = tmp_result);
++
++ tmp_result = tonga_program_static_screen_threshold_parameters(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == tmp_result),
++ "Failed to program static screen threshold parameters!", result = tmp_result);
++
++ tmp_result = tonga_enable_display_gap(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == tmp_result),
++ "Failed to enable display gap!", result = tmp_result);
++
++ tmp_result = tonga_program_voting_clients(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == tmp_result),
++ "Failed to program voting clients!", result = tmp_result);
++
++ tmp_result = tonga_process_firmware_header(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == tmp_result),
++ "Failed to process firmware header!", result = tmp_result);
++
++ tmp_result = tonga_initial_switch_from_arb_f0_to_f1(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == tmp_result),
++ "Failed to initialize switch from ArbF0 to F1!", result = tmp_result);
++
++ tmp_result = tonga_init_smc_table(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == tmp_result),
++ "Failed to initialize SMC table!", result = tmp_result);
++
++ tmp_result = tonga_init_arb_table_index(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == tmp_result),
++ "Failed to initialize ARB table index!", result = tmp_result);
++
++ tmp_result = tonga_populate_initial_mc_reg_table(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == tmp_result),
++ "Failed to populate initialize MC Reg table!", result = tmp_result);
++
++ /* enable SCLK control */
++ tmp_result = tonga_enable_sclk_control(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == tmp_result),
++ "Failed to enable SCLK control!", result = tmp_result);
++
++ /* enable DPM */
++ tmp_result = tonga_start_dpm(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == tmp_result),
++ "Failed to start DPM!", result = tmp_result);
++
++ return result;
++}
++
++int tonga_disable_dpm_tasks(struct pp_hwmgr *hwmgr)
++{
++ int tmp_result, result = 0;
++
++ tmp_result = tonga_check_for_dpm_running(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == tmp_result),
++ "SMC is still running!", return 0);
++
++ tmp_result = tonga_stop_dpm(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == tmp_result),
++ "Failed to stop DPM!", result = tmp_result);
++
++ tmp_result = tonga_reset_to_default(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == tmp_result),
++ "Failed to reset to default!", result = tmp_result);
++
++ return result;
++}
++
++int tonga_reset_asic_tasks(struct pp_hwmgr *hwmgr)
++{
++ int result;
++
++ result = tonga_set_boot_state(hwmgr);
++ if (0 != result)
++ printk(KERN_ERR "[ powerplay ] Failed to reset asic via set boot state! \n");
++
++ return result;
++}
++
++int tonga_hwmgr_backend_fini(struct pp_hwmgr *hwmgr)
++{
++ if (NULL != hwmgr->dyn_state.vddc_dep_on_dal_pwrl) {
++ kfree(hwmgr->dyn_state.vddc_dep_on_dal_pwrl);
++ hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL;
++ }
++
++ if (NULL != hwmgr->backend) {
++ kfree(hwmgr->backend);
++ hwmgr->backend = NULL;
++ }
++
++ return 0;
++}
++
++/**
++ * Initializes the Volcanic Islands Hardware Manager
++ *
++ * @param hwmgr the address of the powerplay hardware manager.
++ * @return 1 if success; otherwise appropriate error code.
++ */
++int tonga_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
++{
++ int result = 0;
++ SMU72_Discrete_DpmTable *table = NULL;
++ tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
++ pp_atomctrl_gpio_pin_assignment gpio_pin_assignment;
++ struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
++ phw_tonga_ulv_parm *ulv;
++
++ PP_ASSERT_WITH_CODE((NULL != hwmgr),
++ "Invalid Parameter!", return -1;);
++
++ data->dll_defaule_on = 0;
++ data->sram_end = SMC_RAM_END;
++
++ data->activity_target[0] = PPTONGA_TARGETACTIVITY_DFLT;
++ data->activity_target[1] = PPTONGA_TARGETACTIVITY_DFLT;
++ data->activity_target[2] = PPTONGA_TARGETACTIVITY_DFLT;
++ data->activity_target[3] = PPTONGA_TARGETACTIVITY_DFLT;
++ data->activity_target[4] = PPTONGA_TARGETACTIVITY_DFLT;
++ data->activity_target[5] = PPTONGA_TARGETACTIVITY_DFLT;
++ data->activity_target[6] = PPTONGA_TARGETACTIVITY_DFLT;
++ data->activity_target[7] = PPTONGA_TARGETACTIVITY_DFLT;
++
++ data->vddc_vddci_delta = VDDC_VDDCI_DELTA;
++ data->vddc_vddgfx_delta = VDDC_VDDGFX_DELTA;
++ data->mclk_activity_target = PPTONGA_MCLK_TARGETACTIVITY_DFLT;
++
++ phm_cap_set(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_DisableVoltageIsland);
++
++ data->sclk_dpm_key_disabled = 0;
++ data->mclk_dpm_key_disabled = 0;
++ data->pcie_dpm_key_disabled = 0;
++ data->pcc_monitor_enabled = 0;
++
++ phm_cap_set(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_UnTabledHardwareInterface);
++
++ data->gpio_debug = 0;
++ data->engine_clock_data = 0;
++ data->memory_clock_data = 0;
++ phm_cap_set(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_DynamicPatchPowerState);
++
++ /* need to set voltage control types before EVV patching*/
++ data->voltage_control = TONGA_VOLTAGE_CONTROL_NONE;
++ data->vdd_ci_control = TONGA_VOLTAGE_CONTROL_NONE;
++ data->vdd_gfx_control = TONGA_VOLTAGE_CONTROL_NONE;
++ data->mvdd_control = TONGA_VOLTAGE_CONTROL_NONE;
++
++ if (0 == atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
++ VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2)) {
++ data->voltage_control = TONGA_VOLTAGE_CONTROL_BY_SVID2;
++ }
++
++ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_ControlVDDGFX)) {
++ if (0 == atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
++ VOLTAGE_TYPE_VDDGFX, VOLTAGE_OBJ_SVID2)) {
++ data->vdd_gfx_control = TONGA_VOLTAGE_CONTROL_BY_SVID2;
++ }
++ }
++
++ if (TONGA_VOLTAGE_CONTROL_NONE == data->vdd_gfx_control) {
++ phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_ControlVDDGFX);
++ }
++
++ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_EnableMVDDControl)) {
++ if (0 == atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
++ VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT)) {
++ data->mvdd_control = TONGA_VOLTAGE_CONTROL_BY_GPIO;
++ }
++ }
++
++ if (TONGA_VOLTAGE_CONTROL_NONE == data->mvdd_control) {
++ phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_EnableMVDDControl);
++ }
++
++ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_ControlVDDCI)) {
++ if (0 == atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
++ VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT))
++ data->vdd_ci_control = TONGA_VOLTAGE_CONTROL_BY_GPIO;
++ else if (0 == atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
++ VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_SVID2))
++ data->vdd_ci_control = TONGA_VOLTAGE_CONTROL_BY_SVID2;
++ }
++
++ if (TONGA_VOLTAGE_CONTROL_NONE == data->vdd_ci_control)
++ phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_ControlVDDCI);
++
++ phm_cap_set(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_TablelessHardwareInterface);
++
++ if (pptable_info->cac_dtp_table->usClockStretchAmount != 0)
++ phm_cap_set(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_ClockStretcher);
++
++ /* Initializes DPM default values*/
++ tonga_initialize_dpm_defaults(hwmgr);
++
++ /* Get leakage voltage based on leakage ID.*/
++ PP_ASSERT_WITH_CODE((0 == tonga_get_evv_voltage(hwmgr)),
++ "Get EVV Voltage Failed. Abort Driver loading!", return -1);
++
++ tonga_complete_dependency_tables(hwmgr);
++
++ /* Parse pptable data read from VBIOS*/
++ tonga_set_private_var_based_on_pptale(hwmgr);
++
++ /* ULV Support*/
++ ulv = &(data->ulv);
++ ulv->ulv_supported = 0;
++
++ /* Initalize Dynamic State Adjustment Rule Settings*/
++ result = tonga_initializa_dynamic_state_adjustment_rule_settings(hwmgr);
++ data->uvd_enabled = 0;
++
++ table = &(data->smc_state_table);
++
++ /*
++ * if ucGPIO_ID=VDDC_PCC_GPIO_PINID in GPIO_LUTable,
++ * Peak Current Control feature is enabled and we should program PCC HW register
++ */
++ if (0 == atomctrl_get_pp_assign_pin(hwmgr, VDDC_PCC_GPIO_PINID, &gpio_pin_assignment)) {
++ uint32_t temp_reg = cgs_read_ind_register(hwmgr->device,
++ CGS_IND_REG__SMC, ixCNB_PWRMGT_CNTL);
++
++ switch (gpio_pin_assignment.uc_gpio_pin_bit_shift) {
++ case 0:
++ temp_reg = PHM_SET_FIELD(temp_reg,
++ CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x1);
++ break;
++ case 1:
++ temp_reg = PHM_SET_FIELD(temp_reg,
++ CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x2);
++ break;
++ case 2:
++ temp_reg = PHM_SET_FIELD(temp_reg,
++ CNB_PWRMGT_CNTL, GNB_SLOW, 0x1);
++ break;
++ case 3:
++ temp_reg = PHM_SET_FIELD(temp_reg,
++ CNB_PWRMGT_CNTL, FORCE_NB_PS1, 0x1);
++ break;
++ case 4:
++ temp_reg = PHM_SET_FIELD(temp_reg,
++ CNB_PWRMGT_CNTL, DPM_ENABLED, 0x1);
++ break;
++ default:
++ printk(KERN_ERR "[ powerplay ] Failed to setup PCC HW register! \
++ Wrong GPIO assigned for VDDC_PCC_GPIO_PINID! \n");
++ break;
++ }
++ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
++ ixCNB_PWRMGT_CNTL, temp_reg);
++ }
++
++ phm_cap_set(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_EnableSMU7ThermalManagement);
++ phm_cap_set(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_SMU7);
++
++ data->vddc_phase_shed_control = 0;
++
++ if (0 == result) {
++ data->is_tlu_enabled = 0;
++ hwmgr->platform_descriptor.hardwareActivityPerformanceLevels =
++ TONGA_MAX_HARDWARE_POWERLEVELS;
++ hwmgr->platform_descriptor.hardwarePerformanceLevels = 2;
++ hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50;
++
++ data->pcie_gen_cap = 0x30007;
++ data->pcie_lane_cap = 0x2f0000;
++ } else {
++ /* Ignore return value in here, we are cleaning up a mess. */
++ tonga_hwmgr_backend_fini(hwmgr);
++ }
++
++ return result;
++}
++
++static int tonga_force_dpm_level(struct pp_hwmgr *hwmgr,
++ enum amd_dpm_forced_level level)
++{
++ int ret = 0;
++
++ switch (level) {
++ case AMD_DPM_FORCED_LEVEL_HIGH:
++ ret = tonga_force_dpm_highest(hwmgr);
++ if (ret)
++ return ret;
++ break;
++ case AMD_DPM_FORCED_LEVEL_LOW:
++ ret = tonga_force_dpm_lowest(hwmgr);
++ if (ret)
++ return ret;
++ break;
++ case AMD_DPM_FORCED_LEVEL_AUTO:
++ ret = tonga_unforce_dpm_levels(hwmgr);
++ if (ret)
++ return ret;
++ break;
++ default:
++ break;
++ }
++
++ hwmgr->dpm_level = level;
++ return ret;
++}
++
++static int tonga_apply_state_adjust_rules(struct pp_hwmgr *hwmgr,
++ struct pp_power_state *prequest_ps,
++ const struct pp_power_state *pcurrent_ps)
++{
++ struct tonga_power_state *tonga_ps =
++ cast_phw_tonga_power_state(&prequest_ps->hardware);
++
++ uint32_t sclk;
++ uint32_t mclk;
++ struct PP_Clocks minimum_clocks = {0};
++ bool disable_mclk_switching;
++ bool disable_mclk_switching_for_frame_lock;
++ struct cgs_display_info info = {0};
++ const struct phm_clock_and_voltage_limits *max_limits;
++ uint32_t i;
++ tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
++ struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
++
++ int32_t count;
++ int32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0;
++
++ data->battery_state = (PP_StateUILabel_Battery == prequest_ps->classification.ui_label);
++
++ PP_ASSERT_WITH_CODE(tonga_ps->performance_level_count == 2,
++ "VI should always have 2 performance levels",
++ );
++
++ max_limits = (PP_PowerSource_AC == hwmgr->power_source) ?
++ &(hwmgr->dyn_state.max_clock_voltage_on_ac) :
++ &(hwmgr->dyn_state.max_clock_voltage_on_dc);
++
++ if (PP_PowerSource_DC == hwmgr->power_source) {
++ for (i = 0; i < tonga_ps->performance_level_count; i++) {
++ if (tonga_ps->performance_levels[i].memory_clock > max_limits->mclk)
++ tonga_ps->performance_levels[i].memory_clock = max_limits->mclk;
++ if (tonga_ps->performance_levels[i].engine_clock > max_limits->sclk)
++ tonga_ps->performance_levels[i].engine_clock = max_limits->sclk;
++ }
++ }
++
++ tonga_ps->vce_clocks.EVCLK = hwmgr->vce_arbiter.evclk;
++ tonga_ps->vce_clocks.ECCLK = hwmgr->vce_arbiter.ecclk;
++
++ tonga_ps->acp_clk = hwmgr->acp_arbiter.acpclk;
++
++ cgs_get_active_displays_info(hwmgr->device, &info);
++
++ /*TO DO result = PHM_CheckVBlankTime(hwmgr, &vblankTooShort);*/
++
++ /* TO DO GetMinClockSettings(hwmgr->pPECI, &minimum_clocks); */
++
++ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) {
++
++ max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac);
++ stable_pstate_sclk = (max_limits->sclk * 75) / 100;
++
++ for (count = pptable_info->vdd_dep_on_sclk->count-1; count >= 0; count--) {
++ if (stable_pstate_sclk >= pptable_info->vdd_dep_on_sclk->entries[count].clk) {
++ stable_pstate_sclk = pptable_info->vdd_dep_on_sclk->entries[count].clk;
++ break;
++ }
++ }
++
++ if (count < 0)
++ stable_pstate_sclk = pptable_info->vdd_dep_on_sclk->entries[0].clk;
++
++ stable_pstate_mclk = max_limits->mclk;
++
++ minimum_clocks.engineClock = stable_pstate_sclk;
++ minimum_clocks.memoryClock = stable_pstate_mclk;
++ }
++
++ if (minimum_clocks.engineClock < hwmgr->gfx_arbiter.sclk)
++ minimum_clocks.engineClock = hwmgr->gfx_arbiter.sclk;
++
++ if (minimum_clocks.memoryClock < hwmgr->gfx_arbiter.mclk)
++ minimum_clocks.memoryClock = hwmgr->gfx_arbiter.mclk;
++
++ tonga_ps->sclk_threshold = hwmgr->gfx_arbiter.sclk_threshold;
++
++ if (0 != hwmgr->gfx_arbiter.sclk_over_drive) {
++ PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.sclk_over_drive <= hwmgr->platform_descriptor.overdriveLimit.engineClock),
++ "Overdrive sclk exceeds limit",
++ hwmgr->gfx_arbiter.sclk_over_drive = hwmgr->platform_descriptor.overdriveLimit.engineClock);
++
++ if (hwmgr->gfx_arbiter.sclk_over_drive >= hwmgr->gfx_arbiter.sclk)
++ tonga_ps->performance_levels[1].engine_clock = hwmgr->gfx_arbiter.sclk_over_drive;
++ }
++
++ if (0 != hwmgr->gfx_arbiter.mclk_over_drive) {
++ PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.mclk_over_drive <= hwmgr->platform_descriptor.overdriveLimit.memoryClock),
++ "Overdrive mclk exceeds limit",
++ hwmgr->gfx_arbiter.mclk_over_drive = hwmgr->platform_descriptor.overdriveLimit.memoryClock);
++
++ if (hwmgr->gfx_arbiter.mclk_over_drive >= hwmgr->gfx_arbiter.mclk)
++ tonga_ps->performance_levels[1].memory_clock = hwmgr->gfx_arbiter.mclk_over_drive;
++ }
++
++ disable_mclk_switching_for_frame_lock = phm_cap_enabled(
++ hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_DisableMclkSwitchingForFrameLock);
++
++ disable_mclk_switching = (1 < info.display_count) ||
++ disable_mclk_switching_for_frame_lock;
++
++ sclk = tonga_ps->performance_levels[0].engine_clock;
++ mclk = tonga_ps->performance_levels[0].memory_clock;
++
++ if (disable_mclk_switching)
++ mclk = tonga_ps->performance_levels[tonga_ps->performance_level_count - 1].memory_clock;
++
++ if (sclk < minimum_clocks.engineClock)
++ sclk = (minimum_clocks.engineClock > max_limits->sclk) ? max_limits->sclk : minimum_clocks.engineClock;
++
++ if (mclk < minimum_clocks.memoryClock)
++ mclk = (minimum_clocks.memoryClock > max_limits->mclk) ? max_limits->mclk : minimum_clocks.memoryClock;
++
++ tonga_ps->performance_levels[0].engine_clock = sclk;
++ tonga_ps->performance_levels[0].memory_clock = mclk;
++
++ tonga_ps->performance_levels[1].engine_clock =
++ (tonga_ps->performance_levels[1].engine_clock >= tonga_ps->performance_levels[0].engine_clock) ?
++ tonga_ps->performance_levels[1].engine_clock :
++ tonga_ps->performance_levels[0].engine_clock;
++
++ if (disable_mclk_switching) {
++ if (mclk < tonga_ps->performance_levels[1].memory_clock)
++ mclk = tonga_ps->performance_levels[1].memory_clock;
++
++ tonga_ps->performance_levels[0].memory_clock = mclk;
++ tonga_ps->performance_levels[1].memory_clock = mclk;
++ } else {
++ if (tonga_ps->performance_levels[1].memory_clock < tonga_ps->performance_levels[0].memory_clock)
++ tonga_ps->performance_levels[1].memory_clock = tonga_ps->performance_levels[0].memory_clock;
++ }
++
++ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) {
++ for (i=0; i < tonga_ps->performance_level_count; i++) {
++ tonga_ps->performance_levels[i].engine_clock = stable_pstate_sclk;
++ tonga_ps->performance_levels[i].memory_clock = stable_pstate_mclk;
++ tonga_ps->performance_levels[i].pcie_gen = data->pcie_gen_performance.max;
++ tonga_ps->performance_levels[i].pcie_lane = data->pcie_gen_performance.max;
++ }
++ }
++
++ return 0;
++}
++
++int tonga_get_power_state_size(struct pp_hwmgr *hwmgr)
++{
++ return sizeof(struct tonga_power_state);
++}
++
++static int tonga_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
++{
++ struct pp_power_state *ps;
++ struct tonga_power_state *tonga_ps;
++
++ if (hwmgr == NULL)
++ return -EINVAL;
++
++ ps = hwmgr->request_ps;
++
++ if (ps == NULL)
++ return -EINVAL;
++
++ tonga_ps = cast_phw_tonga_power_state(&ps->hardware);
++
++ if (low)
++ return tonga_ps->performance_levels[0].memory_clock;
++ else
++ return tonga_ps->performance_levels[tonga_ps->performance_level_count-1].memory_clock;
++}
++
++static int tonga_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
++{
++ struct pp_power_state *ps;
++ struct tonga_power_state *tonga_ps;
++
++ if (hwmgr == NULL)
++ return -EINVAL;
++
++ ps = hwmgr->request_ps;
++
++ if (ps == NULL)
++ return -EINVAL;
++
++ tonga_ps = cast_phw_tonga_power_state(&ps->hardware);
++
++ if (low)
++ return tonga_ps->performance_levels[0].engine_clock;
++ else
++ return tonga_ps->performance_levels[tonga_ps->performance_level_count-1].engine_clock;
++}
++
++static uint16_t tonga_get_current_pcie_speed(
++ struct pp_hwmgr *hwmgr)
++{
++ uint32_t speed_cntl = 0;
++
++ speed_cntl = cgs_read_ind_register(hwmgr->device,
++ CGS_IND_REG__PCIE,
++ ixPCIE_LC_SPEED_CNTL);
++ return((uint16_t)PHM_GET_FIELD(speed_cntl,
++ PCIE_LC_SPEED_CNTL, LC_CURRENT_DATA_RATE));
++}
++
++static int tonga_get_current_pcie_lane_number(
++ struct pp_hwmgr *hwmgr)
++{
++ uint32_t link_width;
++
++ link_width = PHM_READ_INDIRECT_FIELD(hwmgr->device,
++ CGS_IND_REG__PCIE,
++ PCIE_LC_LINK_WIDTH_CNTL,
++ LC_LINK_WIDTH_RD);
++
++ PP_ASSERT_WITH_CODE((7 >= link_width),
++ "Invalid PCIe lane width!", return 0);
++
++ return decode_pcie_lane_width(link_width);
++}
++
++static int tonga_dpm_patch_boot_state(struct pp_hwmgr *hwmgr,
++ struct pp_hw_power_state *hw_ps)
++{
++ struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
++ struct tonga_power_state *ps = (struct tonga_power_state *)hw_ps;
++ ATOM_FIRMWARE_INFO_V2_2 *fw_info;
++ uint16_t size;
++ uint8_t frev, crev;
++ int index = GetIndexIntoMasterTable(DATA, FirmwareInfo);
++
++ /* First retrieve the Boot clocks and VDDC from the firmware info table.
