/* SPDX-License-Identifier: GPL-2.0 */ #ifndef INT_BLK_MQ_H #define INT_BLK_MQ_H #include #include "blk-stat.h" struct blk_mq_tag_set; struct blk_mq_ctxs { struct kobject kobj; struct blk_mq_ctx __percpu *queue_ctx; }; /** * struct blk_mq_ctx - State for a software queue facing the submitting CPUs */ struct blk_mq_ctx { struct { spinlock_t lock; struct list_head rq_lists[HCTX_MAX_TYPES]; } ____cacheline_aligned_in_smp; unsigned int cpu; unsigned short index_hw[HCTX_MAX_TYPES]; struct blk_mq_hw_ctx *hctxs[HCTX_MAX_TYPES]; struct request_queue *queue; struct blk_mq_ctxs *ctxs; struct kobject kobj; } ____cacheline_aligned_in_smp; enum { BLK_MQ_NO_TAG = -1U, BLK_MQ_TAG_MIN = 1, BLK_MQ_TAG_MAX = BLK_MQ_NO_TAG - 1, }; typedef unsigned int __bitwise blk_insert_t; #define BLK_MQ_INSERT_AT_HEAD ((__force blk_insert_t)0x01) void blk_mq_submit_bio(struct bio *bio); int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob, unsigned int flags); void blk_mq_exit_queue(struct request_queue *q); int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr); void blk_mq_wake_waiters(struct request_queue *q); bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *, unsigned int); void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list); struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *start); void blk_mq_put_rq_ref(struct request *rq); /* * Internal helpers for allocating/freeing the request map */ void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, unsigned int hctx_idx); void blk_mq_free_rq_map(struct blk_mq_tags *tags); struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, unsigned int hctx_idx, unsigned int depth); void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, unsigned int hctx_idx); /* * CPU -> queue mappings */ extern int blk_mq_hw_queue_to_node(struct blk_mq_queue_map *qmap, unsigned int); /* * blk_mq_map_queue_type() - map (hctx_type,cpu) to hardware queue * @q: request queue * @type: the hctx type index * @cpu: CPU */ static inline struct blk_mq_hw_ctx *blk_mq_map_queue_type(struct request_queue *q, enum hctx_type type, unsigned int cpu) { return xa_load(&q->hctx_table, q->tag_set->map[type].mq_map[cpu]); } static inline enum hctx_type blk_mq_get_hctx_type(blk_opf_t opf) { enum hctx_type type = HCTX_TYPE_DEFAULT; /* * The caller ensure that if REQ_POLLED, poll must be enabled. */ if (opf & REQ_POLLED) type = HCTX_TYPE_POLL; else if ((opf & REQ_OP_MASK) == REQ_OP_READ) type = HCTX_TYPE_READ; return type; } /* * blk_mq_map_queue() - map (cmd_flags,type) to hardware queue * @q: request queue * @opf: operation type (REQ_OP_*) and flags (e.g. REQ_POLLED). * @ctx: software queue cpu ctx */ static inline struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, blk_opf_t opf, struct blk_mq_ctx *ctx) { return ctx->hctxs[blk_mq_get_hctx_type(opf)]; } /* * sysfs helpers */ extern void blk_mq_sysfs_init(struct request_queue *q); extern void blk_mq_sysfs_deinit(struct request_queue *q); int blk_mq_sysfs_register(struct gendisk *disk); void blk_mq_sysfs_unregister(struct gendisk *disk); int blk_mq_sysfs_register_hctxs(struct request_queue *q); void blk_mq_sysfs_unregister_hctxs(struct request_queue *q); extern void blk_mq_hctx_kobj_init(struct blk_mq_hw_ctx *hctx); void blk_mq_free_plug_rqs(struct blk_plug *plug); void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule); void blk_mq_cancel_work_sync(struct request_queue *q); void blk_mq_release(struct request_queue *q); static inline struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q, unsigned int cpu) { return per_cpu_ptr(q->queue_ctx, cpu); } /* * This assumes per-cpu software queueing queues. They could be per-node * as well, for instance. For now this is hardcoded as-is. Note that we don't * care about preemption, since we know the ctx's are persistent. This does * mean that we can't rely on ctx always matching the currently running CPU. */ static inline struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q) { return __blk_mq_get_ctx(q, raw_smp_processor_id()); } struct blk_mq_alloc_data { /* input parameter */ struct request_queue *q; blk_mq_req_flags_t