aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/iio/adc/stm32-adc.c
blob: e59cbc9ad4f6fa3a3e1fe9789beae42397be5f47 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
/*
 * This file is part of STM32 ADC driver
 *
 * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
 * Author: Fabrice Gasnier <fabrice.gasnier@st.com>.
 *
 * License type: GPLv2
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published by
 * the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.
 * See the GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program. If not, see <http://www.gnu.org/licenses/>.
 */

#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/iio/iio.h>
#include <linux/iio/buffer.h>
#include <linux/iio/timer/stm32-lptim-trigger.h>
#include <linux/iio/timer/stm32-timer-trigger.h>
#include <linux/iio/trigger.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/of.h>
#include <linux/of_device.h>

#include "stm32-adc-core.h"

/* Number of linear calibration shadow registers / LINCALRDYW control bits */
#define STM32H7_LINCALFACT_NUM		6

/* BOOST bit must be set on STM32H7 when ADC clock is above 20MHz */
#define STM32H7_BOOST_CLKRATE		20000000UL

#define STM32_ADC_MAX_SQ		16	/* SQ1..SQ16 */
#define STM32_ADC_MAX_SMP		7	/* SMPx range is [0..7] */
#define STM32_ADC_TIMEOUT_US		100000
#define STM32_ADC_TIMEOUT	(msecs_to_jiffies(STM32_ADC_TIMEOUT_US / 1000))

#define STM32_DMA_BUFFER_SIZE		PAGE_SIZE

/* External trigger enable */
enum stm32_adc_exten {
	STM32_EXTEN_SWTRIG,
	STM32_EXTEN_HWTRIG_RISING_EDGE,
	STM32_EXTEN_HWTRIG_FALLING_EDGE,
	STM32_EXTEN_HWTRIG_BOTH_EDGES,
};

/* extsel - trigger mux selection value */
enum stm32_adc_extsel {
	STM32_EXT0,
	STM32_EXT1,
	STM32_EXT2,
	STM32_EXT3,
	STM32_EXT4,
	STM32_EXT5,
	STM32_EXT6,
	STM32_EXT7,
	STM32_EXT8,
	STM32_EXT9,
	STM32_EXT10,
	STM32_EXT11,
	STM32_EXT12,
	STM32_EXT13,
	STM32_EXT14,
	STM32_EXT15,
	STM32_EXT16,
	STM32_EXT17,
	STM32_EXT18,
	STM32_EXT19,
	STM32_EXT20,
};

/**
 * struct stm32_adc_trig_info - ADC trigger info
 * @name:		name of the trigger, corresponding to its source
 * @extsel:		trigger selection
 */
struct stm32_adc_trig_info {
	const char *name;
	enum stm32_adc_extsel extsel;
};

/**
 * struct stm32_adc_calib - optional adc calibration data
 * @calfact_s: Calibration offset for single ended channels
 * @calfact_d: Calibration offset in differential
 * @lincalfact: Linearity calibration factor
 */
struct stm32_adc_calib {
	u32			calfact_s;
	u32			calfact_d;
	u32			lincalfact[STM32H7_LINCALFACT_NUM];
};

/**
 * stm32_adc_regs - stm32 ADC misc registers & bitfield desc
 * @reg:		register offset
 * @mask:		bitfield mask
 * @shift:		left shift
 */
struct stm32_adc_regs {
	int reg;
	int mask;
	int shift;
};

/**
 * stm32_adc_regspec - stm32 registers definition, compatible dependent data
 * @dr:			data register offset
 * @ier_eoc:		interrupt enable register & eocie bitfield
 * @isr_eoc:		interrupt status register & eoc bitfield
 * @sqr:		reference to sequence registers array
 * @exten:		trigger control register & bitfield
 * @extsel:		trigger selection register & bitfield
 * @res:		resolution selection register & bitfield
 * @smpr:		smpr1 & smpr2 registers offset array
 * @smp_bits:		smpr1 & smpr2 index and bitfields
 */
struct stm32_adc_regspec {
	const u32 dr;
	const struct stm32_adc_regs ier_eoc;
	const struct stm32_adc_regs isr_eoc;
	const struct stm32_adc_regs *sqr;
	const struct stm32_adc_regs exten;
	const struct stm32_adc_regs extsel;
	const struct stm32_adc_regs res;
	const u32 smpr[2];
	const struct stm32_adc_regs *smp_bits;
};

struct stm32_adc;

/**
 * stm32_adc_cfg - stm32 compatible configuration data
 * @regs:		registers descriptions
 * @adc_info:		per instance input channels definitions
 * @trigs:		external trigger sources
 * @clk_required:	clock is required
 * @selfcalib:		optional routine for self-calibration
 * @prepare:		optional prepare routine (power-up, enable)
 * @start_conv:		routine to start conversions
 * @stop_conv:		routine to stop conversions
 * @unprepare:		optional unprepare routine (disable, power-down)
 * @smp_cycles:		programmable sampling time (ADC clock cycles)
 */
struct stm32_adc_cfg {
	const struct stm32_adc_regspec	*regs;
	const struct stm32_adc_info	*adc_info;
	struct stm32_adc_trig_info	*trigs;
	bool clk_required;
	int (*selfcalib)(struct stm32_adc *);
	int (*prepare)(struct stm32_adc *);
	void (*start_conv)(struct stm32_adc *, bool dma);
	void (*stop_conv)(struct stm32_adc *);
	void (*unprepare)(struct stm32_adc *);
	const unsigned int *smp_cycles;
};

/**
 * struct stm32_adc - private data of each ADC IIO instance
 * @common:		reference to ADC block common data
 * @offset:		ADC instance register offset in ADC block
 * @cfg:		compatible configuration data
 * @completion:		end of single conversion completion
 * @buffer:		data buffer
 * @clk:		clock for this adc instance
 * @irq:		interrupt for this adc instance
 * @lock:		spinlock
 * @bufi:		data buffer index
 * @num_conv:		expected number of scan conversions
 * @res:		data resolution (e.g. RES bitfield value)
 * @trigger_polarity:	external trigger polarity (e.g. exten)
 * @dma_chan:		dma channel
 * @rx_buf:		dma rx buffer cpu address
 * @rx_dma_buf:		dma rx buffer bus address
 * @rx_buf_sz:		dma rx buffer size
 * @pcsel		bitmask to preselect channels on some devices
 * @smpr_val:		sampling time settings (e.g. smpr1 / smpr2)
 * @cal:		optional calibration data on some devices
 */
struct stm32_adc {
	struct stm32_adc_common	*common;
	u32			offset;
	const struct stm32_adc_cfg	*cfg;
	struct completion	completion;
	u16			buffer[STM32_ADC_MAX_SQ];
	struct clk		*clk;
	int			irq;
	spinlock_t		lock;		/* interrupt lock */
	unsigned int		bufi;
	unsigned int		num_conv;
	u32			res;
	u32			trigger_polarity;
	struct dma_chan		*dma_chan;
	u8			*rx_buf;
	dma_addr_t		rx_dma_buf;
	unsigned int		rx_buf_sz;
	u32			pcsel;
	u32			smpr_val[2];
	struct stm32_adc_calib	cal;
};

/**
 * struct stm32_adc_chan_spec - specification of stm32 adc channel
 * @type:	IIO channel type
 * @channel:	channel number (single ended)
 * @name:	channel name (single ended)
 */
struct stm32_adc_chan_spec {
	enum iio_chan_type	type;
	int			channel;
	const char		*name;
};

/**
 * struct stm32_adc_info - stm32 ADC, per instance config data
 * @channels:		Reference to stm32 channels spec
 * @max_channels:	Number of channels
 * @resolutions:	available resolutions
 * @num_res:		number of available resolutions
 */
struct stm32_adc_info {
	const struct stm32_adc_chan_spec *channels;
	int max_channels;
	const unsigned int *resolutions;
	const unsigned int num_res;
};