++ * We assume here that fw_info is unchanged if this call fails.
++ */
++ fw_info = (ATOM_FIRMWARE_INFO_V2_2 *)cgs_atom_get_data_table(
++ hwmgr->device, index,
++ &size, &frev, &crev);
++ if (!fw_info)
++ /* During a test, there is no firmware info table. */
++ return 0;
++
++ /* Patch the state. */
++ data->vbios_boot_state.sclk_bootup_value = le32_to_cpu(fw_info->ulDefaultEngineClock);
++ data->vbios_boot_state.mclk_bootup_value = le32_to_cpu(fw_info->ulDefaultMemoryClock);
++ data->vbios_boot_state.mvdd_bootup_value = le16_to_cpu(fw_info->usBootUpMVDDCVoltage);
++ data->vbios_boot_state.vddc_bootup_value = le16_to_cpu(fw_info->usBootUpVDDCVoltage);
++ data->vbios_boot_state.vddci_bootup_value = le16_to_cpu(fw_info->usBootUpVDDCIVoltage);
++ data->vbios_boot_state.pcie_gen_bootup_value = tonga_get_current_pcie_speed(hwmgr);
++ data->vbios_boot_state.pcie_lane_bootup_value =
++ (uint16_t)tonga_get_current_pcie_lane_number(hwmgr);
++
++ /* set boot power state */
++ ps->performance_levels[0].memory_clock = data->vbios_boot_state.mclk_bootup_value;
++ ps->performance_levels[0].engine_clock = data->vbios_boot_state.sclk_bootup_value;
++ ps->performance_levels[0].pcie_gen = data->vbios_boot_state.pcie_gen_bootup_value;
++ ps->performance_levels[0].pcie_lane = data->vbios_boot_state.pcie_lane_bootup_value;
++
++ return 0;
++}
++
++static int tonga_get_pp_table_entry_callback_func(struct pp_hwmgr *hwmgr,
++ void *state, struct pp_power_state *power_state,
++ void *pp_table, uint32_t classification_flag)
++{
++ struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
++
++ struct tonga_power_state *tonga_ps =
++ (struct tonga_power_state *)(&(power_state->hardware));
++
++ struct tonga_performance_level *performance_level;
++
++ ATOM_Tonga_State *state_entry = (ATOM_Tonga_State *)state;
++
++ ATOM_Tonga_POWERPLAYTABLE *powerplay_table =
++ (ATOM_Tonga_POWERPLAYTABLE *)pp_table;
++
++ ATOM_Tonga_SCLK_Dependency_Table *sclk_dep_table =
++ (ATOM_Tonga_SCLK_Dependency_Table *)
++ (((uint64_t)powerplay_table) +
++ le16_to_cpu(powerplay_table->usSclkDependencyTableOffset));
++
++ ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table =
++ (ATOM_Tonga_MCLK_Dependency_Table *)
++ (((uint64_t)powerplay_table) +
++ le16_to_cpu(powerplay_table->usMclkDependencyTableOffset));
++
++ /* The following fields are not initialized here: id orderedList allStatesList */
++ power_state->classification.ui_label =
++ (le16_to_cpu(state_entry->usClassification) &
++ ATOM_PPLIB_CLASSIFICATION_UI_MASK) >>
++ ATOM_PPLIB_CLASSIFICATION_UI_SHIFT;
++ power_state->classification.flags = classification_flag;
++ /* NOTE: There is a classification2 flag in BIOS that is not being used right now */
++
++ power_state->classification.temporary_state = false;
++ power_state->classification.to_be_deleted = false;
++
++ power_state->validation.disallowOnDC =
++ (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) & ATOM_Tonga_DISALLOW_ON_DC));
++
++ power_state->pcie.lanes = 0;
++
++ power_state->display.disableFrameModulation = false;
++ power_state->display.limitRefreshrate = false;
++ power_state->display.enableVariBright =
++ (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) & ATOM_Tonga_ENABLE_VARIBRIGHT));
++
++ power_state->validation.supportedPowerLevels = 0;
++ power_state->uvd_clocks.VCLK = 0;
++ power_state->uvd_clocks.DCLK = 0;
++ power_state->temperatures.min = 0;
++ power_state->temperatures.max = 0;
++
++ performance_level = &(tonga_ps->performance_levels
++ [tonga_ps->performance_level_count++]);
++
++ PP_ASSERT_WITH_CODE(
++ (tonga_ps->performance_level_count < SMU72_MAX_LEVELS_GRAPHICS),
++ "Performance levels exceeds SMC limit!",
++ return -1);
++
++ PP_ASSERT_WITH_CODE(
++ (tonga_ps->performance_level_count <=
++ hwmgr->platform_descriptor.hardwareActivityPerformanceLevels),
++ "Performance levels exceeds Driver limit!",
++ return -1);
++
++ /* Performance levels are arranged from low to high. */
++ performance_level->memory_clock =
++ le32_to_cpu(mclk_dep_table->entries[state_entry->ucMemoryClockIndexLow].ulMclk);
++
++ performance_level->engine_clock =
++ le32_to_cpu(sclk_dep_table->entries[state_entry->ucEngineClockIndexLow].ulSclk);
++
++ performance_level->pcie_gen = get_pcie_gen_support(
++ data->pcie_gen_cap,
++ state_entry->ucPCIEGenLow);
++
++ performance_level->pcie_lane = get_pcie_lane_support(
++ data->pcie_lane_cap,
++ state_entry->ucPCIELaneHigh);
++
++ performance_level =
++ &(tonga_ps->performance_levels[tonga_ps->performance_level_count++]);
++
++ performance_level->memory_clock =
++ le32_to_cpu(mclk_dep_table->entries[state_entry->ucMemoryClockIndexHigh].ulMclk);
++
++ performance_level->engine_clock =
++ le32_to_cpu(sclk_dep_table->entries[state_entry->ucEngineClockIndexHigh].ulSclk);
++
++ performance_level->pcie_gen = get_pcie_gen_support(
++ data->pcie_gen_cap,
++ state_entry->ucPCIEGenHigh);
++
++ performance_level->pcie_lane = get_pcie_lane_support(
++ data->pcie_lane_cap,
++ state_entry->ucPCIELaneHigh);
++
++ return 0;
++}
++
++static int tonga_get_pp_table_entry(struct pp_hwmgr *hwmgr,
++ unsigned long entry_index, struct pp_power_state *ps)
++{
++ int result;
++ struct tonga_power_state *tonga_ps;
++ struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
++
++ struct phm_ppt_v1_information *table_info =
++ (struct phm_ppt_v1_information *)(hwmgr->pptable);
++
++ struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
++ table_info->vdd_dep_on_mclk;
++
++ ps->hardware.magic = PhwTonga_Magic;
++
++ tonga_ps = cast_phw_tonga_power_state(&(ps->hardware));
++
++ result = tonga_get_powerplay_table_entry(hwmgr, entry_index, ps,
++ tonga_get_pp_table_entry_callback_func);
++
++ /* This is the earliest time we have all the dependency table and the VBIOS boot state
++ * as PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot state
++ * if there is only one VDDCI/MCLK level, check if it's the same as VBIOS boot state
++ */
++ if (dep_mclk_table != NULL && dep_mclk_table->count == 1) {
++ if (dep_mclk_table->entries[0].clk !=
++ data->vbios_boot_state.mclk_bootup_value)
++ printk(KERN_ERR "Single MCLK entry VDDCI/MCLK dependency table "
++ "does not match VBIOS boot MCLK level");
++ if (dep_mclk_table->entries[0].vddci !=
++ data->vbios_boot_state.vddci_bootup_value)
++ printk(KERN_ERR "Single VDDCI entry VDDCI/MCLK dependency table "
++ "does not match VBIOS boot VDDCI level");
++ }
++
++ /* set DC compatible flag if this state supports DC */
++ if (!ps->validation.disallowOnDC)
++ tonga_ps->dc_compatible = true;
++
++ if (ps->classification.flags & PP_StateClassificationFlag_ACPI)
++ data->acpi_pcie_gen = tonga_ps->performance_levels[0].pcie_gen;
++ else if (ps->classification.flags & PP_StateClassificationFlag_Boot) {
++ if (data->bacos.best_match == 0xffff) {
++ /* For V.I. use boot state as base BACO state */
++ data->bacos.best_match = PP_StateClassificationFlag_Boot;
++ data->bacos.performance_level = tonga_ps->performance_levels[0];
++ }
++ }
++
++ tonga_ps->uvd_clocks.VCLK = ps->uvd_clocks.VCLK;
++ tonga_ps->uvd_clocks.DCLK = ps->uvd_clocks.DCLK;
++
++ if (!result) {
++ uint32_t i;
++
++ switch (ps->classification.ui_label) {
++ case PP_StateUILabel_Performance:
++ data->use_pcie_performance_levels = true;
++
++ for (i = 0; i < tonga_ps->performance_level_count; i++) {
++ if (data->pcie_gen_performance.max <
++ tonga_ps->performance_levels[i].pcie_gen)
++ data->pcie_gen_performance.max =
++ tonga_ps->performance_levels[i].pcie_gen;
++
++ if (data->pcie_gen_performance.min >
++ tonga_ps->performance_levels[i].pcie_gen)
++ data->pcie_gen_performance.min =
++ tonga_ps->performance_levels[i].pcie_gen;
++
++ if (data->pcie_lane_performance.max <
++ tonga_ps->performance_levels[i].pcie_lane)
++ data->pcie_lane_performance.max =
++ tonga_ps->performance_levels[i].pcie_lane;
++
++ if (data->pcie_lane_performance.min >
++ tonga_ps->performance_levels[i].pcie_lane)
++ data->pcie_lane_performance.min =
++ tonga_ps->performance_levels[i].pcie_lane;
++ }
++ break;
++ case PP_StateUILabel_Battery:
++ data->use_pcie_power_saving_levels = true;
++
++ for (i = 0; i < tonga_ps->performance_level_count; i++) {
++ if (data->pcie_gen_power_saving.max <
++ tonga_ps->performance_levels[i].pcie_gen)
++ data->pcie_gen_power_saving.max =
++ tonga_ps->performance_levels[i].pcie_gen;
++
++ if (data->pcie_gen_power_saving.min >
++ tonga_ps->performance_levels[i].pcie_gen)
++ data->pcie_gen_power_saving.min =
++ tonga_ps->performance_levels[i].pcie_gen;
++
++ if (data->pcie_lane_power_saving.max <
++ tonga_ps->performance_levels[i].pcie_lane)
++ data->pcie_lane_power_saving.max =
++ tonga_ps->performance_levels[i].pcie_lane;
++
++ if (data->pcie_lane_power_saving.min >
++ tonga_ps->performance_levels[i].pcie_lane)
++ data->pcie_lane_power_saving.min =
++ tonga_ps->performance_levels[i].pcie_lane;
++ }
++ break;
++ default:
++ break;
++ }
++ }
++ return 0;
++}
++
++static void
++tonga_print_current_perforce_level(struct pp_hwmgr *hwmgr, struct seq_file *m)
++{
++ uint32_t sclk, mclk;
++
++ smum_send_msg_to_smc(hwmgr->smumgr, (PPSMC_Msg)(PPSMC_MSG_API_GetSclkFrequency));
++
++ sclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
++
++ smum_send_msg_to_smc(hwmgr->smumgr, (PPSMC_Msg)(PPSMC_MSG_API_GetMclkFrequency));
++
++ mclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
++ seq_printf(m, "\n [ mclk ]: %u MHz\n\n [ sclk ]: %u MHz\n", mclk/100, sclk/100);
++}
++
++static int tonga_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input)
++{
++ const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input;
++ const struct tonga_power_state *tonga_ps = cast_const_phw_tonga_power_state(states->pnew_state);
++ struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
++ struct tonga_single_dpm_table *psclk_table = &(data->dpm_table.sclk_table);
++ uint32_t sclk = tonga_ps->performance_levels[tonga_ps->performance_level_count-1].engine_clock;
++ struct tonga_single_dpm_table *pmclk_table = &(data->dpm_table.mclk_table);
++ uint32_t mclk = tonga_ps->performance_levels[tonga_ps->performance_level_count-1].memory_clock;
++ struct PP_Clocks min_clocks = {0};
++ uint32_t i;
++ struct cgs_display_info info = {0};
++
++ data->need_update_smu7_dpm_table = 0;
++
++ for (i = 0; i < psclk_table->count; i++) {
++ if (sclk == psclk_table->dpm_levels[i].value)
++ break;
++ }
++
++ if (i >= psclk_table->count)
++ data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
++ else {
++ /* TODO: Check SCLK in DAL's minimum clocks in case DeepSleep divider update is required.*/
++ if(data->display_timing.min_clock_insr != min_clocks.engineClockInSR)
++ data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_SCLK;
++ }
++
++ for (i=0; i < pmclk_table->count; i++) {
++ if (mclk == pmclk_table->dpm_levels[i].value)
++ break;
++ }
++
++ if (i >= pmclk_table->count)
++ data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
++
++ cgs_get_active_displays_info(hwmgr->device, &info);
++
++ if (data->display_timing.num_existing_displays != info.display_count)
++ data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_MCLK;
++
++ return 0;
++}
++
++static uint16_t tonga_get_maximum_link_speed(struct pp_hwmgr *hwmgr, const struct tonga_power_state *hw_ps)
++{
++ uint32_t i;
++ uint32_t sclk, max_sclk = 0;
++ struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
++ struct tonga_dpm_table *pdpm_table = &data->dpm_table;
++
++ for (i = 0; i < hw_ps->performance_level_count; i++) {
++ sclk = hw_ps->performance_levels[i].engine_clock;
++ if (max_sclk < sclk)
++ max_sclk = sclk;
++ }
++
++ for (i = 0; i < pdpm_table->sclk_table.count; i++) {
++ if (pdpm_table->sclk_table.dpm_levels[i].value == max_sclk)
++ return (uint16_t) ((i >= pdpm_table->pcie_speed_table.count) ?
++ pdpm_table->pcie_speed_table.dpm_levels[pdpm_table->pcie_speed_table.count-1].value :
++ pdpm_table->pcie_speed_table.dpm_levels[i].value);
++ }
++
++ return 0;
++}
++
++static int tonga_request_link_speed_change_before_state_change(struct pp_hwmgr *hwmgr, const void *input)
++{
++ const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input;
++ struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
++ const struct tonga_power_state *tonga_nps = cast_const_phw_tonga_power_state(states->pnew_state);
++ const struct tonga_power_state *tonga_cps = cast_const_phw_tonga_power_state(states->pcurrent_state);
++
++ uint16_t target_link_speed = tonga_get_maximum_link_speed(hwmgr, tonga_nps);
++ uint16_t current_link_speed;
++
++ if (data->force_pcie_gen == PP_PCIEGenInvalid)
++ current_link_speed = tonga_get_maximum_link_speed(hwmgr, tonga_cps);
++ else
++ current_link_speed = data->force_pcie_gen;
++
++ data->force_pcie_gen = PP_PCIEGenInvalid;
++ data->pspp_notify_required = false;
++ if (target_link_speed > current_link_speed) {
++ switch(target_link_speed) {
++ case PP_PCIEGen3:
++ if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN3, false))
++ break;
++ data->force_pcie_gen = PP_PCIEGen2;
++ if (current_link_speed == PP_PCIEGen2)
++ break;
++ case PP_PCIEGen2:
++ if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN2, false))
++ break;
++ default:
++ data->force_pcie_gen = tonga_get_current_pcie_speed(hwmgr);
++ break;
++ }
++ } else {
++ if (target_link_speed < current_link_speed)
++ data->pspp_notify_required = true;
++ }
++
++ return 0;
++}
++
++static int tonga_freeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
++{
++ struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
++
++ if (0 == data->need_update_smu7_dpm_table)
++ return 0;
++
++ if ((0 == data->sclk_dpm_key_disabled) &&
++ (data->need_update_smu7_dpm_table &
++ (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {
++ PP_ASSERT_WITH_CODE(
++ true == tonga_is_dpm_running(hwmgr),
++ "Trying to freeze SCLK DPM when DPM is disabled",
++ );
++ PP_ASSERT_WITH_CODE(
++ 0 == smum_send_msg_to_smc(hwmgr->smumgr,
++ PPSMC_MSG_SCLKDPM_FreezeLevel),
++ "Failed to freeze SCLK DPM during FreezeSclkMclkDPM Function!",
++ return -1);
++ }
++
++ if ((0 == data->mclk_dpm_key_disabled) &&
++ (data->need_update_smu7_dpm_table &
++ DPMTABLE_OD_UPDATE_MCLK)) {
++ PP_ASSERT_WITH_CODE(true == tonga_is_dpm_running(hwmgr),
++ "Trying to freeze MCLK DPM when DPM is disabled",
++ );
++ PP_ASSERT_WITH_CODE(
++ 0 == smum_send_msg_to_smc(hwmgr->smumgr,
++ PPSMC_MSG_MCLKDPM_FreezeLevel),
++ "Failed to freeze MCLK DPM during FreezeSclkMclkDPM Function!",
++ return -1);
++ }
++
++ return 0;
++}
++
++static int tonga_populate_and_upload_sclk_mclk_dpm_levels(struct pp_hwmgr *hwmgr, const void *input)
++{
++ int result = 0;
++
++ const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input;
++ const struct tonga_power_state *tonga_ps = cast_const_phw_tonga_power_state(states->pnew_state);
++ struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
++ uint32_t sclk = tonga_ps->performance_levels[tonga_ps->performance_level_count-1].engine_clock;
++ uint32_t mclk = tonga_ps->performance_levels[tonga_ps->performance_level_count-1].memory_clock;
++ struct tonga_dpm_table *pdpm_table = &data->dpm_table;
++
++ struct tonga_dpm_table *pgolden_dpm_table = &data->golden_dpm_table;
++ uint32_t dpm_count, clock_percent;
++ uint32_t i;
++
++ if (0 == data->need_update_smu7_dpm_table)
++ return 0;
++
++ if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) {
++ pdpm_table->sclk_table.dpm_levels[pdpm_table->sclk_table.count-1].value = sclk;
++
++ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinACSupport) ||
++ phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinDCSupport)) {
++ /* Need to do calculation based on the golden DPM table
++ * as the Heatmap GPU Clock axis is also based on the default values
++ */
++ PP_ASSERT_WITH_CODE(
++ (pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value != 0),
++ "Divide by 0!",
++ return -1);
++ dpm_count = pdpm_table->sclk_table.count < 2 ? 0 : pdpm_table->sclk_table.count-2;
++ for (i = dpm_count; i > 1; i--) {
++ if (sclk > pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value) {
++ clock_percent = ((sclk - pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value)*100) /
++ pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value;
++
++ pdpm_table->sclk_table.dpm_levels[i].value =
++ pgolden_dpm_table->sclk_table.dpm_levels[i].value +
++ (pgolden_dpm_table->sclk_table.dpm_levels[i].value * clock_percent)/100;
++
++ } else if (pgolden_dpm_table->sclk_table.dpm_levels[pdpm_table->sclk_table.count-1].value > sclk) {
++ clock_percent = ((pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value - sclk)*100) /
++ pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value;
++
++ pdpm_table->sclk_table.dpm_levels[i].value =
++ pgolden_dpm_table->sclk_table.dpm_levels[i].value -
++ (pgolden_dpm_table->sclk_table.dpm_levels[i].value * clock_percent)/100;
++ } else
++ pdpm_table->sclk_table.dpm_levels[i].value =
++ pgolden_dpm_table->sclk_table.dpm_levels[i].value;
++ }
++ }
++ }
++
++ if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK) {
++ pdpm_table->mclk_table.dpm_levels[pdpm_table->mclk_table.count-1].value = mclk;
++
++ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinACSupport) ||
++ phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinDCSupport)) {
++
++ PP_ASSERT_WITH_CODE(
++ (pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value != 0),
++ "Divide by 0!",
++ return -1);
++ dpm_count = pdpm_table->mclk_table.count < 2? 0 : pdpm_table->mclk_table.count-2;
++ for (i = dpm_count; i > 1; i--) {
++ if (mclk > pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value) {
++ clock_percent = ((mclk - pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value)*100) /
++ pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value;
++
++ pdpm_table->mclk_table.dpm_levels[i].value =
++ pgolden_dpm_table->mclk_table.dpm_levels[i].value +
++ (pgolden_dpm_table->mclk_table.dpm_levels[i].value * clock_percent)/100;
++
++ } else if (pgolden_dpm_table->mclk_table.dpm_levels[pdpm_table->mclk_table.count-1].value > mclk) {
++ clock_percent = ((pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value - mclk)*100) /
++ pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value;
++
++ pdpm_table->mclk_table.dpm_levels[i].value =
++ pgolden_dpm_table->mclk_table.dpm_levels[i].value -
++ (pgolden_dpm_table->mclk_table.dpm_levels[i].value * clock_percent)/100;
++ } else
++ pdpm_table->mclk_table.dpm_levels[i].value = pgolden_dpm_table->mclk_table.dpm_levels[i].value;
++ }
++ }
++ }
++
++ if (data->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK)) {
++ result = tonga_populate_all_memory_levels(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == result),
++ "Failed to populate SCLK during PopulateNewDPMClocksStates Function!",
++ return result);
++ }
++
++ if (data->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_MCLK + DPMTABLE_UPDATE_MCLK)) {
++ /*populate MCLK dpm table to SMU7 */
++ result = tonga_populate_all_memory_levels(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == result),
++ "Failed to populate MCLK during PopulateNewDPMClocksStates Function!",
++ return result);
++ }
++
++ return result;
++}
++
++static int tonga_trim_single_dpm_states(struct pp_hwmgr *hwmgr,
++ struct tonga_single_dpm_table * pdpm_table,
++ uint32_t low_limit, uint32_t high_limit)
++{
++ uint32_t i;
++
++ for (i = 0; i < pdpm_table->count; i++) {
++ if ((pdpm_table->dpm_levels[i].value < low_limit) ||
++ (pdpm_table->dpm_levels[i].value > high_limit))
++ pdpm_table->dpm_levels[i].enabled = false;
++ else
++ pdpm_table->dpm_levels[i].enabled = true;
++ }
++ return 0;
++}
++
++static int tonga_trim_dpm_states(struct pp_hwmgr *hwmgr, const struct tonga_power_state *hw_state)
++{
++ int result = 0;
++ struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
++ uint32_t high_limit_count;
++
++ PP_ASSERT_WITH_CODE((hw_state->performance_level_count >= 1),
++ "power state did not have any performance level",
++ return -1);
++
++ high_limit_count = (1 == hw_state->performance_level_count) ? 0: 1;
++
++ tonga_trim_single_dpm_states(hwmgr,
++ &(data->dpm_table.sclk_table),
++ hw_state->performance_levels[0].engine_clock,
++ hw_state->performance_levels[high_limit_count].engine_clock);
++
++ tonga_trim_single_dpm_states(hwmgr,
++ &(data->dpm_table.mclk_table),
++ hw_state->performance_levels[0].memory_clock,
++ hw_state->performance_levels[high_limit_count].memory_clock);
++
++ return result;
++}
++
++static int tonga_generate_dpm_level_enable_mask(struct pp_hwmgr *hwmgr, const void *input)
++{
++ int result;
++ const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input;
++ struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
++ const struct tonga_power_state *tonga_ps = cast_const_phw_tonga_power_state(states->pnew_state);
++
++
++ result = tonga_trim_dpm_states(hwmgr, tonga_ps);
++ if (0 != result)
++ return result;
++
++ data->dpm_level_enable_mask.sclk_dpm_enable_mask = tonga_get_dpm_level_enable_mask_value(&data->dpm_table.sclk_table);
++ data->dpm_level_enable_mask.mclk_dpm_enable_mask = tonga_get_dpm_level_enable_mask_value(&data->dpm_table.mclk_table);
++ data->last_mclk_dpm_enable_mask = data->dpm_level_enable_mask.mclk_dpm_enable_mask;
++ if (data->uvd_enabled)
++ data->dpm_level_enable_mask.mclk_dpm_enable_mask &= 0xFFFFFFFE;
++
++ data->dpm_level_enable_mask.pcie_dpm_enable_mask = tonga_get_dpm_level_enable_mask_value(&data->dpm_table.pcie_speed_table);
++
++ return 0;
++}
++
++static int tonga_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable)
++{
++ return smum_send_msg_to_smc(hwmgr->smumgr, enable?
