aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/regulator/ti-abb-regulator.c
blob: 6d17357b3a24891780fa6606b280a21c9c9ffef7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
/*
 * Texas Instruments SoC Adaptive Body Bias(ABB) Regulator
 *
 * Copyright (C) 2011 Texas Instruments, Inc.
 * Mike Turquette <mturquette@ti.com>
 *
 * Copyright (C) 2012-2013 Texas Instruments, Inc.
 * Andrii Tseglytskyi <andrii.tseglytskyi@ti.com>
 * Nishanth Menon <nm@ti.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
 * kind, whether express or implied; without even the implied warranty
 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
#include <linux/regulator/of_regulator.h>

/*
 * ABB LDO operating states:
 * NOMINAL_OPP:	bypasses the ABB LDO
 * FAST_OPP:	sets ABB LDO to Forward Body-Bias
 * SLOW_OPP:	sets ABB LDO to Reverse Body-Bias
 */
#define TI_ABB_NOMINAL_OPP	0
#define TI_ABB_FAST_OPP		1
#define TI_ABB_SLOW_OPP		3

/**
 * struct ti_abb_info - ABB information per voltage setting
 * @opp_sel:	one of TI_ABB macro
 * @vset:	(optional) vset value that LDOVBB needs to be overriden with.
 *
 * Array of per voltage entries organized in the same order as regulator_desc's
 * volt_table list. (selector is used to index from this array)
 */
struct ti_abb_info {
	u32 opp_sel;
	u32 vset;
};

/**
 * struct ti_abb_reg - Register description for ABB block
 * @setup_off:			setup register offset from base
 * @control_off:		control register offset from base
 * @sr2_wtcnt_value_mask:	setup register- sr2_wtcnt_value mask
 * @fbb_sel_mask:		setup register- FBB sel mask
 * @rbb_sel_mask:		setup register- RBB sel mask
 * @sr2_en_mask:		setup register- enable mask
 * @opp_change_mask:		control register - mask to trigger LDOVBB change
 * @opp_sel_mask:		control register - mask for mode to operate
 */
struct ti_abb_reg {
	u32 setup_off;
	u32 control_off;

	/* Setup register fields */
	u32 sr2_wtcnt_value_mask;
	u32 fbb_sel_mask;
	u32 rbb_sel_mask;
	u32 sr2_en_mask;

	/* Control register fields */
	u32 opp_change_mask;
	u32 opp_sel_mask;
};

/**
 * struct ti_abb - ABB instance data
 * @rdesc:			regulator descriptor
 * @clk:			clock(usually sysclk) supplying ABB block
 * @base:			base address of ABB block
 * @setup_reg:			setup register of ABB block
 * @control_reg:		control register of ABB block
 * @int_base:			interrupt register base address
 * @efuse_base:			(optional) efuse base address for ABB modes
 * @ldo_base:			(optional) LDOVBB vset override base address
 * @regs:			pointer to struct ti_abb_reg for ABB block
 * @txdone_mask:		mask on int_base for tranxdone interrupt
 * @ldovbb_override_mask:	mask to ldo_base for overriding default LDO VBB
 *				vset with value from efuse
 * @ldovbb_vset_mask:		mask to ldo_base for providing the VSET override
 * @info:			array to per voltage ABB configuration
 * @current_info_idx:		current index to info
 * @settling_time:		SoC specific settling time for LDO VBB
 */
struct ti_abb {
	struct regulator_desc rdesc;
	struct clk *clk;
	void __iomem *base;
	void __iomem *setup_reg;
	void __iomem *control_reg;
	void __iomem *int_base;
	void __iomem *efuse_base;
	void __iomem *ldo_base;

	const struct ti_abb_reg *regs;
	u32 txdone_mask;
	u32 ldovbb_override_mask;
	u32 ldovbb_vset_mask;

	struct ti_abb_info *info;
	int current_info_idx;

	u32 settling_time;
};