/*
 * Input definitions common for all instances:
 * stm32f4 can have up to 16 channels
 * stm32h7 can have up to 20 channels
 */
static const struct stm32_adc_chan_spec stm32_adc_channels[] = {
	{ IIO_VOLTAGE, 0, "in0" },
	{ IIO_VOLTAGE, 1, "in1" },
	{ IIO_VOLTAGE, 2, "in2" },
	{ IIO_VOLTAGE, 3, "in3" },
	{ IIO_VOLTAGE, 4, "in4" },
	{ IIO_VOLTAGE, 5, "in5" },
	{ IIO_VOLTAGE, 6, "in6" },
	{ IIO_VOLTAGE, 7, "in7" },
	{ IIO_VOLTAGE, 8, "in8" },
	{ IIO_VOLTAGE, 9, "in9" },
	{ IIO_VOLTAGE, 10, "in10" },
	{ IIO_VOLTAGE, 11, "in11" },
	{ IIO_VOLTAGE, 12, "in12" },
	{ IIO_VOLTAGE, 13, "in13" },
	{ IIO_VOLTAGE, 14, "in14" },
	{ IIO_VOLTAGE, 15, "in15" },
	{ IIO_VOLTAGE, 16, "in16" },
	{ IIO_VOLTAGE, 17, "in17" },
	{ IIO_VOLTAGE, 18, "in18" },
	{ IIO_VOLTAGE, 19, "in19" },
};

static const unsigned int stm32f4_adc_resolutions[] = {
	/* sorted values so the index matches RES[1:0] in STM32F4_ADC_CR1 */
	12, 10, 8, 6,
};

static const struct stm32_adc_info stm32f4_adc_info = {
	.channels = stm32_adc_channels,
	.max_channels = 16,
	.resolutions = stm32f4_adc_resolutions,
	.num_res = ARRAY_SIZE(stm32f4_adc_resolutions),
};

static const unsigned int stm32h7_adc_resolutions[] = {
	/* sorted values so the index matches RES[2:0] in STM32H7_ADC_CFGR */
	16, 14, 12, 10, 8,
};

static const struct stm32_adc_info stm32h7_adc_info = {
	.channels = stm32_adc_channels,
	.max_channels = 20,
	.resolutions = stm32h7_adc_resolutions,
	.num_res = ARRAY_SIZE(stm32h7_adc_resolutions),
};

/**
 * stm32f4_sq - describe regular sequence registers
 * - L: sequence len (register & bit field)
 * - SQ1..SQ16: sequence entries (register & bit field)
 */
static const struct stm32_adc_regs stm32f4_sq[STM32_ADC_MAX_SQ + 1] = {
	/* L: len bit field description to be kept as first element */
	{ STM32F4_ADC_SQR1, GENMASK(23, 20), 20 },
	/* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
	{ STM32F4_ADC_SQR3, GENMASK(4, 0), 0 },
	{ STM32F4_ADC_SQR3, GENMASK(9, 5), 5 },
	{ STM32F4_ADC_SQR3, GENMASK(14, 10), 10 },
	{ STM32F4_ADC_SQR3, GENMASK(19, 15), 15 },
	{ STM32F4_ADC_SQR3, GENMASK(24, 20), 20 },
	{ STM32F4_ADC_SQR3, GENMASK(29, 25), 25 },
	{ STM32F4_ADC_SQR2, GENMASK(4, 0), 0 },
	{ STM32F4_ADC_SQR2, GENMASK(9, 5), 5 },
	{ STM32F4_ADC_SQR2, GENMASK(14, 10), 10 },
	{ STM32F4_ADC_SQR2, GENMASK(19, 15), 15 },
	{ STM32F4_ADC_SQR2, GENMASK(24, 20), 20 },
	{ STM32F4_ADC_SQR2, GENMASK(29, 25), 25 },
	{ STM32F4_ADC_SQR1, GENMASK(4, 0), 0 },
	{ STM32F4_ADC_SQR1, GENMASK(9, 5), 5 },
	{ STM32F4_ADC_SQR1, GENMASK(14, 10), 10 },
	{ STM32F4_ADC_SQR1, GENMASK(19, 15), 15 },
};

/* STM32F4 external trigger sources for all instances */
static struct stm32_adc_trig_info stm32f4_adc_trigs[] = {
	{ TIM1_CH1, STM32_EXT0 },
	{ TIM1_CH2, STM32_EXT1 },
	{ TIM1_CH3, STM32_EXT2 },
	{ TIM2_CH2, STM32_EXT3 },
	{ TIM2_CH3, STM32_EXT4 },
	{ TIM2_CH4, STM32_EXT5 },
	{ TIM2_TRGO, STM32_EXT6 },
	{ TIM3_CH1, STM32_EXT7 },
	{ TIM3_TRGO, STM32_EXT8 },
	{ TIM4_CH4, STM32_EXT9 },
	{ TIM5_CH1, STM32_EXT10 },
	{ TIM5_CH2, STM32_EXT11 },
	{ TIM5_CH3, STM32_EXT12 },
	{ TIM8_CH1, STM32_EXT13 },
	{ TIM8_TRGO, STM32_EXT14 },
	{}, /* sentinel */
};

/**
 * stm32f4_smp_bits[] - describe sampling time register index & bit fields
 * Sorted so it can be indexed by channel number.
 */
static const struct stm32_adc_regs stm32f4_smp_bits[] = {
	/* STM32F4_ADC_SMPR2: smpr[] index, mask, shift for SMP0 to SMP9 */
	{ 1, GENMASK(2, 0), 0 },
	{ 1, GENMASK(5, 3), 3 },
	{ 1, GENMASK(8, 6), 6 },
	{ 1, GENMASK(11, 9), 9 },
	{ 1, GENMASK(14, 12), 12 },
	{ 1, GENMASK(17, 15), 15 },
	{ 1, GENMASK(20, 18), 18 },
	{ 1, GENMASK(23, 21), 21 },
	{ 1, GENMASK(26, 24), 24 },
	{ 1, GENMASK(29, 27), 27 },
	/* STM32F4_ADC_SMPR1, smpr[] index, mask, shift for SMP10 to SMP18 */
	{ 0, GENMASK(2, 0), 0 },
	{ 0, GENMASK(5, 3), 3 },
	{ 0, GENMASK(8, 6), 6 },
	{ 0, GENMASK(11, 9), 9 },
	{ 0, GENMASK(14, 12), 12 },
	{ 0, GENMASK(17, 15), 15 },
	{ 0, GENMASK(20, 18), 18 },
	{ 0, GENMASK(23, 21), 21 },
	{ 0, GENMASK(26, 24), 24 },
};

/* STM32F4 programmable sampling time (ADC clock cycles) */
static const unsigned int stm32f4_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
	3, 15, 28, 56, 84, 112, 144, 480,
};

static const struct stm32_adc_regspec stm32f4_adc_regspec = {
	.dr = STM32F4_ADC_DR,
	.ier_eoc = { STM32F4_ADC_CR1, STM32F4_EOCIE },
	.isr_eoc = { STM32F4_ADC_SR, STM32F4_EOC },
	.sqr = stm32f4_sq,
	.exten = { STM32F4_ADC_CR2, STM32F4_EXTEN_MASK, STM32F4_EXTEN_SHIFT },
	.extsel = { STM32F4_ADC_CR2, STM32F4_EXTSEL_MASK,
		    STM32F4_EXTSEL_SHIFT },
	.res = { STM32F4_ADC_CR1, STM32F4_RES_MASK, STM32F4_RES_SHIFT },
	.smpr = { STM32F4_ADC_SMPR1, STM32F4_ADC_SMPR2 },
	.smp_bits = stm32f4_smp_bits,
};

static const struct stm32_adc_regs stm32h7_sq[STM32_ADC_MAX_SQ + 1] = {
	/* L: len bit field description to be kept as first element */
	{ STM32H7_ADC_SQR1, GENMASK(3, 0), 0 },
	/* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
	{ STM32H7_ADC_SQR1, GENMASK(10, 6), 6 },
	{ STM32H7_ADC_SQR1, GENMASK(16, 12), 12 },
	{ STM32H7_ADC_SQR1, GENMASK(22, 18), 18 },
	{ STM32H7_ADC_SQR1, GENMASK(28, 24), 24 },
	{ STM32H7_ADC_SQR2, GENMASK(4, 0), 0 },
	{ STM32H7_ADC_SQR2, GENMASK(10, 6), 6 },
	{ STM32H7_ADC_SQR2, GENMASK(16, 12), 12 },
	{ STM32H7_ADC_SQR2, GENMASK(22, 18), 18 },
	{ STM32H7_ADC_SQR2, GENMASK(28, 24), 24 },
	{ STM32H7_ADC_SQR3, GENMASK(4, 0), 0 },
	{ STM32H7_ADC_SQR3, GENMASK(10, 6), 6 },
	{ STM32H7_ADC_SQR3, GENMASK(16, 12), 12 },
	{ STM32H7_ADC_SQR3, GENMASK(22, 18), 18 },
	{ STM32H7_ADC_SQR3, GENMASK(28, 24), 24 },
	{ STM32H7_ADC_SQR4, GENMASK(4, 0), 0 },
	{ STM32H7_ADC_SQR4, GENMASK(10, 6), 6 },
};

