/* CoreChip-sz SR9800 one chip USB 2.0 Ethernet Devices * * Author : Liu Junliang * * Based on asix_common.c, asix_devices.c * * This file is licensed under the terms of the GNU General Public License * version 2. This program is licensed "as is" without any warranty of any * kind, whether express or implied.* */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "sr9800.h" static int sr_read_cmd(struct usbnet *dev, u8 cmd, u16 value, u16 index, u16 size, void *data) { int err; err = usbnet_read_cmd(dev, cmd, SR_REQ_RD_REG, value, index, data, size); if ((err != size) && (err >= 0)) err = -EINVAL; return err; } static int sr_write_cmd(struct usbnet *dev, u8 cmd, u16 value, u16 index, u16 size, void *data) { int err; err = usbnet_write_cmd(dev, cmd, SR_REQ_WR_REG, value, index, data, size); if ((err != size) && (err >= 0)) err = -EINVAL; return err; } static void sr_write_cmd_async(struct usbnet *dev, u8 cmd, u16 value, u16 index, u16 size, void *data) { usbnet_write_cmd_async(dev, cmd, SR_REQ_WR_REG, value, index, data, size); } static int sr_rx_fixup(struct usbnet *dev, struct sk_buff *skb) { int offset = 0; /* This check is no longer done by usbnet */ if (skb->len < dev->net->hard_header_len) return 0; while (offset + sizeof(u32) < skb->len) { struct sk_buff *sr_skb; u16 size; u32 header = get_unaligned_le32(skb->data + offset); offset += sizeof(u32); /* get the packet length */ size = (u16) (header & 0x7ff); if (size != ((~header >> 16) & 0x07ff)) { netdev_err(dev->net, "%s : Bad Header Length\n", __func__); return 0; } if ((size > dev->net->mtu + ETH_HLEN + VLAN_HLEN) || (size + offset > skb->len)) { netdev_err(dev->net, "%s : Bad RX Length %d\n", __func__, size); return 0; } sr_skb = netdev_alloc_skb_ip_align(dev->net, size); if (!sr_skb) return 0; skb_put(sr_skb, size); memcpy(sr_skb->data, skb->data + offset, size); usbnet_skb_return(dev, sr_skb); offset += (size + 1) & 0xfffe; } if (skb->len != offset) { netdev_err(dev->net, "%s : Bad SKB Length %d\n", __func__, skb->len); return 0; } return 1; } static struct sk_buff *sr_tx_fixup(struct usbnet *dev, struct sk_buff *skb, gfp_t flags) { int headroom = skb_headroom(skb); int tailroom = skb_tailroom(skb); u32 padbytes = 0xffff0000; u32 packet_len; int padlen; padlen = ((skb->len + 4) % (dev->maxpacket - 1)) ? 0 : 4; if ((!skb_cloned(skb)) && ((headroom + tailroom) >= (4 + padlen))) { if ((headroom < 4) || (tailroom < padlen)) { skb->data = memmove(skb->head + 4, skb->data, skb->len); skb_set_tail_pointer(skb, skb->len); } } else { struct sk_buff *skb2; skb2 = skb_copy_expand(skb, 4, padlen, flags); dev_kfree_skb_any(skb); skb = skb2; if (!skb) return NULL; } skb_push(skb, 4); packet_len = (((skb->len - 4) ^ 0x0000ffff) << 16) + (skb->len - 4); cpu_to_le32s(&packet_len); skb_copy_to_linear_data(skb, &packet_len, sizeof(packet_len)); if (padlen) { cpu_to_le32s(&padbytes); memcpy(skb_tail_pointer(skb), &padbytes, sizeof(padbytes)); skb_put(skb, sizeof(padbytes)); } usbnet_set_skb_tx_stats(skb, 1, 0); return skb; } static void sr_status(struct usbnet *dev, struct urb *urb) { struct sr9800_int_data *event; int link; if (urb->actual_length < 8) return; event = urb->transfer_buffer; link = event->link & 0x01; if (netif_carrier_ok(dev->net) != link) { usbnet_link_change(dev, link, 1); netdev_dbg(dev->net, "Link Status is: %d\n", link); } return; } static inline int sr_set_sw_mii(struct usbnet *dev) { int ret; ret = sr_write_cmd(dev, SR_CMD_SET_SW_MII, 0x0000, 0, 0, NULL); if (ret < 0) netdev_err(dev->net, "Failed to enable software MII access\n"); return ret; } static inline int sr_set_hw_mii(struct usbnet *dev) { int ret; ret = sr_write_cmd(dev, SR_CMD_SET_HW_MII, 0x0000, 0, 0, NULL); if (ret < 0) netdev_err(dev->net, "Failed to enable hardware MII access\n"); return ret; } static inline int sr_get_phy_addr(struct usbnet *dev) { u8 buf[2]; int ret; ret = sr_read_cmd(dev, SR_CMD_READ_PHY_ID, 0, 0, 2, buf); if (ret < 0) { netdev_err(dev->net, "%s : Error reading PHYID register:%02x\n", __func__, ret); goto out; } netdev_dbg(dev->net, "%s : returning 0x%04x\n", __func__, *((__le16 *)buf)); ret = buf[1]; out: return ret; } static int sr_sw_reset(struct usbnet *dev, u8 flags) { int ret; ret = sr_write_cmd(dev, SR_CMD_SW_RESET, flags, 0, 0, NULL); if (ret < 0) netdev_err(dev->net, "Failed to send software reset:%02x\n", ret); return ret; } static u16 sr_read_rx_ctl(struct usbnet *dev) { __le16 v; int ret; ret = sr_read_cmd(dev, SR_CMD_READ_RX_CTL, 0, 0, 2, &v); if (ret < 0) { netdev_err(dev->net, "Error reading RX_CTL register:%02x\n", ret); goto out; } ret = le16_to_cpu(v); out: return ret; } static int sr_write_rx_ctl(struct usbnet *dev, u16 mode) { int ret; netdev_dbg(dev->net, "%s : mode = 0x%04x\n", __func__, mode); ret = sr_write_cmd(dev, SR_CMD_WRITE_RX_CTL, mode, 0, 0, NULL); if (ret < 0) netdev_err(dev->net, "Failed to write RX_CTL mode to 0x%04x:%02x\n", mode, ret); return ret; } static u16 sr_read_medium_status(struct usbnet *dev) { __le16 v; int ret; ret = sr_read_cmd(dev, SR_CMD_READ_MEDIUM_STATUS, 0, 0, 2, &v); if (ret < 0) { netdev_err(dev->net, "Error reading Medium Status register:%02x\n", ret); return ret; /* TODO: callers not checking for error ret */ } return le16_to_cpu(v); } static int sr_write_medium_mode(struct usbnet *dev, u16 mode) { int ret; netdev_dbg(dev->net, "%s : mode = 0x%04x\n", __func__, mode); ret = sr_write_cmd(dev, SR_CMD_WRITE_MEDIUM_MODE, mode, 0, 0, NULL); if (ret < 0) netdev_err(dev->net, "Failed to write Medium Mode mode to 0x%04x:%02x\n", mode, ret); return ret; } static int sr_write_gpio(struct usbnet *dev, u16 value, int sleep) { int ret; netdev_dbg(dev->net, "%s : value = 0x%04x\n", __func__, value); ret = sr_write_cmd(dev, SR_CMD_WRITE_GPIOS, value, 0, 0, NULL); if (ret < 0) netdev_err(dev->net, "Failed to write GPIO value 0x%04x:%02x\n", value, ret); if (sleep) msleep(sleep); return ret; } /* SR9800 have a 16-bit RX_CTL value */ static void sr_set_multicast(struct net_device *net) { struct usbnet *dev = netdev_priv(net); struct sr_data *data = (struct sr_data *)&dev->data; u16 rx_ctl = SR_DEFAULT_RX_CTL; if (net->flags & IFF_PROMISC) { rx_ctl |= SR_RX_CTL_PRO; } else if (net->flags & IFF_ALLMULTI || netdev_mc_count(net) > SR_MAX_MCAST) { rx_ctl |= SR_RX_CTL_AMALL; } else if (netdev_mc_empty(net)) { /* just broadcast and directed */ } else { /* We use the 20 byte dev->data * for our 8 byte filter buffer * to avoid allocating memory that * is tricky