flags; unsigned int shallow_depth; blk_opf_t cmd_flags; req_flags_t rq_flags; /* allocate multiple requests/tags in one go */ unsigned int nr_tags; struct request **cached_rq; /* input & output parameter */ struct blk_mq_ctx *ctx; struct blk_mq_hw_ctx *hctx; }; struct blk_mq_tags *blk_mq_init_tags(unsigned int nr_tags, unsigned int reserved_tags, int node, int alloc_policy); void blk_mq_free_tags(struct blk_mq_tags *tags); int blk_mq_init_bitmaps(struct sbitmap_queue *bitmap_tags, struct sbitmap_queue *breserved_tags, unsigned int queue_depth, unsigned int reserved, int node, int alloc_policy); unsigned int blk_mq_get_tag(struct blk_mq_alloc_data *data); unsigned long blk_mq_get_tags(struct blk_mq_alloc_data *data, int nr_tags, unsigned int *offset); void blk_mq_put_tag(struct blk_mq_tags *tags, struct blk_mq_ctx *ctx, unsigned int tag); void blk_mq_put_tags(struct blk_mq_tags *tags, int *tag_array, int nr_tags); int blk_mq_tag_update_depth(struct blk_mq_hw_ctx *hctx, struct blk_mq_tags **tags, unsigned int depth, bool can_grow); void blk_mq_tag_resize_shared_tags(struct blk_mq_tag_set *set, unsigned int size); void blk_mq_tag_update_sched_shared_tags(struct request_queue *q); void blk_mq_tag_wakeup_all(struct blk_mq_tags *tags, bool); void blk_mq_queue_tag_busy_iter(struct request_queue *q, busy_tag_iter_fn *fn, void *priv); void blk_mq_all_tag_iter(struct blk_mq_tags *tags, busy_tag_iter_fn *fn, void *priv); static inline struct sbq_wait_state *bt_wait_ptr(struct sbitmap_queue *bt, struct blk_mq_hw_ctx *hctx) { if (!hctx) return &bt->ws[0]; return sbq_wait_ptr(bt, &hctx->wait_index); } void __blk_mq_tag_busy(struct blk_mq_hw_ctx *); void __blk_mq_tag_idle(struct blk_mq_hw_ctx *); static inline void blk_mq_tag_busy(struct blk_mq_hw_ctx *hctx) { if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) __blk_mq_tag_busy(hctx); } static inline void blk_mq_tag_idle(struct blk_mq_hw_ctx *hctx) { if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) __blk_mq_tag_idle(hctx); } static inline bool blk_mq_tag_is_reserved(struct blk_mq_tags *tags, unsigned int tag) { return tag < tags->nr_reserved_tags; } static inline bool blk_mq_is_shared_tags(unsigned int flags) { return flags & BLK_MQ_F_TAG_HCTX_SHARED; } static inline struct blk_mq_tags *blk_mq_tags_from_data(struct blk_mq_alloc_data *data) { if (data->rq_flags & RQF_SCHED_TAGS) return data->hctx->sched_tags; return data->hctx->tags; } static inline bool blk_mq_hctx_stopped(struct blk_mq_hw_ctx *hctx) { return test_bit(BLK_MQ_S_STOPPED, &hctx->state); } static inline bool blk_mq_hw_queue_mapped(struct blk_mq_hw_ctx *hctx) { return hctx->nr_ctx && hctx->tags; } unsigned int blk_mq_in_flight(struct request_queue *q, struct block_device *part); void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part, unsigned int inflight[2]); static inline void blk_mq_put_dispatch_budget(struct request_queue *q, int budget_token) { if (q->mq_ops->put_budget) q->mq_ops->put_budget(q, budget_token); } static inline int blk_mq_get_dispatch_budget(struct request_queue *q) { if (q->mq_ops->get_budget) return q->mq_ops->get_budget(q); return 0; } static inline void blk_mq_set_rq_budget_token(struct request *rq, int token) { if (token < 0) return; if (rq->q->mq_ops->set_rq_budget_token) rq->q->mq_ops->set_rq_budget_token(rq, token); } static inline int blk_mq_get_rq_budget_token(struct request *rq) { if (rq->q->mq_ops->get_rq_budget_token) return rq->q->mq_ops->get_rq_budget_token(rq); return -1; } static inline void __blk_mq_inc_active_requests(struct blk_mq_hw_ctx *hctx) { if (blk_mq_is_shared_tags(hctx->flags)) atomic_inc(&hctx->queue->nr_active_requests_shared_tags); else atomic_inc(&hctx->nr_active); } static inline void __blk_mq_sub_active_requests(struct blk_mq_hw_ctx *hctx, int val) { if (blk_mq_is_shared_tags(hctx->flags)) atomic_sub(val, &hctx->queue->nr_active_requests_shared_tags); else atomic_sub(val, &hctx->nr_active); } static inline void __blk_mq_dec_active_requests(struct blk_mq_hw_ctx *hctx) { __blk_mq_sub_active_requests(hctx, 1); } static inline int __blk_mq_active_requests(struct