++ (PPSMC_Msg)PPSMC_MSG_VCEDPM_Enable :
++ (PPSMC_Msg)PPSMC_MSG_VCEDPM_Disable);
++}
++
++static int tonga_update_vce_dpm(struct pp_hwmgr *hwmgr, const void *input)
++{
++ const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input;
++ struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
++ const struct tonga_power_state *tonga_nps = cast_const_phw_tonga_power_state(states->pnew_state);
++ const struct tonga_power_state *tonga_cps = cast_const_phw_tonga_power_state(states->pcurrent_state);
++
++ uint32_t mm_boot_level_offset, mm_boot_level_value;
++ struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
++
++ if(tonga_nps->vce_clocks.EVCLK >0 &&
++ (tonga_cps == NULL || tonga_cps->vce_clocks.EVCLK == 0)) {
++ data->smc_state_table.VceBootLevel = (uint8_t) (pptable_info->mm_dep_table->count - 1);
++
++ mm_boot_level_offset = data->dpm_table_start + offsetof(SMU72_Discrete_DpmTable, VceBootLevel);
++ mm_boot_level_offset /= 4;
++ mm_boot_level_offset *= 4;
++ mm_boot_level_value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, mm_boot_level_offset);
++ mm_boot_level_value &= 0xFF00FFFF;
++ mm_boot_level_value |= data->smc_state_table.VceBootLevel << 16;
++ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
++
++ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) {
++ smum_send_msg_to_smc_with_parameter(
++ hwmgr->smumgr,
++ (PPSMC_Msg)(PPSMC_MSG_VCEDPM_SetEnabledMask),
++ (uint32_t)1 << data->smc_state_table.VceBootLevel);
++
++ tonga_enable_disable_vce_dpm(hwmgr, true);
++ } else if (tonga_nps->vce_clocks.EVCLK == 0 && tonga_cps != NULL && tonga_cps->vce_clocks.EVCLK > 0)
++ tonga_enable_disable_vce_dpm(hwmgr, false);
++ }
++
++ return 0;
++}
++
++static int tonga_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr)
++{
++ struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
++
++ uint32_t address;
++ int32_t result;
++
++ if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK))
++ return 0;
++
++
++ memset(&data->mc_reg_table, 0, sizeof(SMU72_Discrete_MCRegisters));
++
++ result = tonga_convert_mc_reg_table_to_smc(hwmgr, &(data->mc_reg_table));
++
++ if(result != 0)
++ return result;
++
++
++ address = data->mc_reg_table_start + (uint32_t)offsetof(SMU72_Discrete_MCRegisters, data[0]);
++
++ return tonga_copy_bytes_to_smc(hwmgr->smumgr, address,
++ (uint8_t *)&data->mc_reg_table.data[0],
++ sizeof(SMU72_Discrete_MCRegisterSet) * data->dpm_table.mclk_table.count,
++ data->sram_end);
++}
++
++static int tonga_program_memory_timing_parameters_conditionally(struct pp_hwmgr *hwmgr)
++{
++ struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
++
++ if (data->need_update_smu7_dpm_table &
++ (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
++ return tonga_program_memory_timing_parameters(hwmgr);
++
++ return 0;
++}
++
++static int tonga_unfreeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
++{
++ struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
++
++ if (0 == data->need_update_smu7_dpm_table)
++ return 0;
++
++ if ((0 == data->sclk_dpm_key_disabled) &&
++ (data->need_update_smu7_dpm_table &
++ (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {
++
++ PP_ASSERT_WITH_CODE(true == tonga_is_dpm_running(hwmgr),
++ "Trying to Unfreeze SCLK DPM when DPM is disabled",
++ );
++ PP_ASSERT_WITH_CODE(
++ 0 == smum_send_msg_to_smc(hwmgr->smumgr,
++ PPSMC_MSG_SCLKDPM_UnfreezeLevel),
++ "Failed to unfreeze SCLK DPM during UnFreezeSclkMclkDPM Function!",
++ return -1);
++ }
++
++ if ((0 == data->mclk_dpm_key_disabled) &&
++ (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) {
++
++ PP_ASSERT_WITH_CODE(
++ true == tonga_is_dpm_running(hwmgr),
++ "Trying to Unfreeze MCLK DPM when DPM is disabled",
++ );
++ PP_ASSERT_WITH_CODE(
++ 0 == smum_send_msg_to_smc(hwmgr->smumgr,
++ PPSMC_MSG_SCLKDPM_UnfreezeLevel),
++ "Failed to unfreeze MCLK DPM during UnFreezeSclkMclkDPM Function!",
++ return -1);
++ }
++
++ data->need_update_smu7_dpm_table = 0;
++
++ return 0;
++}
++
++static int tonga_notify_link_speed_change_after_state_change(struct pp_hwmgr *hwmgr, const void *input)
++{
++ const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input;
++ struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
++ const struct tonga_power_state *tonga_ps = cast_const_phw_tonga_power_state(states->pnew_state);
++ uint16_t target_link_speed = tonga_get_maximum_link_speed(hwmgr, tonga_ps);
++ uint8_t request;
++
++ if (data->pspp_notify_required ||
++ data->pcie_performance_request) {
++ if (target_link_speed == PP_PCIEGen3)
++ request = PCIE_PERF_REQ_GEN3;
++ else if (target_link_speed == PP_PCIEGen2)
++ request = PCIE_PERF_REQ_GEN2;
++ else
++ request = PCIE_PERF_REQ_GEN1;
++
++ if(request == PCIE_PERF_REQ_GEN1 && tonga_get_current_pcie_speed(hwmgr) > 0) {
++ data->pcie_performance_request = false;
++ return 0;
++ }
++
++ if (0 != acpi_pcie_perf_request(hwmgr->device, request, false)) {
++ if (PP_PCIEGen2 == target_link_speed)
++ printk("PSPP request to switch to Gen2 from Gen3 Failed!");
++ else
++ printk("PSPP request to switch to Gen1 from Gen2 Failed!");
++ }
++ }
++
++ data->pcie_performance_request = false;
++ return 0;
++}
++
++static int tonga_set_power_state_tasks(struct pp_hwmgr *hwmgr, const void *input)
++{
++ int tmp_result, result = 0;
++
++ tmp_result = tonga_find_dpm_states_clocks_in_dpm_table(hwmgr, input);
++ PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to find DPM states clocks in DPM table!", result = tmp_result);
++
++ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PCIEPerformanceRequest)) {
++ tmp_result = tonga_request_link_speed_change_before_state_change(hwmgr, input);
++ PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to request link speed change before state change!", result = tmp_result);
++ }
++
++ tmp_result = tonga_freeze_sclk_mclk_dpm(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to freeze SCLK MCLK DPM!", result = tmp_result);
++
++ tmp_result = tonga_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input);
++ PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to populate and upload SCLK MCLK DPM levels!", result = tmp_result);
++
++ tmp_result = tonga_generate_dpm_level_enable_mask(hwmgr, input);
++ PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to generate DPM level enabled mask!", result = tmp_result);
++
++ tmp_result = tonga_update_vce_dpm(hwmgr, input);
++ PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to update VCE DPM!", result = tmp_result);
++
++ tmp_result = tonga_update_sclk_threshold(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to update SCLK threshold!", result = tmp_result);
++
++ tmp_result = tonga_update_and_upload_mc_reg_table(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to upload MC reg table!", result = tmp_result);
++
++ tmp_result = tonga_program_memory_timing_parameters_conditionally(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to program memory timing parameters!", result = tmp_result);
++
++ tmp_result = tonga_unfreeze_sclk_mclk_dpm(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to unfreeze SCLK MCLK DPM!", result = tmp_result);
++
++ tmp_result = tonga_upload_dpm_level_enable_mask(hwmgr);
++ PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to upload DPM level enabled mask!", result = tmp_result);
++
++ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PCIEPerformanceRequest)) {
++ tmp_result = tonga_notify_link_speed_change_after_state_change(hwmgr, input);
++ PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to notify link speed change after state change!", result = tmp_result);
++ }
++
++ return result;
++}
++
++static const struct pp_hwmgr_func tonga_hwmgr_funcs = {
++ .backend_init = &tonga_hwmgr_backend_init,
++ .backend_fini = &tonga_hwmgr_backend_fini,
++ .asic_setup = &tonga_setup_asic_task,
++ .dynamic_state_management_enable = &tonga_enable_dpm_tasks,
++ .apply_state_adjust_rules = tonga_apply_state_adjust_rules,
++ .force_dpm_level = &tonga_force_dpm_level,
++ .power_state_set = tonga_set_power_state_tasks,
++ .get_power_state_size = tonga_get_power_state_size,
++ .get_mclk = tonga_dpm_get_mclk,
++ .get_sclk = tonga_dpm_get_sclk,
++ .patch_boot_state = tonga_dpm_patch_boot_state,
++ .get_pp_table_entry = tonga_get_pp_table_entry,
++ .get_num_of_pp_table_entries = tonga_get_number_of_powerplay_table_entries,
++ .print_current_perforce_level = tonga_print_current_perforce_level,
++};
++
++int tonga_hwmgr_init(struct pp_hwmgr *hwmgr)
++{
++ tonga_hwmgr *data;
++
++ data = kzalloc (sizeof(tonga_hwmgr), GFP_KERNEL);
++ if (data == NULL)
++ return -ENOMEM;
++ memset(data, 0x00, sizeof(tonga_hwmgr));
++
++ hwmgr->backend = data;
++ hwmgr->hwmgr_func = &tonga_hwmgr_funcs;
++ hwmgr->pptable_func = &tonga_pptable_funcs;
++
++ return 0;
++}
++
+diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_hwmgr.h b/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_hwmgr.h
+new file mode 100644
+index 0000000..d007706
+--- /dev/null
++++ b/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_hwmgr.h
+@@ -0,0 +1,427 @@
++/*
++ * Copyright 2015 Advanced Micro Devices, Inc.
++ *
++ * Permission is hereby granted, free of charge, to any person obtaining a
++ * copy of this software and associated documentation files (the "Software"),
++ * to deal in the Software without restriction, including without limitation
++ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
++ * and/or sell copies of the Software, and to permit persons to whom the
++ * Software is furnished to do so, subject to the following conditions:
++ *
++ * The above copyright notice and this permission notice shall be included in
++ * all copies or substantial portions of the Software.
++ *
++ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
++ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
++ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
++ * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
++ * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
++ * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
++ * OTHER DEALINGS IN THE SOFTWARE.
++ *
++ */
++#ifndef TONGA_HWMGR_H
++#define TONGA_HWMGR_H
++
++#include "hwmgr.h"
++#include "smu72_discrete.h"
++#include "ppatomctrl.h"
++#include "ppinterrupt.h"
++#include "tonga_powertune.h"
++
++#define TONGA_MAX_HARDWARE_POWERLEVELS 2
++#define TONGA_DYNCLK_NUMBER_OF_TREND_COEFFICIENTS 15
++
++struct tonga_performance_level {
++ uint32_t memory_clock;
++ uint32_t engine_clock;
++ uint16_t pcie_gen;
++ uint16_t pcie_lane;
++};
++
++struct _phw_tonga_bacos {
++ uint32_t best_match;
++ uint32_t baco_flags;
++ struct tonga_performance_level performance_level;
++};
++typedef struct _phw_tonga_bacos phw_tonga_bacos;
++
++struct _phw_tonga_uvd_clocks {
++ uint32_t VCLK;
++ uint32_t DCLK;
++};
++
++typedef struct _phw_tonga_uvd_clocks phw_tonga_uvd_clocks;
++
++struct _phw_tonga_vce_clocks {
++ uint32_t EVCLK;
++ uint32_t ECCLK;
++};
++
++typedef struct _phw_tonga_vce_clocks phw_tonga_vce_clocks;
++
++struct tonga_power_state {
++ uint32_t magic;
++ phw_tonga_uvd_clocks uvd_clocks;
++ phw_tonga_vce_clocks vce_clocks;
++ uint32_t sam_clk;
++ uint32_t acp_clk;
++ uint16_t performance_level_count;
++ bool dc_compatible;
++ uint32_t sclk_threshold;
++ struct tonga_performance_level performance_levels[TONGA_MAX_HARDWARE_POWERLEVELS];
++};
++
++struct _phw_tonga_dpm_level {
++ bool enabled;
++ uint32_t value;
++ uint32_t param1;
++};
++typedef struct _phw_tonga_dpm_level phw_tonga_dpm_level;
++
++#define TONGA_MAX_DEEPSLEEP_DIVIDER_ID 5
++#define MAX_REGULAR_DPM_NUMBER 8
++#define TONGA_MINIMUM_ENGINE_CLOCK 2500
++
++struct tonga_single_dpm_table {
++ uint32_t count;
++ phw_tonga_dpm_level dpm_levels[MAX_REGULAR_DPM_NUMBER];
++};
++
++struct tonga_dpm_table {
++ struct tonga_single_dpm_table sclk_table;
++ struct tonga_single_dpm_table mclk_table;
++ struct tonga_single_dpm_table pcie_speed_table;
++ struct tonga_single_dpm_table vddc_table;
++ struct tonga_single_dpm_table vdd_gfx_table;
++ struct tonga_single_dpm_table vdd_ci_table;
++ struct tonga_single_dpm_table mvdd_table;
++};
++typedef struct _phw_tonga_dpm_table phw_tonga_dpm_table;
++
++
++struct _phw_tonga_clock_regisiters {
++ uint32_t vCG_SPLL_FUNC_CNTL;
++ uint32_t vCG_SPLL_FUNC_CNTL_2;
++ uint32_t vCG_SPLL_FUNC_CNTL_3;
++ uint32_t vCG_SPLL_FUNC_CNTL_4;
++ uint32_t vCG_SPLL_SPREAD_SPECTRUM;
++ uint32_t vCG_SPLL_SPREAD_SPECTRUM_2;
++ uint32_t vDLL_CNTL;
++ uint32_t vMCLK_PWRMGT_CNTL;
++ uint32_t vMPLL_AD_FUNC_CNTL;
++ uint32_t vMPLL_DQ_FUNC_CNTL;
++ uint32_t vMPLL_FUNC_CNTL;
++ uint32_t vMPLL_FUNC_CNTL_1;
++ uint32_t vMPLL_FUNC_CNTL_2;
++ uint32_t vMPLL_SS1;
++ uint32_t vMPLL_SS2;
++};
++typedef struct _phw_tonga_clock_regisiters phw_tonga_clock_registers;
++
++struct _phw_tonga_voltage_smio_registers {
++ uint32_t vs0_vid_lower_smio_cntl;
++};
++typedef struct _phw_tonga_voltage_smio_registers phw_tonga_voltage_smio_registers;
++
++
++struct _phw_tonga_mc_reg_entry {
++ uint32_t mclk_max;
++ uint32_t mc_data[SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE];
++};
++typedef struct _phw_tonga_mc_reg_entry phw_tonga_mc_reg_entry;
++
++struct _phw_tonga_mc_reg_table {
++ uint8_t last; /* number of registers*/
++ uint8_t num_entries; /* number of entries in mc_reg_table_entry used*/
++ uint16_t validflag; /* indicate the corresponding register is valid or not. 1: valid, 0: invalid. bit0->address[0], bit1->address[1], etc.*/
++ phw_tonga_mc_reg_entry mc_reg_table_entry[MAX_AC_TIMING_ENTRIES];
++ SMU72_Discrete_MCRegisterAddress mc_reg_address[SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE];
++};
++typedef struct _phw_tonga_mc_reg_table phw_tonga_mc_reg_table;
++
++#define DISABLE_MC_LOADMICROCODE 1
++#define DISABLE_MC_CFGPROGRAMMING 2
++
++/*Ultra Low Voltage parameter structure */
++struct _phw_tonga_ulv_parm{
++ bool ulv_supported;
++ uint32_t ch_ulv_parameter;
++ uint32_t ulv_volt_change_delay;
++ struct tonga_performance_level ulv_power_level;
++};
++typedef struct _phw_tonga_ulv_parm phw_tonga_ulv_parm;
++
++#define TONGA_MAX_LEAKAGE_COUNT 8
++
++struct _phw_tonga_leakage_voltage {
++ uint16_t count;
++ uint16_t leakage_id[TONGA_MAX_LEAKAGE_COUNT];
++ uint16_t actual_voltage[TONGA_MAX_LEAKAGE_COUNT];
++};
++typedef struct _phw_tonga_leakage_voltage phw_tonga_leakage_voltage;
++
++struct _phw_tonga_display_timing {
++ uint32_t min_clock_insr;
++ uint32_t num_existing_displays;
++};
++typedef struct _phw_tonga_display_timing phw_tonga_display_timing;
++
++struct _phw_tonga_dpmlevel_enable_mask {
++ uint32_t uvd_dpm_enable_mask;
++ uint32_t vce_dpm_enable_mask;
++ uint32_t acp_dpm_enable_mask;
++ uint32_t samu_dpm_enable_mask;
++ uint32_t sclk_dpm_enable_mask;
++ uint32_t mclk_dpm_enable_mask;
++ uint32_t pcie_dpm_enable_mask;
++};
++typedef struct _phw_tonga_dpmlevel_enable_mask phw_tonga_dpmlevel_enable_mask;
++
++struct _phw_tonga_pcie_perf_range {
++ uint16_t max;
++ uint16_t min;
++};
++typedef struct _phw_tonga_pcie_perf_range phw_tonga_pcie_perf_range;
++
++struct _phw_tonga_vbios_boot_state {
++ uint16_t mvdd_bootup_value;
++ uint16_t vddc_bootup_value;
++ uint16_t vddci_bootup_value;
++ uint16_t vddgfx_bootup_value;