to free later */ struct netdev_hw_addr *ha; u32 crc_bits; memset(data->multi_filter, 0, SR_MCAST_FILTER_SIZE); /* Build the multicast hash filter. */ netdev_for_each_mc_addr(ha, net) { crc_bits = ether_crc(ETH_ALEN, ha->addr) >> 26; data->multi_filter[crc_bits >> 3] |= 1 << (crc_bits & 7); } sr_write_cmd_async(dev, SR_CMD_WRITE_MULTI_FILTER, 0, 0, SR_MCAST_FILTER_SIZE, data->multi_filter); rx_ctl |= SR_RX_CTL_AM; } sr_write_cmd_async(dev, SR_CMD_WRITE_RX_CTL, rx_ctl, 0, 0, NULL); } static int sr_mdio_read(struct net_device *net, int phy_id, int loc) { struct usbnet *dev = netdev_priv(net); __le16 res = 0; mutex_lock(&dev->phy_mutex); sr_set_sw_mii(dev); sr_read_cmd(dev, SR_CMD_READ_MII_REG, phy_id, (__u16)loc, 2, &res); sr_set_hw_mii(dev); mutex_unlock(&dev->phy_mutex); netdev_dbg(dev->net, "%s : phy_id=0x%02x, loc=0x%02x, returns=0x%04x\n", __func__, phy_id, loc, le16_to_cpu(res)); return le16_to_cpu(res); } static void sr_mdio_write(struct net_device *net, int phy_id, int loc, int val) { struct usbnet *dev = netdev_priv(net); __le16 res = cpu_to_le16(val); netdev_dbg(dev->net, "%s : phy_id=0x%02x, loc=0x%02x, val=0x%04x\n", __func__, phy_id, loc, val); mutex_lock(&dev->phy_mutex); sr_set_sw_mii(dev); sr_write_cmd(dev, SR_CMD_WRITE_MII_REG, phy_id, (__u16)loc, 2, &res); sr_set_hw_mii(dev); mutex_unlock(&dev->phy_mutex); } /* Get the PHY Identifier from the PHYSID1 & PHYSID2 MII registers */ static u32 sr_get_phyid(struct usbnet *dev) { int phy_reg; u32 phy_id; int i; /* Poll for the rare case the FW or phy isn't ready yet. */ for (i = 0; i < 100; i++) { phy_reg = sr_mdio_read(dev->net, dev->mii.phy_id, MII_PHYSID1); if (phy_reg != 0 && phy_reg != 0xFFFF) break; mdelay(1); } if (phy_reg <= 0 || phy_reg == 0xFFFF) return 0; phy_id = (phy_reg & 0xffff) << 16; phy_reg = sr_mdio_read(dev->net, dev->mii.phy_id, MII_PHYSID2); if (phy_reg < 0) return 0; phy_id |= (phy_reg & 0xffff); return phy_id; } static void sr_get_wol(struct net_device *net, struct ethtool_wolinfo *wolinfo) { struct usbnet *dev = netdev_priv(net); u8 opt; if (sr_read_cmd(dev, SR_CMD_READ_MONITOR_MODE, 0, 0, 1, &opt) < 0) { wolinfo->supported = 0; wolinfo->wolopts = 0; return; } wolinfo->supported = WAKE_PHY | WAKE_MAGIC; wolinfo->wolopts = 0; if (opt & SR_MONITOR_LINK) wolinfo->wolopts |= WAKE_PHY; if (opt & SR_MONITOR_MAGIC) wolinfo->wolopts |= WAKE_MAGIC; } static int sr_set_wol(struct net_device *net, struct ethtool_wolinfo *wolinfo) { struct usbnet *dev = netdev_priv(net); u8 opt = 0; if (wolinfo->wolopts & ~(WAKE_PHY | WAKE_MAGIC)) return -EINVAL; if (wolinfo->wolopts & WAKE_PHY) opt |= SR_MONITOR_LINK; if (wolinfo->wolopts & WAKE_MAGIC) opt |= SR_MONITOR_MAGIC; if (sr_write_cmd(dev, SR_CMD_WRITE_MONITOR_MODE, opt, 0, 0, NULL) < 0) return -EINVAL; return 0; } static int sr_get_eeprom_len(struct net_device *net) { struct usbnet *dev = netdev_priv(net); struct sr_data *data = (struct sr_data *)&dev->data; return data->eeprom_len; } static int sr_get_eeprom(struct net_device *net, struct ethtool_eeprom *eeprom, u8 *data) { struct usbnet *dev = netdev_priv(net); __le16 *ebuf = (__le16 *)data; int ret; int i; /* Crude hack to ensure that we don't overwrite memory * if an odd length is supplied */ if (eeprom->len % 2) return -EINVAL; eeprom->magic = SR_EEPROM_MAGIC; /* sr9800 returns 2 bytes from eeprom on read */ for (i = 0; i < eeprom->len / 2; i++) { ret = sr_read_cmd(dev, SR_CMD_READ_EEPROM, eeprom->offset + i, 0, 2, &ebuf[i]); if (ret < 0) return -EINVAL; } return 0; } static void sr_get_drvinfo(struct net_device *net, struct ethtool_drvinfo *info) { /* Inherit standard device info */ usbnet_get_drvinfo(net, info); strncpy(info->driver, DRIVER_NAME, sizeof(info->driver)); strncpy(info->version, DRIVER_VERSION, sizeof(info->version)); } static u32 sr_get_link(struct net_device *net) { struct usbnet *dev = netdev_priv(net); return mii_link_ok(&dev->mii); } static int sr_ioctl(struct net_device *net, struct ifreq *rq, int cmd) { struct usbnet *dev = netdev_priv(net); return generic_mii_ioctl(&dev->mii, if_mii(rq), cmd, NULL); } static int sr_set_mac_address(struct net_device *net, void *p) { struct usbnet *dev = netdev_priv(net); struct sr_data *data = (struct sr_data *)&dev->data; struct sockaddr *addr = p; if (netif_running(net)) return -EBUSY; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; memcpy(net->dev_addr, addr->sa_data, ETH_ALEN); /* We use the 20 byte dev->data * for our 6 byte mac buffer * to avoid allocating memory that * is tricky to free later */ memcpy(data->mac_addr, addr->sa_data, ETH_ALEN); sr_write_cmd_async(dev, SR_CMD_WRITE_NODE_ID, 0, 0, ETH_ALEN, data->mac_addr); return 0; } static const struct ethtool_ops sr9800_ethtool_ops = { .get_drvinfo = sr_get_drvinfo, .get_link = sr_get_link, .get_msglevel = usbnet_get_msglevel, .set_msglevel = usbnet_set_msglevel, .get_wol = sr_get_wol, .set_wol = sr_set_wol, .get_eeprom_len = sr_get_eeprom_len, .get_eeprom = sr_get_eeprom, .nway_reset = usbnet_nway_reset, .get_link_ksettings = usbnet_get_link_ksettings, .set_link_ksettings = usbnet_set_link_ksettings, }; static int sr9800_link_reset(struct usbnet *dev) { struct ethtool_cmd ecmd = { .cmd = ETHTOOL_GSET }; u16 mode; mii_check_media(&dev->mii, 1, 1); mii_ethtool_gset(&dev->mii, &ecmd); mode = SR9800_MEDIUM_DEFAULT; if (ethtool_cmd_speed(&ecmd) != SPEED_100) mode &= ~SR_MEDIUM_PS; if (ecmd.duplex != DUPLEX_FULL) mode &= ~SR_MEDIUM_FD; netdev_dbg(dev->net, "%s : speed: %u duplex: %d mode: 0x%04x\n", __func__, ethtool_cmd_speed(&ecmd), ecmd.duplex, mode); sr_write_medium_mode(dev, mode); return 0; } static int sr9800_set_default_mode(struct usbnet *dev) { u16 rx_ctl; int ret; sr_mdio_write(dev->net, dev->mii.phy_id, MII_BMCR, BMCR_RESET); sr_mdio_write(dev->net, dev->mii.phy_id, MII_ADVERTISE, ADVERTISE_ALL | ADVERTISE_CSMA); mii_nway_restart(&dev->mii); ret = sr_write_medium_mode(dev, SR9800_MEDIUM_DEFAULT); if (ret < 0) goto out; ret = sr_write_cmd(dev, SR_CMD_WRITE_IPG012, SR9800_IPG0_DEFAULT | SR9800_IPG1_DEFAULT, SR9800_IPG2_DEFAULT, 0, NULL); if (ret < 0) { netdev_dbg(dev->net, "Write IPG,IPG1,IPG2 failed: %d\n", ret); goto out; } /* Set RX_CTL to default values with 2k buffer, and enable cactus */ ret = sr_write_rx_ctl(dev, SR_DEFAULT_RX_CTL); if (ret < 0) goto out; rx_ctl = sr_read_rx_ctl(dev); netdev_dbg(dev->net, "RX_CTL is 0x%04x after all initializations\n", rx_ctl); rx_ctl = sr_read_medium_status(dev); netdev_dbg(dev->net, "Medium Status:0x%04x after all initializations\n", rx_ctl); return 0; out: return ret; } static int sr9800_reset(struct usbnet *dev) { struct sr_data *data = (struct sr_data *)&dev->data; int ret, embd_phy; u16 rx_ctl; ret = sr_write_gpio(dev, SR_GPIO_RSE | SR_GPIO_GPO_2 | SR_GPIO_GPO2EN, 5); if (ret < 0) goto out; embd_phy = ((sr_get_phy_addr(dev) & 0x1f) == 0x10 ? 