/**
 * ti_abb_rmw() - handy wrapper to set specific register bits
 * @mask:	mask for register field
 * @value:	value shifted to mask location and written
 * @reg:	register address
 *
 * Return: final register value (may be unused)
 */
static inline u32 ti_abb_rmw(u32 mask, u32 value, void __iomem *reg)
{
	u32 val;

	val = readl(reg);
	val &= ~mask;
	val |= (value << __ffs(mask)) & mask;
	writel(val, reg);

	return val;
}

/**
 * ti_abb_check_txdone() - handy wrapper to check ABB tranxdone status
 * @abb:	pointer to the abb instance
 *
 * Return: true or false
 */
static inline bool ti_abb_check_txdone(const struct ti_abb *abb)
{
	return !!(readl(abb->int_base) & abb->txdone_mask);
}

/**
 * ti_abb_clear_txdone() - handy wrapper to clear ABB tranxdone status
 * @abb:	pointer to the abb instance
 */
static inline void ti_abb_clear_txdone(const struct ti_abb *abb)
{
	writel(abb->txdone_mask, abb->int_base);
};

/**
 * ti_abb_wait_tranx() - waits for ABB tranxdone event
 * @dev:	device
 * @abb:	pointer to the abb instance
 *
 * Return: 0 on success or -ETIMEDOUT if the event is not cleared on time.
 */
static int ti_abb_wait_txdone(struct device *dev, struct ti_abb *abb)
{
	int timeout = 0;
	bool status;

	while (timeout++ <= abb->settling_time) {
		status = ti_abb_check_txdone(abb);
		if (status)
			return 0;

		udelay(1);
	}

	dev_warn_ratelimited(dev, "%s:TRANXDONE timeout(%duS) int=0x%08x\n",
			     __func__, timeout, readl(abb->int_base));
	return -ETIMEDOUT;
}

/**
 * ti_abb_clear_all_txdone() - clears ABB tranxdone event
 * @dev:	device
 * @abb:	pointer to the abb instance
 *
 * Return: 0 on success or -ETIMEDOUT if the event is not cleared on time.
 */
static int ti_abb_clear_all_txdone(struct device *dev, const struct ti_abb *abb)
{
	int timeout = 0;
	bool status;

	while (timeout++ <= abb->settling_time) {
		ti_abb_clear_txdone(abb);

		status = ti_abb_check_txdone(abb);
		if (!status)
			return 0;

		udelay(1);
	}

	dev_warn_ratelimited(dev, "%s:TRANXDONE timeout(%duS) int=0x%08x\n",
			     __func__, timeout, readl(abb->int_base));
	return -ETIMEDOUT;
}

/**
 * ti_abb_program_ldovbb() - program LDOVBB register for override value
 * @dev:	device
 * @abb:	pointer to the abb instance
 * @info:	ABB info to program
 */
static void ti_abb_program_ldovbb(struct device *dev, const struct ti_abb *abb,
				  struct ti_abb_info *info)
{
	u32 val;

	val = readl(abb->ldo_base);
	/* clear up previous values */
	val &= ~(abb->ldovbb_override_mask | abb->ldovbb_vset_mask);

	switch (info->opp_sel) {
	case TI_ABB_SLOW_OPP:
	case TI_ABB_FAST_OPP:
		val |= abb->ldovbb_override_mask;
		val |= info->vset << __ffs(abb->ldovbb_vset_mask);
		break;
	}

	writel(val, abb->ldo_base);
}

/**
 * ti_abb_set_opp() - Setup ABB and LDO VBB for required bias
 * @rdev:	regulator device
 * @abb:	pointer to the abb instance
 * @info:	ABB info to program
 *
 * Return: 0 on success or appropriate error value when fails
 */
static int ti_abb_set_opp(struct regulator_dev *rdev, struct ti_abb *abb,
			  struct ti_abb_info *info)
{
	const struct ti_abb_reg *regs = abb->regs;
	struct device *dev = &rdev->dev;
	int ret;