/* STM32H7 external trigger sources for all instances */
static struct stm32_adc_trig_info stm32h7_adc_trigs[] = {
	{ TIM1_CH1, STM32_EXT0 },
	{ TIM1_CH2, STM32_EXT1 },
	{ TIM1_CH3, STM32_EXT2 },
	{ TIM2_CH2, STM32_EXT3 },
	{ TIM3_TRGO, STM32_EXT4 },
	{ TIM4_CH4, STM32_EXT5 },
	{ TIM8_TRGO, STM32_EXT7 },
	{ TIM8_TRGO2, STM32_EXT8 },
	{ TIM1_TRGO, STM32_EXT9 },
	{ TIM1_TRGO2, STM32_EXT10 },
	{ TIM2_TRGO, STM32_EXT11 },
	{ TIM4_TRGO, STM32_EXT12 },
	{ TIM6_TRGO, STM32_EXT13 },
	{ TIM3_CH4, STM32_EXT15 },
	{ LPTIM1_OUT, STM32_EXT18 },
	{ LPTIM2_OUT, STM32_EXT19 },
	{ LPTIM3_OUT, STM32_EXT20 },
	{},
};

/**
 * stm32h7_smp_bits - describe sampling time register index & bit fields
 * Sorted so it can be indexed by channel number.
 */
static const struct stm32_adc_regs stm32h7_smp_bits[] = {
	/* STM32H7_ADC_SMPR1, smpr[] index, mask, shift for SMP0 to SMP9 */
	{ 0, GENMASK(2, 0), 0 },
	{ 0, GENMASK(5, 3), 3 },
	{ 0, GENMASK(8, 6), 6 },
	{ 0, GENMASK(11, 9), 9 },
	{ 0, GENMASK(14, 12), 12 },
	{ 0, GENMASK(17, 15), 15 },
	{ 0, GENMASK(20, 18), 18 },
	{ 0, GENMASK(23, 21), 21 },
	{ 0, GENMASK(26, 24), 24 },
	{ 0, GENMASK(29, 27), 27 },
	/* STM32H7_ADC_SMPR2, smpr[] index, mask, shift for SMP10 to SMP19 */
	{ 1, GENMASK(2, 0), 0 },
	{ 1, GENMASK(5, 3), 3 },
	{ 1, GENMASK(8, 6), 6 },
	{ 1, GENMASK(11, 9), 9 },
	{ 1, GENMASK(14, 12), 12 },
	{ 1, GENMASK(17, 15), 15 },
	{ 1, GENMASK(20, 18), 18 },
	{ 1, GENMASK(23, 21), 21 },
	{ 1, GENMASK(26, 24), 24 },
	{ 1, GENMASK(29, 27), 27 },
};

/* STM32H7 programmable sampling time (ADC clock cycles, rounded down) */
static const unsigned int stm32h7_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
	1, 2, 8, 16, 32, 64, 387, 810,
};

static const struct stm32_adc_regspec stm32h7_adc_regspec = {
	.dr = STM32H7_ADC_DR,
	.ier_eoc = { STM32H7_ADC_IER, STM32H7_EOCIE },
	.isr_eoc = { STM32H7_ADC_ISR, STM32H7_EOC },
	.sqr = stm32h7_sq,
	.exten = { STM32H7_ADC_CFGR, STM32H7_EXTEN_MASK, STM32H7_EXTEN_SHIFT },
	.extsel = { STM32H7_ADC_CFGR, STM32H7_EXTSEL_MASK,
		    STM32H7_EXTSEL_SHIFT },
	.res = { STM32H7_ADC_CFGR, STM32H7_RES_MASK, STM32H7_RES_SHIFT },
	.smpr = { STM32H7_ADC_SMPR1, STM32H7_ADC_SMPR2 },
	.smp_bits = stm32h7_smp_bits,
};

/**
 * STM32 ADC registers access routines
 * @adc: stm32 adc instance
 * @reg: reg offset in adc instance
 *
 * Note: All instances share same base, with 0x0, 0x100 or 0x200 offset resp.
 * for adc1, adc2 and adc3.
 */
static u32 stm32_adc_readl(struct stm32_adc *adc, u32 reg)
{
	return readl_relaxed(adc->common->base + adc->offset + reg);
}

#define stm32_adc_readl_addr(addr)	stm32_adc_readl(adc, addr)

#define stm32_adc_readl_poll_timeout(reg, val, cond, sleep_us, timeout_us) \
	readx_poll_timeout(stm32_adc_readl_addr, reg, val, \
			   cond, sleep_us, timeout_us)

static u16 stm32_adc_readw(struct stm32_adc *adc, u32 reg)
{
	return readw_relaxed(adc->common->base + adc->offset + reg);
}

static void stm32_adc_writel(struct stm32_adc *adc, u32 reg, u32 val)
{
	writel_relaxed(val, adc->common->base + adc->offset + reg);
}

static void stm32_adc_set_bits(struct stm32_adc *adc, u32 reg, u32 bits)
{
	unsigned long flags;

	spin_lock_irqsave(&adc->lock, flags);
	stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) | bits);
	spin_unlock_irqrestore(&adc->lock, flags);
}

static void stm32_adc_clr_bits(struct stm32_adc *adc, u32 reg, u32 bits)
{
	unsigned long flags;

	spin_lock_irqsave(&adc->lock, flags);
	stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) & ~bits);
	spin_unlock_irqrestore(&adc->lock, flags);
}

/**
 * stm32_adc_conv_irq_enable() - Enable end of conversion interrupt
 * @adc: stm32 adc instance
 */
static void stm32_adc_conv_irq_enable(struct stm32_adc *adc)
{
	stm32_adc_set_bits(adc, adc->cfg->regs->ier_eoc.reg,
			   adc->cfg->regs->ier_eoc.mask);
};

/**
 * stm32_adc_conv_irq_disable() - Disable end of conversion interrupt
 * @adc: stm32 adc instance
 */
static void stm32_adc_conv_irq_disable(struct stm32_adc *adc)
{
	stm32_adc_clr_bits(adc, adc->cfg->regs->ier_eoc.reg,
			   adc->cfg->regs->ier_eoc.mask);
}

static void stm32_adc_set_res(struct stm32_adc *adc)
{
	const struct stm32_adc_regs *res = &adc->cfg->regs->res;
	u32 val;

	val = stm32_adc_readl(adc, res->reg);
	val = (val & ~res->mask) | (adc->res << res->shift);
	stm32_adc_writel(adc, res->reg, val);
}

/**
 * stm32f4_adc_start_conv() - Start conversions for regular channels.
 * @adc: stm32 adc instance
 * @dma: use dma to transfer conversion result
 *
 * Start conversions for regular channels.
 * Also take care of normal or DMA mode. Circular DMA may be used for regular
 * conversions, in IIO buffer modes. Otherwise, use ADC interrupt with direct
 * DR read instead (e.g. read_raw, or triggered buffer mode without DMA).
 */
static void stm32f4_adc_start_conv(struct stm32_adc *adc, bool dma)
{
	stm32_adc_set_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);

	if (dma)
		stm32_adc_set_bits(adc, STM32F4_ADC_CR2,
				   STM32F4_DMA | STM32F4_DDS);

	stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_EOCS | STM32F4_ADON);

	/* Wait for Power-up time (tSTAB from datasheet) */
	usleep_range(2, 3);