++ uint32_t sclk_bootup_value;
++ uint32_t mclk_bootup_value;
++ uint16_t pcie_gen_bootup_value;
++ uint16_t pcie_lane_bootup_value;
++};
++typedef struct _phw_tonga_vbios_boot_state phw_tonga_vbios_boot_state;
++
++#define DPMTABLE_OD_UPDATE_SCLK 0x00000001
++#define DPMTABLE_OD_UPDATE_MCLK 0x00000002
++#define DPMTABLE_UPDATE_SCLK 0x00000004
++#define DPMTABLE_UPDATE_MCLK 0x00000008
++
++/* We need to review which fields are needed. */
++/* This is mostly a copy of the RV7xx/Evergreen structure which is close, but not identical to the N.Islands one. */
++struct tonga_hwmgr {
++ struct tonga_dpm_table dpm_table;
++ struct tonga_dpm_table golden_dpm_table;
++
++ uint32_t voting_rights_clients0;
++ uint32_t voting_rights_clients1;
++ uint32_t voting_rights_clients2;
++ uint32_t voting_rights_clients3;
++ uint32_t voting_rights_clients4;
++ uint32_t voting_rights_clients5;
++ uint32_t voting_rights_clients6;
++ uint32_t voting_rights_clients7;
++ uint32_t static_screen_threshold_unit;
++ uint32_t static_screen_threshold;
++ uint32_t voltage_control;
++ uint32_t vdd_gfx_control;
++
++ uint32_t vddc_vddci_delta;
++ uint32_t vddc_vddgfx_delta;
++
++ pp_interrupt_registration_info internal_high_thermal_interrupt_info;
++ pp_interrupt_registration_info internal_low_thermal_interrupt_info;
++ pp_interrupt_registration_info smc_to_host_interrupt_info;
++ uint32_t active_auto_throttle_sources;
++
++ pp_interrupt_registration_info external_throttle_interrupt;
++ pp_interrupt_callback external_throttle_callback;
++ void *external_throttle_context;
++
++ pp_interrupt_registration_info ctf_interrupt_info;
++ pp_interrupt_callback ctf_callback;
++ void *ctf_context;
++
++ phw_tonga_clock_registers clock_registers;
++ phw_tonga_voltage_smio_registers voltage_smio_registers;
++
++ bool is_memory_GDDR5;
++ uint16_t acpi_vddc;
++ bool pspp_notify_required; /* Flag to indicate if PSPP notification to SBIOS is required */
++ uint16_t force_pcie_gen; /* The forced PCI-E speed if not 0xffff */
++ uint16_t acpi_pcie_gen; /* The PCI-E speed at ACPI time */
++ uint32_t pcie_gen_cap; /* The PCI-E speed capabilities bitmap from CAIL */
++ uint32_t pcie_lane_cap; /* The PCI-E lane capabilities bitmap from CAIL */
++ uint32_t pcie_spc_cap; /* Symbol Per Clock Capabilities from registry */
++ phw_tonga_leakage_voltage vddc_leakage; /* The Leakage VDDC supported (based on leakage ID).*/
++ phw_tonga_leakage_voltage vddcgfx_leakage; /* The Leakage VDDC supported (based on leakage ID). */
++ phw_tonga_leakage_voltage vddci_leakage; /* The Leakage VDDCI supported (based on leakage ID). */
++
++ uint32_t mvdd_control;
++ uint32_t vddc_mask_low;
++ uint32_t mvdd_mask_low;
++ uint16_t max_vddc_in_pp_table; /* the maximum VDDC value in the powerplay table*/
++ uint16_t min_vddc_in_pp_table;
++ uint16_t max_vddci_in_pp_table; /* the maximum VDDCI value in the powerplay table */
++ uint16_t min_vddci_in_pp_table;
++ uint32_t mclk_strobe_mode_threshold;
++ uint32_t mclk_stutter_mode_threshold;
++ uint32_t mclk_edc_enable_threshold;
++ uint32_t mclk_edc_wr_enable_threshold;
++ bool is_uvd_enabled;
++ bool is_xdma_enabled;
++ phw_tonga_vbios_boot_state vbios_boot_state;
++
++ bool battery_state;
++ bool is_tlu_enabled;
++ bool pcie_performance_request;
++
++ /* -------------- SMC SRAM Address of firmware header tables ----------------*/
++ uint32_t sram_end; /* The first address after the SMC SRAM. */
++ uint32_t dpm_table_start; /* The start of the dpm table in the SMC SRAM. */
++ uint32_t soft_regs_start; /* The start of the soft registers in the SMC SRAM. */
++ uint32_t mc_reg_table_start; /* The start of the mc register table in the SMC SRAM. */
++ uint32_t fan_table_start; /* The start of the fan table in the SMC SRAM. */
++ uint32_t arb_table_start; /* The start of the ARB setting table in the SMC SRAM. */
++ SMU72_Discrete_DpmTable smc_state_table; /* The carbon copy of the SMC state table. */
++ SMU72_Discrete_MCRegisters mc_reg_table;
++ SMU72_Discrete_Ulv ulv_setting; /* The carbon copy of ULV setting. */
++ /* -------------- Stuff originally coming from Evergreen --------------------*/
++ phw_tonga_mc_reg_table tonga_mc_reg_table;
++ uint32_t vdd_ci_control;
++ pp_atomctrl_voltage_table vddc_voltage_table;
++ pp_atomctrl_voltage_table vddci_voltage_table;
++ pp_atomctrl_voltage_table vddgfx_voltage_table;
++ pp_atomctrl_voltage_table mvdd_voltage_table;
++
++ uint32_t mgcg_cgtt_local2;
++ uint32_t mgcg_cgtt_local3;
++ uint32_t gpio_debug;
++ uint32_t mc_micro_code_feature;
++ uint32_t highest_mclk;
++ uint16_t acpi_vdd_ci;
++ uint8_t mvdd_high_index;
++ uint8_t mvdd_low_index;
++ bool dll_defaule_on;
++ bool performance_request_registered;
++
++ /* ----------------- Low Power Features ---------------------*/
++ phw_tonga_bacos bacos;
++ phw_tonga_ulv_parm ulv;
++ /* ----------------- CAC Stuff ---------------------*/
++ uint32_t cac_table_start;
++ bool cac_configuration_required; /* TRUE if PP_CACConfigurationRequired == 1 */
++ bool driver_calculate_cac_leakage; /* TRUE if PP_DriverCalculateCACLeakage == 1 */
++ bool cac_enabled;
++ /* ----------------- DPM2 Parameters ---------------------*/
++ uint32_t power_containment_features;
++ bool enable_bapm_feature;
++ bool enable_tdc_limit_feature;
++ bool enable_pkg_pwr_tracking_feature;
++ bool disable_uvd_power_tune_feature;
++ phw_tonga_pt_defaults *power_tune_defaults;
++ SMU72_Discrete_PmFuses power_tune_table;
++ uint32_t ul_dte_tj_offset; /* Fudge factor in DPM table to correct HW DTE errors */
++ uint32_t fast_watemark_threshold; /* use fast watermark if clock is equal or above this. In percentage of the target high sclk. */
++
++ /* ----------------- Phase Shedding ---------------------*/
++ bool vddc_phase_shed_control;
++ /* --------------------- DI/DT --------------------------*/
++ phw_tonga_display_timing display_timing;
++ /* --------- ReadRegistry data for memory and engine clock margins ---- */
++ uint32_t engine_clock_data;
++ uint32_t memory_clock_data;
++ /* -------- Thermal Temperature Setting --------------*/
++ phw_tonga_dpmlevel_enable_mask dpm_level_enable_mask;
++ uint32_t need_update_smu7_dpm_table;
++ uint32_t sclk_dpm_key_disabled;
++ uint32_t mclk_dpm_key_disabled;
++ uint32_t pcie_dpm_key_disabled;
++ uint32_t min_engine_clocks; /* used to store the previous dal min sclock */
++ phw_tonga_pcie_perf_range pcie_gen_performance;
++ phw_tonga_pcie_perf_range pcie_lane_performance;
++ phw_tonga_pcie_perf_range pcie_gen_power_saving;
++ phw_tonga_pcie_perf_range pcie_lane_power_saving;
++ bool use_pcie_performance_levels;
++ bool use_pcie_power_saving_levels;
++ uint32_t activity_target[SMU72_MAX_LEVELS_GRAPHICS]; /* percentage value from 0-100, default 50 */
++ uint32_t mclk_activity_target;
++ uint32_t low_sclk_interrupt_threshold;
++ uint32_t last_mclk_dpm_enable_mask;
++ bool uvd_enabled;
++ uint32_t pcc_monitor_enabled;
++
++ /* --------- Power Gating States ------------*/
++ bool uvd_power_gated; /* 1: gated, 0:not gated */
++ bool vce_power_gated; /* 1: gated, 0:not gated */
++ bool samu_power_gated; /* 1: gated, 0:not gated */
++ bool acp_power_gated; /* 1: gated, 0:not gated */
++ bool pg_acp_init;
++
++};
++
++typedef struct tonga_hwmgr tonga_hwmgr;
++
++#define TONGA_DPM2_NEAR_TDP_DEC 10
++#define TONGA_DPM2_ABOVE_SAFE_INC 5
++#define TONGA_DPM2_BELOW_SAFE_INC 20
++
++#define TONGA_DPM2_LTA_WINDOW_SIZE 7 /* Log2 of the LTA window size (l2numWin_TDP). Eg. If LTA windows size is 128, then this value should be Log2(128) = 7. */
++
++#define TONGA_DPM2_LTS_TRUNCATE 0
++
++#define TONGA_DPM2_TDP_SAFE_LIMIT_PERCENT 80 /* Maximum 100 */
++
++#define TONGA_DPM2_MAXPS_PERCENT_H 90 /* Maximum 0xFF */
++#define TONGA_DPM2_MAXPS_PERCENT_M 90 /* Maximum 0xFF */
++
++#define TONGA_DPM2_PWREFFICIENCYRATIO_MARGIN 50
++
++#define TONGA_DPM2_SQ_RAMP_MAX_POWER 0x3FFF
++#define TONGA_DPM2_SQ_RAMP_MIN_POWER 0x12
++#define TONGA_DPM2_SQ_RAMP_MAX_POWER_DELTA 0x15
++#define TONGA_DPM2_SQ_RAMP_SHORT_TERM_INTERVAL_SIZE 0x1E
++#define TONGA_DPM2_SQ_RAMP_LONG_TERM_INTERVAL_RATIO 0xF
++
++#define TONGA_VOLTAGE_CONTROL_NONE 0x0
++#define TONGA_VOLTAGE_CONTROL_BY_GPIO 0x1
++#define TONGA_VOLTAGE_CONTROL_BY_SVID2 0x2
++#define TONGA_VOLTAGE_CONTROL_MERGED 0x3
++
++#define TONGA_Q88_FORMAT_CONVERSION_UNIT 256 /*To convert to Q8.8 format for firmware */
++
++#define TONGA_UNUSED_GPIO_PIN 0x7F
++
++/* Following flags shows PCIe link speed supported in driver which are decided by chipset and ASIC */
++#define CAIL_PCIE_LINK_SPEED_SUPPORT_GEN1 0x00010000
++#define CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2 0x00020000
++#define CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3 0x00040000
++#define CAIL_PCIE_LINK_SPEED_SUPPORT_MASK 0xFFFF0000
++#define CAIL_PCIE_LINK_SPEED_SUPPORT_SHIFT 16
++
++/* Following flags shows PCIe link speed supported by ASIC H/W.*/
++#define CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN1 0x00000001
++#define CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN2 0x00000002
++#define CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN3 0x00000004
++#define CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_MASK 0x0000FFFF
++#define CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_SHIFT 0
++
++/* Following flags shows PCIe lane width switch supported in driver which are decided by chipset and ASIC */
++#define CAIL_PCIE_LINK_WIDTH_SUPPORT_X1 0x00010000
++#define CAIL_PCIE_LINK_WIDTH_SUPPORT_X2 0x00020000
++#define CAIL_PCIE_LINK_WIDTH_SUPPORT_X4 0x00040000
++#define CAIL_PCIE_LINK_WIDTH_SUPPORT_X8 0x00080000
++#define CAIL_PCIE_LINK_WIDTH_SUPPORT_X12 0x00100000
++#define CAIL_PCIE_LINK_WIDTH_SUPPORT_X16 0x00200000
++#define CAIL_PCIE_LINK_WIDTH_SUPPORT_X32 0x00400000
++#define CAIL_PCIE_LINK_WIDTH_SUPPORT_SHIFT 16
++
++#define PP_HOST_TO_SMC_UL(X) cpu_to_be32(X)
++#define PP_SMC_TO_HOST_UL(X) be32_to_cpu(X)
++
++#define PP_HOST_TO_SMC_US(X) cpu_to_be16(X)
++#define PP_SMC_TO_HOST_US(X) be16_to_cpu(X)
++
++#define CONVERT_FROM_HOST_TO_SMC_UL(X) ((X) = PP_HOST_TO_SMC_UL(X))
++#define CONVERT_FROM_SMC_TO_HOST_UL(X) ((X) = PP_SMC_TO_HOST_UL(X))
++
++#define CONVERT_FROM_HOST_TO_SMC_US(X) ((X) = PP_HOST_TO_SMC_US(X))
++
++int tonga_hwmgr_init(struct pp_hwmgr *hwmgr);
++
++#endif
++
+diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_powertune.h b/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_powertune.h
+new file mode 100644
+index 0000000..8e6670b
+--- /dev/null
++++ b/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_powertune.h
+@@ -0,0 +1,66 @@
++/*
++ * Copyright 2015 Advanced Micro Devices, Inc.
++ *
++ * Permission is hereby granted, free of charge, to any person obtaining a
++ * copy of this software and associated documentation files (the "Software"),
++ * to deal in the Software without restriction, including without limitation
++ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
++ * and/or sell copies of the Software, and to permit persons to whom the
++ * Software is furnished to do so, subject to the following conditions:
++ *
++ * The above copyright notice and this permission notice shall be included in
++ * all copies or substantial portions of the Software.
++ *
++ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
++ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
++ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
++ * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
++ * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
++ * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
++ * OTHER DEALINGS IN THE SOFTWARE.
++ *
++ */
++
++#ifndef TONGA_POWERTUNE_H
++#define TONGA_POWERTUNE_H
++
++enum _phw_tonga_ptc_config_reg_type {
++ TONGA_CONFIGREG_MMR = 0,
++ TONGA_CONFIGREG_SMC_IND,
++ TONGA_CONFIGREG_DIDT_IND,
++ TONGA_CONFIGREG_CACHE,
++
++ TONGA_CONFIGREG_MAX
++};
++typedef enum _phw_tonga_ptc_config_reg_type phw_tonga_ptc_config_reg_type;
++
++/* PowerContainment Features */
++#define POWERCONTAINMENT_FEATURE_BAPM 0x00000001
++#define POWERCONTAINMENT_FEATURE_TDCLimit 0x00000002
++#define POWERCONTAINMENT_FEATURE_PkgPwrLimit 0x00000004
++
++struct _phw_tonga_pt_config_reg {
++ uint32_t Offset;
++ uint32_t Mask;
++ uint32_t Shift;
++ uint32_t Value;
++ phw_tonga_ptc_config_reg_type Type;
++};
++typedef struct _phw_tonga_pt_config_reg phw_tonga_pt_config_reg;
++
++struct _phw_tonga_pt_defaults {
++ uint8_t svi_load_line_en;
++ uint8_t svi_load_line_vddC;
++ uint8_t tdc_vddc_throttle_release_limit_perc;
++ uint8_t tdc_mawt;
++ uint8_t tdc_waterfall_ctl;
++ uint8_t dte_ambient_temp_base;
++ uint32_t display_cac;
++ uint32_t bamp_temp_gradient;
++ uint16_t bapmti_r[SMU72_DTE_ITERATIONS * SMU72_DTE_SOURCES * SMU72_DTE_SINKS];
++ uint16_t bapmti_rc[SMU72_DTE_ITERATIONS * SMU72_DTE_SOURCES * SMU72_DTE_SINKS];
++};
++typedef struct _phw_tonga_pt_defaults phw_tonga_pt_defaults;
++
++#endif
++
+diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_pptable.h b/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_pptable.h
+new file mode 100644
+index 0000000..9a4456e
+--- /dev/null
++++ b/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_pptable.h
+@@ -0,0 +1,406 @@
++/*
++ * Copyright 2015 Advanced Micro Devices, Inc.
++ *
++ * Permission is hereby granted, free of charge, to any person obtaining a
++ * copy of this software and associated documentation files (the "Software"),
++ * to deal in the Software without restriction, including without limitation
++ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
++ * and/or sell copies of the Software, and to permit persons to whom the
++ * Software is furnished to do so, subject to the following conditions:
++ *
++ * The above copyright notice and this permission notice shall be included in
++ * all copies or substantial portions of the Software.
++ *
++ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
++ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
++ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
++ * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
++ * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
++ * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
++ * OTHER DEALINGS IN THE SOFTWARE.
++ *
++ */
++
++#ifndef TONGA_PPTABLE_H
++#define TONGA_PPTABLE_H
++
++/** \file
++ * This is a PowerPlay table header file
++ */
++#pragma pack(push, 1)
++
++#include "hwmgr.h"
++
++#define ATOM_TONGA_PP_FANPARAMETERS_TACHOMETER_PULSES_PER_REVOLUTION_MASK 0x0f
++#define ATOM_TONGA_PP_FANPARAMETERS_NOFAN 0x80 /* No fan is connected to this controller. */
++
++#define ATOM_TONGA_PP_THERMALCONTROLLER_NONE 0
++#define ATOM_TONGA_PP_THERMALCONTROLLER_LM96163 17
++#define ATOM_TONGA_PP_THERMALCONTROLLER_TONGA 21
++#define ATOM_TONGA_PP_THERMALCONTROLLER_FIJI 22
++
++/*
++ * Thermal controller 'combo type' to use an external controller for Fan control and an internal controller for thermal.
++ * We probably should reserve the bit 0x80 for this use.
++ * To keep the number of these types low we should also use the same code for all ASICs (i.e. do not distinguish RV6xx and RV7xx Internal here).
++ * The driver can pick the correct internal controller based on the ASIC.