	ret = ti_abb_clear_all_txdone(dev, abb);
	if (ret)
		goto out;

	ti_abb_rmw(regs->fbb_sel_mask | regs->rbb_sel_mask, 0, abb->setup_reg);

	switch (info->opp_sel) {
	case TI_ABB_SLOW_OPP:
		ti_abb_rmw(regs->rbb_sel_mask, 1, abb->setup_reg);
		break;
	case TI_ABB_FAST_OPP:
		ti_abb_rmw(regs->fbb_sel_mask, 1, abb->setup_reg);
		break;
	}

	/* program next state of ABB ldo */
	ti_abb_rmw(regs->opp_sel_mask, info->opp_sel, abb->control_reg);

	/*
	 * program LDO VBB vset override if needed for !bypass mode
	 * XXX: Do not switch sequence - for !bypass, LDO override reset *must*
	 * be performed *before* switch to bias mode else VBB glitches.
	 */
	if (abb->ldo_base && info->opp_sel != TI_ABB_NOMINAL_OPP)
		ti_abb_program_ldovbb(dev, abb, info);

	/* Initiate ABB ldo change */
	ti_abb_rmw(regs->opp_change_mask, 1, abb->control_reg);

	/* Wait for ABB LDO to complete transition to new Bias setting */
	ret = ti_abb_wait_txdone(dev, abb);
	if (ret)
		goto out;

	ret = ti_abb_clear_all_txdone(dev, abb);
	if (ret)
		goto out;

	/*
	 * Reset LDO VBB vset override bypass mode
	 * XXX: Do not switch sequence - for bypass, LDO override reset *must*
	 * be performed *after* switch to bypass else VBB glitches.
	 */
	if (abb->ldo_base && info->opp_sel == TI_ABB_NOMINAL_OPP)
		ti_abb_program_ldovbb(dev, abb, info);

out:
	return ret;
}

/**
 * ti_abb_set_voltage_sel() - regulator accessor function to set ABB LDO
 * @rdev:	regulator device
 * @sel:	selector to index into required ABB LDO settings (maps to
 *		regulator descriptor's volt_table)
 *
 * Return: 0 on success or appropriate error value when fails
 */
static int ti_abb_set_voltage_sel(struct regulator_dev *rdev, unsigned sel)
{
	const struct regulator_desc *desc = rdev->desc;
	struct ti_abb *abb = rdev_get_drvdata(rdev);
	struct device *dev = &rdev->dev;
	struct ti_abb_info *info, *oinfo;
	int ret = 0;

	if (!abb) {
		dev_err_ratelimited(dev, "%s: No regulator drvdata\n",
				    __func__);
		return -ENODEV;
	}

	if (!desc->n_voltages || !abb->info) {
		dev_err_ratelimited(dev,
				    "%s: No valid voltage table entries?\n",
				    __func__);
		return -EINVAL;
	}

	if (sel >= desc->n_voltages) {
		dev_err(dev, "%s: sel idx(%d) >= n_voltages(%d)\n", __func__,
			sel, desc->n_voltages);
		return -EINVAL;
	}

	/* If we are in the same index as we were, nothing to do here! */
	if (sel == abb->current_info_idx) {
		dev_dbg(dev, "%s: Already at sel=%d\n", __func__, sel);
		return ret;
	}

	/* If data is exactly the same, then just update index, no change */
	info = &abb->info[sel];
	oinfo = &abb->info[abb->current_info_idx];
	if (!memcmp(info, oinfo, sizeof(*info))) {
		dev_dbg(dev, "%s: Same data new idx=%d, old idx=%d\n", __func__,
			sel, abb->current_info_idx);
		goto out;
	}

	ret = ti_abb_set_opp(rdev, abb, info);

out:
	if (!ret)
		abb->current_info_idx = sel;
	else
		dev_err_ratelimited(dev,
				    "%s: Volt[%d] idx[%d] mode[%d] Fail(%d)\n",
				    __func__, desc->volt_table[sel], sel,
				    info->opp_sel, ret);
	return ret;
}

