aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/admin-guide/mm/hugetlbpage.rst
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/admin-guide/mm/hugetlbpage.rst')
-rw-r--r--Documentation/admin-guide/mm/hugetlbpage.rst109
1 files changed, 100 insertions, 9 deletions
diff --git a/Documentation/admin-guide/mm/hugetlbpage.rst b/Documentation/admin-guide/mm/hugetlbpage.rst
index 1cc0bc78d10e..e4d4b4a8dc97 100644
--- a/Documentation/admin-guide/mm/hugetlbpage.rst
+++ b/Documentation/admin-guide/mm/hugetlbpage.rst
@@ -1,5 +1,3 @@
-.. _hugetlbpage:
-
=============
HugeTLB Pages
=============
@@ -60,8 +58,12 @@ HugePages_Surp
the pool above the value in ``/proc/sys/vm/nr_hugepages``. The
maximum number of surplus huge pages is controlled by
``/proc/sys/vm/nr_overcommit_hugepages``.
+ Note: When the feature of freeing unused vmemmap pages associated
+ with each hugetlb page is enabled, the number of surplus huge pages
+ may be temporarily larger than the maximum number of surplus huge
+ pages when the system is under memory pressure.
Hugepagesize
- is the default hugepage size (in Kb).
+ is the default hugepage size (in kB).
Hugetlb
is the total amount of memory (in kB), consumed by huge
pages of all sizes.
@@ -80,6 +82,10 @@ returned to the huge page pool when freed by a task. A user with root
privileges can dynamically allocate more or free some persistent huge pages
by increasing or decreasing the value of ``nr_hugepages``.
+Note: When the feature of freeing unused vmemmap pages associated with each
+hugetlb page is enabled, we can fail to free the huge pages triggered by
+the user when the system is under memory pressure. Please try again later.
+
Pages that are used as huge pages are reserved inside the kernel and cannot
be used for other purposes. Huge pages cannot be swapped out under
memory pressure.
@@ -100,6 +106,65 @@ with a huge page size selection parameter "hugepagesz=<size>". <size> must
be specified in bytes with optional scale suffix [kKmMgG]. The default huge
page size may be selected with the "default_hugepagesz=<size>" boot parameter.
+Hugetlb boot command line parameter semantics
+
+hugepagesz
+ Specify a huge page size. Used in conjunction with hugepages
+ parameter to preallocate a number of huge pages of the specified
+ size. Hence, hugepagesz and hugepages are typically specified in
+ pairs such as::
+
+ hugepagesz=2M hugepages=512
+
+ hugepagesz can only be specified once on the command line for a
+ specific huge page size. Valid huge page sizes are architecture
+ dependent.
+hugepages
+ Specify the number of huge pages to preallocate. This typically
+ follows a valid hugepagesz or default_hugepagesz parameter. However,
+ if hugepages is the first or only hugetlb command line parameter it
+ implicitly specifies the number of huge pages of default size to
+ allocate. If the number of huge pages of default size is implicitly
+ specified, it can not be overwritten by a hugepagesz,hugepages
+ parameter pair for the default size. This parameter also has a
+ node format. The node format specifies the number of huge pages
+ to allocate on specific nodes.
+
+ For example, on an architecture with 2M default huge page size::
+
+ hugepages=256 hugepagesz=2M hugepages=512
+
+ will result in 256 2M huge pages being allocated and a warning message
+ indicating that the hugepages=512 parameter is ignored. If a hugepages
+ parameter is preceded by an invalid hugepagesz parameter, it will
+ be ignored.
+
+ Node format example::
+
+ hugepagesz=2M hugepages=0:1,1:2
+
+ It will allocate 1 2M hugepage on node0 and 2 2M hugepages on node1.
+ If the node number is invalid, the parameter will be ignored.
+
+default_hugepagesz
+ Specify the default huge page size. This parameter can
+ only be specified once on the command line. default_hugepagesz can
+ optionally be followed by the hugepages parameter to preallocate a
+ specific number of huge pages of default size. The number of default
+ sized huge pages to preallocate can also be implicitly specified as
+ mentioned in the hugepages section above. Therefore, on an
+ architecture with 2M default huge page size::
+
+ hugepages=256
+ default_hugepagesz=2M hugepages=256
+ hugepages=256 default_hugepagesz=2M
+
+ will all result in 256 2M huge pages being allocated. Valid default
+ huge page size is architecture dependent.
+hugetlb_free_vmemmap
+ When CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP is set, this enables HugeTLB
+ Vmemmap Optimization (HVO).
+
When multiple huge page sizes are supported, ``/proc/sys/vm/nr_hugepages``
indicates the current number of pre-allocated huge pages of the default size.
Thus, one can use the following command to dynamically allocate/deallocate
@@ -177,8 +242,12 @@ will exist, of the form::
hugepages-${size}kB
-Inside each of these directories, the same set of files will exist::
+Inside each of these directories, the set of files contained in ``/proc``
+will exist. In addition, two additional interfaces for demoting huge
+pages may exist::
+ demote
+ demote_size
nr_hugepages
nr_hugepages_mempolicy
nr_overcommit_hugepages
@@ -186,7 +255,29 @@ Inside each of these directories, the same set of files will exist::
resv_hugepages
surplus_hugepages
-which function as described above for the default huge page-sized case.
+The demote interfaces provide the ability to split a huge page into
+smaller huge pages. For example, the x86 architecture supports both
+1GB and 2MB huge pages sizes. A 1GB huge page can be split into 512
+2MB huge pages. Demote interfaces are not available for the smallest
+huge page size. The demote interfaces are:
+
+demote_size
+ is the size of demoted pages. When a page is demoted a corresponding
+ number of huge pages of demote_size will be created. By default,
+ demote_size is set to the next smaller huge page size. If there are
+ multiple smaller huge page sizes, demote_size can be set to any of
+ these smaller sizes. Only huge page sizes less than the current huge
+ pages size are allowed.
+
+demote
+ is used to demote a number of huge pages. A user with root privileges
+ can write to this file. It may not be possible to demote the
+ requested number of huge pages. To determine how many pages were
+ actually demoted, compare the value of nr_hugepages before and after
+ writing to the demote interface. demote is a write only interface.
+
+The interfaces which are the same as in ``/proc`` (all except demote and
+demote_size) function as described above for the default huge page-sized case.
.. _mem_policy_and_hp_alloc:
@@ -220,7 +311,7 @@ memory policy mode--bind, preferred, local or interleave--may be used. The
resulting effect on persistent huge page allocation is as follows:
#. Regardless of mempolicy mode [see
- :ref:`Documentation/admin-guide/mm/numa_memory_policy.rst <numa_memory_policy>`],
+ Documentation/admin-guide/mm/numa_memory_policy.rst],
persistent huge pages will be distributed across the node or nodes
specified in the mempolicy as if "interleave" had been specified.
However, if a node in the policy does not contain sufficient contiguous
@@ -368,13 +459,13 @@ Examples
.. _map_hugetlb:
``map_hugetlb``
- see tools/testing/selftests/vm/map_hugetlb.c
+ see tools/testing/selftests/mm/map_hugetlb.c
``hugepage-shm``
- see tools/testing/selftests/vm/hugepage-shm.c
+ see tools/testing/selftests/mm/hugepage-shm.c
``hugepage-mmap``
- see tools/testing/selftests/vm/hugepage-mmap.c
+ see tools/testing/selftests/mm/hugepage-mmap.c
The `libhugetlbfs`_ library provides a wide range of userspace tools
to help with huge page usability, environment setup, and control.