++ */
++
++#define ATOM_TONGA_PP_THERMALCONTROLLER_ADT7473_WITH_INTERNAL 0x89 /* ADT7473 Fan Control + Internal Thermal Controller */
++#define ATOM_TONGA_PP_THERMALCONTROLLER_EMC2103_WITH_INTERNAL 0x8D /* EMC2103 Fan Control + Internal Thermal Controller */
++
++/*/* ATOM_TONGA_POWERPLAYTABLE::ulPlatformCaps */
++#define ATOM_TONGA_PP_PLATFORM_CAP_VDDGFX_CONTROL 0x1 /* This cap indicates whether vddgfx will be a separated power rail. */
++#define ATOM_TONGA_PP_PLATFORM_CAP_POWERPLAY 0x2 /* This cap indicates whether this is a mobile part and CCC need to show Powerplay page. */
++#define ATOM_TONGA_PP_PLATFORM_CAP_SBIOSPOWERSOURCE 0x4 /* This cap indicates whether power source notificaiton is done by SBIOS directly. */
++#define ATOM_TONGA_PP_PLATFORM_CAP_DISABLE_VOLTAGE_ISLAND 0x8 /* Enable the option to overwrite voltage island feature to be disabled, regardless of VddGfx power rail support. */
++#define ____RETIRE16____ 0x10
++#define ATOM_TONGA_PP_PLATFORM_CAP_HARDWAREDC 0x20 /* This cap indicates whether power source notificaiton is done by GPIO directly. */
++#define ____RETIRE64____ 0x40
++#define ____RETIRE128____ 0x80
++#define ____RETIRE256____ 0x100
++#define ____RETIRE512____ 0x200
++#define ____RETIRE1024____ 0x400
++#define ____RETIRE2048____ 0x800
++#define ATOM_TONGA_PP_PLATFORM_CAP_MVDD_CONTROL 0x1000 /* This cap indicates dynamic MVDD is required. Uncheck to disable it. */
++#define ____RETIRE2000____ 0x2000
++#define ____RETIRE4000____ 0x4000
++#define ATOM_TONGA_PP_PLATFORM_CAP_VDDCI_CONTROL 0x8000 /* This cap indicates dynamic VDDCI is required. Uncheck to disable it. */
++#define ____RETIRE10000____ 0x10000
++#define ATOM_TONGA_PP_PLATFORM_CAP_BACO 0x20000 /* Enable to indicate the driver supports BACO state. */
++
++#define ATOM_TONGA_PP_PLATFORM_CAP_OUTPUT_THERMAL2GPIO17 0x100000 /* Enable to indicate the driver supports thermal2GPIO17. */
++#define ATOM_TONGA_PP_PLATFORM_COMBINE_PCC_WITH_THERMAL_SIGNAL 0x1000000 /* Enable to indicate if thermal and PCC are sharing the same GPIO */
++#define ATOM_TONGA_PLATFORM_LOAD_POST_PRODUCTION_FIRMWARE 0x2000000
++
++/* ATOM_PPLIB_NONCLOCK_INFO::usClassification */
++#define ATOM_PPLIB_CLASSIFICATION_UI_MASK 0x0007
++#define ATOM_PPLIB_CLASSIFICATION_UI_SHIFT 0
++#define ATOM_PPLIB_CLASSIFICATION_UI_NONE 0
++#define ATOM_PPLIB_CLASSIFICATION_UI_BATTERY 1
++#define ATOM_PPLIB_CLASSIFICATION_UI_BALANCED 3
++#define ATOM_PPLIB_CLASSIFICATION_UI_PERFORMANCE 5
++/* 2, 4, 6, 7 are reserved */
++
++#define ATOM_PPLIB_CLASSIFICATION_BOOT 0x0008
++#define ATOM_PPLIB_CLASSIFICATION_THERMAL 0x0010
++#define ATOM_PPLIB_CLASSIFICATION_LIMITEDPOWERSOURCE 0x0020
++#define ATOM_PPLIB_CLASSIFICATION_REST 0x0040
++#define ATOM_PPLIB_CLASSIFICATION_FORCED 0x0080
++#define ATOM_PPLIB_CLASSIFICATION_ACPI 0x1000
++
++/* ATOM_PPLIB_NONCLOCK_INFO::usClassification2 */
++#define ATOM_PPLIB_CLASSIFICATION2_LIMITEDPOWERSOURCE_2 0x0001
++
++#define ATOM_Tonga_DISALLOW_ON_DC 0x00004000
++#define ATOM_Tonga_ENABLE_VARIBRIGHT 0x00008000
++
++#define ATOM_Tonga_TABLE_REVISION_TONGA 7
++
++typedef struct _ATOM_Tonga_POWERPLAYTABLE {
++ ATOM_COMMON_TABLE_HEADER sHeader;
++
++ UCHAR ucTableRevision;
++ USHORT usTableSize; /*the size of header structure */
++
++ ULONG ulGoldenPPID;
++ ULONG ulGoldenRevision;
++ USHORT usFormatID;
++
++ USHORT usVoltageTime; /*in microseconds */
++ ULONG ulPlatformCaps; /*See ATOM_Tonga_CAPS_* */
++
++ ULONG ulMaxODEngineClock; /*For Overdrive. */
++ ULONG ulMaxODMemoryClock; /*For Overdrive. */
++
++ USHORT usPowerControlLimit;
++ USHORT usUlvVoltageOffset; /*in mv units */
++
++ USHORT usStateArrayOffset; /*points to ATOM_Tonga_State_Array */
++ USHORT usFanTableOffset; /*points to ATOM_Tonga_Fan_Table */
++ USHORT usThermalControllerOffset; /*points to ATOM_Tonga_Thermal_Controller */
++ USHORT usReserv; /*CustomThermalPolicy removed for Tonga. Keep this filed as reserved. */
++
++ USHORT usMclkDependencyTableOffset; /*points to ATOM_Tonga_MCLK_Dependency_Table */
++ USHORT usSclkDependencyTableOffset; /*points to ATOM_Tonga_SCLK_Dependency_Table */
++ USHORT usVddcLookupTableOffset; /*points to ATOM_Tonga_Voltage_Lookup_Table */
++ USHORT usVddgfxLookupTableOffset; /*points to ATOM_Tonga_Voltage_Lookup_Table */
++
++ USHORT usMMDependencyTableOffset; /*points to ATOM_Tonga_MM_Dependency_Table */
++
++ USHORT usVCEStateTableOffset; /*points to ATOM_Tonga_VCE_State_Table; */
++
++ USHORT usPPMTableOffset; /*points to ATOM_Tonga_PPM_Table */
++ USHORT usPowerTuneTableOffset; /*points to ATOM_PowerTune_Table */
++
++ USHORT usHardLimitTableOffset; /*points to ATOM_Tonga_Hard_Limit_Table */
++
++ USHORT usPCIETableOffset; /*points to ATOM_Tonga_PCIE_Table */
++
++ USHORT usGPIOTableOffset; /*points to ATOM_Tonga_GPIO_Table */
++
++ USHORT usReserved[6]; /*TODO: modify reserved size to fit structure aligning */
++} ATOM_Tonga_POWERPLAYTABLE;
++
++typedef struct _ATOM_Tonga_State {
++ UCHAR ucEngineClockIndexHigh;
++ UCHAR ucEngineClockIndexLow;
++
++ UCHAR ucMemoryClockIndexHigh;
++ UCHAR ucMemoryClockIndexLow;
++
++ UCHAR ucPCIEGenLow;
++ UCHAR ucPCIEGenHigh;
++
++ UCHAR ucPCIELaneLow;
++ UCHAR ucPCIELaneHigh;
++
++ USHORT usClassification;
++ ULONG ulCapsAndSettings;
++ USHORT usClassification2;
++ UCHAR ucUnused[4];
++} ATOM_Tonga_State;
++
++typedef struct _ATOM_Tonga_State_Array {
++ UCHAR ucRevId;
++ UCHAR ucNumEntries; /* Number of entries. */
++ ATOM_Tonga_State states[1]; /* Dynamically allocate entries. */
++} ATOM_Tonga_State_Array;
++
++typedef struct _ATOM_Tonga_MCLK_Dependency_Record {
++ UCHAR ucVddcInd; /* Vddc voltage */
++ USHORT usVddci;
++ USHORT usVddgfxOffset; /* Offset relative to Vddc voltage */
++ USHORT usMvdd;
++ ULONG ulMclk;
++ USHORT usReserved;
++} ATOM_Tonga_MCLK_Dependency_Record;
++
++typedef struct _ATOM_Tonga_MCLK_Dependency_Table {
++ UCHAR ucRevId;
++ UCHAR ucNumEntries; /* Number of entries. */
++ ATOM_Tonga_MCLK_Dependency_Record entries[1]; /* Dynamically allocate entries. */
++} ATOM_Tonga_MCLK_Dependency_Table;
++
++typedef struct _ATOM_Tonga_SCLK_Dependency_Record {
++ UCHAR ucVddInd; /* Base voltage */
++ USHORT usVddcOffset; /* Offset relative to base voltage */
++ ULONG ulSclk;
++ USHORT usEdcCurrent;
++ UCHAR ucReliabilityTemperature;
++ UCHAR ucCKSVOffsetandDisable; /* Bits 0~6: Voltage offset for CKS, Bit 7: Disable/enable for the SCLK level. */
++} ATOM_Tonga_SCLK_Dependency_Record;
++
++typedef struct _ATOM_Tonga_SCLK_Dependency_Table {
++ UCHAR ucRevId;
++ UCHAR ucNumEntries; /* Number of entries. */
++ ATOM_Tonga_SCLK_Dependency_Record entries[1]; /* Dynamically allocate entries. */
++} ATOM_Tonga_SCLK_Dependency_Table;
++
++typedef struct _ATOM_Tonga_PCIE_Record {
++ UCHAR ucPCIEGenSpeed;
++ UCHAR usPCIELaneWidth;
++ UCHAR ucReserved[2];
++} ATOM_Tonga_PCIE_Record;
++
++typedef struct _ATOM_Tonga_PCIE_Table {
++ UCHAR ucRevId;
++ UCHAR ucNumEntries; /* Number of entries. */
++ ATOM_Tonga_PCIE_Record entries[1]; /* Dynamically allocate entries. */
++} ATOM_Tonga_PCIE_Table;
++
++typedef struct _ATOM_Tonga_MM_Dependency_Record {
++ UCHAR ucVddcInd; /* VDDC voltage */
++ USHORT usVddgfxOffset; /* Offset relative to VDDC voltage */
++ ULONG ulDClk; /* UVD D-clock */
++ ULONG ulVClk; /* UVD V-clock */
++ ULONG ulEClk; /* VCE clock */
++ ULONG ulAClk; /* ACP clock */
++ ULONG ulSAMUClk; /* SAMU clock */
++} ATOM_Tonga_MM_Dependency_Record;
++
++typedef struct _ATOM_Tonga_MM_Dependency_Table {
++ UCHAR ucRevId;
++ UCHAR ucNumEntries; /* Number of entries. */
++ ATOM_Tonga_MM_Dependency_Record entries[1]; /* Dynamically allocate entries. */
++} ATOM_Tonga_MM_Dependency_Table;
++
++typedef struct _ATOM_Tonga_Voltage_Lookup_Record {
++ USHORT usVdd; /* Base voltage */
++ USHORT usCACLow;
++ USHORT usCACMid;
++ USHORT usCACHigh;
++} ATOM_Tonga_Voltage_Lookup_Record;
++
++typedef struct _ATOM_Tonga_Voltage_Lookup_Table {
++ UCHAR ucRevId;
++ UCHAR ucNumEntries; /* Number of entries. */
++ ATOM_Tonga_Voltage_Lookup_Record entries[1]; /* Dynamically allocate entries. */
++} ATOM_Tonga_Voltage_Lookup_Table;
++
++typedef struct _ATOM_Tonga_Fan_Table {
++ UCHAR ucRevId; /* Change this if the table format changes or version changes so that the other fields are not the same. */
++ UCHAR ucTHyst; /* Temperature hysteresis. Integer. */
++ USHORT usTMin; /* The temperature, in 0.01 centigrades, below which we just run at a minimal PWM. */
++ USHORT usTMed; /* The middle temperature where we change slopes. */
++ USHORT usTHigh; /* The high point above TMed for adjusting the second slope. */
++ USHORT usPWMMin; /* The minimum PWM value in percent (0.01% increments). */
++ USHORT usPWMMed; /* The PWM value (in percent) at TMed. */
++ USHORT usPWMHigh; /* The PWM value at THigh. */
++ USHORT usTMax; /* The max temperature */
++ UCHAR ucFanControlMode; /* Legacy or Fuzzy Fan mode */
++ USHORT usFanPWMMax; /* Maximum allowed fan power in percent */
++ USHORT usFanOutputSensitivity; /* Sensitivity of fan reaction to temepature changes */
++ USHORT usFanRPMMax; /* The default value in RPM */
++ ULONG ulMinFanSCLKAcousticLimit; /* Minimum Fan Controller SCLK Frequency Acoustic Limit. */
++ UCHAR ucTargetTemperature; /* Advanced fan controller target temperature. */
++ UCHAR ucMinimumPWMLimit; /* The minimum PWM that the advanced fan controller can set. This should be set to the highest PWM that will run the fan at its lowest RPM. */
++ USHORT usReserved;
++} ATOM_Tonga_Fan_Table;
++
++typedef struct _ATOM_Fiji_Fan_Table {
++ UCHAR ucRevId; /* Change this if the table format changes or version changes so that the other fields are not the same. */
++ UCHAR ucTHyst; /* Temperature hysteresis. Integer. */
++ USHORT usTMin; /* The temperature, in 0.01 centigrades, below which we just run at a minimal PWM. */
++ USHORT usTMed; /* The middle temperature where we change slopes. */
++ USHORT usTHigh; /* The high point above TMed for adjusting the second slope. */
++ USHORT usPWMMin; /* The minimum PWM value in percent (0.01% increments). */
++ USHORT usPWMMed; /* The PWM value (in percent) at TMed. */
++ USHORT usPWMHigh; /* The PWM value at THigh. */
++ USHORT usTMax; /* The max temperature */
++ UCHAR ucFanControlMode; /* Legacy or Fuzzy Fan mode */
++ USHORT usFanPWMMax; /* Maximum allowed fan power in percent */
++ USHORT usFanOutputSensitivity; /* Sensitivity of fan reaction to temepature changes */
++ USHORT usFanRPMMax; /* The default value in RPM */
++ ULONG ulMinFanSCLKAcousticLimit; /* Minimum Fan Controller SCLK Frequency Acoustic Limit. */
++ UCHAR ucTargetTemperature; /* Advanced fan controller target temperature. */
++ UCHAR ucMinimumPWMLimit; /* The minimum PWM that the advanced fan controller can set. This should be set to the highest PWM that will run the fan at its lowest RPM. */
++ USHORT usFanGainEdge;
++ USHORT usFanGainHotspot;
++ USHORT usFanGainLiquid;
++ USHORT usFanGainVrVddc;
++ USHORT usFanGainVrMvdd;
++ USHORT usFanGainPlx;
++ USHORT usFanGainHbm;
++ USHORT usReserved;
++} ATOM_Fiji_Fan_Table;
++
++typedef struct _ATOM_Tonga_Thermal_Controller {
++ UCHAR ucRevId;
++ UCHAR ucType; /* one of ATOM_TONGA_PP_THERMALCONTROLLER_* */
++ UCHAR ucI2cLine; /* as interpreted by DAL I2C */
++ UCHAR ucI2cAddress;
++ UCHAR ucFanParameters; /* Fan Control Parameters. */
++ UCHAR ucFanMinRPM; /* Fan Minimum RPM (hundreds) -- for display purposes only. */
++ UCHAR ucFanMaxRPM; /* Fan Maximum RPM (hundreds) -- for display purposes only. */
++ UCHAR ucReserved;
++ UCHAR ucFlags; /* to be defined */
++} ATOM_Tonga_Thermal_Controller;
++
++typedef struct _ATOM_Tonga_VCE_State_Record {
++ UCHAR ucVCEClockIndex; /*index into usVCEDependencyTableOffset of 'ATOM_Tonga_MM_Dependency_Table' type */
++ UCHAR ucFlag; /* 2 bits indicates memory p-states */
++ UCHAR ucSCLKIndex; /*index into ATOM_Tonga_SCLK_Dependency_Table */
++ UCHAR ucMCLKIndex; /*index into ATOM_Tonga_MCLK_Dependency_Table */
++} ATOM_Tonga_VCE_State_Record;
++
++typedef struct _ATOM_Tonga_VCE_State_Table {
++ UCHAR ucRevId;
++ UCHAR ucNumEntries;
++ ATOM_Tonga_VCE_State_Record entries[1];
++} ATOM_Tonga_VCE_State_Table;
++
++typedef struct _ATOM_Tonga_PowerTune_Table {
++ UCHAR ucRevId;
++ USHORT usTDP;
++ USHORT usConfigurableTDP;
++ USHORT usTDC;
++ USHORT usBatteryPowerLimit;
++ USHORT usSmallPowerLimit;
++ USHORT usLowCACLeakage;
++ USHORT usHighCACLeakage;
++ USHORT usMaximumPowerDeliveryLimit;
++ USHORT usTjMax;
++ USHORT usPowerTuneDataSetID;
++ USHORT usEDCLimit;
++ USHORT usSoftwareShutdownTemp;
++ USHORT usClockStretchAmount;
++ USHORT usReserve[2];
++} ATOM_Tonga_PowerTune_Table;
++
++typedef struct _ATOM_Fiji_PowerTune_Table {
++ UCHAR ucRevId;
++ USHORT usTDP;
++ USHORT usConfigurableTDP;
++ USHORT usTDC;
++ USHORT usBatteryPowerLimit;
++ USHORT usSmallPowerLimit;
++ USHORT usLowCACLeakage;
++ USHORT usHighCACLeakage;
++ USHORT usMaximumPowerDeliveryLimit;
++ USHORT usTjMax; /* For Fiji, this is also usTemperatureLimitEdge; */
++ USHORT usPowerTuneDataSetID;
++ USHORT usEDCLimit;
++ USHORT usSoftwareShutdownTemp;
++ USHORT usClockStretchAmount;
++ USHORT usTemperatureLimitHotspot; /*The following are added for Fiji */
++ USHORT usTemperatureLimitLiquid1;
++ USHORT usTemperatureLimitLiquid2;
++ USHORT usTemperatureLimitVrVddc;
++ USHORT usTemperatureLimitVrMvdd;
++ USHORT usTemperatureLimitPlx;
++ UCHAR ucLiquid1_I2C_address; /*Liquid */
++ UCHAR ucLiquid2_I2C_address;
++ UCHAR ucLiquid_I2C_Line;
++ UCHAR ucVr_I2C_address; /*VR */
++ UCHAR ucVr_I2C_Line;
++ UCHAR ucPlx_I2C_address; /*PLX */
++ UCHAR ucPlx_I2C_Line;
++ USHORT usReserved;
++} ATOM_Fiji_PowerTune_Table;
++
++#define ATOM_PPM_A_A 1
++#define ATOM_PPM_A_I 2
++typedef struct _ATOM_Tonga_PPM_Table {
++ UCHAR ucRevId;
++ UCHAR ucPpmDesign; /*A+I or A+A */
++ USHORT usCpuCoreNumber;
++ ULONG ulPlatformTDP;
++ ULONG ulSmallACPlatformTDP;
++ ULONG ulPlatformTDC;
++ ULONG ulSmallACPlatformTDC;
++ ULONG ulApuTDP;
++ ULONG ulDGpuTDP;
++ ULONG ulDGpuUlvPower;
++ ULONG ulTjmax;
++} ATOM_Tonga_PPM_Table;
++
++typedef struct _ATOM_Tonga_Hard_Limit_Record {
++ ULONG ulSCLKLimit;
++ ULONG ulMCLKLimit;
++ USHORT usVddcLimit;
++ USHORT usVddciLimit;
++ USHORT usVddgfxLimit;
++} ATOM_Tonga_Hard_Limit_Record;
++
++typedef struct _ATOM_Tonga_Hard_Limit_Table {
++ UCHAR ucRevId;
++ UCHAR ucNumEntries;
++ ATOM_Tonga_Hard_Limit_Record entries[1];
++} ATOM_Tonga_Hard_Limit_Table;
++
++typedef struct _ATOM_Tonga_GPIO_Table {
++ UCHAR ucRevId;
++ UCHAR ucVRHotTriggeredSclkDpmIndex; /* If VRHot signal is triggered SCLK will be limited to this DPM level */
++ UCHAR ucReserve[5];
++} ATOM_Tonga_GPIO_Table;
++
++typedef struct _PPTable_Generic_SubTable_Header {
++ UCHAR ucRevId;
++} PPTable_Generic_SubTable_Header;
++
++
++#pragma pack(pop)
++
++
++#endif
+diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_processpptables.c b/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_processpptables.c
+new file mode 100644
+index 0000000..ddb03a0
+--- /dev/null
++++ b/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_processpptables.c
+@@ -0,0 +1,1129 @@
++/*
++ * Copyright 2015 Advanced Micro Devices, Inc.
++ *
++ * Permission is hereby granted, free of charge, to any person obtaining a
++ * copy of this software and associated documentation files (the "Software"),
++ * to deal in the Software without restriction, including without limitation
++ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
++ * and/or sell copies of the Software, and to permit persons to whom the
++ * Software is furnished to do so, subject to the following conditions:
++ *
++ * The above copyright notice and this permission notice shall be included in
++ * all copies or substantial portions of the Software.
++ *
++ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
++ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
++ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
++ * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
++ * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
++ * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
++ * OTHER DEALINGS IN THE SOFTWARE.
++ *
++ */
++#include <linux/module.h>
++#include <linux/slab.h>
++#include <linux/fb.h>
++
++#include "tonga_processpptables.h"
++#include "ppatomctrl.h"
++#include "atombios.h"
++#include "pp_debug.h"
++#include "hwmgr.h"
++#include "cgs_common.h"
++#include "tonga_pptable.h"
++
++/**
++ * Private Function used during initialization.
++ * @param hwmgr Pointer to the hardware manager.
++ * @param setIt A flag indication if the capability should be set (TRUE) or reset (FALSE).
++ * @param cap Which capability to set/reset.
++ */
++static void set_hw_cap(struct pp_hwmgr *hwmgr, bool setIt, enum phm_platform_caps cap)
++{
++ if (setIt)
++ phm_cap_set(hwmgr->platform_descriptor.platformCaps, cap);
++ else
++ phm_cap_unset(hwmgr->platform_descriptor.platformCaps, cap);
++}
++
++
++/**
++ * Private Function used during initialization.
++ * @param hwmgr Pointer to the hardware manager.
++ * @param powerplay_caps the bit array (from BIOS) of capability bits.
++ * @exception the current implementation always returns 1.