/**
 * ti_abb_get_voltage_sel() - Regulator accessor to get current ABB LDO setting
 * @rdev:	regulator device
 *
 * Return: 0 on success or appropriate error value when fails
 */
static int ti_abb_get_voltage_sel(struct regulator_dev *rdev)
{
	const struct regulator_desc *desc = rdev->desc;
	struct ti_abb *abb = rdev_get_drvdata(rdev);
	struct device *dev = &rdev->dev;

	if (!abb) {
		dev_err_ratelimited(dev, "%s: No regulator drvdata\n",
				    __func__);
		return -ENODEV;
	}

	if (!desc->n_voltages || !abb->info) {
		dev_err_ratelimited(dev,
				    "%s: No valid voltage table entries?\n",
				    __func__);
		return -EINVAL;
	}

	if (abb->current_info_idx >= (int)desc->n_voltages) {
		dev_err(dev, "%s: Corrupted data? idx(%d) >= n_voltages(%d)\n",
			__func__, abb->current_info_idx, desc->n_voltages);
		return -EINVAL;
	}

	return abb->current_info_idx;
}

/**
 * ti_abb_init_timings() - setup ABB clock timing for the current platform
 * @dev:	device
 * @abb:	pointer to the abb instance
 *
 * Return: 0 if timing is updated, else returns error result.
 */
static int ti_abb_init_timings(struct device *dev, struct ti_abb *abb)
{
	u32 clock_cycles;
	u32 clk_rate, sr2_wt_cnt_val, cycle_rate;
	const struct ti_abb_reg *regs = abb->regs;
	int ret;
	char *pname = "ti,settling-time";

	/* read device tree properties */
	ret = of_property_read_u32(dev->of_node, pname, &abb->settling_time);
	if (ret) {
		dev_err(dev, "Unable to get property '%s'(%d)\n", pname, ret);
		return ret;
	}

	/* ABB LDO cannot be settle in 0 time */
	if (!abb->settling_time) {
		dev_err(dev, "Invalid property:'%s' set as 0!\n", pname);
		return -EINVAL;
	}

	pname = "ti,clock-cycles";
	ret = of_property_read_u32(dev->of_node, pname, &clock_cycles);
	if (ret) {
		dev_err(dev, "Unable to get property '%s'(%d)\n", pname, ret);
		return ret;
	}
	/* ABB LDO cannot be settle in 0 clock cycles */
	if (!clock_cycles) {
		dev_err(dev, "Invalid property:'%s' set as 0!\n", pname);
		return -EINVAL;
	}

	abb->clk = devm_clk_get(dev, NULL);
	if (IS_ERR(abb->clk)) {
		ret = PTR_ERR(abb->clk);
		dev_err(dev, "%s: Unable to get clk(%d)\n", __func__, ret);
		return ret;
	}

	/*
	 * SR2_WTCNT_VALUE is the settling time for the ABB ldo after a
	 * transition and must be programmed with the correct time at boot.
	 * The value programmed into the register is the number of SYS_CLK
	 * clock cycles that match a given wall time profiled for the ldo.
	 * This value depends on:
	 * settling time of ldo in micro-seconds (varies per OMAP family)
	 * # of clock cycles per SYS_CLK period (varies per OMAP family)
	 * the SYS_CLK frequency in MHz (varies per board)
	 * The formula is:
	 *
	 *                      ldo settling time (in micro-seconds)
	 * SR2_WTCNT_VALUE = ------------------------------------------
	 *                   (# system clock cycles) * (sys_clk period)
	 *
	 * Put another way:
	 *
	 * SR2_WTCNT_VALUE = settling time / (# SYS_CLK cycles / SYS_CLK rate))
	 *
	 * To avoid dividing by zero multiply both "# clock cycles" and
	 * "settling time" by 10 such that the final result is the one we want.
	 */