	/* Software start ? (e.g. trigger detection disabled ?) */
	if (!(stm32_adc_readl(adc, STM32F4_ADC_CR2) & STM32F4_EXTEN_MASK))
		stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_SWSTART);
}

static void stm32f4_adc_stop_conv(struct stm32_adc *adc)
{
	stm32_adc_clr_bits(adc, STM32F4_ADC_CR2, STM32F4_EXTEN_MASK);
	stm32_adc_clr_bits(adc, STM32F4_ADC_SR, STM32F4_STRT);

	stm32_adc_clr_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
	stm32_adc_clr_bits(adc, STM32F4_ADC_CR2,
			   STM32F4_ADON | STM32F4_DMA | STM32F4_DDS);
}

static void stm32h7_adc_start_conv(struct stm32_adc *adc, bool dma)
{
	enum stm32h7_adc_dmngt dmngt;
	unsigned long flags;
	u32 val;

	if (dma)
		dmngt = STM32H7_DMNGT_DMA_CIRC;
	else
		dmngt = STM32H7_DMNGT_DR_ONLY;

	spin_lock_irqsave(&adc->lock, flags);
	val = stm32_adc_readl(adc, STM32H7_ADC_CFGR);
	val = (val & ~STM32H7_DMNGT_MASK) | (dmngt << STM32H7_DMNGT_SHIFT);
	stm32_adc_writel(adc, STM32H7_ADC_CFGR, val);
	spin_unlock_irqrestore(&adc->lock, flags);

	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTART);
}

static void stm32h7_adc_stop_conv(struct stm32_adc *adc)
{
	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
	int ret;
	u32 val;

	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTP);

	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
					   !(val & (STM32H7_ADSTART)),
					   100, STM32_ADC_TIMEOUT_US);
	if (ret)
		dev_warn(&indio_dev->dev, "stop failed\n");

	stm32_adc_clr_bits(adc, STM32H7_ADC_CFGR, STM32H7_DMNGT_MASK);
}

static void stm32h7_adc_exit_pwr_down(struct stm32_adc *adc)
{
	/* Exit deep power down, then enable ADC voltage regulator */
	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADVREGEN);

	if (adc->common->rate > STM32H7_BOOST_CLKRATE)
		stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);

	/* Wait for startup time */
	usleep_range(10, 20);
}

static void stm32h7_adc_enter_pwr_down(struct stm32_adc *adc)
{
	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);

	/* Setting DEEPPWD disables ADC vreg and clears ADVREGEN */
	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
}

static int stm32h7_adc_enable(struct stm32_adc *adc)
{
	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
	int ret;
	u32 val;

	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADEN);

	/* Poll for ADRDY to be set (after adc startup time) */
	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
					   val & STM32H7_ADRDY,
					   100, STM32_ADC_TIMEOUT_US);
	if (ret) {
		stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
		dev_err(&indio_dev->dev, "Failed to enable ADC\n");
	} else {
		/* Clear ADRDY by writing one */
		stm32_adc_set_bits(adc, STM32H7_ADC_ISR, STM32H7_ADRDY);
	}

	return ret;
}

static void stm32h7_adc_disable(struct stm32_adc *adc)
{
	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
	int ret;
	u32 val;

	/* Disable ADC and wait until it's effectively disabled */
	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
					   !(val & STM32H7_ADEN), 100,
					   STM32_ADC_TIMEOUT_US);
	if (ret)
		dev_warn(&indio_dev->dev, "Failed to disable\n");
}

/**
 * stm32h7_adc_read_selfcalib() - read calibration shadow regs, save result
 * @adc: stm32 adc instance
 */
static int stm32h7_adc_read_selfcalib(struct stm32_adc *adc)
{
	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
	int i, ret;
	u32 lincalrdyw_mask, val;

	/* Enable adc so LINCALRDYW1..6 bits are writable */
	ret = stm32h7_adc_enable(adc);
	if (ret)
		return ret;

	/* Read linearity calibration */
	lincalrdyw_mask = STM32H7_LINCALRDYW6;
	for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
		/* Clear STM32H7_LINCALRDYW[6..1]: transfer calib to CALFACT2 */
		stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);

		/* Poll: wait calib data to be ready in CALFACT2 register */
		ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
						   !(val & lincalrdyw_mask),
						   100, STM32_ADC_TIMEOUT_US);
		if (ret) {
			dev_err(&indio_dev->dev, "Failed to read calfact\n");
			goto disable;
		}

		val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
		adc->cal.lincalfact[i] = (val & STM32H7_LINCALFACT_MASK);
		adc->cal.lincalfact[i] >>= STM32H7_LINCALFACT_SHIFT;

		lincalrdyw_mask >>= 1;
	}

	/* Read offset calibration */
	val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT);
	adc->cal.calfact_s = (val & STM32H7_CALFACT_S_MASK);
	adc->cal.calfact_s >>= STM32H7_CALFACT_S_SHIFT;
	adc->cal.calfact_d = (val & STM32H7_CALFACT_D_MASK);
	adc->cal.calfact_d >>= STM32H7_CALFACT_D_SHIFT;

disable:
	stm32h7_adc_disable(adc);

	return ret;
}

/**
 * stm32h7_adc_restore_selfcalib() - Restore saved self-calibration result
 * @adc: stm32 adc instance
 * Note: ADC must be enabled, with no on-going conversions.
 */
static int stm32h7_adc_restore_selfcalib(struct stm32_adc *adc)
{
	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
	int i, ret;
	u32 lincalrdyw_mask, val;

	val = (adc->cal.calfact_s << STM32H7_CALFACT_S_SHIFT) |
		(adc->cal.calfact_d << STM32H7_CALFACT_D_SHIFT);
	stm32_adc_writel(adc, STM32H7_ADC_CALFACT, val);

	lincalrdyw_mask = STM32H7_LINCALRDYW6;
	for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
		/*
		 * Write saved calibration data to shadow registers:
		 * Write CALFACT2, and set LINCALRDYW[6..1] bit to trigger
		 * data write. Then poll to wait for complete transfer.
		 */
		val = adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT;
		stm32_adc_writel(adc, STM32H7_ADC_CALFACT2, val);
		stm32_adc_set_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
		ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
						   val & lincalrdyw_mask,
						   100, STM32_ADC_TIMEOUT_US);
		if (ret) {
			dev_err(&indio_dev->dev, "Failed to write calfact\n");
			return ret;
		}

		/*
		 * Read back calibration data, has two effects:
		 * - It ensures bits LINCALRDYW[6..1] are kept cleared
		 *   for next time calibration needs to be restored.
		 * - BTW, bit clear triggers a read, then check data has been
		 *   correctly written.
		 */
		stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
		ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
						   !(val & lincalrdyw_mask),
						   100, STM32_ADC_TIMEOUT_US);
		if (ret) {
			dev_err(&indio_dev->dev, "Failed to read calfact\n");
			return ret;
		}
		val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
		if (val != adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT) {
			dev_err(&indio_dev->dev, "calfact not consistent\n");
			return -EIO;
		}

		lincalrdyw_mask >>= 1;
	}

	return 0;
}

/**
 * Fixed timeout value for ADC calibration.
 * worst cases:
 * - low clock frequency
 * - maximum prescalers
 * Calibration requires:
 * - 131,072 ADC clock cycle for the linear calibration
 * - 20 ADC clock cycle for the offset calibration
 *
 * Set to 100ms for now
 */
#define STM32H7_ADC_CALIB_TIMEOUT_US		100000

/**
 * stm32h7_adc_selfcalib() - Procedure to calibrate ADC (from power down)
 * @adc: stm32 adc instance
 * Exit from power down, calibrate ADC, then return to power down.
 */
static int stm32h7_adc_selfcalib(struct stm32_adc *adc)
{
	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
	int ret;
	u32 val;

	stm32h7_adc_exit_pwr_down(adc);

	/*
	 * Select calibration mode:
	 * - Offset calibration for single ended inputs
	 * - No linearity calibration (do it later, before reading it)
	 */
	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALDIF);
	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALLIN);