1 : 0); ret = sr_write_cmd(dev, SR_CMD_SW_PHY_SELECT, embd_phy, 0, 0, NULL); if (ret < 0) { netdev_dbg(dev->net, "Select PHY #1 failed: %d\n", ret); goto out; } ret = sr_sw_reset(dev, SR_SWRESET_IPPD | SR_SWRESET_PRL); if (ret < 0) goto out; msleep(150); ret = sr_sw_reset(dev, SR_SWRESET_CLEAR); if (ret < 0) goto out; msleep(150); if (embd_phy) { ret = sr_sw_reset(dev, SR_SWRESET_IPRL); if (ret < 0) goto out; } else { ret = sr_sw_reset(dev, SR_SWRESET_PRTE); if (ret < 0) goto out; } msleep(150); rx_ctl = sr_read_rx_ctl(dev); netdev_dbg(dev->net, "RX_CTL is 0x%04x after software reset\n", rx_ctl); ret = sr_write_rx_ctl(dev, 0x0000); if (ret < 0) goto out; rx_ctl = sr_read_rx_ctl(dev); netdev_dbg(dev->net, "RX_CTL is 0x%04x setting to 0x0000\n", rx_ctl); ret = sr_sw_reset(dev, SR_SWRESET_PRL); if (ret < 0) goto out; msleep(150); ret = sr_sw_reset(dev, SR_SWRESET_IPRL | SR_SWRESET_PRL); if (ret < 0) goto out; msleep(150); ret = sr9800_set_default_mode(dev); if (ret < 0) goto out; /* Rewrite MAC address */ memcpy(data->mac_addr, dev->net->dev_addr, ETH_ALEN); ret = sr_write_cmd(dev, SR_CMD_WRITE_NODE_ID, 0, 0, ETH_ALEN, data->mac_addr); if (ret < 0) goto out; return 0; out: return ret; } static const struct net_device_ops sr9800_netdev_ops = { .ndo_open = usbnet_open, .ndo_stop = usbnet_stop, .ndo_start_xmit = usbnet_start_xmit, .ndo_tx_timeout = usbnet_tx_timeout, .ndo_change_mtu = usbnet_change_mtu, .ndo_get_stats64 = usbnet_get_stats64, .ndo_set_mac_address = sr_set_mac_address, .ndo_validate_addr = eth_validate_addr, .ndo_do_ioctl = sr_ioctl, .ndo_set_rx_mode = sr_set_multicast, }; static int sr9800_phy_powerup(struct usbnet *dev) { int ret; /* set the embedded Ethernet PHY in power-down state */ ret = sr_sw_reset(dev, SR_SWRESET_IPPD | SR_SWRESET_IPRL); if (ret < 0) { netdev_err(dev->net, "Failed to power down PHY : %d\n", ret); return ret; } msleep(20); /* set the embedded Ethernet PHY in power-up state */ ret = sr_sw_reset(dev, SR_SWRESET_IPRL); if (ret < 0) { netdev_err(dev->net, "Failed to reset PHY: %d\n", ret); return ret; } msleep(600); /* set the embedded Ethernet PHY in reset state */ ret = sr_sw_reset(dev, SR_SWRESET_CLEAR); if (ret < 0) { netdev_err(dev->net, "Failed to power up PHY: %d\n", ret); return ret; } msleep(20); /* set the embedded Ethernet PHY in power-up state */ ret = sr_sw_reset(dev, SR_SWRESET_IPRL); if (ret < 0) { netdev_err(dev->net, "Failed to reset PHY: %d\n", ret); return ret; } return 0; } static int sr9800_bind(struct usbnet *dev, struct usb_interface *intf) { struct sr_data *data = (struct sr_data *)&dev->data; u16 led01_mux, led23_mux; int ret, embd_phy; u32 phyid; u16 rx_ctl; data->eeprom_len = SR9800_EEPROM_LEN; usbnet_get_endpoints(dev, intf); /* LED Setting Rule : * AABB:CCDD * AA : MFA0(LED0) * BB : MFA1(LED1) * CC : MFA2(LED2), Reserved for SR9800 * DD : MFA3(LED3), Reserved for