	/* Convert SYS_CLK rate to MHz & prevent divide by zero */
	clk_rate = DIV_ROUND_CLOSEST(clk_get_rate(abb->clk), 1000000);

	/* Calculate cycle rate */
	cycle_rate = DIV_ROUND_CLOSEST(clock_cycles * 10, clk_rate);

	/* Calulate SR2_WTCNT_VALUE */
	sr2_wt_cnt_val = DIV_ROUND_CLOSEST(abb->settling_time * 10, cycle_rate);

	dev_dbg(dev, "%s: Clk_rate=%ld, sr2_cnt=0x%08x\n", __func__,
		clk_get_rate(abb->clk), sr2_wt_cnt_val);

	ti_abb_rmw(regs->sr2_wtcnt_value_mask, sr2_wt_cnt_val, abb->setup_reg);

	return 0;
}

/**
 * ti_abb_init_table() - Initialize ABB table from device tree
 * @dev:	device
 * @abb:	pointer to the abb instance
 * @rinit_data:	regulator initdata
 *
 * Return: 0 on success or appropriate error value when fails
 */
static int ti_abb_init_table(struct device *dev, struct ti_abb *abb,
			     struct regulator_init_data *rinit_data)
{
	struct ti_abb_info *info;
	const u32 num_values = 6;
	char *pname = "ti,abb_info";
	u32 i;
	unsigned int *volt_table;
	int num_entries, min_uV = INT_MAX, max_uV = 0;
	struct regulation_constraints *c = &rinit_data->constraints;

	/*
	 * Each abb_info is a set of n-tuple, where n is num_values, consisting
	 * of voltage and a set of detection logic for ABB information for that
	 * voltage to apply.
	 */
	num_entries = of_property_count_u32_elems(dev->of_node, pname);
	if (num_entries < 0) {
		dev_err(dev, "No '%s' property?\n", pname);
		return num_entries;
	}

	if (!num_entries || (num_entries % num_values)) {
		dev_err(dev, "All '%s' list entries need %d vals\n", pname,
			num_values);
		return -EINVAL;
	}
	num_entries /= num_values;

	info = devm_kzalloc(dev, sizeof(*info) * num_entries, GFP_KERNEL);
	if (!info)
		return -ENOMEM;

	abb->info = info;

	volt_table = devm_kzalloc(dev, sizeof(unsigned int) * num_entries,
				  GFP_KERNEL);
	if (!volt_table)
		return -ENOMEM;

	abb->rdesc.n_voltages = num_entries;
	abb->rdesc.volt_table = volt_table;
	/* We do not know where the OPP voltage is at the moment */
	abb->current_info_idx = -EINVAL;

	for (i = 0; i < num_entries; i++, info++, volt_table++) {
		u32 efuse_offset, rbb_mask, fbb_mask, vset_mask;
		u32 efuse_val;

		/* NOTE: num_values should equal to entries picked up here */
		of_property_read_u32_index(dev->of_node, pname, i * num_values,
					   volt_table);
		of_property_read_u32_index(dev->of_node, pname,
					   i * num_values + 1, &info->opp_sel);
		of_property_read_u32_index(dev->of_node, pname,
					   i * num_values + 2, &efuse_offset);
		of_property_read_u32_index(dev->of_node, pname,
					   i * num_values + 3, &rbb_mask);
		of_property_read_u32_index(dev->of_node, pname,
					   i * num_values + 4, &fbb_mask);
		of_property_read_u32_index(dev->of_node, pname,
					   i * num_values + 5, &vset_mask);

		dev_dbg(dev,
			"[%d]v=%d ABB=%d ef=0x%x rbb=0x%x fbb=0x%x vset=0x%x\n",
			i, *volt_table, info->opp_sel, efuse_offset, rbb_mask,
			fbb_mask, vset_mask);