	/* Start calibration, then wait for completion */
	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
					   !(val & STM32H7_ADCAL), 100,
					   STM32H7_ADC_CALIB_TIMEOUT_US);
	if (ret) {
		dev_err(&indio_dev->dev, "calibration failed\n");
		goto pwr_dwn;
	}

	/*
	 * Select calibration mode, then start calibration:
	 * - Offset calibration for differential input
	 * - Linearity calibration (needs to be done only once for single/diff)
	 *   will run simultaneously with offset calibration.
	 */
	stm32_adc_set_bits(adc, STM32H7_ADC_CR,
			   STM32H7_ADCALDIF | STM32H7_ADCALLIN);
	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
					   !(val & STM32H7_ADCAL), 100,
					   STM32H7_ADC_CALIB_TIMEOUT_US);
	if (ret) {
		dev_err(&indio_dev->dev, "calibration failed\n");
		goto pwr_dwn;
	}

	stm32_adc_clr_bits(adc, STM32H7_ADC_CR,
			   STM32H7_ADCALDIF | STM32H7_ADCALLIN);

	/* Read calibration result for future reference */
	ret = stm32h7_adc_read_selfcalib(adc);

pwr_dwn:
	stm32h7_adc_enter_pwr_down(adc);

	return ret;
}

/**
 * stm32h7_adc_prepare() - Leave power down mode to enable ADC.
 * @adc: stm32 adc instance
 * Leave power down mode.
 * Enable ADC.
 * Restore calibration data.
 * Pre-select channels that may be used in PCSEL (required by input MUX / IO).
 */
static int stm32h7_adc_prepare(struct stm32_adc *adc)
{
	int ret;

	stm32h7_adc_exit_pwr_down(adc);

	ret = stm32h7_adc_enable(adc);
	if (ret)
		goto pwr_dwn;

	ret = stm32h7_adc_restore_selfcalib(adc);
	if (ret)
		goto disable;

	stm32_adc_writel(adc, STM32H7_ADC_PCSEL, adc->pcsel);

	return 0;

disable:
	stm32h7_adc_disable(adc);
pwr_dwn:
	stm32h7_adc_enter_pwr_down(adc);

	return ret;
}

static void stm32h7_adc_unprepare(struct stm32_adc *adc)
{
	stm32h7_adc_disable(adc);
	stm32h7_adc_enter_pwr_down(adc);
}

/**
 * stm32_adc_conf_scan_seq() - Build regular channels scan sequence
 * @indio_dev: IIO device
 * @scan_mask: channels to be converted
 *
 * Conversion sequence :
 * Apply sampling time settings for all channels.
 * Configure ADC scan sequence based on selected channels in scan_mask.
 * Add channels to SQR registers, from scan_mask LSB to MSB, then
 * program sequence len.
 */
static int stm32_adc_conf_scan_seq(struct iio_dev *indio_dev,
				   const unsigned long *scan_mask)
{
	struct stm32_adc *adc = iio_priv(indio_dev);
	const struct stm32_adc_regs *sqr = adc->cfg->regs->sqr;
	const struct iio_chan_spec *chan;
	u32 val, bit;
	int i = 0;

	/* Apply sampling time settings */
	stm32_adc_writel(adc, adc->cfg->regs->smpr[0], adc->smpr_val[0]);
	stm32_adc_writel(adc, adc->cfg->regs->smpr[1], adc->smpr_val[1]);

	for_each_set_bit(bit, scan_mask, indio_dev->masklength) {
		chan = indio_dev->channels + bit;
		/*
		 * Assign one channel per SQ entry in regular
		 * sequence, starting with SQ1.
		 */
		i++;
		if (i > STM32_ADC_MAX_SQ)
			return -EINVAL;

		dev_dbg(&indio_dev->dev, "%s chan %d to SQ%d\n",
			__func__, chan->channel, i);

		val = stm32_adc_readl(adc, sqr[i].reg);
		val &= ~sqr[i].mask;
		val |= chan->channel << sqr[i].shift;
		stm32_adc_writel(adc, sqr[i].reg, val);
	}

	if (!i)
		return -EINVAL;

	/* Sequence len */
	val = stm32_adc_readl(adc, sqr[0].reg);
	val &= ~sqr[0].mask;
	val |= ((i - 1) << sqr[0].shift);
	stm32_adc_writel(adc, sqr[0].reg, val);

	return 0;
}

/**
 * stm32_adc_get_trig_extsel() - Get external trigger selection
 * @trig: trigger
 *
 * Returns trigger extsel value, if trig matches, -EINVAL otherwise.
 */
static int stm32_adc_get_trig_extsel(struct iio_dev *indio_dev,
				     struct iio_trigger *trig)
{
	struct stm32_adc *adc = iio_priv(indio_dev);
	int i;

	/* lookup triggers registered by stm32 timer trigger driver */
	for (i = 0; adc->cfg->trigs[i].name; i++) {
		/**
		 * Checking both stm32 timer trigger type and trig name
		 * should be safe against arbitrary trigger names.
		 */
		if ((is_stm32_timer_trigger(trig) ||
		     is_stm32_lptim_trigger(trig)) &&
		    !strcmp(adc->cfg->trigs[i].name, trig->name)) {
			return adc->cfg->trigs[i].extsel;
		}
	}

	return -EINVAL;
}

/**
 * stm32_adc_set_trig() - Set a regular trigger
 * @indio_dev: IIO device
 * @trig: IIO trigger
 *
 * Set trigger source/polarity (e.g. SW, or HW with polarity) :
 * - if HW trigger disabled (e.g. trig == NULL, conversion launched by sw)
 * - if HW trigger enabled, set source & polarity
 */
static int stm32_adc_set_trig(struct iio_dev *indio_dev,
			      struct iio_trigger *trig)
{
	struct stm32_adc *adc = iio_priv(indio_dev);
	u32 val, extsel = 0, exten = STM32_EXTEN_SWTRIG;
	unsigned long flags;
	int ret;

	if (trig) {
		ret = stm32_adc_get_trig_extsel(indio_dev, trig);
		if (ret < 0)
			return ret;

		/* set trigger source and polarity (default to rising edge) */
		extsel = ret;
		exten = adc->trigger_polarity + STM32_EXTEN_HWTRIG_RISING_EDGE;
	}

	spin_lock_irqsave(&adc->lock, flags);
	val = stm32_adc_readl(adc, adc->cfg->regs->exten.reg);
	val &= ~(adc->cfg->regs->exten.mask | adc->cfg->regs->extsel.mask);
	val |= exten << adc->cfg->regs->exten.shift;
	val |= extsel << adc->cfg->regs->extsel.shift;
	stm32_adc_writel(adc,  adc->cfg->regs->exten.reg, val);
	spin_unlock_irqrestore(&adc->lock, flags);

	return 0;
}

static int stm32_adc_set_trig_pol(struct iio_dev *indio_dev,
				  const struct iio_chan_spec *chan,
				  unsigned int type)
{
	struct stm32_adc *adc = iio_priv(indio_dev);

	adc->trigger_polarity = type;

	return 0;
}

static int stm32_adc_get_trig_pol(struct iio_dev *indio_dev,
				  const struct iio_chan_spec *chan)
{
	struct stm32_adc *adc = iio_priv(indio_dev);

	return adc->trigger_polarity;
}

static const char * const stm32_trig_pol_items[] = {
	"rising-edge", "falling-edge", "both-edges",
};

static const struct iio_enum stm32_adc_trig_pol = {
	.items = stm32_trig_pol_items,
	.num_items = ARRAY_SIZE(stm32_trig_pol_items),
	.get = stm32_adc_get_trig_pol,
	.set = stm32_adc_set_trig_pol,
};

/**
 * stm32_adc_single_conv() - Performs a single conversion
 * @indio_dev: IIO device
 * @chan: IIO channel
 * @res: conversion result
 *
 * The function performs a single conversion on a given channel:
 * - Apply sampling time settings
 * - Program sequencer with one channel (e.g. in SQ1 with len = 1)
 * - Use SW trigger
 * - Start conversion, then wait for interrupt completion.
 */
static int stm32_adc_single_conv(struct iio_dev *indio_dev,
				 const struct iio_chan_spec *chan,
				 int *res)
{
	struct stm32_adc *adc = iio_priv(indio_dev);
	const struct stm32_adc_regspec *regs = adc->cfg->regs;
	long timeout;
	u32 val;
	int ret;

	reinit_completion(&adc->completion);

	adc->bufi = 0;

	if (adc->cfg->prepare) {
		ret = adc->cfg->prepare(adc);
		if (ret)
			return ret;
	}