blk_mq_hw_ctx *hctx) { if (blk_mq_is_shared_tags(hctx->flags)) return atomic_read(&hctx->queue->nr_active_requests_shared_tags); return atomic_read(&hctx->nr_active); } static inline void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq) { blk_mq_put_tag(hctx->tags, rq->mq_ctx, rq->tag); rq->tag = BLK_MQ_NO_TAG; if (rq->rq_flags & RQF_MQ_INFLIGHT) { rq->rq_flags &= ~RQF_MQ_INFLIGHT; __blk_mq_dec_active_requests(hctx); } } static inline void blk_mq_put_driver_tag(struct request *rq) { if (rq->tag == BLK_MQ_NO_TAG || rq->internal_tag == BLK_MQ_NO_TAG) return; __blk_mq_put_driver_tag(rq->mq_hctx, rq); } bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq); static inline bool blk_mq_get_driver_tag(struct request *rq) { struct blk_mq_hw_ctx *hctx = rq->mq_hctx; if (rq->tag != BLK_MQ_NO_TAG && !(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { hctx->tags->rqs[rq->tag] = rq; return true; } return __blk_mq_get_driver_tag(hctx, rq); } static inline void blk_mq_clear_mq_map(struct blk_mq_queue_map *qmap) { int cpu; for_each_possible_cpu(cpu) qmap->mq_map[cpu] = 0; } /* * blk_mq_plug() - Get caller context plug * @bio : the bio being submitted by the caller context * * Plugging, by design, may delay the insertion of BIOs into the elevator in * order to increase BIO merging opportunities. This however can cause BIO * insertion order to change from the order in which submit_bio() is being * executed in the case of multiple contexts concurrently issuing BIOs to a * device, even if these context are synchronized to tightly control BIO issuing * order. While this is not a problem with regular block devices, this ordering * change can cause write BIO failures with zoned block devices as these * require sequential write patterns to zones. Prevent this from happening by * ignoring the plug state of a BIO issuing context if it is for a zoned block * device and the BIO to plug is a write operation. * * Return current->plug if the bio can be plugged and NULL otherwise */ static inline struct blk_plug *blk_mq_plug( struct bio *bio) { /* Zoned block device write operation case: do not plug the BIO */ if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && bdev_op_is_zoned_write(bio->bi_bdev, bio_op(bio))) return NULL; /* * For regular block devices or read operations, use the context plug * which may be NULL if blk_start_plug() was not executed. */ return current->plug; } /* Free all requests on the list */ static inline void blk_mq_free_requests(struct list_head *list) { while (!list_empty(list)) { struct request *rq = list_entry_rq(list->next); list_del_init(&rq->queuelist); blk_mq_free_request(rq); } } /* * For shared tag users, we track the number of currently active users * and attempt to provide a fair share of the tag depth for each of them. */ static inline bool hctx_may_queue(struct blk_mq_hw_ctx *hctx, struct sbitmap_queue *bt) { unsigned int depth, users; if (!hctx || !(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) return true; /* * Don't try dividing an ant */ if (bt->sb.depth == 1) return true; if (blk_mq_is_shared_tags(hctx->flags)) { struct request_queue *q = hctx->queue; if (!test_bit(QUEUE_FLAG_HCTX_ACTIVE, &q->queue_flags)) return true; } else { if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state)) return true; } users = READ_ONCE(hctx->tags->active_queues); if (!users) return true; /* * Allow at least some tags */ depth = max((bt->sb.depth + users - 1) / users, 4U); return __blk_mq_active_requests(hctx) < depth; } /* run the code block in @dispatch_ops with rcu/srcu read lock held */ #define __blk_mq_run_dispatch_ops(q, check_sleep, dispatch_ops) \ do { \ if ((q)->tag_set->flags & BLK_MQ_F_BLOCKING) { \ struct blk_mq_tag_set *__tag_set = (q)->tag_set; \ int srcu_idx; \ \ might_sleep_if(check_sleep); \ srcu_idx = srcu_read_lock(__tag_set->srcu); \ (dispatch_ops); \ srcu_read_unlock(__tag_set->srcu, srcu_idx); \ } else { \ rcu_read_lock(); \ (dispatch_ops); \ rcu_read_unlock(); \ } \ } while (0) #define blk_mq_run_dispatch_ops(q, dispatch_ops) \ __blk_mq_run_dispatch_ops(q, true, dispatch_ops) \ #endif