		/* Find min/max for voltage set */
		if (min_uV > *volt_table)
			min_uV = *volt_table;
		if (max_uV < *volt_table)
			max_uV = *volt_table;

		if (!abb->efuse_base) {
			/* Ignore invalid data, but warn to help cleanup */
			if (efuse_offset || rbb_mask || fbb_mask || vset_mask)
				dev_err(dev, "prop '%s': v=%d,bad efuse/mask\n",
					pname, *volt_table);
			goto check_abb;
		}

		efuse_val = readl(abb->efuse_base + efuse_offset);

		/* Use ABB recommendation from Efuse */
		if (efuse_val & rbb_mask)
			info->opp_sel = TI_ABB_SLOW_OPP;
		else if (efuse_val & fbb_mask)
			info->opp_sel = TI_ABB_FAST_OPP;
		else if (rbb_mask || fbb_mask)
			info->opp_sel = TI_ABB_NOMINAL_OPP;

		dev_dbg(dev,
			"[%d]v=%d efusev=0x%x final ABB=%d\n",
			i, *volt_table, efuse_val, info->opp_sel);

		/* Use recommended Vset bits from Efuse */
		if (!abb->ldo_base) {
			if (vset_mask)
				dev_err(dev, "prop'%s':v=%d vst=%x LDO base?\n",
					pname, *volt_table, vset_mask);
			continue;
		}
		info->vset = (efuse_val & vset_mask) >> __ffs(vset_mask);
		dev_dbg(dev, "[%d]v=%d vset=%x\n", i, *volt_table, info->vset);
check_abb:
		switch (info->opp_sel) {
		case TI_ABB_NOMINAL_OPP:
		case TI_ABB_FAST_OPP:
		case TI_ABB_SLOW_OPP:
			/* Valid values */
			break;
		default:
			dev_err(dev, "%s:[%d]v=%d, ABB=%d is invalid! Abort!\n",
				__func__, i, *volt_table, info->opp_sel);
			return -EINVAL;
		}
	}

	/* Setup the min/max voltage constraints from the supported list */
	c->min_uV = min_uV;
	c->max_uV = max_uV;

	return 0;
}

static struct regulator_ops ti_abb_reg_ops = {
	.list_voltage = regulator_list_voltage_table,

	.set_voltage_sel = ti_abb_set_voltage_sel,
	.get_voltage_sel = ti_abb_get_voltage_sel,
};

/* Default ABB block offsets, IF this changes in future, create new one */
static const struct ti_abb_reg abb_regs_v1 = {
	/* WARNING: registers are wrongly documented in TRM */
	.setup_off		= 0x04,
	.control_off		= 0x00,

	.sr2_wtcnt_value_mask	= (0xff << 8),
	.fbb_sel_mask		= (0x01 << 2),
	.rbb_sel_mask		= (0x01 << 1),
	.sr2_en_mask		= (0x01 << 0),

	.opp_change_mask	= (0x01 << 2),
	.opp_sel_mask		= (0x03 << 0),
};

static const struct ti_abb_reg abb_regs_v2 = {
	.setup_off		= 0x00,
	.control_off		= 0x04,

	.sr2_wtcnt_value_mask	= (0xff << 8),
	.fbb_sel_mask		= (0x01 << 2),
	.rbb_sel_mask		= (0x01 << 1),
	.sr2_en_mask		= (0x01 << 0),

	.opp_change_mask	= (0x01 << 2),
	.opp_sel_mask		= (0x03 << 0),
};

static const struct ti_abb_reg abb_regs_generic = {
	.sr2_wtcnt_value_mask	= (0xff << 8),
	.fbb_sel_mask		= (0x01 << 2),
	.rbb_sel_mask		= (0x01 << 1),
	.sr2_en_mask		= (0x01 << 0),