	/* Apply sampling time settings */
	stm32_adc_writel(adc, regs->smpr[0], adc->smpr_val[0]);
	stm32_adc_writel(adc, regs->smpr[1], adc->smpr_val[1]);

	/* Program chan number in regular sequence (SQ1) */
	val = stm32_adc_readl(adc, regs->sqr[1].reg);
	val &= ~regs->sqr[1].mask;
	val |= chan->channel << regs->sqr[1].shift;
	stm32_adc_writel(adc, regs->sqr[1].reg, val);

	/* Set regular sequence len (0 for 1 conversion) */
	stm32_adc_clr_bits(adc, regs->sqr[0].reg, regs->sqr[0].mask);

	/* Trigger detection disabled (conversion can be launched in SW) */
	stm32_adc_clr_bits(adc, regs->exten.reg, regs->exten.mask);

	stm32_adc_conv_irq_enable(adc);

	adc->cfg->start_conv(adc, false);

	timeout = wait_for_completion_interruptible_timeout(
					&adc->completion, STM32_ADC_TIMEOUT);
	if (timeout == 0) {
		ret = -ETIMEDOUT;
	} else if (timeout < 0) {
		ret = timeout;
	} else {
		*res = adc->buffer[0];
		ret = IIO_VAL_INT;
	}

	adc->cfg->stop_conv(adc);

	stm32_adc_conv_irq_disable(adc);

	if (adc->cfg->unprepare)
		adc->cfg->unprepare(adc);

	return ret;
}

static int stm32_adc_read_raw(struct iio_dev *indio_dev,
			      struct iio_chan_spec const *chan,
			      int *val, int *val2, long mask)
{
	struct stm32_adc *adc = iio_priv(indio_dev);
	int ret;

	switch (mask) {
	case IIO_CHAN_INFO_RAW:
		ret = iio_device_claim_direct_mode(indio_dev);
		if (ret)
			return ret;
		if (chan->type == IIO_VOLTAGE)
			ret = stm32_adc_single_conv(indio_dev, chan, val);
		else
			ret = -EINVAL;
		iio_device_release_direct_mode(indio_dev);
		return ret;

	case IIO_CHAN_INFO_SCALE:
		*val = adc->common->vref_mv;
		*val2 = chan->scan_type.realbits;
		return IIO_VAL_FRACTIONAL_LOG2;

	default:
		return -EINVAL;
	}
}

static irqreturn_t stm32_adc_isr(int irq, void *data)
{
	struct stm32_adc *adc = data;
	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
	const struct stm32_adc_regspec *regs = adc->cfg->regs;
	u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg);

	if (status & regs->isr_eoc.mask) {
		/* Reading DR also clears EOC status flag */
		adc->buffer[adc->bufi] = stm32_adc_readw(adc, regs->dr);
		if (iio_buffer_enabled(indio_dev)) {
			adc->bufi++;
			if (adc->bufi >= adc->num_conv) {
				stm32_adc_conv_irq_disable(adc);
				iio_trigger_poll(indio_dev->trig);
			}
		} else {
			complete(&adc->completion);
		}
		return IRQ_HANDLED;
	}

	return IRQ_NONE;
}

/**
 * stm32_adc_validate_trigger() - validate trigger for stm32 adc
 * @indio_dev: IIO device
 * @trig: new trigger
 *
 * Returns: 0 if trig matches one of the triggers registered by stm32 adc
 * driver, -EINVAL otherwise.
 */
static int stm32_adc_validate_trigger(struct iio_dev *indio_dev,
				      struct iio_trigger *trig)
{
	return stm32_adc_get_trig_extsel(indio_dev, trig) < 0 ? -EINVAL : 0;
}

static int stm32_adc_set_watermark(struct iio_dev *indio_dev, unsigned int val)
{
	struct stm32_adc *adc = iio_priv(indio_dev);
	unsigned int watermark = STM32_DMA_BUFFER_SIZE / 2;
	unsigned int rx_buf_sz = STM32_DMA_BUFFER_SIZE;

	/*
	 * dma cyclic transfers are used, buffer is split into two periods.
	 * There should be :
	 * - always one buffer (period) dma is working on
	 * - one buffer (period) driver can push with iio_trigger_poll().
	 */
	watermark = min(watermark, val * (unsigned)(sizeof(u16)));
	adc->rx_buf_sz = min(rx_buf_sz, watermark * 2 * adc->num_conv);

	return 0;
}

static int stm32_adc_update_scan_mode(struct iio_dev *indio_dev,
				      const unsigned long *scan_mask)
{
	struct stm32_adc *adc = iio_priv(indio_dev);
	int ret;

	adc->num_conv = bitmap_weight(scan_mask, indio_dev->masklength);

	ret = stm32_adc_conf_scan_seq(indio_dev, scan_mask);
	if (ret)
		return ret;

	return 0;
}

static int stm32_adc_of_xlate(struct iio_dev *indio_dev,
			      const struct of_phandle_args *iiospec)
{
	int i;

	for (i = 0; i < indio_dev->num_channels; i++)
		if (indio_dev->channels[i].channel == iiospec->args[0])
			return i;

	return -EINVAL;
}

/**
 * stm32_adc_debugfs_reg_access - read or write register value
 *
 * To read a value from an ADC register:
 *   echo [ADC reg offset] > direct_reg_access
 *   cat direct_reg_access
 *
 * To write a value in a ADC register:
 *   echo [ADC_reg_offset] [value] > direct_reg_access
 */
static int stm32_adc_debugfs_reg_access(struct iio_dev *indio_dev,
					unsigned reg, unsigned writeval,
					unsigned *readval)
{
	struct stm32_adc *adc = iio_priv(indio_dev);

	if (!readval)
		stm32_adc_writel(adc, reg, writeval);
	else
		*readval = stm32_adc_readl(adc, reg);

	return 0;
}

static const struct iio_info stm32_adc_iio_info = {
	.read_raw = stm32_adc_read_raw,
	.validate_trigger = stm32_adc_validate_trigger,
	.hwfifo_set_watermark = stm32_adc_set_watermark,
	.update_scan_mode = stm32_adc_update_scan_mode,
	.debugfs_reg_access = stm32_adc_debugfs_reg_access,
	.of_xlate = stm32_adc_of_xlate,
	.driver_module = THIS_MODULE,
};

static unsigned int stm32_adc_dma_residue(struct stm32_adc *adc)
{
	struct dma_tx_state state;
	enum dma_status status;

	status = dmaengine_tx_status(adc->dma_chan,
				     adc->dma_chan->cookie,
				     &state);
	if (status == DMA_IN_PROGRESS) {
		/* Residue is size in bytes from end of buffer */
		unsigned int i = adc->rx_buf_sz - state.residue;
		unsigned int size;

		/* Return available bytes */
		if (i >= adc->bufi)
			size = i - adc->bufi;
		else
			size = adc->rx_buf_sz + i - adc->bufi;

		return size;
	}

	return 0;
}

static void stm32_adc_dma_buffer_done(void *data)
{
	struct iio_dev *indio_dev = data;

	iio_trigger_poll_chained(indio_dev->trig);
}

static int stm32_adc_dma_start(struct iio_dev *indio_dev)
{
	struct stm32_adc *adc = iio_priv(indio_dev);
	struct dma_async_tx_descriptor *desc;
	dma_cookie_t cookie;
	int ret;

	if (!adc->dma_chan)
		return 0;

	dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
		adc->rx_buf_sz, adc->rx_buf_sz / 2);

	/* Prepare a DMA cyclic transaction */
	desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
					 adc->rx_dma_buf,
					 adc->rx_buf_sz, adc->rx_buf_sz / 2,
					 DMA_DEV_TO_MEM,
					 DMA_PREP_INTERRUPT);
	if (!desc)
		return -EBUSY;

	desc->callback = stm32_adc_dma_buffer_done;
	desc->callback_param = indio_dev;

	cookie = dmaengine_submit(desc);
	ret = dma_submit_error(cookie);
	if (ret) {
		dmaengine_terminate_all(adc->dma_chan);
		return ret;
	}