++ */
++static int set_platform_caps(struct pp_hwmgr *hwmgr, uint32_t powerplay_caps)
++{
++ PP_ASSERT_WITH_CODE((~powerplay_caps & ____RETIRE16____),
++ "ATOM_PP_PLATFORM_CAP_ASPM_L1 is not supported!", continue);
++ PP_ASSERT_WITH_CODE((~powerplay_caps & ____RETIRE64____),
++ "ATOM_PP_PLATFORM_CAP_GEMINIPRIMARY is not supported!", continue);
++ PP_ASSERT_WITH_CODE((~powerplay_caps & ____RETIRE512____),
++ "ATOM_PP_PLATFORM_CAP_SIDEPORTCONTROL is not supported!", continue);
++ PP_ASSERT_WITH_CODE((~powerplay_caps & ____RETIRE1024____),
++ "ATOM_PP_PLATFORM_CAP_TURNOFFPLL_ASPML1 is not supported!", continue);
++ PP_ASSERT_WITH_CODE((~powerplay_caps & ____RETIRE2048____),
++ "ATOM_PP_PLATFORM_CAP_HTLINKCONTROL is not supported!", continue);
++
++ set_hw_cap(
++ hwmgr,
++ 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_POWERPLAY),
++ PHM_PlatformCaps_PowerPlaySupport
++ );
++
++ set_hw_cap(
++ hwmgr,
++ 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_SBIOSPOWERSOURCE),
++ PHM_PlatformCaps_BiosPowerSourceControl
++ );
++
++ set_hw_cap(
++ hwmgr,
++ 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_HARDWAREDC),
++ PHM_PlatformCaps_AutomaticDCTransition
++ );
++
++ set_hw_cap(
++ hwmgr,
++ 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_MVDD_CONTROL),
++ PHM_PlatformCaps_EnableMVDDControl
++ );
++
++ set_hw_cap(
++ hwmgr,
++ 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_VDDCI_CONTROL),
++ PHM_PlatformCaps_ControlVDDCI
++ );
++
++ set_hw_cap(
++ hwmgr,
++ 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_VDDGFX_CONTROL),
++ PHM_PlatformCaps_ControlVDDGFX
++ );
++
++ set_hw_cap(
++ hwmgr,
++ 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_BACO),
++ PHM_PlatformCaps_BACO
++ );
++
++ set_hw_cap(
++ hwmgr,
++ 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_DISABLE_VOLTAGE_ISLAND),
++ PHM_PlatformCaps_DisableVoltageIsland
++ );
++
++ set_hw_cap(
++ hwmgr,
++ 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_COMBINE_PCC_WITH_THERMAL_SIGNAL),
++ PHM_PlatformCaps_CombinePCCWithThermalSignal
++ );
++
++ set_hw_cap(
++ hwmgr,
++ 0 != (powerplay_caps & ATOM_TONGA_PLATFORM_LOAD_POST_PRODUCTION_FIRMWARE),
++ PHM_PlatformCaps_LoadPostProductionFirmware
++ );
++
++ return 0;
++}
++
++/**
++ * Private Function to get the PowerPlay Table Address.
++ */
++const void *get_powerplay_table(struct pp_hwmgr *hwmgr)
++{
++ int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo);
++
++ u16 size;
++ u8 frev, crev;
++ void *table_address;
++
++ table_address = (ATOM_Tonga_POWERPLAYTABLE *)
++ cgs_atom_get_data_table(hwmgr->device, index, &size, &frev, &crev);
++
++ hwmgr->soft_pp_table = table_address; /*Cache the result in RAM.*/
++
++ return table_address;
++}
++
++static int get_vddc_lookup_table(
++ struct pp_hwmgr *hwmgr,
++ phm_ppt_v1_voltage_lookup_table **lookup_table,
++ const ATOM_Tonga_Voltage_Lookup_Table *vddc_lookup_pp_tables,
++ uint32_t max_levels
++ )
++{
++ uint32_t table_size, i;
++ phm_ppt_v1_voltage_lookup_table *table;
++
++ PP_ASSERT_WITH_CODE((0 != vddc_lookup_pp_tables->ucNumEntries),
++ "Invalid CAC Leakage PowerPlay Table!", return 1);
++
++ table_size = sizeof(uint32_t) +
++ sizeof(phm_ppt_v1_voltage_lookup_record) * max_levels;
++
++ table = (phm_ppt_v1_voltage_lookup_table *)
++ kzalloc(table_size, GFP_KERNEL);
++
++ if (NULL == table)
++ return -1;
++
++ memset(table, 0x00, table_size);
++
++ table->count = vddc_lookup_pp_tables->ucNumEntries;
++
++ for (i = 0; i < vddc_lookup_pp_tables->ucNumEntries; i++) {
++ table->entries[i].us_calculated = 0;
++ table->entries[i].us_vdd =
++ vddc_lookup_pp_tables->entries[i].usVdd;
++ table->entries[i].us_cac_low =
++ vddc_lookup_pp_tables->entries[i].usCACLow;
++ table->entries[i].us_cac_mid =
++ vddc_lookup_pp_tables->entries[i].usCACMid;
++ table->entries[i].us_cac_high =
++ vddc_lookup_pp_tables->entries[i].usCACHigh;
++ }
++
++ *lookup_table = table;
++
++ return 0;
++}
++
++/**
++ * Private Function used during initialization.
++ * Initialize Platform Power Management Parameter table
++ * @param hwmgr Pointer to the hardware manager.
++ * @param atom_ppm_table Pointer to PPM table in VBIOS
++ */
++static int get_platform_power_management_table(
++ struct pp_hwmgr *hwmgr,
++ ATOM_Tonga_PPM_Table *atom_ppm_table)
++{
++ struct phm_ppm_table *ptr = kzalloc(sizeof(ATOM_Tonga_PPM_Table), GFP_KERNEL);
++ struct phm_ppt_v1_information *pp_table_information =
++ (struct phm_ppt_v1_information *)(hwmgr->pptable);
++
++ if (NULL == ptr)
++ return -1;
++
++ ptr->ppm_design
++ = atom_ppm_table->ucPpmDesign;
++ ptr->cpu_core_number
++ = atom_ppm_table->usCpuCoreNumber;
++ ptr->platform_tdp
++ = atom_ppm_table->ulPlatformTDP;
++ ptr->small_ac_platform_tdp
++ = atom_ppm_table->ulSmallACPlatformTDP;
++ ptr->platform_tdc
++ = atom_ppm_table->ulPlatformTDC;
++ ptr->small_ac_platform_tdc
++ = atom_ppm_table->ulSmallACPlatformTDC;
++ ptr->apu_tdp
++ = atom_ppm_table->ulApuTDP;
++ ptr->dgpu_tdp
++ = atom_ppm_table->ulDGpuTDP;
++ ptr->dgpu_ulv_power
++ = atom_ppm_table->ulDGpuUlvPower;
++ ptr->tj_max
++ = atom_ppm_table->ulTjmax;
++
++ pp_table_information->ppm_parameter_table = ptr;
++
++ return 0;
++}
++
++/**
++ * Private Function used during initialization.
++ * Initialize TDP limits for DPM2
++ * @param hwmgr Pointer to the hardware manager.
++ * @param powerplay_table Pointer to the PowerPlay Table.
++ */
++static int init_dpm_2_parameters(
++ struct pp_hwmgr *hwmgr,
++ const ATOM_Tonga_POWERPLAYTABLE *powerplay_table
++ )
++{
++ int result = 0;
++ struct phm_ppt_v1_information *pp_table_information = (struct phm_ppt_v1_information *)(hwmgr->pptable);
++ ATOM_Tonga_PPM_Table *atom_ppm_table;
++ uint32_t disable_ppm = 0;
++ uint32_t disable_power_control = 0;
++
++ pp_table_information->us_ulv_voltage_offset =
++ le16_to_cpu(powerplay_table->usUlvVoltageOffset);
++
++ pp_table_information->ppm_parameter_table = NULL;
++ pp_table_information->vddc_lookup_table = NULL;
++ pp_table_information->vddgfx_lookup_table = NULL;
++ /* TDP limits */
++ hwmgr->platform_descriptor.TDPODLimit =
++ le16_to_cpu(powerplay_table->usPowerControlLimit);
++ hwmgr->platform_descriptor.TDPAdjustment = 0;
++ hwmgr->platform_descriptor.VidAdjustment = 0;
++ hwmgr->platform_descriptor.VidAdjustmentPolarity = 0;
++ hwmgr->platform_descriptor.VidMinLimit = 0;
++ hwmgr->platform_descriptor.VidMaxLimit = 1500000;
++ hwmgr->platform_descriptor.VidStep = 6250;
++
++ disable_power_control = 0;
++ if (0 == disable_power_control) {
++ /* enable TDP overdrive (PowerControl) feature as well if supported */
++ if (hwmgr->platform_descriptor.TDPODLimit != 0)
++ phm_cap_set(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_PowerControl);
++ }
++
++ if (0 != powerplay_table->usVddcLookupTableOffset) {
++ const ATOM_Tonga_Voltage_Lookup_Table *pVddcCACTable =
++ (ATOM_Tonga_Voltage_Lookup_Table *)(((unsigned long)powerplay_table) +
++ le16_to_cpu(powerplay_table->usVddcLookupTableOffset));
++
++ result = get_vddc_lookup_table(hwmgr,
++ &pp_table_information->vddc_lookup_table, pVddcCACTable, 16);
++ }
++
++ if (0 != powerplay_table->usVddgfxLookupTableOffset) {
++ const ATOM_Tonga_Voltage_Lookup_Table *pVddgfxCACTable =
++ (ATOM_Tonga_Voltage_Lookup_Table *)(((unsigned long)powerplay_table) +
++ le16_to_cpu(powerplay_table->usVddgfxLookupTableOffset));
++
++ result = get_vddc_lookup_table(hwmgr,
++ &pp_table_information->vddgfx_lookup_table, pVddgfxCACTable, 16);
++ }
++
++ disable_ppm = 0;
++ if (0 == disable_ppm) {
++ atom_ppm_table = (ATOM_Tonga_PPM_Table *)
++ (((unsigned long)powerplay_table) + le16_to_cpu(powerplay_table->usPPMTableOffset));
++
++ if (0 != powerplay_table->usPPMTableOffset) {
++ if (1 == get_platform_power_management_table(hwmgr, atom_ppm_table)) {
++ phm_cap_set(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_EnablePlatformPowerManagement);
++ }
++ }
++ }
++
++ return result;
++}
++
++static int get_valid_clk(
++ struct pp_hwmgr *hwmgr,
++ struct phm_clock_array **clk_table,
++ const phm_ppt_v1_clock_voltage_dependency_table * clk_volt_pp_table
++ )
++{
++ uint32_t table_size, i;
++ struct phm_clock_array *table;
++
++ PP_ASSERT_WITH_CODE((0 != clk_volt_pp_table->count),
++ "Invalid PowerPlay Table!", return -1);
++
++ table_size = sizeof(uint32_t) +
++ sizeof(uint32_t) * clk_volt_pp_table->count;
++
++ table = (struct phm_clock_array *)kzalloc(table_size, GFP_KERNEL);
++
++ if (NULL == table)
++ return -1;
++
++ memset(table, 0x00, table_size);
++
++ table->count = (uint32_t)clk_volt_pp_table->count;
++
++ for (i = 0; i < table->count; i++)
++ table->values[i] = (uint32_t)clk_volt_pp_table->entries[i].clk;
++
++ *clk_table = table;
++
++ return 0;
++}
++
++static int get_hard_limits(
++ struct pp_hwmgr *hwmgr,
++ struct phm_clock_and_voltage_limits *limits,
++ const ATOM_Tonga_Hard_Limit_Table * limitable
++ )
++{
++ PP_ASSERT_WITH_CODE((0 != limitable->ucNumEntries), "Invalid PowerPlay Table!", return -1);
++
++ /* currently we always take entries[0] parameters */
++ limits->sclk = (uint32_t)limitable->entries[0].ulSCLKLimit;
++ limits->mclk = (uint32_t)limitable->entries[0].ulMCLKLimit;
++ limits->vddc = (uint16_t)limitable->entries[0].usVddcLimit;
++ limits->vddci = (uint16_t)limitable->entries[0].usVddciLimit;
++ limits->vddgfx = (uint16_t)limitable->entries[0].usVddgfxLimit;
++
++ return 0;
++}
++
++static int get_mclk_voltage_dependency_table(
++ struct pp_hwmgr *hwmgr,
++ phm_ppt_v1_clock_voltage_dependency_table **pp_tonga_mclk_dep_table,
++ const ATOM_Tonga_MCLK_Dependency_Table * mclk_dep_table
++ )
++{
++ uint32_t table_size, i;
++ phm_ppt_v1_clock_voltage_dependency_table *mclk_table;
++
++ PP_ASSERT_WITH_CODE((0 != mclk_dep_table->ucNumEntries),
++ "Invalid PowerPlay Table!", return -1);
++
++ table_size = sizeof(uint32_t) + sizeof(phm_ppt_v1_clock_voltage_dependency_record)
++ * mclk_dep_table->ucNumEntries;
++
++ mclk_table = (phm_ppt_v1_clock_voltage_dependency_table *)
++ kzalloc(table_size, GFP_KERNEL);
++
++ if (NULL == mclk_table)
++ return -1;
++
++ memset(mclk_table, 0x00, table_size);
++
++ mclk_table->count = (uint32_t)mclk_dep_table->ucNumEntries;
++
++ for (i = 0; i < mclk_dep_table->ucNumEntries; i++) {
++ mclk_table->entries[i].vddInd =
++ mclk_dep_table->entries[i].ucVddcInd;
++ mclk_table->entries[i].vdd_offset =
++ mclk_dep_table->entries[i].usVddgfxOffset;
++ mclk_table->entries[i].vddci =
++ mclk_dep_table->entries[i].usVddci;
++ mclk_table->entries[i].mvdd =
++ mclk_dep_table->entries[i].usMvdd;
++ mclk_table->entries[i].clk =
++ mclk_dep_table->entries[i].ulMclk;
++ }
++
++ *pp_tonga_mclk_dep_table = mclk_table;
++
++ return 0;
++}
++
++static int get_sclk_voltage_dependency_table(
++ struct pp_hwmgr *hwmgr,
++ phm_ppt_v1_clock_voltage_dependency_table **pp_tonga_sclk_dep_table,
++ const ATOM_Tonga_SCLK_Dependency_Table * sclk_dep_table
++ )
++{
++ uint32_t table_size, i;
++ phm_ppt_v1_clock_voltage_dependency_table *sclk_table;
++
++ PP_ASSERT_WITH_CODE((0 != sclk_dep_table->ucNumEntries),
++ "Invalid PowerPlay Table!", return -1);
++
++ table_size = sizeof(uint32_t) + sizeof(phm_ppt_v1_clock_voltage_dependency_record)
++ * sclk_dep_table->ucNumEntries;
++
++ sclk_table = (phm_ppt_v1_clock_voltage_dependency_table *)
++ kzalloc(table_size, GFP_KERNEL);
++
++ if (NULL == sclk_table)
++ return -1;
++
++ memset(sclk_table, 0x00, table_size);
++
++ sclk_table->count = (uint32_t)sclk_dep_table->ucNumEntries;
++
++ for (i = 0; i < sclk_dep_table->ucNumEntries; i++) {
++ sclk_table->entries[i].vddInd =
++ sclk_dep_table->entries[i].ucVddInd;
++ sclk_table->entries[i].vdd_offset =
++ sclk_dep_table->entries[i].usVddcOffset;
++ sclk_table->entries[i].clk =
++ sclk_dep_table->entries[i].ulSclk;
++ sclk_table->entries[i].cks_enable =
++ (((sclk_dep_table->entries[i].ucCKSVOffsetandDisable & 0x80) >> 7) == 0) ? 1 : 0;
++ sclk_table->entries[i].cks_voffset =
++ (sclk_dep_table->entries[i].ucCKSVOffsetandDisable & 0x7F);
++ }
++
++ *pp_tonga_sclk_dep_table = sclk_table;
++
++ return 0;
++}
++
++static int get_pcie_table(
++ struct pp_hwmgr *hwmgr,
++ phm_ppt_v1_pcie_table **pp_tonga_pcie_table,
++ const ATOM_Tonga_PCIE_Table * atom_pcie_table
++ )
++{
++ uint32_t table_size, i, pcie_count;
++ phm_ppt_v1_pcie_table *pcie_table;
++ struct phm_ppt_v1_information *pp_table_information =
++ (struct phm_ppt_v1_information *)(hwmgr->pptable);
++ PP_ASSERT_WITH_CODE((0 != atom_pcie_table->ucNumEntries),
++ "Invalid PowerPlay Table!", return -1);
++
++ table_size = sizeof(uint32_t) +
++ sizeof(phm_ppt_v1_pcie_record) * atom_pcie_table->ucNumEntries;
++
++ pcie_table = (phm_ppt_v1_pcie_table *)kzalloc(table_size, GFP_KERNEL);
++
++ if (NULL == pcie_table)
++ return -1;
++
++ memset(pcie_table, 0x00, table_size);
++
++ /*
++ * Make sure the number of pcie entries are less than or equal to sclk dpm levels.
++ * Since first PCIE entry is for ULV, #pcie has to be <= SclkLevel + 1.
++ */
++ pcie_count = (pp_table_information->vdd_dep_on_sclk->count) + 1;
++ if ((uint32_t)atom_pcie_table->ucNumEntries <= pcie_count)
++ pcie_count = (uint32_t)atom_pcie_table->ucNumEntries;
++ else
++ printk(KERN_ERR "[ powerplay ] Number of Pcie Entries exceed the number of SCLK Dpm Levels! \
++ Disregarding the excess entries... \n");
++
++ pcie_table->count = pcie_count;
++
++ for (i = 0; i < pcie_count; i++) {
++ pcie_table->entries[i].gen_speed =
++ atom_pcie_table->entries[i].ucPCIEGenSpeed;
++ pcie_table->entries[i].lane_width =
++ atom_pcie_table->entries[i].usPCIELaneWidth;
++ }
++
++ *pp_tonga_pcie_table = pcie_table;
++
++ return 0;
++}
++
++static int get_cac_tdp_table(
++ struct pp_hwmgr *hwmgr,
++ struct phm_cac_tdp_table **cac_tdp_table,
++ const PPTable_Generic_SubTable_Header * table
++ )
++{
++ uint32_t table_size;
++ struct phm_cac_tdp_table *tdp_table;
++
++ table_size = sizeof(uint32_t) + sizeof(struct phm_cac_tdp_table);
++ tdp_table = kzalloc(table_size, GFP_KERNEL);
++
++ if (NULL == tdp_table)
++ return -1;
++
++ memset(tdp_table, 0x00, table_size);
++
++ hwmgr->dyn_state.cac_dtp_table = kzalloc(table_size, GFP_KERNEL);
++
++ if (NULL == hwmgr->dyn_state.cac_dtp_table)
++ return -1;
++
++ memset(hwmgr->dyn_state.cac_dtp_table, 0x00, table_size);
++
++ if (table->ucRevId < 3) {
++ const ATOM_Tonga_PowerTune_Table *tonga_table =
++ (ATOM_Tonga_PowerTune_Table *)table;
++ tdp_table->usTDP = tonga_table->usTDP;
++ tdp_table->usConfigurableTDP =
++ tonga_table->usConfigurableTDP;
++ tdp_table->usTDC = tonga_table->usTDC;
++ tdp_table->usBatteryPowerLimit =
++ tonga_table->usBatteryPowerLimit;
++ tdp_table->usSmallPowerLimit =
++ tonga_table->usSmallPowerLimit;
++ tdp_table->usLowCACLeakage =
++ tonga_table->usLowCACLeakage;
++ tdp_table->usHighCACLeakage =
++ tonga_table->usHighCACLeakage;
++ tdp_table->usMaximumPowerDeliveryLimit =
++ tonga_table->usMaximumPowerDeliveryLimit;
++ tdp_table->usDefaultTargetOperatingTemp =
++ tonga_table->usTjMax;
++ tdp_table->usTargetOperatingTemp =
++ tonga_table->usTjMax; /*Set the initial temp to the same as default */
++ tdp_table->usPowerTuneDataSetID =
++ tonga_table->usPowerTuneDataSetID;
++ tdp_table->usSoftwareShutdownTemp =
++ tonga_table->usSoftwareShutdownTemp;
++ tdp_table->usClockStretchAmount =
++ tonga_table->usClockStretchAmount;
++ } else { /* Fiji and newer */
++ const ATOM_Fiji_PowerTune_Table *fijitable =
++ (ATOM_Fiji_PowerTune_Table *)table;
++ tdp_table->usTDP = fijitable->usTDP;
++ tdp_table->usConfigurableTDP = fijitable->usConfigurableTDP;
++ tdp_table->usTDC = fijitable->usTDC;
++ tdp_table->usBatteryPowerLimit = fijitable->usBatteryPowerLimit;
++ tdp_table->usSmallPowerLimit = fijitable->usSmallPowerLimit;
++ tdp_table->usLowCACLeakage = fijitable->usLowCACLeakage;
++ tdp_table->usHighCACLeakage = fijitable->usHighCACLeakage;
++ tdp_table->usMaximumPowerDeliveryLimit =
++ fijitable->usMaximumPowerDeliveryLimit;
++ tdp_table->usDefaultTargetOperatingTemp =
++ fijitable->usTjMax;
++ tdp_table->usTargetOperatingTemp =
++ fijitable->usTjMax; /*Set the initial temp to the same as default */
++ tdp_table->usPowerTuneDataSetID =
++ fijitable->usPowerTuneDataSetID;
++ tdp_table->usSoftwareShutdownTemp =
++ fijitable->usSoftwareShutdownTemp;
++ tdp_table->usClockStretchAmount =
++ fijitable->usClockStretchAmount;
++ tdp_table->usTemperatureLimitHotspot =
++ fijitable->usTemperatureLimitHotspot;
++ tdp_table->usTemperatureLimitLiquid1 =
++ fijitable->usTemperatureLimitLiquid1;
++ tdp_table->usTemperatureLimitLiquid2 =
++ fijitable->usTemperatureLimitLiquid2;
++ tdp_table->usTemperatureLimitVrVddc =
++ fijitable->usTemperatureLimitVrVddc;
++ tdp_table->usTemperatureLimitVrMvdd =
++ fijitable->usTemperatureLimitVrMvdd;
++ tdp_table->usTemperatureLimitPlx =
++ fijitable->usTemperatureLimitPlx;
++ tdp_table->ucLiquid1_I2C_address =
++ fijitable->ucLiquid1_I2C_address;
++ tdp_table->ucLiquid2_I2C_address =
++ fijitable->ucLiquid2_I2C_address;
++ tdp_table->ucLiquid_I2C_Line =
++ fijitable->ucLiquid_I2C_Line;
++ tdp_table->ucVr_I2C_address = fijitable->ucVr_I2C_address;
++ tdp_table->ucVr_I2C_Line = fijitable->ucVr_I2C_Line;
++ tdp_table->ucPlx_I2C_address = fijitable->ucPlx_I2C_address;
++ tdp_table->ucPlx_I2C_Line = fijitable->ucPlx_I2C_Line;
++ }
++
++ *cac_tdp_table = tdp_table;
++
++ return 0;
++}
++
++static int get_mm_clock_voltage_table(
++ struct pp_hwmgr *hwmgr,
++ phm_ppt_v1_mm_clock_voltage_dependency_table **tonga_mm_table,
++ const ATOM_Tonga_MM_Dependency_Table * mm_dependency_table
++ )
++{
++ uint32_t table_size, i;
++ const ATOM_Tonga_MM_Dependency_Record *mm_dependency_record;
++ phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table;
++
++ PP_ASSERT_WITH_CODE((0 != mm_dependency_table->ucNumEntries),
++ "Invalid PowerPlay Table!", return -1);
++ table_size = sizeof(uint32_t) +
++ sizeof(phm_ppt_v1_mm_clock_voltage_dependency_record)
++ * mm_dependency_table->ucNumEntries;
++ mm_table = (phm_ppt_v1_mm_clock_voltage_dependency_table *)
++ kzalloc(table_size, GFP_KERNEL);
++
++ if (NULL == mm_table)
++ return -1;
++
++ memset(mm_table, 0x00, table_size);
++
++ mm_table->count = mm_dependency_table->ucNumEntries;
++
++ for (i = 0; i < mm_dependency_table->ucNumEntries; i++) {
++ mm_dependency_record = &mm_dependency_table->entries[i];
++ mm_table->entries[i].vddcInd = mm_dependency_record->ucVddcInd;
++ mm_table->entries[i].vddgfx_offset = mm_dependency_record->usVddgfxOffset;
++ mm_table->entries[i].aclk = mm_dependency_record->ulAClk;
++ mm_table->entries[i].samclock = mm_dependency_record->ulSAMUClk;
++ mm_table->entries[i].eclk = mm_dependency_record->ulEClk;
++ mm_table->entries[i].vclk = mm_dependency_record->ulVClk;
++ mm_table->entries[i].dclk = mm_dependency_record->ulDClk;
++ }
++
++ *tonga_mm_table = mm_table;
++
++ return 0;
++}
++
++/**
++ * Private Function used during initialization.