	.opp_change_mask	= (0x01 << 2),
	.opp_sel_mask		= (0x03 << 0),
};

static const struct of_device_id ti_abb_of_match[] = {
	{.compatible = "ti,abb-v1", .data = &abb_regs_v1},
	{.compatible = "ti,abb-v2", .data = &abb_regs_v2},
	{.compatible = "ti,abb-v3", .data = &abb_regs_generic},
	{ },
};

MODULE_DEVICE_TABLE(of, ti_abb_of_match);

/**
 * ti_abb_probe() - Initialize an ABB ldo instance
 * @pdev: ABB platform device
 *
 * Initializes an individual ABB LDO for required Body-Bias. ABB is used to
 * addional bias supply to SoC modules for power savings or mandatory stability
 * configuration at certain Operating Performance Points(OPPs).
 *
 * Return: 0 on success or appropriate error value when fails
 */
static int ti_abb_probe(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	const struct of_device_id *match;
	struct resource *res;
	struct ti_abb *abb;
	struct regulator_init_data *initdata = NULL;
	struct regulator_dev *rdev = NULL;
	struct regulator_desc *desc;
	struct regulation_constraints *c;
	struct regulator_config config = { };
	char *pname;
	int ret = 0;

	match = of_match_device(ti_abb_of_match, dev);
	if (!match) {
		/* We do not expect this to happen */
		dev_err(dev, "%s: Unable to match device\n", __func__);
		return -ENODEV;
	}
	if (!match->data) {
		dev_err(dev, "%s: Bad data in match\n", __func__);
		return -EINVAL;
	}

	abb = devm_kzalloc(dev, sizeof(struct ti_abb), GFP_KERNEL);
	if (!abb)
		return -ENOMEM;
	abb->regs = match->data;

	/* Map ABB resources */
	if (abb->regs->setup_off || abb->regs->control_off) {
		pname = "base-address";
		res = platform_get_resource_byname(pdev, IORESOURCE_MEM, pname);
		abb->base = devm_ioremap_resource(dev, res);
		if (IS_ERR(abb->base))
			return PTR_ERR(abb->base);

		abb->setup_reg = abb->base + abb->regs->setup_off;
		abb->control_reg = abb->base + abb->regs->control_off;

	} else {
		pname = "control-address";
		res = platform_get_resource_byname(pdev, IORESOURCE_MEM, pname);
		abb->control_reg = devm_ioremap_resource(dev, res);
		if (IS_ERR(abb->control_reg))
			return PTR_ERR(abb->control_reg);

		pname = "setup-address";
		res = platform_get_resource_byname(pdev, IORESOURCE_MEM, pname);
		abb->setup_reg = devm_ioremap_resource(dev, res);
		if (IS_ERR(abb->setup_reg))
			return PTR_ERR(abb->setup_reg);
	}

	pname = "int-address";
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, pname);
	if (!res) {
		dev_err(dev, "Missing '%s' IO resource\n", pname);
		return -ENODEV;
	}
	/*
	 * We may have shared interrupt register offsets which are
	 * write-1-to-clear between domains ensuring exclusivity.
	 */
	abb->int_base = devm_ioremap_nocache(dev, res->start,
					     resource_size(res));
	if (!abb->int_base) {
		dev_err(dev, "Unable to map '%s'\n", pname);
		return -ENOMEM;
	}

	/* Map Optional resources */
	pname = "efuse-address";
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, pname);
	if (!res) {
		dev_dbg(dev, "Missing '%s' IO resource\n", pname);
		ret = -ENODEV;
		goto skip_opt;
	}