	/* Issue pending DMA requests */
	dma_async_issue_pending(adc->dma_chan);

	return 0;
}

static int stm32_adc_buffer_postenable(struct iio_dev *indio_dev)
{
	struct stm32_adc *adc = iio_priv(indio_dev);
	int ret;

	if (adc->cfg->prepare) {
		ret = adc->cfg->prepare(adc);
		if (ret)
			return ret;
	}

	ret = stm32_adc_set_trig(indio_dev, indio_dev->trig);
	if (ret) {
		dev_err(&indio_dev->dev, "Can't set trigger\n");
		goto err_unprepare;
	}

	ret = stm32_adc_dma_start(indio_dev);
	if (ret) {
		dev_err(&indio_dev->dev, "Can't start dma\n");
		goto err_clr_trig;
	}

	ret = iio_triggered_buffer_postenable(indio_dev);
	if (ret < 0)
		goto err_stop_dma;

	/* Reset adc buffer index */
	adc->bufi = 0;

	if (!adc->dma_chan)
		stm32_adc_conv_irq_enable(adc);

	adc->cfg->start_conv(adc, !!adc->dma_chan);

	return 0;

err_stop_dma:
	if (adc->dma_chan)
		dmaengine_terminate_all(adc->dma_chan);
err_clr_trig:
	stm32_adc_set_trig(indio_dev, NULL);
err_unprepare:
	if (adc->cfg->unprepare)
		adc->cfg->unprepare(adc);

	return ret;
}

static int stm32_adc_buffer_predisable(struct iio_dev *indio_dev)
{
	struct stm32_adc *adc = iio_priv(indio_dev);
	int ret;

	adc->cfg->stop_conv(adc);
	if (!adc->dma_chan)
		stm32_adc_conv_irq_disable(adc);

	ret = iio_triggered_buffer_predisable(indio_dev);
	if (ret < 0)
		dev_err(&indio_dev->dev, "predisable failed\n");

	if (adc->dma_chan)
		dmaengine_terminate_all(adc->dma_chan);

	if (stm32_adc_set_trig(indio_dev, NULL))
		dev_err(&indio_dev->dev, "Can't clear trigger\n");

	if (adc->cfg->unprepare)
		adc->cfg->unprepare(adc);

	return ret;
}

static const struct iio_buffer_setup_ops stm32_adc_buffer_setup_ops = {
	.postenable = &stm32_adc_buffer_postenable,
	.predisable = &stm32_adc_buffer_predisable,
};

static irqreturn_t stm32_adc_trigger_handler(int irq, void *p)
{
	struct iio_poll_func *pf = p;
	struct iio_dev *indio_dev = pf->indio_dev;
	struct stm32_adc *adc = iio_priv(indio_dev);

	dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);

	if (!adc->dma_chan) {
		/* reset buffer index */
		adc->bufi = 0;
		iio_push_to_buffers_with_timestamp(indio_dev, adc->buffer,
						   pf->timestamp);
	} else {
		int residue = stm32_adc_dma_residue(adc);

		while (residue >= indio_dev->scan_bytes) {
			u16 *buffer = (u16 *)&adc->rx_buf[adc->bufi];

			iio_push_to_buffers_with_timestamp(indio_dev, buffer,
							   pf->timestamp);
			residue -= indio_dev->scan_bytes;
			adc->bufi += indio_dev->scan_bytes;
			if (adc->bufi >= adc->rx_buf_sz)
				adc->bufi = 0;
		}
	}

	iio_trigger_notify_done(indio_dev->trig);

	/* re-enable eoc irq */
	if (!adc->dma_chan)
		stm32_adc_conv_irq_enable(adc);

	return IRQ_HANDLED;
}

static const struct iio_chan_spec_ext_info stm32_adc_ext_info[] = {
	IIO_ENUM("trigger_polarity", IIO_SHARED_BY_ALL, &stm32_adc_trig_pol),
	{
		.name = "trigger_polarity_available",
		.shared = IIO_SHARED_BY_ALL,
		.read = iio_enum_available_read,
		.private = (uintptr_t)&stm32_adc_trig_pol,
	},
	{},
};

static int stm32_adc_of_get_resolution(struct iio_dev *indio_dev)
{
	struct device_node *node = indio_dev->dev.of_node;
	struct stm32_adc *adc = iio_priv(indio_dev);
	unsigned int i;
	u32 res;

	if (of_property_read_u32(node, "assigned-resolution-bits", &res))
		res = adc->cfg->adc_info->resolutions[0];

	for (i = 0; i < adc->cfg->adc_info->num_res; i++)
		if (res == adc->cfg->adc_info->resolutions[i])
			break;
	if (i >= adc->cfg->adc_info->num_res) {
		dev_err(&indio_dev->dev, "Bad resolution: %u bits\n", res);
		return -EINVAL;
	}

	dev_dbg(&indio_dev->dev, "Using %u bits resolution\n", res);
	adc->res = i;

	return 0;
}

static void stm32_adc_smpr_init(struct stm32_adc *adc, int channel, u32 smp_ns)
{
	const struct stm32_adc_regs *smpr = &adc->cfg->regs->smp_bits[channel];
	u32 period_ns, shift = smpr->shift, mask = smpr->mask;
	unsigned int smp, r = smpr->reg;

	/* Determine sampling time (ADC clock cycles) */
	period_ns = NSEC_PER_SEC / adc->common->rate;
	for (smp = 0; smp <= STM32_ADC_MAX_SMP; smp++)
		if ((period_ns * adc->cfg->smp_cycles[smp]) >= smp_ns)
			break;
	if (smp > STM32_ADC_MAX_SMP)
		smp = STM32_ADC_MAX_SMP;

	/* pre-build sampling time registers (e.g. smpr1, smpr2) */
	adc->smpr_val[r] = (adc->smpr_val[r] & ~mask) | (smp << shift);
}

static void stm32_adc_chan_init_one(struct iio_dev *indio_dev,
				    struct iio_chan_spec *chan,
				    const struct stm32_adc_chan_spec *channel,
				    int scan_index, u32 smp)
{
	struct stm32_adc *adc = iio_priv(indio_dev);

	chan->type = channel->type;
	chan->channel = channel->channel;
	chan->datasheet_name = channel->name;
	chan->scan_index = scan_index;
	chan->indexed = 1;
	chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
	chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE);
	chan->scan_type.sign = 'u';
	chan->scan_type.realbits = adc->cfg->adc_info->resolutions[adc->res];
	chan->scan_type.storagebits = 16;
	chan->ext_info = stm32_adc_ext_info;

	/* Prepare sampling time settings */
	stm32_adc_smpr_init(adc, chan->channel, smp);

	/* pre-build selected channels mask */
	adc->pcsel |= BIT(chan->channel);
}

static int stm32_adc_chan_of_init(struct iio_dev *indio_dev)
{
	struct device_node *node = indio_dev->dev.of_node;
	struct stm32_adc *adc = iio_priv(indio_dev);
	const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
	struct property *prop;
	const __be32 *cur;
	struct iio_chan_spec *channels;
	int scan_index = 0, num_channels, ret;
	u32 val, smp = 0;

	num_channels = of_property_count_u32_elems(node, "st,adc-channels");
	if (num_channels < 0 ||
	    num_channels > adc_info->max_channels) {
		dev_err(&indio_dev->dev, "Bad st,adc-channels?\n");
		return num_channels < 0 ? num_channels : -EINVAL;
	}

	/* Optional sample time is provided either for each, or all channels */
	ret = of_property_count_u32_elems(node, "st,min-sample-time-nsecs");
	if (ret > 1 && ret != num_channels) {
		dev_err(&indio_dev->dev, "Invalid st,min-sample-time-nsecs\n");
		return -EINVAL;
	}

	channels = devm_kcalloc(&indio_dev->dev, num_channels,
				sizeof(struct iio_chan_spec), GFP_KERNEL);
	if (!channels)
		return -ENOMEM;

	of_property_for_each_u32(node, "st,adc-channels", prop, cur, val) {
		if (val >= adc_info->max_channels) {
			dev_err(&indio_dev->dev, "Invalid channel %d\n", val);
			return -EINVAL;
		}