SR9800 */ led01_mux = (SR_LED_MUX_LINK_ACTIVE << 8) | SR_LED_MUX_LINK; led23_mux = (SR_LED_MUX_LINK_ACTIVE << 8) | SR_LED_MUX_TX_ACTIVE; ret = sr_write_cmd(dev, SR_CMD_LED_MUX, led01_mux, led23_mux, 0, NULL); if (ret < 0) { netdev_err(dev->net, "set LINK LED failed : %d\n", ret); goto out; } /* Get the MAC address */ ret = sr_read_cmd(dev, SR_CMD_READ_NODE_ID, 0, 0, ETH_ALEN, dev->net->dev_addr); if (ret < 0) { netdev_dbg(dev->net, "Failed to read MAC address: %d\n", ret); return ret; } netdev_dbg(dev->net, "mac addr : %pM\n", dev->net->dev_addr); /* Initialize MII structure */ dev->mii.dev = dev->net; dev->mii.mdio_read = sr_mdio_read; dev->mii.mdio_write = sr_mdio_write; dev->mii.phy_id_mask = 0x1f; dev->mii.reg_num_mask = 0x1f; dev->mii.phy_id = sr_get_phy_addr(dev); dev->net->netdev_ops = &sr9800_netdev_ops; dev->net->ethtool_ops = &sr9800_ethtool_ops; embd_phy = ((dev->mii.phy_id & 0x1f) == 0x10 ? 1 : 0); /* Reset the PHY to normal operation mode */ ret = sr_write_cmd(dev, SR_CMD_SW_PHY_SELECT, embd_phy, 0, 0, NULL); if (ret < 0) { netdev_dbg(dev->net, "Select PHY #1 failed: %d\n", ret); return ret; } /* Init PHY routine */ ret = sr9800_phy_powerup(dev); if (ret < 0) goto out; rx_ctl = sr_read_rx_ctl(dev); netdev_dbg(dev->net, "RX_CTL is 0x%04x after software reset\n", rx_ctl); ret = sr_write_rx_ctl(dev, 0x0000); if (ret < 0) goto out; rx_ctl = sr_read_rx_ctl(dev); netdev_dbg(dev->net, "RX_CTL is 0x%04x setting to 0x0000\n", rx_ctl); /* Read PHYID register *AFTER* the PHY was reset properly */ phyid = sr_get_phyid(dev); netdev_dbg(dev->net, "PHYID=0x%08x\n", phyid); /* medium mode setting */ ret = sr9800_set_default_mode(dev); if (ret < 0) goto out; if (dev->udev->speed == USB_SPEED_HIGH) { ret = sr_write_cmd(dev, SR_CMD_BULKIN_SIZE, SR9800_BULKIN_SIZE[SR9800_MAX_BULKIN_4K].byte_cnt, SR9800_BULKIN_SIZE[SR9800_MAX_BULKIN_4K].threshold, 0, NULL); if (ret < 0) { netdev_err(dev->net, "Reset RX_CTL failed: %d\n", ret); goto out; } dev->rx_urb_size = SR9800_BULKIN_SIZE[SR9800_MAX_BULKIN_4K].size; } else { ret = sr_write_cmd(dev, SR_CMD_BULKIN_SIZE, SR9800_BULKIN_SIZE[SR9800_MAX_BULKIN_2K].byte_cnt, SR9800_BULKIN_SIZE[SR9800_MAX_BULKIN_2K].threshold, 0, NULL); if (ret < 0) { netdev_err(dev->net, "Reset RX_CTL failed: %d\n", ret); goto out; } dev->rx_urb_size = SR9800_BULKIN_SIZE[SR9800_MAX_BULKIN_2K].size; } netdev_dbg(dev->net, "%s : setting rx_urb_size with : %zu\n", __func__, dev->rx_urb_size); return 0; out: return ret; } static const struct driver_info sr9800_driver_info = { .description = "CoreChip SR9800 USB 2.0 Ethernet", .bind = sr9800_bind, .status = sr_status, .link_reset = sr9800_link_reset, .reset = sr9800_reset, .flags = DRIVER_FLAG, .rx_fixup = sr_rx_fixup, .tx_fixup = sr_tx_fixup, }; static const struct usb_device_id products[] = { { USB_DEVICE(0x0fe6, 0x9800), /* SR9800 Device */ .driver_info = (unsigned long) &sr9800_driver_info, }, {}, /* END */ }; MODULE_DEVICE_TABLE(usb, products); static struct usb_driver sr_driver = { .name = DRIVER_NAME, .id_table = products, .probe = usbnet_probe, .suspend = usbnet_suspend, .resume = usbnet_resume, .disconnect = usbnet_disconnect, .supports_autosuspend = 1, }; module_usb_driver(sr_driver); MODULE_AUTHOR("Liu Junliang