	/*
	 * We may have shared efuse register offsets which are read-only
	 * between domains
	 */
	abb->efuse_base = devm_ioremap_nocache(dev, res->start,
					       resource_size(res));
	if (!abb->efuse_base) {
		dev_err(dev, "Unable to map '%s'\n", pname);
		return -ENOMEM;
	}

	pname = "ldo-address";
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, pname);
	if (!res) {
		dev_dbg(dev, "Missing '%s' IO resource\n", pname);
		ret = -ENODEV;
		goto skip_opt;
	}
	abb->ldo_base = devm_ioremap_resource(dev, res);
	if (IS_ERR(abb->ldo_base))
		return PTR_ERR(abb->ldo_base);

	/* IF ldo_base is set, the following are mandatory */
	pname = "ti,ldovbb-override-mask";
	ret =
	    of_property_read_u32(pdev->dev.of_node, pname,
				 &abb->ldovbb_override_mask);
	if (ret) {
		dev_err(dev, "Missing '%s' (%d)\n", pname, ret);
		return ret;
	}
	if (!abb->ldovbb_override_mask) {
		dev_err(dev, "Invalid property:'%s' set as 0!\n", pname);
		return -EINVAL;
	}

	pname = "ti,ldovbb-vset-mask";
	ret =
	    of_property_read_u32(pdev->dev.of_node, pname,
				 &abb->ldovbb_vset_mask);
	if (ret) {
		dev_err(dev, "Missing '%s' (%d)\n", pname, ret);
		return ret;
	}
	if (!abb->ldovbb_vset_mask) {
		dev_err(dev, "Invalid property:'%s' set as 0!\n", pname);
		return -EINVAL;
	}

skip_opt:
	pname = "ti,tranxdone-status-mask";
	ret =
	    of_property_read_u32(pdev->dev.of_node, pname,
				 &abb->txdone_mask);
	if (ret) {
		dev_err(dev, "Missing '%s' (%d)\n", pname, ret);
		return ret;
	}
	if (!abb->txdone_mask) {
		dev_err(dev, "Invalid property:'%s' set as 0!\n", pname);
		return -EINVAL;
	}

	initdata = of_get_regulator_init_data(dev, pdev->dev.of_node,
					      &abb->rdesc);
	if (!initdata) {
		dev_err(dev, "%s: Unable to alloc regulator init data\n",
			__func__);
		return -ENOMEM;
	}

	/* init ABB opp_sel table */
	ret = ti_abb_init_table(dev, abb, initdata);
	if (ret)
		return ret;

	/* init ABB timing */
	ret = ti_abb_init_timings(dev, abb);
	if (ret)
		return ret;

	desc = &abb->rdesc;
	desc->name = dev_name(dev);
	desc->owner = THIS_MODULE;
	desc->type = REGULATOR_VOLTAGE;
	desc->ops = &ti_abb_reg_ops;

	c = &initdata->constraints;
	if (desc->n_voltages > 1)
		c->valid_ops_mask |= REGULATOR_CHANGE_VOLTAGE;
	c->always_on = true;

	config.dev = dev;
	config.init_data = initdata;
	config.driver_data = abb;
	config.of_node = pdev->dev.of_node;

	rdev = devm_regulator_register(dev, desc, &config);
	if (IS_ERR(rdev)) {
		ret = PTR_ERR(rdev);
		dev_err(dev, "%s: failed to register regulator(%d)\n",
			__func__, ret);
		return ret;
	}
	platform_set_drvdata(pdev, rdev);

	/* Enable the ldo if not already done by bootloader */
	ti_abb_rmw(abb->regs->sr2_en_mask, 1, abb->setup_reg);

	return 0;
}

MODULE_ALIAS("platform:ti_abb");

static struct platform_driver ti_abb_driver = {
	.probe = ti_abb_probe,
	.driver = {
		   .name = "ti_abb",
		   .of_match_table = of_match_ptr(ti_abb_of_match),
		   },
};
module_platform_driver(ti_abb_driver);

MODULE_DESCRIPTION("Texas Instruments ABB LDO regulator driver");
MODULE_AUTHOR("Texas Instruments Inc.");
MODULE_LICENSE("GPL v2");