		/*
		 * Using of_property_read_u32_index(), smp value will only be
		 * modified if valid u32 value can be decoded. This allows to
		 * get either no value, 1 shared value for all indexes, or one
		 * value per channel.
		 */
		of_property_read_u32_index(node, "st,min-sample-time-nsecs",
					   scan_index, &smp);

		stm32_adc_chan_init_one(indio_dev, &channels[scan_index],
					&adc_info->channels[val],
					scan_index, smp);
		scan_index++;
	}

	indio_dev->num_channels = scan_index;
	indio_dev->channels = channels;

	return 0;
}

static int stm32_adc_dma_request(struct iio_dev *indio_dev)
{
	struct stm32_adc *adc = iio_priv(indio_dev);
	struct dma_slave_config config;
	int ret;

	adc->dma_chan = dma_request_slave_channel(&indio_dev->dev, "rx");
	if (!adc->dma_chan)
		return 0;

	adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
					 STM32_DMA_BUFFER_SIZE,
					 &adc->rx_dma_buf, GFP_KERNEL);
	if (!adc->rx_buf) {
		ret = -ENOMEM;
		goto err_release;
	}

	/* Configure DMA channel to read data register */
	memset(&config, 0, sizeof(config));
	config.src_addr = (dma_addr_t)adc->common->phys_base;
	config.src_addr += adc->offset + adc->cfg->regs->dr;
	config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;

	ret = dmaengine_slave_config(adc->dma_chan, &config);
	if (ret)
		goto err_free;

	return 0;

err_free:
	dma_free_coherent(adc->dma_chan->device->dev, STM32_DMA_BUFFER_SIZE,
			  adc->rx_buf, adc->rx_dma_buf);
err_release:
	dma_release_channel(adc->dma_chan);

	return ret;
}

static int stm32_adc_probe(struct platform_device *pdev)
{
	struct iio_dev *indio_dev;
	struct device *dev = &pdev->dev;
	struct stm32_adc *adc;
	int ret;

	if (!pdev->dev.of_node)
		return -ENODEV;

	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*adc));
	if (!indio_dev)
		return -ENOMEM;

	adc = iio_priv(indio_dev);
	adc->common = dev_get_drvdata(pdev->dev.parent);
	spin_lock_init(&adc->lock);
	init_completion(&adc->completion);
	adc->cfg = (const struct stm32_adc_cfg *)
		of_match_device(dev->driver->of_match_table, dev)->data;

	indio_dev->name = dev_name(&pdev->dev);
	indio_dev->dev.parent = &pdev->dev;
	indio_dev->dev.of_node = pdev->dev.of_node;
	indio_dev->info = &stm32_adc_iio_info;
	indio_dev->modes = INDIO_DIRECT_MODE | INDIO_HARDWARE_TRIGGERED;

	platform_set_drvdata(pdev, adc);

	ret = of_property_read_u32(pdev->dev.of_node, "reg", &adc->offset);
	if (ret != 0) {
		dev_err(&pdev->dev, "missing reg property\n");
		return -EINVAL;
	}

	adc->irq = platform_get_irq(pdev, 0);
	if (adc->irq < 0) {
		dev_err(&pdev->dev, "failed to get irq\n");
		return adc->irq;
	}

	ret = devm_request_irq(&pdev->dev, adc->irq, stm32_adc_isr,
			       0, pdev->name, adc);
	if (ret) {
		dev_err(&pdev->dev, "failed to request IRQ\n");
		return ret;
	}

	adc->clk = devm_clk_get(&pdev->dev, NULL);
	if (IS_ERR(adc->clk)) {
		ret = PTR_ERR(adc->clk);
		if (ret == -ENOENT && !adc->cfg->clk_required) {
			adc->clk = NULL;
		} else {
			dev_err(&pdev->dev, "Can't get clock\n");
			return ret;
		}
	}

	if (adc->clk) {
		ret = clk_prepare_enable(adc->clk);
		if (ret < 0) {
			dev_err(&pdev->dev, "clk enable failed\n");
			return ret;
		}
	}

	ret = stm32_adc_of_get_resolution(indio_dev);
	if (ret < 0)
		goto err_clk_disable;
	stm32_adc_set_res(adc);

	if (adc->cfg->selfcalib) {
		ret = adc->cfg->selfcalib(adc);
		if (ret)
			goto err_clk_disable;
	}

	ret = stm32_adc_chan_of_init(indio_dev);
	if (ret < 0)
		goto err_clk_disable;

	ret = stm32_adc_dma_request(indio_dev);
	if (ret < 0)
		goto err_clk_disable;

	ret = iio_triggered_buffer_setup(indio_dev,
					 &iio_pollfunc_store_time,
					 &stm32_adc_trigger_handler,
					 &stm32_adc_buffer_setup_ops);
	if (ret) {
		dev_err(&pdev->dev, "buffer setup failed\n");
		goto err_dma_disable;
	}

	ret = iio_device_register(indio_dev);
	if (ret) {
		dev_err(&pdev->dev, "iio dev register failed\n");
		goto err_buffer_cleanup;
	}

	return 0;

err_buffer_cleanup:
	iio_triggered_buffer_cleanup(indio_dev);

err_dma_disable:
	if (adc->dma_chan) {
		dma_free_coherent(adc->dma_chan->device->dev,
				  STM32_DMA_BUFFER_SIZE,
				  adc->rx_buf, adc->rx_dma_buf);
		dma_release_channel(adc->dma_chan);
	}
err_clk_disable:
	if (adc->clk)
		clk_disable_unprepare(adc->clk);

	return ret;
}

static int stm32_adc_remove(struct platform_device *pdev)
{
	struct stm32_adc *adc = platform_get_drvdata(pdev);
	struct iio_dev *indio_dev = iio_priv_to_dev(adc);

	iio_device_unregister(indio_dev);
	iio_triggered_buffer_cleanup(indio_dev);
	if (adc->dma_chan) {
		dma_free_coherent(adc->dma_chan->device->dev,
				  STM32_DMA_BUFFER_SIZE,
				  adc->rx_buf, adc->rx_dma_buf);
		dma_release_channel(adc->dma_chan);
	}
	if (adc->clk)
		clk_disable_unprepare(adc->clk);

	return 0;
}

static const struct stm32_adc_cfg stm32f4_adc_cfg = {
	.regs = &stm32f4_adc_regspec,
	.adc_info = &stm32f4_adc_info,
	.trigs = stm32f4_adc_trigs,
	.clk_required = true,
	.start_conv = stm32f4_adc_start_conv,
	.stop_conv = stm32f4_adc_stop_conv,
	.smp_cycles = stm32f4_adc_smp_cycles,
};

static const struct stm32_adc_cfg stm32h7_adc_cfg = {
	.regs = &stm32h7_adc_regspec,
	.adc_info = &stm32h7_adc_info,
	.trigs = stm32h7_adc_trigs,
	.selfcalib = stm32h7_adc_selfcalib,
	.start_conv = stm32h7_adc_start_conv,
	.stop_conv = stm32h7_adc_stop_conv,
	.prepare = stm32h7_adc_prepare,
	.unprepare = stm32h7_adc_unprepare,
	.smp_cycles = stm32h7_adc_smp_cycles,
};

static const struct of_device_id stm32_adc_of_match[] = {
	{ .compatible = "st,stm32f4-adc", .data = (void *)&stm32f4_adc_cfg },
	{ .compatible = "st,stm32h7-adc", .data = (void *)&stm32h7_adc_cfg },
	{},
};
MODULE_DEVICE_TABLE(of, stm32_adc_of_match);

static struct platform_driver stm32_adc_driver = {
	.probe = stm32_adc_probe,
	.remove = stm32_adc_remove,
	.driver = {
		.name = "stm32-adc",
		.of_match_table = stm32_adc_of_match,
	},
};
module_platform_driver(stm32_adc_driver);

MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
MODULE_DESCRIPTION("STMicroelectronics STM32 ADC IIO driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:stm32-adc");