++ * Initialize clock voltage dependency
++ * @param hwmgr Pointer to the hardware manager.
++ * @param powerplay_table Pointer to the PowerPlay Table.
++ */
++static int init_clock_voltage_dependency(
++ struct pp_hwmgr *hwmgr,
++ const ATOM_Tonga_POWERPLAYTABLE *powerplay_table
++ )
++{
++ int result = 0;
++ struct phm_ppt_v1_information *pp_table_information =
++ (struct phm_ppt_v1_information *)(hwmgr->pptable);
++
++ const ATOM_Tonga_MM_Dependency_Table *mm_dependency_table =
++ (const ATOM_Tonga_MM_Dependency_Table *)(((unsigned long) powerplay_table) +
++ le16_to_cpu(powerplay_table->usMMDependencyTableOffset));
++ const PPTable_Generic_SubTable_Header *pPowerTuneTable =
++ (const PPTable_Generic_SubTable_Header *)(((unsigned long) powerplay_table) +
++ le16_to_cpu(powerplay_table->usPowerTuneTableOffset));
++ const ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table =
++ (const ATOM_Tonga_MCLK_Dependency_Table *)(((unsigned long) powerplay_table) +
++ le16_to_cpu(powerplay_table->usMclkDependencyTableOffset));
++ const ATOM_Tonga_SCLK_Dependency_Table *sclk_dep_table =
++ (const ATOM_Tonga_SCLK_Dependency_Table *)(((unsigned long) powerplay_table) +
++ le16_to_cpu(powerplay_table->usSclkDependencyTableOffset));
++ const ATOM_Tonga_Hard_Limit_Table *pHardLimits =
++ (const ATOM_Tonga_Hard_Limit_Table *)(((unsigned long) powerplay_table) +
++ le16_to_cpu(powerplay_table->usHardLimitTableOffset));
++ const ATOM_Tonga_PCIE_Table *pcie_table =
++ (const ATOM_Tonga_PCIE_Table *)(((unsigned long) powerplay_table) +
++ le16_to_cpu(powerplay_table->usPCIETableOffset));
++
++ pp_table_information->vdd_dep_on_sclk = NULL;
++ pp_table_information->vdd_dep_on_mclk = NULL;
++ pp_table_information->mm_dep_table = NULL;
++ pp_table_information->pcie_table = NULL;
++
++ if (powerplay_table->usMMDependencyTableOffset != 0)
++ result = get_mm_clock_voltage_table(hwmgr,
++ &pp_table_information->mm_dep_table, mm_dependency_table);
++
++ if (result == 0 && powerplay_table->usPowerTuneTableOffset != 0)
++ result = get_cac_tdp_table(hwmgr,
++ &pp_table_information->cac_dtp_table, pPowerTuneTable);
++
++ if (result == 0 && powerplay_table->usSclkDependencyTableOffset != 0)
++ result = get_sclk_voltage_dependency_table(hwmgr,
++ &pp_table_information->vdd_dep_on_sclk, sclk_dep_table);
++
++ if (result == 0 && powerplay_table->usMclkDependencyTableOffset != 0)
++ result = get_mclk_voltage_dependency_table(hwmgr,
++ &pp_table_information->vdd_dep_on_mclk, mclk_dep_table);
++
++ if (result == 0 && powerplay_table->usPCIETableOffset != 0)
++ result = get_pcie_table(hwmgr,
++ &pp_table_information->pcie_table, pcie_table);
++
++ if (result == 0 && powerplay_table->usHardLimitTableOffset != 0)
++ result = get_hard_limits(hwmgr,
++ &pp_table_information->max_clock_voltage_on_dc, pHardLimits);
++
++ hwmgr->dyn_state.max_clock_voltage_on_dc.sclk =
++ pp_table_information->max_clock_voltage_on_dc.sclk;
++ hwmgr->dyn_state.max_clock_voltage_on_dc.mclk =
++ pp_table_information->max_clock_voltage_on_dc.mclk;
++ hwmgr->dyn_state.max_clock_voltage_on_dc.vddc =
++ pp_table_information->max_clock_voltage_on_dc.vddc;
++ hwmgr->dyn_state.max_clock_voltage_on_dc.vddci =
++ pp_table_information->max_clock_voltage_on_dc.vddci;
++
++ if (result == 0 && (NULL != pp_table_information->vdd_dep_on_mclk)
++ && (0 != pp_table_information->vdd_dep_on_mclk->count))
++ result = get_valid_clk(hwmgr, &pp_table_information->valid_mclk_values,
++ pp_table_information->vdd_dep_on_mclk);
++
++ if (result == 0 && (NULL != pp_table_information->vdd_dep_on_sclk)
++ && (0 != pp_table_information->vdd_dep_on_sclk->count))
++ result = get_valid_clk(hwmgr, &pp_table_information->valid_sclk_values,
++ pp_table_information->vdd_dep_on_sclk);
++
++ return result;
++}
++
++/** Retrieves the (signed) Overdrive limits from VBIOS.
++ * The max engine clock, memory clock and max temperature come from the firmware info table.
++ *
++ * The information is placed into the platform descriptor.
++ *
++ * @param hwmgr source of the VBIOS table and owner of the platform descriptor to be updated.
++ * @param powerplay_table the address of the PowerPlay table.
++ *
++ * @return 1 as long as the firmware info table was present and of a supported version.
++ */
++static int init_over_drive_limits(
++ struct pp_hwmgr *hwmgr,
++ const ATOM_Tonga_POWERPLAYTABLE *powerplay_table)
++{
++ hwmgr->platform_descriptor.overdriveLimit.engineClock =
++ le16_to_cpu(powerplay_table->ulMaxODEngineClock);
++ hwmgr->platform_descriptor.overdriveLimit.memoryClock =
++ le16_to_cpu(powerplay_table->ulMaxODMemoryClock);
++
++ hwmgr->platform_descriptor.minOverdriveVDDC = 0;
++ hwmgr->platform_descriptor.maxOverdriveVDDC = 0;
++ hwmgr->platform_descriptor.overdriveVDDCStep = 0;
++
++ if (hwmgr->platform_descriptor.overdriveLimit.engineClock > 0 \
++ && hwmgr->platform_descriptor.overdriveLimit.memoryClock > 0) {
++ phm_cap_set(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_ACOverdriveSupport);
++ }
++
++ return 0;
++}
++
++/**
++ * Private Function used during initialization.
++ * Inspect the PowerPlay table for obvious signs of corruption.
++ * @param hwmgr Pointer to the hardware manager.
++ * @param powerplay_table Pointer to the PowerPlay Table.
++ * @exception This implementation always returns 1.
++ */
++static int init_thermal_controller(
++ struct pp_hwmgr *hwmgr,
++ const ATOM_Tonga_POWERPLAYTABLE *powerplay_table
++ )
++{
++ const PPTable_Generic_SubTable_Header *fan_table;
++ ATOM_Tonga_Thermal_Controller *thermal_controller;
++
++ thermal_controller = (ATOM_Tonga_Thermal_Controller *)
++ (((unsigned long)powerplay_table) +
++ le16_to_cpu(powerplay_table->usThermalControllerOffset));
++ PP_ASSERT_WITH_CODE((0 != powerplay_table->usThermalControllerOffset),
++ "Thermal controller table not set!", return -1);
++
++ hwmgr->thermal_controller.ucType = thermal_controller->ucType;
++ hwmgr->thermal_controller.ucI2cLine = thermal_controller->ucI2cLine;
++ hwmgr->thermal_controller.ucI2cAddress = thermal_controller->ucI2cAddress;
++
++ hwmgr->thermal_controller.fanInfo.bNoFan =
++ (0 != (thermal_controller->ucFanParameters & ATOM_TONGA_PP_FANPARAMETERS_NOFAN));
++
++ hwmgr->thermal_controller.fanInfo.ucTachometerPulsesPerRevolution =
++ thermal_controller->ucFanParameters &
++ ATOM_TONGA_PP_FANPARAMETERS_TACHOMETER_PULSES_PER_REVOLUTION_MASK;
++
++ hwmgr->thermal_controller.fanInfo.ulMinRPM
++ = thermal_controller->ucFanMinRPM * 100UL;
++ hwmgr->thermal_controller.fanInfo.ulMaxRPM
++ = thermal_controller->ucFanMaxRPM * 100UL;
++
++ set_hw_cap(
++ hwmgr,
++ ATOM_TONGA_PP_THERMALCONTROLLER_NONE != hwmgr->thermal_controller.ucType,
++ PHM_PlatformCaps_ThermalController
++ );
++
++ if (0 == powerplay_table->usFanTableOffset)
++ return -1;
++
++ fan_table = (const PPTable_Generic_SubTable_Header *)
++ (((unsigned long)powerplay_table) +
++ le16_to_cpu(powerplay_table->usFanTableOffset));
++
++ PP_ASSERT_WITH_CODE((0 != powerplay_table->usFanTableOffset),
++ "Fan table not set!", return -1);
++ PP_ASSERT_WITH_CODE((0 < fan_table->ucRevId),
++ "Unsupported fan table format!", return -1);
++
++ hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay
++ = 100000;
++ phm_cap_set(hwmgr->platform_descriptor.platformCaps,
++ PHM_PlatformCaps_MicrocodeFanControl);
++
++ if (fan_table->ucRevId < 8) {
++ const ATOM_Tonga_Fan_Table *tonga_fan_table =
++ (ATOM_Tonga_Fan_Table *)fan_table;
++ hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst
++ = tonga_fan_table->ucTHyst;
++ hwmgr->thermal_controller.advanceFanControlParameters.usTMin
++ = tonga_fan_table->usTMin;
++ hwmgr->thermal_controller.advanceFanControlParameters.usTMed
++ = tonga_fan_table->usTMed;
++ hwmgr->thermal_controller.advanceFanControlParameters.usTHigh
++ = tonga_fan_table->usTHigh;
++ hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin
++ = tonga_fan_table->usPWMMin;
++ hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed
++ = tonga_fan_table->usPWMMed;
++ hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh
++ = tonga_fan_table->usPWMHigh;
++ hwmgr->thermal_controller.advanceFanControlParameters.usTMax
++ = 10900; /* hard coded */
++ hwmgr->thermal_controller.advanceFanControlParameters.usTMax
++ = tonga_fan_table->usTMax;
++ hwmgr->thermal_controller.advanceFanControlParameters.ucFanControlMode
++ = tonga_fan_table->ucFanControlMode;
++ hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM
++ = tonga_fan_table->usFanPWMMax;
++ hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity
++ = 4836;
++ hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity
++ = tonga_fan_table->usFanOutputSensitivity;
++ hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanRPM
++ = tonga_fan_table->usFanRPMMax;
++ hwmgr->thermal_controller.advanceFanControlParameters.ulMinFanSCLKAcousticLimit
++ = (tonga_fan_table->ulMinFanSCLKAcousticLimit / 100); /* PPTable stores it in 10Khz unit for 2 decimal places. SMC wants MHz. */
++ hwmgr->thermal_controller.advanceFanControlParameters.ucTargetTemperature
++ = tonga_fan_table->ucTargetTemperature;
++ hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit
++ = tonga_fan_table->ucMinimumPWMLimit;
++ } else {
++ const ATOM_Fiji_Fan_Table *fiji_fan_table =
++ (ATOM_Fiji_Fan_Table *)fan_table;
++ hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst
++ = fiji_fan_table->ucTHyst;
++ hwmgr->thermal_controller.advanceFanControlParameters.usTMin
++ = fiji_fan_table->usTMin;
++ hwmgr->thermal_controller.advanceFanControlParameters.usTMed
++ = fiji_fan_table->usTMed;
++ hwmgr->thermal_controller.advanceFanControlParameters.usTHigh
++ = fiji_fan_table->usTHigh;
++ hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin
++ = fiji_fan_table->usPWMMin;
++ hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed
++ = fiji_fan_table->usPWMMed;
++ hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh
++ = fiji_fan_table->usPWMHigh;
++ hwmgr->thermal_controller.advanceFanControlParameters.usTMax
++ = fiji_fan_table->usTMax;
++ hwmgr->thermal_controller.advanceFanControlParameters.ucFanControlMode
++ = fiji_fan_table->ucFanControlMode;
++ hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM
++ = fiji_fan_table->usFanPWMMax;
++ hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity
++ = 4836;
++ hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity
++ = fiji_fan_table->usFanOutputSensitivity;
++ hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanRPM
++ = fiji_fan_table->usFanRPMMax;
++ hwmgr->thermal_controller.advanceFanControlParameters.ulMinFanSCLKAcousticLimit
++ = (fiji_fan_table->ulMinFanSCLKAcousticLimit / 100); /* PPTable stores it in 10Khz unit for 2 decimal places. SMC wants MHz. */
++ hwmgr->thermal_controller.advanceFanControlParameters.ucTargetTemperature
++ = fiji_fan_table->ucTargetTemperature;
++ hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit
++ = fiji_fan_table->ucMinimumPWMLimit;
++
++ hwmgr->thermal_controller.advanceFanControlParameters.usFanGainEdge
++ = fiji_fan_table->usFanGainEdge;
++ hwmgr->thermal_controller.advanceFanControlParameters.usFanGainHotspot
++ = fiji_fan_table->usFanGainHotspot;
++ hwmgr->thermal_controller.advanceFanControlParameters.usFanGainLiquid
++ = fiji_fan_table->usFanGainLiquid;
++ hwmgr->thermal_controller.advanceFanControlParameters.usFanGainVrVddc
++ = fiji_fan_table->usFanGainVrVddc;
++ hwmgr->thermal_controller.advanceFanControlParameters.usFanGainVrMvdd
++ = fiji_fan_table->usFanGainVrMvdd;
++ hwmgr->thermal_controller.advanceFanControlParameters.usFanGainPlx
++ = fiji_fan_table->usFanGainPlx;
++ hwmgr->thermal_controller.advanceFanControlParameters.usFanGainHbm
++ = fiji_fan_table->usFanGainHbm;
++ }
++
++ return 0;
++}
++
++/**
++ * Private Function used during initialization.
++ * Inspect the PowerPlay table for obvious signs of corruption.
++ * @param hwmgr Pointer to the hardware manager.
++ * @param powerplay_table Pointer to the PowerPlay Table.
++ * @exception 2 if the powerplay table is incorrect.
++ */
++static int check_powerplay_tables(
++ struct pp_hwmgr *hwmgr,
++ const ATOM_Tonga_POWERPLAYTABLE *powerplay_table
++ )
++{
++ const ATOM_Tonga_State_Array *state_arrays;
++
++ state_arrays = (ATOM_Tonga_State_Array *)(((unsigned long)powerplay_table) +
++ le16_to_cpu(powerplay_table->usStateArrayOffset));
++
++ PP_ASSERT_WITH_CODE((ATOM_Tonga_TABLE_REVISION_TONGA <=
++ powerplay_table->sHeader.ucTableFormatRevision),
++ "Unsupported PPTable format!", return -1);
++ PP_ASSERT_WITH_CODE((0 != powerplay_table->usStateArrayOffset),
++ "State table is not set!", return -1);
++ PP_ASSERT_WITH_CODE((0 < powerplay_table->sHeader.usStructureSize),
++ "Invalid PowerPlay Table!", return -1);
++ PP_ASSERT_WITH_CODE((0 < state_arrays->ucNumEntries),
++ "Invalid PowerPlay Table!", return -1);
++
++ return 0;
++}
++
++int tonga_pp_tables_initialize(struct pp_hwmgr *hwmgr)
++{
++ int result = 0;
++ const ATOM_Tonga_POWERPLAYTABLE *powerplay_table;
++
++ hwmgr->pptable = kzalloc(sizeof(struct phm_ppt_v1_information), GFP_KERNEL);
++
++ if (NULL == hwmgr->pptable)
++ return -1;
++
++ memset(hwmgr->pptable, 0x00, sizeof(struct phm_ppt_v1_information));
++
++ powerplay_table = get_powerplay_table(hwmgr);
++
++ PP_ASSERT_WITH_CODE((NULL != powerplay_table),
++ "Missing PowerPlay Table!", return -1);
++
++ result = check_powerplay_tables(hwmgr, powerplay_table);
++
++ if (0 == result)
++ result = set_platform_caps(hwmgr,
++ le32_to_cpu(powerplay_table->ulPlatformCaps));
++
++ if (0 == result)
++ result = init_thermal_controller(hwmgr, powerplay_table);
++
++ if (0 == result)
++ result = init_over_drive_limits(hwmgr, powerplay_table);
++
++ if (0 == result)
++ result = init_clock_voltage_dependency(hwmgr, powerplay_table);
++
++ if (0 == result)
++ result = init_dpm_2_parameters(hwmgr, powerplay_table);
++
++ return result;
++}
++
++int tonga_pp_tables_uninitialize(struct pp_hwmgr *hwmgr)
++{
++ int result = 0;
++ struct phm_ppt_v1_information *pp_table_information =
++ (struct phm_ppt_v1_information *)(hwmgr->pptable);
++
++ if (NULL != hwmgr->soft_pp_table) {
++ kfree(hwmgr->soft_pp_table);
++ hwmgr->soft_pp_table = NULL;
++ }
++
++ if (NULL != pp_table_information->vdd_dep_on_sclk)
++ pp_table_information->vdd_dep_on_sclk = NULL;
++
++ if (NULL != pp_table_information->vdd_dep_on_mclk)
++ pp_table_information->vdd_dep_on_mclk = NULL;
++
++ if (NULL != pp_table_information->valid_mclk_values)
++ pp_table_information->valid_mclk_values = NULL;
++
++ if (NULL != pp_table_information->valid_sclk_values)
++ pp_table_information->valid_sclk_values = NULL;
++
++ if (NULL != pp_table_information->vddc_lookup_table)
++ pp_table_information->vddc_lookup_table = NULL;
++
++ if (NULL != pp_table_information->vddgfx_lookup_table)
++ pp_table_information->vddgfx_lookup_table = NULL;
++
++ if (NULL != pp_table_information->mm_dep_table)
++ pp_table_information->mm_dep_table = NULL;
++
++ if (NULL != pp_table_information->cac_dtp_table)
++ pp_table_information->cac_dtp_table = NULL;
++
++ if (NULL != hwmgr->dyn_state.cac_dtp_table)
++ hwmgr->dyn_state.cac_dtp_table = NULL;
++
++ if (NULL != pp_table_information->ppm_parameter_table)
++ pp_table_information->ppm_parameter_table = NULL;
++
++ if (NULL != pp_table_information->pcie_table)
++ pp_table_information->pcie_table = NULL;
++
++ if (NULL != hwmgr->pptable) {
++ kfree(hwmgr->pptable);
++ hwmgr->pptable = NULL;
++ }
++
++ return result;
++}
++
++const struct pp_table_func tonga_pptable_funcs = {
++ .pptable_init = tonga_pp_tables_initialize,
++ .pptable_fini = tonga_pp_tables_uninitialize,
++};
++
++int tonga_get_number_of_powerplay_table_entries(struct pp_hwmgr *hwmgr)
++{
++ const ATOM_Tonga_State_Array * state_arrays;
++ const ATOM_Tonga_POWERPLAYTABLE *pp_table = get_powerplay_table(hwmgr);
++
++ PP_ASSERT_WITH_CODE((NULL != pp_table),
++ "Missing PowerPlay Table!", return -1);
++ PP_ASSERT_WITH_CODE((pp_table->sHeader.ucTableFormatRevision >=
++ ATOM_Tonga_TABLE_REVISION_TONGA),
++ "Incorrect PowerPlay table revision!", return -1);
++
++ state_arrays = (ATOM_Tonga_State_Array *)(((unsigned long)pp_table) +
++ le16_to_cpu(pp_table->usStateArrayOffset));
++
++ return (uint32_t)(state_arrays->ucNumEntries);
++}
++
++/**
++* Private function to convert flags stored in the BIOS to software flags in PowerPlay.
