/* * irq.c: API for in kernel interrupt controller * Copyright (c) 2007, Intel Corporation. * Copyright 2009 Red Hat, Inc. and/or its affiliates. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., 59 Temple * Place - Suite 330, Boston, MA 02111-1307 USA. * Authors: * Yaozu (Eddie) Dong * */ #include #include #include "irq.h" #include "i8254.h" #include "x86.h" /* * check if there are pending timer events * to be processed. */ int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) { if (lapic_in_kernel(vcpu)) return apic_has_pending_timer(vcpu); return 0; } EXPORT_SYMBOL(kvm_cpu_has_pending_timer); /* * check if there is a pending userspace external interrupt */ static int pending_userspace_extint(struct kvm_vcpu *v) { return v->arch.pending_external_vector != -1; } /* * check if there is pending interrupt from * non-APIC source without intack. */ static int kvm_cpu_has_extint(struct kvm_vcpu *v) { u8 accept = kvm_apic_accept_pic_intr(v); if (accept) { if (irqchip_split(v->kvm)) return pending_userspace_extint(v); else return v->kvm->arch.vpic->output; } else return 0; } /* * check if there is injectable interrupt: * when virtual interrupt delivery enabled, * interrupt from apic will handled by hardware, * we don't need to check it here. */ int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v) { /* * FIXME: interrupt.injected represents an interrupt that it's * side-effects have already been applied (e.g. bit from IRR * already moved to ISR). Therefore, it is incorrect to rely * on interrupt.injected to know if there is a pending * interrupt in the user-mode LAPIC. * This leads to nVMX/nSVM not be able to distinguish * if it should exit from L2 to L1 on EXTERNAL_INTERRUPT on * pending interrupt or should re-inject an injected * interrupt. */ if (!lapic_in_kernel(v)) return v->arch.interrupt.injected; if (kvm_cpu_has_extint(v)) return 1; if (!is_guest_mode(v) && kvm_vcpu_apicv_active(v)) return 0; return kvm_apic_has_interrupt(v) != -1; /* LAPIC */ } /* * check if there is pending interrupt without * intack. */ int kvm_cpu_has_interrupt(struct kvm_vcpu *v) { /* * FIXME: interrupt.injected represents an interrupt that it's * side-effects have already been applied (e.g. bit from IRR * already moved to ISR). Therefore, it is incorrect to rely * on interrupt.injected to know if there is a pending * interrupt in the user-mode LAPIC. * This leads to nVMX/nSVM not be able to distinguish * if it should exit from L2 to L1 on EXTERNAL_INTERRUPT on * pending interrupt or should re-inject an injected * interrupt. */ if (!lapic_in_kernel(v)) return v->arch.interrupt.injected; if (kvm_cpu_has_extint(v)) return 1; return kvm_apic_has_interrupt(v) != -1; /* LAPIC */ } EXPORT_SYMBOL_GPL(kvm_cpu_has_interrupt); /* * Read pending interrupt(from non-APIC source) * vector and intack. */ static int kvm_cpu_get_extint(struct kvm_vcpu *v) { if (kvm_cpu_has_extint(v)) { if (irqchip_split(v->kvm)) { int vector = v->arch.pending_external_vector; v->arch.pending_external_vector = -1; return vector; } else return kvm_pic_read_irq(v->kvm); /* PIC */ } else return -1; } /* * Read pending interrupt vector and intack. */ int kvm_cpu_get_interrupt(struct kvm_vcpu *v) { int vector; if (!lapic_in_kernel(v)) return v->arch.interrupt.nr; vector = kvm_cpu_get_extint(v); if (vector != -1) return vector; /* PIC */ return kvm_get_apic_interrupt(v); /* APIC */ } EXPORT_SYMBOL_GPL(kvm_cpu_get_interrupt); void kvm_inject_pending_timer_irqs(struct kvm_vcpu *vcpu) { if (lapic_in_kernel(vcpu)) kvm_inject_apic_timer_irqs(vcpu); } EXPORT_SYMBOL_GPL(kvm_inject_pending_timer_irqs); void __kvm_migrate_timers(struct kvm_vcpu *vcpu) { __kvm_migrate_apic_timer(vcpu); __kvm_migrate_pit_timer(vcpu); } bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args) { bool resample = args->flags & KVM_IRQFD_FLAG_RESAMPLE; return resample ? irqchip_kernel(kvm) : irqchip_in_kernel(kvm); }