++*/
++static uint32_t make_classification_flags(struct pp_hwmgr *hwmgr,
++ uint16_t classification, uint16_t classification2)
++{
++ uint32_t result = 0;
++
++ if (classification & ATOM_PPLIB_CLASSIFICATION_BOOT)
++ result |= PP_StateClassificationFlag_Boot;
++
++ if (classification & ATOM_PPLIB_CLASSIFICATION_THERMAL)
++ result |= PP_StateClassificationFlag_Thermal;
++
++ if (classification & ATOM_PPLIB_CLASSIFICATION_LIMITEDPOWERSOURCE)
++ result |= PP_StateClassificationFlag_LimitedPowerSource;
++
++ if (classification & ATOM_PPLIB_CLASSIFICATION_REST)
++ result |= PP_StateClassificationFlag_Rest;
++
++ if (classification & ATOM_PPLIB_CLASSIFICATION_FORCED)
++ result |= PP_StateClassificationFlag_Forced;
++
++ if (classification & ATOM_PPLIB_CLASSIFICATION_ACPI)
++ result |= PP_StateClassificationFlag_ACPI;
++
++ if (classification2 & ATOM_PPLIB_CLASSIFICATION2_LIMITEDPOWERSOURCE_2)
++ result |= PP_StateClassificationFlag_LimitedPowerSource_2;
++
++ return result;
++}
++
++/**
++* Create a Power State out of an entry in the PowerPlay table.
++* This function is called by the hardware back-end.
++* @param hwmgr Pointer to the hardware manager.
++* @param entry_index The index of the entry to be extracted from the table.
++* @param power_state The address of the PowerState instance being created.
++* @return -1 if the entry cannot be retrieved.
++*/
++int tonga_get_powerplay_table_entry(struct pp_hwmgr *hwmgr,
++ uint32_t entry_index, struct pp_power_state *power_state,
++ int (*call_back_func)(struct pp_hwmgr *, void *,
++ struct pp_power_state *, void *, uint32_t))
++{
++ int result = 0;
++ const ATOM_Tonga_State_Array * state_arrays;
++ const ATOM_Tonga_State *state_entry;
++ const ATOM_Tonga_POWERPLAYTABLE *pp_table = get_powerplay_table(hwmgr);
++
++ PP_ASSERT_WITH_CODE((NULL != pp_table), "Missing PowerPlay Table!", return -1;);
++ power_state->classification.bios_index = entry_index;
++
++ if (pp_table->sHeader.ucTableFormatRevision >=
++ ATOM_Tonga_TABLE_REVISION_TONGA) {
++ state_arrays = (ATOM_Tonga_State_Array *)(((unsigned long)pp_table) +
++ le16_to_cpu(pp_table->usStateArrayOffset));
++
++ PP_ASSERT_WITH_CODE((0 < pp_table->usStateArrayOffset),
++ "Invalid PowerPlay Table State Array Offset.", return -1);
++ PP_ASSERT_WITH_CODE((0 < state_arrays->ucNumEntries),
++ "Invalid PowerPlay Table State Array.", return -1);
++ PP_ASSERT_WITH_CODE((entry_index <= state_arrays->ucNumEntries),
++ "Invalid PowerPlay Table State Array Entry.", return -1);
++
++ state_entry = &(state_arrays->states[entry_index]);
++
++ result = call_back_func(hwmgr, (void *)state_entry, power_state,
++ (void *)pp_table,
++ make_classification_flags(hwmgr,
++ le16_to_cpu(state_entry->usClassification),
++ le16_to_cpu(state_entry->usClassification2)));
++ }
++
++ if (!result && (power_state->classification.flags &
++ PP_StateClassificationFlag_Boot))
++ result = hwmgr->hwmgr_func->patch_boot_state(hwmgr, &(power_state->hardware));
++
++ return result;
++}
+diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_processpptables.h b/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_processpptables.h
+new file mode 100644
+index 0000000..d24b888
+--- /dev/null
++++ b/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_processpptables.h
+@@ -0,0 +1,35 @@
++/*
++ * Copyright 2015 Advanced Micro Devices, Inc.
++ *
++ * Permission is hereby granted, free of charge, to any person obtaining a
++ * copy of this software and associated documentation files (the "Software"),
++ * to deal in the Software without restriction, including without limitation
++ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
++ * and/or sell copies of the Software, and to permit persons to whom the
++ * Software is furnished to do so, subject to the following conditions:
++ *
++ * The above copyright notice and this permission notice shall be included in
++ * all copies or substantial portions of the Software.
++ *
++ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
++ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
++ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
++ * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
++ * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
++ * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
++ * OTHER DEALINGS IN THE SOFTWARE.
++ *
++ */
++#ifndef TONGA_PROCESSPPTABLES_H
++#define TONGA_PROCESSPPTABLES_H
++
++#include "hwmgr.h"
++
++extern const struct pp_table_func tonga_pptable_funcs;
++extern int tonga_get_number_of_powerplay_table_entries(struct pp_hwmgr *hwmgr);
++extern int tonga_get_powerplay_table_entry(struct pp_hwmgr *hwmgr, uint32_t entry_index,
++ struct pp_power_state *power_state, int (*call_back_func)(struct pp_hwmgr *, void *,
++ struct pp_power_state *, void *, uint32_t));
++
++#endif
++
+diff --git a/drivers/gpu/drm/amd/powerplay/inc/hardwaremanager.h b/drivers/gpu/drm/amd/powerplay/inc/hardwaremanager.h
+index a69b379..9795b9a 100644
+--- a/drivers/gpu/drm/amd/powerplay/inc/hardwaremanager.h
++++ b/drivers/gpu/drm/amd/powerplay/inc/hardwaremanager.h
+@@ -219,12 +219,12 @@ enum PHM_PerformanceLevelDesignation {
+ typedef enum PHM_PerformanceLevelDesignation PHM_PerformanceLevelDesignation;
+
+ struct PHM_PerformanceLevel {
+- uint32_t coreClock;
+- uint32_t memory_clock;
+- uint32_t vddc;
+- uint32_t vddci;
+- uint32_t nonLocalMemoryFreq;
+- uint32_t nonLocalMemoryWidth;
++ uint32_t coreClock;
++ uint32_t memory_clock;
++ uint32_t vddc;
++ uint32_t vddci;
++ uint32_t nonLocalMemoryFreq;
++ uint32_t nonLocalMemoryWidth;
+ };
+
+ typedef struct PHM_PerformanceLevel PHM_PerformanceLevel;
+@@ -251,9 +251,9 @@ static inline bool phm_cap_enabled(const uint32_t *caps, enum phm_platform_caps
+
+ #define PP_PCIEGenInvalid 0xffff
+ enum PP_PCIEGen {
+- PP_PCIEGen1 = 0, /* PCIE 1.0 - Transfer rate of 2.5 GT/s */
+- PP_PCIEGen2, /*PCIE 2.0 - Transfer rate of 5.0 GT/s */
+- PP_PCIEGen3 /*PCIE 3.0 - Transfer rate of 8.0 GT/s */
++ PP_PCIEGen1 = 0, /* PCIE 1.0 - Transfer rate of 2.5 GT/s */
++ PP_PCIEGen2, /*PCIE 2.0 - Transfer rate of 5.0 GT/s */
++ PP_PCIEGen3 /*PCIE 3.0 - Transfer rate of 8.0 GT/s */
+ };
+
+ typedef enum PP_PCIEGen PP_PCIEGen;
+diff --git a/drivers/gpu/drm/amd/powerplay/inc/hwmgr.h b/drivers/gpu/drm/amd/powerplay/inc/hwmgr.h
+index 18b5ab1..ca513a1 100644
+--- a/drivers/gpu/drm/amd/powerplay/inc/hwmgr.h
++++ b/drivers/gpu/drm/amd/powerplay/inc/hwmgr.h
+@@ -28,6 +28,7 @@
+ #include "pp_instance.h"
+ #include "hardwaremanager.h"
+ #include "pp_power_source.h"
++#include "hwmgr_ppt.h"
+
+ struct pp_instance;
+ struct pp_hwmgr;
+@@ -400,7 +401,24 @@ struct phm_clock_and_voltage_limits {
+ uint16_t vddgfx;
+ };
+
++/* Structure to hold PPTable information */
+
++struct phm_ppt_v1_information {
++ struct phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_on_sclk;
++ struct phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_on_mclk;
++ struct phm_clock_array *valid_sclk_values;
++ struct phm_clock_array *valid_mclk_values;
++ struct phm_clock_and_voltage_limits max_clock_voltage_on_dc;
++ struct phm_clock_and_voltage_limits max_clock_voltage_on_ac;
++ struct phm_clock_voltage_dependency_table *vddc_dep_on_dal_pwrl;
++ struct phm_ppm_table *ppm_parameter_table;
++ struct phm_cac_tdp_table *cac_dtp_table;
++ struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_dep_table;
++ struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table;
++ struct phm_ppt_v1_voltage_lookup_table *vddgfx_lookup_table;
++ struct phm_ppt_v1_pcie_table *pcie_table;
++ uint16_t us_ulv_voltage_offset;
++};
+
+ struct phm_dynamic_state_info {
+ struct phm_clock_voltage_dependency_table *vddc_dependency_on_sclk;
+@@ -434,6 +452,70 @@ struct phm_dynamic_state_info {
+ struct phm_vq_budgeting_table *vq_budgeting_table;
+ };
+
++struct pp_fan_info {
++ bool bNoFan;
++ uint8_t ucTachometerPulsesPerRevolution;
++ uint32_t ulMinRPM;
++ uint32_t ulMaxRPM;
++};
++
++struct pp_advance_fan_control_parameters {
++ uint16_t usTMin; /* The temperature, in 0.01 centigrades, below which we just run at a minimal PWM. */
++ uint16_t usTMed; /* The middle temperature where we change slopes. */
++ uint16_t usTHigh; /* The high temperature for setting the second slope. */
++ uint16_t usPWMMin; /* The minimum PWM value in percent (0.01% increments). */
++ uint16_t usPWMMed; /* The PWM value (in percent) at TMed. */
++ uint16_t usPWMHigh; /* The PWM value at THigh. */
++ uint8_t ucTHyst; /* Temperature hysteresis. Integer. */
++ uint32_t ulCycleDelay; /* The time between two invocations of the fan control routine in microseconds. */
++ uint16_t usTMax; /* The max temperature */
++ uint8_t ucFanControlMode;
++ uint16_t usFanPWMMinLimit;
++ uint16_t usFanPWMMaxLimit;
++ uint16_t usFanPWMStep;
++ uint16_t usDefaultMaxFanPWM;
++ uint16_t usFanOutputSensitivity;
++ uint16_t usDefaultFanOutputSensitivity;
++ uint16_t usMaxFanPWM; /* The max Fan PWM value for Fuzzy Fan Control feature */
++ uint16_t usFanRPMMinLimit; /* Minimum limit range in percentage, need to calculate based on minRPM/MaxRpm */
++ uint16_t usFanRPMMaxLimit; /* Maximum limit range in percentage, usually set to 100% by default */
++ uint16_t usFanRPMStep; /* Step increments/decerements, in percent */
++ uint16_t usDefaultMaxFanRPM; /* The max Fan RPM value for Fuzzy Fan Control feature, default from PPTable */
++ uint16_t usMaxFanRPM; /* The max Fan RPM value for Fuzzy Fan Control feature, user defined */
++ uint16_t usFanCurrentLow; /* Low current */
++ uint16_t usFanCurrentHigh; /* High current */
++ uint16_t usFanRPMLow; /* Low RPM */
++ uint16_t usFanRPMHigh; /* High RPM */
++ uint32_t ulMinFanSCLKAcousticLimit; /* Minimum Fan Controller SCLK Frequency Acoustic Limit. */
++ uint8_t ucTargetTemperature; /* Advanced fan controller target temperature. */
++ uint8_t ucMinimumPWMLimit; /* The minimum PWM that the advanced fan controller can set. This should be set to the highest PWM that will run the fan at its lowest RPM. */
++ uint16_t usFanGainEdge; /* The following is added for Fiji */
++ uint16_t usFanGainHotspot;
++ uint16_t usFanGainLiquid;
++ uint16_t usFanGainVrVddc;
++ uint16_t usFanGainVrMvdd;
++ uint16_t usFanGainPlx;
++ uint16_t usFanGainHbm;
++};
++
++struct pp_thermal_controller_info {
++ uint8_t ucType;
++ uint8_t ucI2cLine;
++ uint8_t ucI2cAddress;
++ struct pp_fan_info fanInfo;
++ struct pp_advance_fan_control_parameters advanceFanControlParameters;
++};
++
++struct phm_microcode_version_info {
++ uint32_t SMC;
++ uint32_t DMCU;
++ uint32_t MC;
++ uint32_t NB;
++};
++
++/**
++ * The main hardware manager structure.
++ */
+ struct pp_hwmgr {
+ uint32_t chip_family;
+ uint32_t chip_id;
+@@ -466,6 +548,8 @@ struct pp_hwmgr {
+ struct pp_power_state *ps;
+ enum pp_power_source power_source;
+ uint32_t num_ps;
++ struct pp_thermal_controller_info thermal_controller;
++ struct phm_microcode_version_info microcode_version_info;
+ uint32_t ps_size;
+ struct pp_power_state *current_ps;
+ struct pp_power_state *request_ps;
+@@ -487,7 +571,13 @@ extern int phm_wait_on_register(struct pp_hwmgr *hwmgr, uint32_t index,
+ extern int phm_wait_for_register_unequal(struct pp_hwmgr *hwmgr,
+ uint32_t index, uint32_t value, uint32_t mask);
+
++extern uint32_t phm_read_indirect_register(struct pp_hwmgr *hwmgr,
++ uint32_t indirect_port, uint32_t index);
+
++extern void phm_write_indirect_register(struct pp_hwmgr *hwmgr,
++ uint32_t indirect_port,
++ uint32_t index,
++ uint32_t value);
+
+ extern void phm_wait_on_indirect_register(struct pp_hwmgr *hwmgr,
+ uint32_t indirect_port,
+diff --git a/drivers/gpu/drm/amd/powerplay/inc/pp_debug.h b/drivers/gpu/drm/amd/powerplay/inc/pp_debug.h
+index 65ef547..3df3ded 100644
+--- a/drivers/gpu/drm/amd/powerplay/inc/pp_debug.h
++++ b/drivers/gpu/drm/amd/powerplay/inc/pp_debug.h
+@@ -31,7 +31,7 @@
+ #define PP_ASSERT_WITH_CODE(cond, msg, code) \
+ do { \
+ if (!(cond)) { \
+- printk(msg); \
++ printk("%s\n", msg); \
+ code; \
+ } \
+ } while (0)
+diff --git a/drivers/gpu/drm/amd/powerplay/inc/smu_ucode_xfer_vi.h b/drivers/gpu/drm/amd/powerplay/inc/smu_ucode_xfer_vi.h
+new file mode 100644
+index 0000000..c24a81e
+--- /dev/null
++++ b/drivers/gpu/drm/amd/powerplay/inc/smu_ucode_xfer_vi.h
+@@ -0,0 +1,100 @@
++/*
++ * Copyright 2014 Advanced Micro Devices, Inc.
++ *
++ * Permission is hereby granted, free of charge, to any person obtaining a
++ * copy of this software and associated documentation files (the "Software"),
++ * to deal in the Software without restriction, including without limitation
++ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
++ * and/or sell copies of the Software, and to permit persons to whom the
++ * Software is furnished to do so, subject to the following conditions:
++ *
++ * The above copyright notice and this permission notice shall be included in
++ * all copies or substantial portions of the Software.
++ *
++ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
++ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
++ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
++ * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
++ * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
++ * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
++ * OTHER DEALINGS IN THE SOFTWARE.
++ *
++ */
++
++#ifndef SMU_UCODE_XFER_VI_H
++#define SMU_UCODE_XFER_VI_H
++
++#define SMU_DRAMData_TOC_VERSION 1
++#define MAX_IH_REGISTER_COUNT 65535
++#define SMU_DIGEST_SIZE_BYTES 20
++#define SMU_FB_SIZE_BYTES 1048576
++#define SMU_MAX_ENTRIES 12
++
++#define UCODE_ID_SMU 0
++#define UCODE_ID_SDMA0 1
++#define UCODE_ID_SDMA1 2
++#define UCODE_ID_CP_CE 3
++#define UCODE_ID_CP_PFP 4
++#define UCODE_ID_CP_ME 5
++#define UCODE_ID_CP_MEC 6
++#define UCODE_ID_CP_MEC_JT1 7
++#define UCODE_ID_CP_MEC_JT2 8
++#define UCODE_ID_GMCON_RENG 9
++#define UCODE_ID_RLC_G 10
++#define UCODE_ID_IH_REG_RESTORE 11
++#define UCODE_ID_VBIOS 12
++#define UCODE_ID_MISC_METADATA 13
++#define UCODE_ID_RLC_SCRATCH 32
++#define UCODE_ID_RLC_SRM_ARAM 33
++#define UCODE_ID_RLC_SRM_DRAM 34
++#define UCODE_ID_MEC_STORAGE 35
++#define UCODE_ID_VBIOS_PARAMETERS 36
++#define UCODE_META_DATA 0xFF
++
++#define UCODE_ID_SMU_MASK 0x00000001
++#define UCODE_ID_SDMA0_MASK 0x00000002
++#define UCODE_ID_SDMA1_MASK 0x00000004
++#define UCODE_ID_CP_CE_MASK 0x00000008
++#define UCODE_ID_CP_PFP_MASK 0x00000010
++#define UCODE_ID_CP_ME_MASK 0x00000020
++#define UCODE_ID_CP_MEC_MASK 0x00000040
++#define UCODE_ID_CP_MEC_JT1_MASK 0x00000080
++#define UCODE_ID_CP_MEC_JT2_MASK 0x00000100
++#define UCODE_ID_GMCON_RENG_MASK 0x00000200
++#define UCODE_ID_RLC_G_MASK 0x00000400
++#define UCODE_ID_IH_REG_RESTORE_MASK 0x00000800
++#define UCODE_ID_VBIOS_MASK 0x00001000
++
++#define UCODE_FLAG_UNHALT_MASK 0x1
++
++struct SMU_Entry {
++#ifndef __BIG_ENDIAN
++ uint16_t id;
++ uint16_t version;
++ uint32_t image_addr_high;
++ uint32_t image_addr_low;
++ uint32_t meta_data_addr_high;
++ uint32_t meta_data_addr_low;
++ uint32_t data_size_byte;
++ uint16_t flags;
++ uint16_t num_register_entries;
++#else
++ uint16_t version;
++ uint16_t id;
++ uint32_t image_addr_high;
++ uint32_t image_addr_low;
++ uint32_t meta_data_addr_high;
++ uint32_t meta_data_addr_low;
++ uint32_t data_size_byte;
++ uint16_t num_register_entries;
++ uint16_t flags;
++#endif
++};
++
++struct SMU_DRAMData_TOC {
++ uint32_t structure_version;
++ uint32_t num_entries;
++ struct SMU_Entry entry[SMU_MAX_ENTRIES];
++};
++
++#endif
+--
+2.7.4
+